离散数学结构 习题11-1

合集下载

应用离散数学代数结构群题库试卷习题及答案

应用离散数学代数结构群题库试卷习题及答案

§4.3 群习题4.31. 设G 是所有形如⎪⎪⎭⎫ ⎝⎛001211a a 的矩阵组成的集合, *表示矩阵乘法。

试问>*<,G 是半群吗?是有么半群吗?这里1211a a 、是实数。

解 任取G 中的2个元素=A ⎪⎪⎭⎫ ⎝⎛001211a a 、=B ⎪⎪⎭⎫⎝⎛001211b b 、 ∵=*B A ⎪⎪⎭⎫ ⎝⎛001211a a ⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫⎝⎛0012111111b a b a G ∈ ∴ >*<,G 是一个代数系统。

且因为矩阵的乘法满足结合律,所以>*<,G 是半群。

又因为,只要11a =1,则=*B A ⎪⎪⎭⎫ ⎝⎛001211a a *⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫ ⎝⎛0012111111b a b a =⎪⎪⎭⎫⎝⎛001211b b B = 对任何的G B ∈成立,即⎪⎪⎭⎫⎝⎛00112a 是左单位元(不论12a 取什么值)。

但右单位元不存在,因为不论11b ,12b 取什么值,=*B A ⎪⎪⎭⎫ ⎝⎛001211a a ⎪⎪⎭⎫ ⎝⎛001211b b =⎪⎪⎭⎫ ⎝⎛0012111111b a b a =⎪⎪⎭⎫⎝⎛001111a a B = 不可能对任何的G A ∈成立。

所以单位元不存在(事实上,若单位元存在,则左、右单位元都存在且相等还唯一),所以>*<,G 不是有么半群。

2. 在自然数集合N 上定义运算∨和∧如下:}max{b a b a ,=∨,}min{b a b a ,=∧试问>∨<,N 和>∧<,N 是半群吗?是有么半群吗? 解>∨<,N 是半群,有单位元0,是有幺半群。

>∧<,N 是半群,没有单位元,不是有幺半群。

3. 设Z 为整数集合,在Z 上定义二元运算*如下:Z ∈∀-+=*y x y x y x ,,2问Z 关于运算*能否构成群?为什么? 解(1)整数集合Z 非空。

离散数学结构试题集2011

离散数学结构试题集2011

第1章一.填空题1.2. 公式P→(Q→R)在联结词全功能集{﹁,∨}中等值形式为___________________。

3.4.5.6.7. 全体小项的析取式必为____________________式。

8. P,Q为两个命题,则德摩根律可表示为7. 全体小项的析取式必为_________式。

9. P,Q为两个命题,则吸收律可表示为____________________ 。

10. 设P:我有钱,Q:我去看电影。

命题“虽然我有钱,但是我不去看电影”符号化为_____ _______________。

11. 设P:我生病,Q:我去学校。

命题“如果我生病,那么我不去学校”符号化为_________ ___________。

12.13.14.15. 设P、Q为两个命题,交换律可表示为____________________。

16.17. 命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为____________________ 。

18.19.20.21. P:你努力,Q:你失败。

命题“除非你努力,否则你将失败”的翻译为_______________ _____。

22.23.24. 一个重言式和一个矛盾式的合取是____________________。

25. 全体小项的析取式为____________________ 。

26. 命题“如果你不看电影,那么我也不看电影”(P:你看电影,Q:我看电影)的符号化为____________________。

27.28. 设P:它占据空间,Q:它有质量,R:它不断运动,S:它叫做物质。

命题“占据空间的,有质量的而且不断运动的叫做物质”的符号化为____________________。

29.30.解答:1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.二.选择题1.2.3. 在除﹁之外的四大联结词中,满足结合律的有几个( )。

北航离散数学第11章习题答案

北航离散数学第11章习题答案

第11章习题答案3. 对图11.3的有向图,找出从u 1到u 4的长度为2,3,4的所有通路,并找出顶点u 4上的长度为2,3,4的所有回路。

用M 2,M 3,,M 4,来验证这些结果。

解:从u 1到u 4长度为2的通路有1条:(u 1,u 2,u 4)从u 1到u 4长度为3的通路有2条:(u 1,u 2,u 3,u 4),(u 1,u 4,u 2,u 4) 从u 1到u 4长度为4的通路有3条:(u 1,u 2,u 3,u 2,u 4),(u 1,u 2,u 4,u 2,u 4),(u 1,u 4,u 2,u 3,u 4)顶点u 4上的长度为2的回路有1条:(u 4,u 2,u 4) 顶点u 4上的长度为3的回路有1条:(u 4,u 2,u 3,u 4) 顶点u 4上的长度为4的回路有2条:(u 4,u 2,u 3,u 2,u 4),(u 4,u 2,u 4,u 2,u 4)M =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0010101011001010 M 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1100111010201110M 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1020212022102120M 4=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡221323031403230由M 2,M 3,,M 4中的第1行第4列的元素可见,从u 1到u 4长度为2,3,4的通路分别有1条,2条,3条。

由M 2,M 3,,M 4中的第4行第4列的元素可见,u 4上的长度为2,3,4的回路分别有1条,1条,2条,说明所找的上述通路和回路正确。

5. 设有向图D 具有顶点集合{u 1,u 2,…,u n },M 是D 的邻接矩阵。

证明对于i ≠j 和k=1,2,…,n-1,如果M k(k=1,2,…,n-1)中第i 行第j 列上的元素均为0,则u i 和u j 必定属于D 的不同的强分图。

证明:假设u i 和u j 属于D 的同一个强分图,则u i 和u j 互相可达。

离散数学练习题

离散数学练习题

离散数学练习题1、图中度为零的结点称为孤立结点。

A. 正确B. 错误正确:【A】2、域是整环。

A. 正确B. 错误正确:【A】3、有限格都是有界格。

A. 正确B. 错误正确:【A】4、连通且不含圈的图称为树。

A. 正确B. 错误正确:【A】5、“如果1+1≠3,则2+2≠4”是真命题。

A. 正确B. 错误正确:【B】6、无向图G为欧拉图,则G是连通的。

A. 正确B. 错误正确:【A】7、若A和B都是谓词公式,则(A∧B)、(A∨B)、(A→B)、(A<->B)都是谓词公式。

A. 正确B. 错误8、设A, B, C是命题公式,则AVBV﹁C 也是命题公式。

A. 正确B. 错误正确:【A】9、设〈L,≤〉是格,则格的交∧和并∨运算满足等幂律。

A. 正确B. 错误正确:【A】10、“x+3>1。

”是命题。

A. 正确B. 错误正确:【B】11、半群满足交换律。

A. 正确B. 错误正确:【B】12、在任何图中,奇数度的结点数必是偶数。

A. 正确B. 错误正确:【A】13、在格〈L,∨,∧〉中,如果交运算对并运算是可分配的,则并运算对交运算也是可分配的。

A. 正确B. 错误正确:【A】14、完全图Kn没有割集,它的连通性能是最好的。

A. 正确B. 错误15、对任意集合A,都有∅⊆A。

A. 正确B. 错误正确:【A】17、强连通图一定是单向连通图。

A. 正确B. 错误正确:【A】18、代数系统〈G,∘〉为群的条件是存在零元素。

A. 正确B. 错误正确:【B】19、对应日常生活中的“任意的”,“所有的”,“一切的”等词,用符号“任意”表示。

A. 正确B. 错误正确:【A】20、如果a是集合A中的元素,则称a属于A,记作a∉A。

A. 正确B. 错误正确:【B】21、A,B是集合,P(A),P(B)为其幂集,且,则P(A)∩P(B)为()A. B.C. D.正确:【B】22、设M={x|f1(x)=0},N={x|f2(x)=0},则方程f1(x)•f2(x)=0的解为()A. M∩NB. M∪NC. MND. M-N正确:【B】23、设集合A={1,2,3},下列关系R中不是等价关系的是()A. R={<1,1>,<2,2>,<3,3>}B. R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C. R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>} 正确:【C】24、设<A,?,*>是环,则下列说法不正确的是()A. <A,?>是交换群B. <A,*>是半群C. *对?是可分配的D. ?对*是可分配的正确:【D】25、平面图(如下)的三个面的次数分别是()A. 11,3,4B. 11,3,5C. 12,3,6D. 10,4,3正确:【A】26、下列命题正确的是()A. {l,2} {{1,2},{l,2,3},1}B. {1,2} {1,{l,2},{l,2,3},2}C. {1,2} {{1},{2},{1,2}}D. {1,2}∈{1,2,{2},{l,2,3}}正确:【B】27、设D的结点数大于1,D=<V,E>是强连通图,当且仅当()A. D中至少有一条通路B. D中至少有一条回路C. D中有通过每个结点至少一次的通路D. D中有通过每个结点至少一次的回路正确:【D】28、下列等价式正确的是()A. ┐┐AB.C. ┐┐AD.正确:【C】29、设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A. PQB. PQC. QPD. Q=P正确:【C】30、设,则有()A. B.C. D.正确:【C】31、下列各图中既是欧拉图,又是汉密尔顿图的是()A. B.C. D.正确:【C】32、无向图G是欧拉图当且仅当G是连通的且()A. G中各顶点的度数均相等B. G中各顶点的度数之和为偶数C. G中各顶点的度数均为偶数D. G中各顶点的度数均为奇数正确:【C】33、下列式子正确的是()A. (A-B)-C = A-(B∪C)B. A-(B∪C)=(A-B)∪CC. ~(A-B)= ~(B-A)D.正确:【A】34、设有代数系统G=〈A,*〉,其中A是所有命题公式的集合,*为命题公式的合取运算,则G的幺元是()A. 矛盾式B. 重言式C. 可满足D. 公式p∧q正确:【B】35、设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不在室内运动”可符合化为()A. ┐P∧QB. ┐P→QC. ┐P→┐QD. P→┐Q正确:【C】36、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x∈A,y ∈A},则R的性质是()A. 自反的B. 对称的C. 传递的、对称的D. 反自反的、传递的正确:【B】37、设集合A={a,b, c}上的关系如下,具有传递性的是()A. R={<a,c>,<c,a>,<a,b>,<b,a>}B. R={<a,c>,<c,a>}C. R={<a,b>,<c,c>,<b,a>,<b,c>}D. R={<a,a>}正确:【D】38、下列等价式不正确的是()A. B.C. D.正确:【A】39、设M(x):x是人;F(x):x要吃饭。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∀x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系 12.设R 为实数集,函数f :R →R ,f(x)=2x ,则f 是( B ) A .满射函数 B .单射函数 C .双射函数 D .非单射非满射第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

慕课离散结构习题答案

慕课离散结构习题答案

慕课离散结构习题答案慕课离散结构习题答案离散结构是计算机科学中的一门重要课程,它涉及到了离散数学的基本概念和应用。

在学习离散结构的过程中,做习题是非常重要的一部分。

通过做习题,我们可以加深对知识点的理解,提高解决问题的能力。

然而,有时候我们会遇到一些难题,无法找到正确的答案。

本文将为大家提供一些慕课离散结构习题的答案,希望能够帮助大家更好地学习和理解离散结构。

一、集合论1. 设A={1,2,3,4,5},B={3,4,5,6,7},求A∪B的结果。

答案:A∪B={1,2,3,4,5,6,7}2. 设A={1,2,3,4,5},B={3,4,5,6,7},求A∩B的结果。

答案:A∩B={3,4,5}3. 设A={1,2,3,4,5},B={3,4,5,6,7},求A-B的结果。

答案:A-B={1,2}二、逻辑与证明1. 证明下列命题:若A∪B=A∩B,则A=B。

证明:假设A∪B=A∩B,即对于任意的x,x∈A∪B当且仅当x∈A∩B。

根据集合的定义,x∈A∪B表示x属于A或者属于B,而x∈A∩B表示x既属于A 又属于B。

由于A∪B=A∩B,所以对于任意的x,x属于A或者属于B等价于x 既属于A又属于B。

因此,A=B。

2. 证明下列命题:对于任意的正整数n,如果n是偶数,则n^2是偶数。

证明:假设n是偶数,即存在正整数k,使得n=2k。

那么n^2=(2k)^2=4k^2=2(2k^2),其中2k^2也是一个正整数,所以n^2是偶数。

三、图论1. 给定一个无向图G=(V,E),其中V={1,2,3,4,5},E={(1,2),(2,3),(3,4),(4,5),(5,1)},求图G的邻接矩阵。

答案:1 2 3 4 51 0 1 0 0 12 1 0 1 0 03 0 1 0 1 04 0 0 1 0 15 1 0 0 1 02. 给定一个有向图G=(V,E),其中V={1,2,3,4,5},E={(1,2),(2,3),(3,4),(4,5),(5,1)},求图G的邻接矩阵。

离散数学及其应用图论部分课后习题答案

离散数学及其应用图论部分课后习题答案

作业答案:图论部分P165:习题九1、 给定下面4个图(前两个为无向图,后两个为有向图)的集合表示,画出它们的图形表示。

(1)111,G V E =<>,112345{,,,,}V v v v v v =,11223343345{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (2)222,G V E =<>,21V V =,11223344551{(,),(,),(,),(,),(,)}E v v v v v v v v v v = (3)13331,,,D V E V V =<>=31223324551{,,,,,,,,,}E v v v v v v v v v v =<><><><><> (4)24441,,,D V E V V =<>=31225523443{,,,,,,,,,}E v v v v v v v v v v =<><><><><> 解答: (1)(2)10、是否存在具有下列顶点度数的5阶图?若有,则画出一个这样的图。

(1)5,5,3,2,2;(2)3,3,3,3,2;(3)1,2,3,4,5;(4)4,4,4,4,4 解答:(1)(3)不存在,因为有奇数个奇度顶点。

14、设G 是(2)n n ≥阶无向简单图,G 是它的补图,已知12(),()G k G k δ∆==,求()G ∆,()G δ。

解答:2()1G n k ∆=--;1()1G n k δ=--。

15、图9.19中各对图是否同构?若同构,则给出它们顶点之间的双射函数。

解答:(c )不是同构,从点度既可以看出,一个点度序列为4,3,3,3,3而另外一个为4,4,3,3,1(d )同构,同构函数为12()345x a x bf x x c x d x e=⎧⎪=⎪⎪==⎨⎪=⎪=⎪⎩ 16、画出所有3条边的5阶简单无向图和3条边的3阶简单无向图。

11级离散数学试题(A)参考答案

11级离散数学试题(A)参考答案

2011级离散数学(A)参考答案一、填空题(每小题2分,共30分)1. 设():M x x 为人, ():F x x 不吃饭。

将命题“没有不吃饭的人”符号化为:))()((x F x M x ⌝→∀ 或 ))()(((x F x m x ∧∃⌝ 。

2. 设A={1, 2, 3, 4} ,则 A 的全部2元子集共有 6 个。

3. 设p :明天是周一,q :明天是周三,r :我有课。

则命题“如果明天是周一或周三,我就有课”的符号化形式为 r q p →∨)( 。

4. 已知命题公式A 含有2个命题变项,其成真赋值为00、10、11,则其主析取范式为 320m m m ∨∨ 。

5. 设p :北京比大连人口多,q :2+2=4,r :乌鸦是白色的。

则命题公式)()(r p r q ⌝→→∨的真值为 1 。

6. 集合}3,2,1{=A 上的关系}3,2,3,1,2,1{><><><=R ,则=-1R { <2,1>,<3,1>,<3,2> }。

7. 画出下图的补图 。

8.设A={1,2,3},B={a,b,c},A 1={1},f={<1,a>,<2,a>,<3,b>},则=-))((11A f f { 1,2 }。

9. 设无向图的度数序列为:1,2,2,3,4。

则该无向图的边数m= 6 。

10. 3阶有向完全图的2条边的非同构的生成子图有 4 个。

11. 设〈≤,A 〉为偏序集,A B ⊆。

若y x B y x 与,,∈∀都是可比的,则称B是A 中的一条链,B 中的元素个数称为链的长度。

在偏序集〈{1,2,…,9},整除〉中,{1,2,4,8}是长为 4 的链。

12. 下面运算表中的单位元是 b 。

13. 写出模4加法群G=<Z 4,⊕ >的运算表14. 模4加法群中, 2-3= 2 。

离散数学11

离散数学11

(4)条件联结词
定义1-2.4 复合命题“如果P,则Q” 称为P与Q的
蕴涵式,记作P Q,即“如果P,则Q”,“若 P则Q”。并称P为前件,Q为后件,符号称为蕴 涵联结词。
运算规则:属于双目运算符
P
Q P→Q
T
T
T
T
F
F
F
T
T
F
F
T
只有当P的 真值为T, Q的真值为 F时, P Q 的真值为F, 否则均为T。
作业:
P8 (3)(5) P12 (5)
1-1 命题及其表示方法
内容:命题 重点:掌握命题概念
一.基本概念
命题:具有确定真值的陈述句。
or 真值客观存在且唯一 or 能区分真假 可以看出: (1)一个命题,总是具有一个“值”,称为真 值。命真真命题:真值为真(T,1)的命题。 假命题:真值为假(F,0)的命题。
复合命题的真值,取决于原子命题的真值,与原子命题 之间是否有关系无关,与复合命题本身内容、含义无关;
∧、∨、 具有对称性, ┐、 没有; 联结词具有运算和操作性,从已知命题得到新命题。
1-3 命题公式与翻译
内 容:
合式公式
命题翻译
重点难点:命题翻译
合式公式wff
命题公式:将命题变元用联结词和圆括号按一定 的逻辑关系联结起来的有意义的符号串。
为什么研究数理逻辑 程序=算法+数据 算法=逻辑+控制
数理逻辑是用数学方法即通过引入表意符号研究 推理的学问。因此,数理逻辑又名为符号逻辑。
第一章 命题逻辑
命题的引入:
数理逻辑研究推理,而推理必须包含前提和结 论,它们又都是由什么样的句子组成?
陈述句,所以陈述句就成了推理的基本要素。 所有的陈述句都是推理的要素? 数理逻辑中所要求的是能判断真假(对错)的陈

离散数学第十一章群和环习题答案

离散数学第十一章群和环习题答案

习题十五
16
证明:每个阶数大于1的群必含有阶数大于1的交换子群. 证明: 因为G的阶数大于1,必有周期大于1的元aG,构造H=(a),即 为所求。
习题十五
17
证明:循环群的子群必是循环群. 证明: 设G的生成元为a, H为G的子群,并且H中具有最小正幂的元是 ak, G=(a), HG, H={e, ak, ak2, ak3,…},设ak是H中具有最小正指数 的元, amH,证明am=(ak)* ,H=(ak), 则 amH,令m=tk+r (0r<k), 则am=(ak)t ar, 由k的选择知,r=0, 即am=(合,试确定<A, +, >是否成环、整环或域。 (1)A={x|xZ且x 0},无加法逆元,不是环 (2)A={a+b√3|a,bQ},是域 (3)A={x|(y)[yZ且x=2y]}, 由偶数构成,是环,但无法幺元, 不是整环,不是域。 (4)A={a/b|a,b为正整数,且(a,b)=1},既约分数,但无0,不构 成环。
习题十五 30
设<G, · >是群,a是G中一个固定元素,定义映射f:G → G使得对任何x G,f(x)=a· a-1. 求证:f是G的 x· 自同构映射。
证明: 容易证明f是G的同态映射, f(x· =a· y· -1 =a· a-1· y· -1 y) x· a x· a· a =f(x) ·f(y) 再证明f是双射, 证单射:f(x)=f(y), a· a-1 = a· a-1 x=y x· y· 证满射:令a· a-1 = y, x=a-1· a x· y·
c
c
c c
附加题:确定 2S,、 2S,、2S,各属于 哪一个层次?
• 2S,:闭,结,幺= S,无逆元,故含幺半群。 • 2S,:闭,结,幺= ,无逆元,故含幺半群。 • 2S,:闭,结,幺= ( A=A, AA= )A-1=A, 群。

离散数学-第三部分代数结构练习题答案(课件模板)

离散数学-第三部分代数结构练习题答案(课件模板)

《离散数学》第三部分----代数结构一、选择或填空1、设A={2,4,6},A上的二元运算*定义为:a*b=max{a,b},则在独异点<A,*>中,单位元是( ),零元是( )。

答:2,62、设A={3,6,9},A上的二元运算*定义为:a*b=min{a,b},则在独异点<A,*>中,单位元是( ),零元是( );答:9,33、设〈G,*〉是一个群,则(1) 若a,b,x∈G,a*x=b,则x=( );(2) 若a,b,x∈G,a*x=a*b,则x=( )。

答:(1)a*-1 b (2)b4、设a是12阶群的生成元,则a2是( )阶元素,a3是( )阶元素。

答:6,45、代数系统<G,*>是一个群,则G的等幂元是( )。

答:单位元6、设a是10阶群的生成元,则a4是( )阶元素,a3是( )阶元素。

答:5,107、群<G,*>的等幂元是( ),有( )个。

答:单位元,18、素数阶群一定是( )群, 它的生成元是( )。

答:循环群,任一非单位元9、设〈G,*〉是一个群,a,b,c∈G,则(1) 若c*a=b,则c=( );(2) 若c*a=b*a,则c=( )。

答:(1)b1-*a(2) b10、<H,,*>是<G,,*>的子群的充分必要条件是( )。

答:<H,,*>是群或∀ a,b ∈G,a*b∈H,a-1∈H 或∀ a,b ∈G,a*b-1∈H 11、群<A,*>的等幂元有( )个,是( ),零元有( )个。

答:1,单位元,012、在一个群〈G,*〉中,若G中的元素a的阶是k,则a-1的阶是( )。

答:k13、在自然数集N上,下列哪种运算是可结合的?()(1) a*b=a-b (2) a*b=max{a,b} (3) a*b=a+2b (4) a*b=|a-b| 答:(2)14、任意一个具有2个或以上元的半群,它()。

离散数学习题的答案解析

离散数学习题的答案解析

离散数学习题答案之羊若含玉创作习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟解:设p :李辛与李末是兄弟,则命题符号化的成果是p (6)王强与刘威都学过法语解:设p :王强学过法语;q :刘威学过法语;则命题符号化的成果是p q ∧(9)只有天下大雨,他才乘班车上班解:设p :天下大雨;q :他乘班车上班;则命题符号化的成果是q p → (11)下雪路滑,他迟到了解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的成果是()p q r ∧→15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧⌝↔⌝∨⌝→ 解:p=1,q=1,r=0,()(110)1p q r ∧∧⌝⇔∧∧⌝⇔,19、用真值表断定下列公式的类型: (2)()p p q →⌝→⌝解:列出公式的真值表,如下所示:由真值表可以看出公式有3个成真赋值,故公式是非重言式的可知足式. 20、求下列公式的成真赋值: (4)()p q q ⌝∨→解:因为该公式是一个蕴含式,所以首先剖析它的成假赋值,成假赋值的条件是:所以公式的成真赋值有:01,10,11. 习题二及答案:(P38)5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ⌝→∧∧解:原式()p q q r ⇔∨∧∧q r ⇔∧()p p q r ⇔⌝∨∧∧()()p q r p q r ⇔⌝∧∧∨∧∧37m m ⇔∨,此即公式的主析取范式,所以成真赋值为011,111.*6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨⌝∨解:原式()()p p r p q r ⇔∨⌝∨∧⌝∨∨()p q r ⇔⌝∨∨4M ⇔,此即公式的主合取范式,所以成假赋值为100.7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨解:原式()(()())p q r r p p q q r ⇔∧∧⌝∨∨⌝∨∧⌝∨∧13567m m m m m ⇔∨∨∨∨,此即主析取范式.主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ⇔∧∧. 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨⌝∧ 解:公式的真值表如下:由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式1234567m m m m m m m ⇔∨∨∨∨∨∨ 习题三及答案:(P52-54)11、填充下面推理证明中没有写出的推理规矩. 前提:,,,p q q r r s p ⌝∨⌝∨→ 结论:s 证明:① p 前提引入 ②p q ⌝∨ 前提引入 ③ q ①②析取三段论 ④q r ⌝∨ 前提引入⑤ r ③④析取三段论⑥r s→前提引入⑦ s ⑤⑥假言推理15、在自然推理系统P中用附加前提法证明下面推理:(2)前提:()(),()∨→∧∨→p q r s s t u结论:p u→证明:用附加前提证明法.① p 附加前提引入②p q∨①附加③()()∨→∧前提引入p q r s④r s∧②③假言推理⑤s④化简⑥s t∨⑤附加⑦()∨→前提引入s t u⑧ u ⑥⑦假言推理故推理正确.16、在自然推理系统P中用归谬法证明下面推理:(1)前提:p q∧⌝⌝∨,r s→⌝,r q结论:p⌝证明:用归谬法① p 结论的否认引入②p q→⌝前提引入④r q⌝∨前提引入⑤r⌝③④析取三段论⑥r s∧⌝前提引入⑦ r ⑥化简⑧r r∧⌝⑤⑦合取由于0∧⌝⇒,所以推理正确.r r17、在自然推理系统P中结构下面推理的证明:只要A曾到过受害者房间并且11点以前没分开,A就是谋杀嫌犯.A曾到过受害者房间.如果A在11点以前分开,看门人会看见他.看门人没有看见他.所以,A是谋杀嫌犯.解:设p:A到过受害者房间,q:A在11点以前分开,r:A是谋杀嫌犯,s:看门人看见过A.则前提:()∧⌝→,p,q sp q r→,s⌝结论:r证明:①q s→前提引入②s⌝前提引入③q⌝①②拒取式④p前提引入⑤p q∧⌝③④合取引入⑥()∧⌝→前提引入p q r习题四及答案:(P65-67)5、在一阶逻辑中将下列命题符号化: (2)有的火车比有的汽车快.解:设F(x):x 是火车,G(y):y 是汽车,H(x,y):x 比y 快;则命题符号化的成果是:(3)不存在比所有火车都快的汽车. 解:办法一:设F(x):x 是汽车,G(y):y 是火车,H(x,y):x 比y 快;则命题符号化的成果是:(()(()(,)))x F x y G y H x y ⌝∃∧∀→或(()(()(,)))x F x y G y H x y ∀→∃∧⌝办法二:设F(x):x 是火车,G(y):y 是汽车,H(x,y):x 比y 快;则命题符号化的成果是:(()(()(,)))x G x y F y H x y ⌝∃∧∀→或(()(()(,)))x y G x F y H x y ⌝∃∀∧→9、给定说明I 如下: (a) 个别域为实数聚集R. (b) 特定元素0a -=.(c) 函数(,),,f x y x y x y R -=-∈.(d) 谓词(,):,(,):,,F x y x y G x y x y x y R --=<∈.给出以下公式在I 下的说明,并指出它们的真值: (2)(((,),)(,))x y F f x y a G x y ∀∀→解:说明是:(0)x y x y x y ∀∀-=→<,寄义是:对于任意的实数x ,y ,若x-y=0则x<y.该公式在I 说明下的真值为假.14、证明下面公式既不是永真式也不是抵触式: (1)(()(()(,)))x F x y G y H x y ∀→∃∧解:取说明I 如下:个别域为全总个别域,()F x :x是兔子,()G y :y 是乌龟,(,)H x y :x 比y 跑得快,则该公式在说明I 下真值是1;取说明'I 如下:(,)H x y :x 比y 跑得慢,其它同上,则该公式在说明'I 下真值是0;故公式(1)既不是永真式也不是抵触式.此题答案不唯一,只要证明公式既不是永真式也不是抵触式的每个说明合理即可.习题五及答案:(P79-81) 5、给定说明I 如下: (a) 个别域D={3,4}(b) ():(3)4,(4)3f x f f ---==(c) (,):(3,3)(4,4)0,(3,4)(4,3)1F x y F F F F -----==== 试求下列公式在I 下的真值: (1) (,)x yF x y ∀∃解:办法一:先消去存在量词15、在自然推理系统N ξ中,结构下面推理的证明:(3)前提:(()())⌝∃xG xx F x G x∀∨,()结论:()∃xF x证明:①()⌝∃前提引入xG x②()∀⌝①置换x G x③()⌝②UI规矩G c④(()())∀∨前提引入x F x G x⑤()()F cG c∨④UI规矩⑥()F c③⑤析取三段论⑦()∃⑥EG规矩xF x*22、在自然推理系统N中,结构下面推理的证明:ξ(2)凡大学生都是勤奋的.王晓山不勤奋.所以王晓山不是大学生.解:设F(x):x为大学生,G(x):x是勤奋的,c:王晓山则前提:(()())⌝G cx F x G x∀→,()结论:()⌝F c证明:①(()())∀→前提引入x F x G x②()()→①UI规矩F cG c③()⌝前提引入G c④()⌝②③拒取式F c25、在自然推理系统N中,结构下面推理的证明:ξ每个科学工作者都是耐劳钻研的,每个耐劳钻研而又聪明的人在他的事业中都将获得成功.王大海是科学工作者,并且是聪明的.所以,王大海在他的事业中将获得成功.(个别域为人类聚集)解:设F(x):x 是科学工作者,G(x):x 是耐劳钻研的,H(x):x 是聪明的,I(x):x 在他的事业中获得成功,c :王大海 则前提:(()())x F x G x ∀→,(()()())x G x H x I x ∀∧→,()()F c H c ∧ 结论:()I c 证明:①()()F c H c ∧前提引入 ②()F c ①化简 ③()H c ①化简④(()())x F x G x ∀→前提引入 ⑤()()F c G c →④UI 规矩 ⑥()G c ②⑤假言推理 ⑦()()G c H c ∧③⑥合取引入 ⑧(()()())x G x H x I x ∀∧→ 前提引入 ⑨()()()G c H c I c ∧→⑧UI 规矩 ⑩()I c ⑦⑨假言推理 习题六及答案(P99-100) 28、化简下述聚集公式:(3)(())(())(())(())A B C A B C A B C A B C --⋃-⋂⋃⋂-⋂⋂ 解:(())(())(())(())A B C A B C A B C A B C --⋃-⋂⋃⋂-⋂⋂30、设A,B,C 代表任意聚集,试断定下面命题的真假.如果为真,给出证明;如果为假,给出反例. (6)()A B A B ⋃-=解:该命题为假,()A B A B A ⋃-=-,如果B A ⋂=∅,则B A B -=,不然B A B -≠,故B A B -=为假.举反例如下:{1,2},{1,3},A B ==则(){3}A B A B ⋃-=≠. (8)A B A C B C ⋃=⋃⇒=解:该命题为假,举反例如下:如果B ,C 都是A 的子集,则A B A C ⋃=⋃一定成立,但B C =不一定成立,例如:{1,2}A =,{1}B =,{2}C =,则A B A C A ⋃=⋃=,但B C ≠.33、证明聚集恒等式: (1)()A B A B A ⋂⋃=⋂证明:()A B A ⋂⋃A B =⋂B A =⋂习题七及答案:(P132-135)26 设{}1,2,3,4,5,6A =,R 为A 上的关系,R 的关系图如图7.13所示: (1)求23,R R 的聚集表达式;(2)求r(R), s(R), t(R)的聚集表达式. 解:(1)由R 的关系图可得{}1,5,2,5,,3,3,4,5R =所以{}23,1,3,3,R R R =︒=,{323,1,3,3,3,5RR R =︒=,可得{}3,1,3,3,,n>=2n R =当;(2){A r(R)=RI 1,5,2,5,3,1,3,3,4,5,1,1,2,2,4,4,5,5,6,6=,41、设A={1,2,3,4},R 为A A⨯上的二元关系,,,,a b c d A A ∀<><>∈⨯,,,a b R c d a b c d <><>⇔+=+(1)证明R 为等价关系;(2)求R 导出的划分.(1)只需证明R 具有自反性、对称性和传递性即可,证明进程如下: (a )任取,a b A A ∀<>∈⨯,有a b a b +=+,,,a b R a b ∴<><>,所以R 具有自反性;(b )任取,,,a b c d A A ∀<><>∈⨯,若,,a b R c d <><>,则有a b c d +=+,c d a b ∴+=+,,,c d R a b ∴<><>,所以R 具有对称性; (c )任取,,,,,a b c d e f A A ∀<><><>∈⨯,若,,a b R c d <><>且,,c d R e f <><>, 则有a b c d +=+且c d e f +=+,a b e f ∴+=+,,,a b R e f ∴<><>,所以R 具有传递性,综合(a )(b )(c )可知:R 为聚集A A ⨯上的等价关系;(2)先求出聚集A A ⨯的成果:再分离求聚集A A ⨯各元素的等价类,成果如下:[4,4]{4,4}R <>=<>.等价关系R 导出的划分就是聚集A 关于R 的商集/A R ,而聚集A 关于R 的商集/A R 是由R 的所有等价类作为元素组成的聚集,所以等价关系R 导出的划分是:46、分离画出下列各偏序集,A R ≤的哈斯图,并找出A 的极大元、极小元、最大元和最小元.(1){A ,,,,,,,,,,,,,I R a d a c a b a e b e c e d e ≤=解:哈斯图如下:A 的极大元为e 、f ,极小元为a 、f ;A 的最大元和最小元都不存在.*22、给定{}1,2,3,4A =,A 上的关系{}1,3,1,4,2,3,2,4,3,4R =,试(1)画出R 的关系图;(2)说明R 的性质.解:(1●●●●(2R 是反自反的,不是自反的;R 的关系图中任意两个极点如果有边的都是单向边,故R 是否决称的,不是对称的;R 的关系图中没有产生极点x 到极点y 有边、极点y 到极点z 有边,但极点x 到极点z 没有边的情况,故R 是传递的.*48、设,B,S A R 和为偏序集,在聚集A B ⨯上界说关系T 如下:证明T 为A B ⨯上的偏序关系.证明:(1)自反性:(2)否决称性:(3)传递性:综合(1)(2)(3)知T 具有自反性、否决称性和传递性,故T 为A B ⨯上的偏序关系.习题九及答案:(P179-180)8、(1)S *运算在上是否可交换、可结合?是否为幂等的?(2)S *运算是否有单位元、零元?如果有,请指出,并求出中所有可逆元素的逆元. 解:(1)(2)11、{}S 12S ?=***设,,...,10,问下面的运算能否与构成代数系统,如果能构成代数系统则说明运算是否满足交换律、结合律,并求运算的单位元和零元。

离散数学课后答案

离散数学课后答案

离散数学课后答案习题一6.将下列命题符号化。

(1)小丽只能从框里那一个苹果或一个梨.(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:(1)(p Λ¬q )ν(¬pΛq)其中p:小丽拿一个苹果,q:小丽拿一个梨(2)(p Λ¬q )ν(¬pΛq)其中p:刘晓月选学英语,q:刘晓月选学日语14.将下列命题符号化.(1) 刘晓月跑得快, 跳得高.(2)老王是山东人或河北人.(3)因为天气冷, 所以我穿了羽绒服.(4)王欢与李乐组成一个小组.(5)李辛与李末是兄弟.(6)王强与刘威都学过法语.(7)他一面吃饭, 一面听音乐.(8)如果天下大雨, 他就乘班车上班.(9)只有天下大雨, 他才乘班车上班.(10)除非天下大雨, 他才乘班车上班.(11)下雪路滑, 他迟到了.(12)2与4都是素数, 这是不对的.(13)“2或4是素数, 这是不对的”是不对的.答:(1)p∧q, 其中, p: 刘晓月跑得快, q: 刘晓月跳得高.(2)p∨q, 其中, p: 老王是山东人, q: 老王是河北人.(3)p→q, 其中, p: 天气冷, q: 我穿了羽绒服.(4)p, 其中, p: 王欢与李乐组成一个小组, 是简单命题.(5)p, 其中, p: 李辛与李末是兄弟.(6)p∧q, 其中, p: 王强学过法语, q: 刘威学过法语.(7)p∧q, 其中, p: 他吃饭, q: 他听音乐.(8)p→q, 其中, p: 天下大雨, q: 他乘班车上班.(9)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(10)p→q, 其中, p: 他乘班车上班, q: 天下大雨.(11)p→q, 其中, p: 下雪路滑, q: 他迟到了.(12) ¬ (p∧q)或¬p∨¬q, 其中, p: 2是素数, q: 4是素数.(13) ¬ ¬ (p∨q)或p∨q, 其中, p: 2是素数, q: 4是素数.16.19.用真值表判断下列公式的类型:(1)p→ (p∨q∨r) (2)(p→¬q) →¬q(3) ¬ (q→r) ∧r(4)(p→q) →(¬q→¬p)(5)(p∧r) ↔( ¬p∧¬q)(6)((p→q) ∧ (q→r)) → (p→r)(7)(p→q) ↔ (r↔s)答:(1), (4), (6)为重言式.(3)为矛盾式.(2), (5), (7)为可满足式习题二9.用真值表求下面公式的主析取范式.(1) (pνq)ν(¬pΛr)(2) (p→q) →(¬p↔q)答:(1)(2)p q (p → q) →(¬p ↔ q)0 0 1 0 0 10 1 1 1 1 01 0 0 1 1 11 1 1 0 0 0从真值表可见成真赋值为01, 10.于是(p → q) →(¬p ↔ q) ⇔ m1 ∨ m211.用真值表求下面公式的主析取范式和主合取范式;(1) (pνq)Λr(2) p→(pνqνr)(3) ¬(q→¬p)Λ¬p15.用主析取范式判断下列公式是否等值:(1) (p→q) →r与q→ (p→r)(2) ¬(pΛq)与(¬pνq)答:(1)(p→q) →r ⇔¬(¬p∨q) ∨ r ⇔¬(¬p∨q) ∨ r ⇔ p¬∧q ∨ r ⇔p¬∧q∧(r¬∨r) ∨(p¬∨p) ∧(q¬∨q)∧r ⇔p¬∧q∧r ∨p¬∧q∧¬r ∨ p ∧q∧r ∨ p∧¬q∧r ∨¬p∧q∧r ∨¬p∧¬q∧r = m101 ∨ m100 ∨ m111 ∨m101 ∨ m011 ∨ m001 ⇔m1 ∨ m3 ∨ m4 ∨ m5 ∨ m7 = ∑(1, 3, 4, 5, 7).而 q→(p→r) ⇔¬q ∨(¬p∨r) ⇔¬q ∨¬p ∨r ⇔(¬p∨p)¬∧q∧(¬r∨r) ∨¬p∧(¬q∨q)∧(¬r∨r) ∨(¬p∨p)∧(¬q∨q)∧r ⇔(¬p¬∧q∧¬r)∨(¬p¬∧q∧r)∨(p¬∧q∧¬r)∨(p¬∧q∧r) ∨(¬p∧¬q∧¬r)∨(¬p∧¬q∧r)∨(¬p ∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r)∨(¬p∧q∧r)∨(p∧¬q∧r)∨(p∧q∧r) = m0 ∨ m1 ∨ m4 ∨ m5 ∨ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m1 ∨ m3 ∨ m5 ∨m7 ⇔ m0 ∨ m1 ∨ m2 ∨ m3 ∨ m4 ∨ m5 ∨ m7 ⇔∑(0, 1, 2, 3, 4, 5, 7). 两个公式的主吸取范式不同, 所以(p→q) →rk q→ (p→r).16. 用主析取范式判断下列公式是否等值:(1)(p→q) →r与q→ (p→r)(2) ¬ (p∧q)与¬ (p∨q)答:(1)(p→q) →r) ⇔m1∨m3∨m4∨m5∨m7q→ (p→r) ⇔m0∨m1∨m2∨m3∨m4∨m5∨m7所以(p→q) →r) k q→ (p→r)(2)¬ (p∧q) ⇔m0∨m1∨m2¬ (p∨q) ⇔m0所以¬ (p∧q) k ¬ (p∨q)习题三15.在自然推理系统P中用附加前提法证明下面各推理:(1)前提: p→ (q→r), s→p, q 结论: s→r(2)前提: (p∨q) → (r∧s), (s∨t) →u 结论: p→u答:(1)证明: ① s 附加前提引入② s→p 前提引入③ p ①②假言推理④ p→(q→r) 前提引入⑤ q→r ③④假言推理⑥ q 前提引入⑦ r ⑤⑥假言推理(2)证明: ① P 附加前提引入② p∨q ①附加③ (p∨q) → (r∧s) 前提引入④ r∧s ②③假言推理⑤④化简⑥ s∨t ⑤附加⑦ (s∨t) →u 前提引入⑧ u ⑥⑦假言推理16.在自然推理系统P中用归谬法证明下面推理:(1)前提: p→¬q, ¬r∨q, r∧¬s 结论: ¬p(2)前提: p∨q, p→r, q→s 结论: r∨s答:(1)证明: ① P 结论否定引入② p→¬q 前提引入③¬q ①②假言推理④¬r∨q 前提引入⑤¬r ③④析取三段论⑥ r∧¬s 前提引入⑦ r ⑥化简⑧¬r∧r ⑤⑦合取⑧ 为矛盾式, 由归谬法可知, 推理正确.(2)证明: ①¬ (r∨s) 结论否定引入② p∨q 前提引入③ p→r 前提引入④ q→s 前提引入⑤ r∨s ②③④构造性二难⑥¬ (r∨s) ∧ (r∨s) ①⑤合取⑥为矛盾式, 所以推理正确.18.在自然推理系统P中构造下面推理的证明.(1)如果今天是星期六, 我们就要到颐和园或圆明园去玩. 如果颐和园游人太多, 我们就不去颐和园玩. 今天是星期六. 颐和园游人太多. 所以我们去圆明园玩.(2)如果小王是理科学生, 他的数学成绩一定很好. 如果小王不是文科生, 他必是理科生. 小王的数学成绩不好. 所以小王是文科学生.(1)令 p: 今天是星期六;q: 我们要到颐和园玩;r: 我们要到圆明园玩;s:颐和园游人太多.前提: p→ (q∨r), s →¬q, p, s. 结论: r.证明① p 前提引入② p→q∨r前提引入③q∨r①②假言推理④s前提引入⑤ s →¬q前提引入⑥¬q ④⑤假言推理⑦ r ③⑥析取三段论r ¬q s →¬q sq∨r p→q∨r p(2)令p: 小王是理科生,q: 小王是文科生,r: 小王的数学成绩很好.前提: p→r, ¬q→p, ¬r 结论: q证明:① p→r 前提引入②¬r 前提引入③¬p ①②拒取式④¬q→p 前提引入⑤ q ③④拒取式习题四在一阶逻辑中将下列命题符号化:(1)没有不能表示成分数的有理数.(2)在北京卖菜的人不全是外地人.(3)乌鸦都是黑色的.(4)有的人天天锻炼身体. 没指定个体域, 因而使用全总个体域.答:(1) ¬∃x(F(x) ∧¬G(x))或∀x(F(x) →G(x)), 其中, F(x): x为有理数, G(x): x能表示成分数.(2) ¬∀x(F(x) →G(x))或∃x(F(x) ∧¬G(x)), 其中, F(x): x在北京卖菜,G(x): x是外地人.(3) ∀x(F(x) →G(x)), 其中, F(x): x是乌鸦, G(x): x是黑色的.(4) ∃x(F(x) ∧G(x)), 其中, F(x): x是人, G(x): x天天锻炼身体.5. 在一阶逻辑中将下列命题符号化:(1)火车都比轮船快.(2)有的火车比有的汽车快.(3)不存在比所有火车都快的汽车.(4)“凡是汽车就比火车慢”是不对的.答:因为没指明个体域, 因而使用全总个体域(1) ∀x∀y(F(x) ∧G(y) →H(x,y)), 其中, F(x): x是火车, G(y): y是轮船, H(x,y):x比y快.(2) ∃x∃y(F(x) ∧G(y) ∧H(x,y)), 其中, F(x): x是火车, G(y): y是汽车, H(x,y):x比y快.(3) ¬∃x(F(x) ∧∀y(G(y) →H(x,y))) 或∀x(F(x) →∃y(G(y) ∧¬H(x,y))), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y快.(4) ¬∀x∀y(F(x) ∧G(y) →H(x,y)) 或∃x∃y(F(x) ∧G(y) ∧¬H(x,y) ), 其中, F(x): x是汽车, G(y): y是火车, H(x,y):x比y慢.9.给定解释I如下:(a)个体域DI为实数集合\.(b)DI中特定元素⎯a =0.(c)特定函数⎯f (x,y)=x−y, x,y∈DI.(d)特定谓词⎯F(x,y): x=y,⎯G(x,y): x<y, x,y∈DI.说明下列公式在I下的含义, 并指出各公式的真值:(1) ∀x∀y(G(x,y) →¬F(x,y))(2) ∀x∀y(F(f(x,y),a) →G(x,y))(3) ∀x∀y(G(x,y) →¬F(f(x,y),a))(4) ∀x∀y(G(f(x,y),a) →F(x,y))答:(1) ∀x∀y(x<y→x≠y), 真值为1.(2) ∀x∀y((x−y=0) →x<y), 真值为0.(3) ∀x∀y((x<y) → (x−y≠0)), 真值为1.(4) ∀x∀y((x−y<0) → (x=y)), 真值为0.习题五5.给定解释I如下:(a) 个体域D={3,4}.(b)⎯f (x)为⎯f (3)=4,⎯f (4)=3.(c)⎯F(x,y)为⎯F(3,3)=⎯F(4,4)=0,⎯F(3,4)=⎯F(4,3)=1.试求下列公式在I下的真值:(1) ∀x∃yF(x,y)(2) ∃x∀yF(x,y)(3) ∀x∀y(F(x,y) →F(f(x),f(y)))答:(1) ∀x∃yF(x,y)⇔(F(3,3)∨F(3,4))∧(F(4,3)∨F(4,4))⇔(0∨1)∧(1∨0) ⇔1(2)∃x∀yF(x,y)⇔(F(3,3)∧F(3,4))∨(F(4,3)∧F(4,4))⇔(0∧1)∨(1∧0)⇔0(3)∀x∀y(F(x,y)→F(f(x),f(y)))⇔(F(3,3)→F(f(3),f(3)))∧(F(4,3)→F(f(4),f(3)))∧(F(3,4)→F(f(3),f(4)))∧(F(4,4)→F(f(4),f(4))) ⇔ (0→0)∧(1→1)∧(1→1)∧(0→0)⇔112.求下列各式的前束范式.(1) ∀xF(x) →∀yG(x, y);(3) ∀xF(x, y) ↔∃xG(x, y);答:前束范式不是唯一的.(1) ∀xF(x) →∀yG(x, y) ⇔∃x(F(x) →∀yG(x, y))⇔∃x∀y(F(x) → G(x, y)).(3) ∀xF(x, y) ↔∃xG(x, y) ⇔ (∀xF(x, y) →∃xG(x, y)) ∧ (∃xG(x, y) →∀xF(x, y)) ⇔ (∀x1F(x1, y) →∃x2G(x2, y)) ∧ (∃x3G(x3, y) →∀x4F(x4, y)) ⇔∃x1∃x2(F(x1, y) → G(x2, y)) ∧∀x3∀x4(G(x3, y) → F(x4, y)) ⇔∃x1∃x2∀x3∀x4((F(x1, y) → G(x2, y)) ∧ (G(x3, y) → F(x4, y))).13.将下列命题符号化, 要求符号化的公式全为前束范式:(1) 有的汽车比有的火车跑得快.(2) 有的火车比所有的汽车跑得快.(3) 说所有的火车比所有的汽车跑得快是不对的.(4) 说有的飞机比有的汽车慢是不对的.答:(1)令F(x):x是汽车,G(y):y是火车,H(x,y):x比y跑得快.∃x(F(x)∧∃y(G(y)∧H(x,y))⇔∃x∃y(F(x)∧G(y)∧H(x, y)).(2)令F(x):x是火车, G( y): y 是汽车,H(x,y):x比y跑得快.∃x(F(x)∧∀y(G(y)→ H(x,y)))⇔∃x∀y(F(x)∧(G y)→H(x,y))).;错误的答案:∃x∀y(F(x)∧G(y)→H(x,y)).(3)令F(x):x是火车,G(y):y是汽车,H(x,y):x比y跑得快.¬∀x(F(x)→∀y(G(y)→H(x,y)))⇔¬∀x∀y(F(x)→(G(y)→H(x,y)))⇔¬∀x∀y(F(x)∧G(y)→H(x,y))(不是前束范式)⇔∃x∃y(F(x)∧G(y)∧H(x,y)).(4)令F(x):x是飞机,G(y):y是汽车,H(x,y):x比y跑得慢.¬∃x(F(x)∧∃y(G(y)∧H(x,y)))⇔¬∃x∃y(F(x)∧G(y)∧H(x,y))(不是前束范式)⇔∀x∀y¬(F(x)∧G(y)∧H(x,y))⇔∀x∀y(F(x)∧G(y)→¬H(x,y)).21.24.在自然推理系统F中, 构造下面推理的证明:每个喜欢步行的人都不喜欢骑自行车. 每个人或者喜欢骑自行车或者喜欢乘汽车. 有的人不喜欢乘汽车, 所以有的人不喜欢步行. (个体域为人类集合) 答:令 F(x): x 喜欢步行, G( x): x喜欢骑自行车, H(x): x 喜欢乘汽车.前提:∀x(F(x)→¬G(x)), ∀x(G(x)∨H(y)),∃x¬H(x).结论:∃x¬F(x).② ∀x(G(x) ∨ H(y)) 前提引入② G(c) ∨ H(c) ①UI③∃x¬H(x) 前提引入④¬H(c) ③UI⑤ G(c) ②④析取三段⑥∀x(F(x) →¬G(x)) 前提引入⑦ F(c) →¬G(c) ⑥UI⑧¬F(c) ⑤⑦拒取⑨∃x¬F(x) ⑧EG习题七12.设A={0, 1, 2, 3}, R是A上的关系, 且R={〈0, 0〉, 〈0, 3〉, 〈2, 0〉, 〈2,1〉, 〈2, 3〉, 〈3, 2〉} 给出R的关系矩阵和关系图.16.设A={a,b,c,d}, R1,R2为A上的关系, 其中R1={〈a,a〉,〈a,b〉,〈b,d〉}R2={〈a,d〉,〈b,c〉,〈b,d〉,〈c,b〉} 求R1·R2, R2·R1,R1²,R2³. R1·R2={〈a,a〉,〈a,c〉,〈a,d〉},R2·R1={〈c,d〉}, R1²={〈a,a〉,〈a,b〉,〈a,d〉},R2³={〈b,c〉,〈b,d〉,〈c,b〉}20.设R1和R2为A上的关系,证明: (1)(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1答:(1)(R1∪R2)−1=R1−1∪R2−1任取〈x,y〉〈x,y〉(∈R1∪R2)−1⇔〈y,x〉(∈R1∪R2)⇔〈y,x〉∈R1∨ (y,x)∈R2)⇔〈x,y〉∈R1−1∨〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∨R2−1所以(R1∪R2) −1=R1−1∪R2−1(2)(R1∩R2) −1=R1−1∩R2−1 任取〈x,y〉〈x,y〉(∈R1∩R2) −1⇔〈y,x〉(∈R1∩R2)⇔〈y,x〉∈R1∧ (y,x)∈R2)⇔〈x,y〉∈R1−1∧〈x,y〉∈R2−1⇔〈x,y〉∈R1−1∧R2−1所以(R1∪R2) −1=R1−1∩R2−126.33.43.16.47.。

离散数学(第二版)课后习题答案详解(完整版)

离散数学(第二版)课后习题答案详解(完整版)

习题一1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道?(1)中国有四大发明.答:此命题是简单命题,其真值为 1.(2)5 是无理数.答:此命题是简单命题,其真值为 1.(3)3 是素数或 4 是素数.答:是命题,但不是简单命题,其真值为1.(4)2x+ <3 5 答:不是命题.(5)你去图书馆吗?答:不是命题.(6)2 与3 是偶数.答:是命题,但不是简单命题,其真值为0.(7)刘红与魏新是同学.答:此命题是简单命题,其真值还不知道.(8)这朵玫瑰花多美丽呀!答:不是命题.(9)吸烟请到吸烟室去!答:不是命题.(10)圆的面积等于半径的平方乘以π.答:此命题是简单命题,其真值为 1.(11)只有6 是偶数,3 才能是2 的倍数.答:是命题,但不是简单命题,其真值为0.(12)8 是偶数的充分必要条件是8 能被3 整除.答:是命题,但不是简单命题,其真值为0.(13)2008 年元旦下大雪.答:此命题是简单命题,其真值还不知道.2.将上题中是简单命题的命题符号化.解:(1)p:中国有四大发明.(2)p: 是无理数.(7)p:刘红与魏新是同学.(10)p:圆的面积等于半径的平方乘以π.(13)p:2008 年元旦下大雪.3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值.(1)5 是有理数.答:否定式:5 是无理数. p:5 是有理数.q:5 是无理数.其否定式q 的真值为1.(2)25 不是无理数.答:否定式:25 是有理数. p:25 不是无理数. q:25 是有理数. 其否定式q 的真值为1.(3)2.5 是自然数.答:否定式:2.5 不是自然数. p:2.5 是自然数. q:2.5 不是自然数. 其否定式q 的真值为1.(4)ln1 是整数.答:否定式:ln1 不是整数. p:ln1 是整数. q:ln1 不是整数. 其否定式q 的真值为1.4.将下列命题符号化,并指出真值.(1)2 与5 都是素数答:p:2 是素数,q:5 是素数,符号化为p q∧ ,其真值为 1.(2)不但π是无理数,而且自然对数的底e 也是无理数.答:p:π 是无理数,q:自然对数的底e 是无理数,符号化为p q∧ ,其真值为1.(3)虽然2 是最小的素数,但2 不是最小的自然数.答:p:2 是最小的素数,q:2 是最小的自然数,符号化为p q∧¬ ,其真值为1.(4)3 是偶素数.答:p:3 是素数,q:3 是偶数,符号化为p q∧ ,其真值为0.(5)4 既不是素数,也不是偶数.答:p:4 是素数,q:4 是偶数,符号化为¬ ∧¬p q,其真值为0.5.将下列命题符号化,并指出真值.(1)2 或3 是偶数.(2)2 或4 是偶数.(3)3 或5 是偶数.(4)3 不是偶数或4 不是偶数.(5)3 不是素数或4 不是偶数.答: p:2 是偶数,q:3 是偶数,r:3 是素数,s:4 是偶数, t:5 是偶数(1)符号化: p q∨ ,其真值为1.(2)符号化:p r∨ ,其真值为1.(3)符号化:r t∨ ,其真值为0.(4)符号化:¬ ∨¬q s,其真值为1.(5)符号化:¬ ∨¬r s,其真值为0.6.将下列命题符号化.(1)小丽只能从筐里拿一个苹果或一个梨.答:p:小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨,符号化为: p q∨ .(2)这学期,刘晓月只能选学英语或日语中的一门外语课.答:p:刘晓月选学英语,q:刘晓月选学日语,符号化为: (¬ ∧ ∨ ∧¬p q)(p q) .7.设p:王冬生于1971 年,q:王冬生于1972 年,说明命题“王冬生于1971 年或1972年”既可以化答:列出两种符号化的真值表:p q0 0 0 00 1 1 11 0 1 11 1 0 1根据真值表,可以判断出,只有当p 与q 同时为真时两种符号化的表示才会有不同的真值,但结合命题可以发现,p 与q 不可能同时为真,故上述命题有两种符号化方式.8.将下列命题符号化,并指出真值., 就有;(1)只要, 则;(2)如果, 才有;(3)只有, 才有;(4)除非, 否则;(5)除非(6)仅当.答:设p: , 则: ; 设q: , 则: .符号化真值(1) 1(2) 1(3)0(4)0(5)0(6) 1 :俄罗斯位于南半球,q:亚洲人口最多,将下面命题用自然语言表述(1);(2);;(3);(4);(5);(6);(7).答:根据题意,p 为假命题,q 为真命题.自然语言真值(1)只要俄罗斯位于南半球,亚洲人口就最多 1 (2)只要亚洲人口最多,俄罗斯就位于南半球0 (3)只要俄罗斯不位于南半球,亚洲人口就最多 1 (4)只要俄罗斯位于南半球,亚洲人口就不是最多 1 (5)只要亚洲人口不是最多,俄罗斯就位于南半球 1 (6)只要俄罗斯不位于南半球,亚洲人口就不是最多0 (7)只要亚洲人口不是最多,俄罗斯就不位于南半球 1(1);(2);(3);(4).答:根据题意,p 为真命题,q 为假命题.自然语言真值(1)9 是 3 的倍数当且仅当英语与土耳其相邻0 (2)9 是 3 的倍数当且仅当英语与土耳其不相邻 1 (3)9 不是3 的倍数当且仅当英语与土耳其相邻 1(4) 9 不是 3 的倍数当且仅当英语与土耳其不相邻11. 将下列命题符号化,并给出各命题的真值: (1) 若 2+2=4,则地球是静止不动的; (2) 若 2+2=4,则地球是运动不止的; (3) 若地球上没有树木,则人类不能生存;(4) 若地球上没有水,则 是无理数.12. (1)2+2=4 当且仅当 3+3=6;(2)2+2=4 的充要条件是 3+3 6;(3)2+2 4 与 3+3=6 互为充要条件;(4)若 2+2 4,则 3+3 6,反之亦然.答:设 p:2+2=4,q:3+3=6.符号化真值 (1)1(2)(3)(4)113. 将下列命题符号化,并讨论各命题的真值: (1) 若今天是星期一,则明天是星期二; (2) 只有今天是星期一,明天才是星期二;命题 1命题 2 符号化 真值 (1) p:2+2=4 q:地球是静止不动的(2) p:2+2=4 q:地球是静止不动的1 (3) p:地球上有树木 q:人类能生存1(4)p:地球上有树木q:人类能生存1(3)今天是星期一当且仅当明天是星期二;(4)若今天是星期一,则明天是星期三.答:设p:今天是星期一,q:明天是星期二,r:明天是星期三.将下列命题符号化:(1)刘晓月跑得快,跳得高;(2)老王是山东人或者河北人;(3)因为天气冷,所以我穿了羽绒服;(4)王欢与李乐组成一个小组;(5)李欣与李末是兄弟;(6)王强与刘威都学过法语;(7)他一面吃饭,一面听音乐;(8)如果天下大雨,他就乘班车上班;(9)只有天下大雨,他才乘班车上班;(10)除非天下大雨,否则他不乘班车上班;(11)下雪路滑,他迟到了;(12)2 与4 都是素数,这是不对的;(13)“2 或 4 是素数,这是不对的”是不对的.答:(6) p:王强学过法语q:刘威学过法语-(7) p:他吃饭q:他听音乐-(8) p:天下大雨q:他乘车上班-(9) p:天下大雨q:他乘车上班-(10) p:天下大雨q:他乘车上班-(11) p:下雪q:路滑r:他迟到了(12) p:2 是素数q:4 是素数-(13) p:2 是素数q:4 是素数-15.设p:2+3=5.q:大熊猫产在中国.r:太阳从西方升起. 求下列符合命题的真值:(1)(2)(3)(4)解:p真值为1,q 真值为1,r 真值为0.(1)0,(2)0,(3)0,(4)116.当p,q 的真值为0,r,s 的真值为1 时,求下列各命题公式的真值:(1)(2)(3)(4)解:(1)0,(2)0,(3)0,(4)117.判断下面一段论述是否为真:“ 是无理数.并且,如果3 是无理数,则也是无理数.另外,只有6 能被2 整除,6 才能被4 整除.”解:p: 是无理数q: 3 是无理数r:是无理数s: 6 能被2 整除t:6 能被 4 整除符号化为: ,该式为重言式,所以论述为真。

湘潭大学 刘任任版 离散数学课后习题答案 习题11

湘潭大学 刘任任版 离散数学课后习题答案 习题11

习 题 十 一1.设11≥p ,证明任何p 阶图G 与G 总有一个是不可平面图。

分析: G 与G 是两个互补的图,根据互补的定义,互补的图有相同的顶点数,且G 的边数与G 的边数之和等于完全图的边数p(p-1)/2;而由推论11.2.2,有任何简单平面图G ,其顶点数p 和边数q 满足:q ≤3p-6。

证明. 若),(q p G 与),(q p G ''均是可平面图,则63-≤p q (1) 63-'≤'p q (2) 但q p p q p p --='=')1(21, (3)将(3)代入(2)有63)1(21-≤--p q p p 整理后得 q p p 21272≤+- 又由(1)有)63(21272-≤+-p p p 即 024132≤+-p p也即 224413132244131322⨯-+≤≤⨯--p .得 2731327313+≤≤-p 得112<<p此与11≥p 矛盾。

因此任何p 阶图G 与G 不可能两个都是可平面图,从而G 与G 总有一个是不可平面图。

2.证明或否定:两个p 阶极大简单平面图必同构分析:极大平面图是指添加任何一条边以后不构成平面图的平面图;两个p 阶极大简单平面图不一定同构。

解:令6=p ,三个6阶极大简单平面图321,,G G G 如下:顶点上标的数字表示该顶点的度,但显然不同构.23G 3344453.找出一个8阶简单平面G ,使得G 也是平面图.分析:由第1题证明过程可知,当p<11时,G 和G 可以同时为平面图。

解:如下平面图G4.证明或者否定:每个极大平面图是H 图. 分析:极大平面图是指添加任何一条边以后不构成平面图的平面图;而H 图是存在一个H 回路的图,即存在一条经过图中每一个顶点一次且仅一次的回路。

由定理11.1.2知极大平面图的每个面都是三角形,因此G 中必存在回路,利用最长回路的性质使用反证法可证明每个极大平面图都是H 图。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案一、选择题1. 在一个聚会中,有9名男生和11名女生。

问这些学生中,至少有一个女朋友的学生人数的奇偶性是怎样的?答案:奇数2. 设A、B、C是三个命题。

已知命题A为真,命题B为假,命题C为真,则下列命题中,一定为假的是:A) A → (B ∨ C)B) (A → C) ∨ BC) (A ∧ B) ∨ CD) A ↔ (B ∧ C)答案:D) A ↔ (B ∧ C)3. 设集合A={x | -3 < x ≤ 2},集合B={y | -4 ≤ y < 3},则下列集合中,既是A的子集又是B的子集的集合是:A) {-2, -1, 0, 1, 2}B) {-3, -2, -1, 0, 1, 2}C) {-4, -3, -2, -1, 0, 1, 2}D) {-4, -3, -2, -1, 0, 1, 2, 3}答案:B) {-3, -2, -1, 0, 1, 2}4. 设A={1, 2, 3, 4},B={3, 4, 5, 6},C={4, 5, 6, 7},则(A ∪ B) ∩ C等于:A) {1, 2, 3, 4, 5, 6}B) {3, 4, 5, 6}C) {4}D) {4, 5, 6}答案:C) {4}二、填空题1. 一个完全图有9条边,则该完全图的顶点数为________。

答案:52. 若一个集合有n个元素,则该集合的幂集的元素个数为________。

答案:2^n3. 设a是整数,若3a-5能被4整除,则a的一个可能的取值是________。

答案:24. 设n为正整数,若C(n, 3) = 1,则n的值为________。

答案:4三、解答题1. 证明:设A、B、C为三个集合,要证明A ∩ (B ∪ C) = (A ∩ B)∪ (A ∩ C)。

解答:对于任意元素x,若x ∈ A ∩ (B ∪ C),则x ∈ A 且 x ∈ (B∪ C)。

根据集合的交和并的定义,可得x ∈ A 且 (x ∈ B 或 x ∈ C)。

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案 屈婉玲版 第二版 高等教育出版社课后答案,DOC

离散数学答案屈婉玲版第二版高等教育出版社课后答案第一章部分课后习题参考答案16设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。

(1)p∨(q∧r)⇔0∨(0∧1)⇔0(2)(p?r)∧(﹁q∨s)⇔(0?1)∧(1∨1)⇔0∧1⇔0.(3)(⌝(4)(176能被2q:3r:2s:619(4)(p(5)(p(6)((p答:(pqp→q⌝0011111011011110010011110011所以公式类型为永真式(5)公式类型为可满足式(方法如上例)(6)公式类型为永真式(方法如上例)第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1)⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P qrp∨qp∧r(p∨q)→(p∧r)0000010010014.(2)(p→(4)(p∧证明(2(45.(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∧p)∨(⌝q∧⌝p)∨(p∧q)∨(p∧⌝q)⇔(⌝p∧⌝q)∨(p∧⌝q)∨(p∧q)⇔∑(0,2,3)主合取范式:(⌝p→q)→(⌝q∨p)⇔⌝(p∨q)∨(⌝q∨p)⇔(⌝p∧⌝q)∨(⌝q∨p)⇔(⌝p⇔1∧(p⇔(p∨⇔∏(2)⌝(p→q)⇔(p∧(3)⇔⌝⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14.在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r)前提引入②⌝q∨⌝r①置换③q→⌝r②蕴含等值式④r⑤⌝q⑥p→q⑦¬p(3证明(4①t②t③q④s⑤q⑥(⑦(⑧q⑨q⑩p15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s附加前提引入②s→p前提引入③p①②假言推理④p→(q→r)前提引入⑤q→r③④假言推理⑥q前提引入⑦r⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p②p③﹁④¬⑤¬⑥r⑦r⑧r3.:(1)均有2=(x+)(x).(2)其中(a)(b)解:F(x):2=(x+)(x).G(x):x+5=9.(1)在两个个体域中都解释为)(x∀,在(a)中为假命题,在(b)中为真命题。

离散数学课后习题答案

离散数学课后习题答案

第一章命题逻辑基本概念课后练习题答案1.将下列命题符号化,并指出真值:(1)p∧q,其中,p:2是素数,q:5是素数,真值为1;(2)p∧q,其中,p:是无理数,q:自然对数的底e是无理数,真值为1;(3)p∧┐q,其中,p:2是最小的素数,q:2是最小的自然数,真值为1;(4)p∧q,其中,p:3是素数,q:3是偶数,真值为0;(5)┐p∧┐q,其中,p:4是素数,q:4是偶数,真值为0.2.将下列命题符号化,并指出真值:(1)p∨q,其中,p:2是偶数,q:3是偶数,真值为1;(2)p∨q,其中,p:2是偶数,q:4是偶数,真值为1;(3)p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;(4)p∨q,其中,p:3是偶数,q:4是偶数,真值为1;(5)┐p∨┐q,其中,p:3是偶数,q:4是偶数,真值为0;3.(1)(┐p∧q)∨(p∧┐q),其中,小丽从筐里拿一个苹果,q:小丽从筐里拿一个梨;(2)(p∧┐q)∨(┐p∧q),其中,p:刘晓月选学英语,q:刘晓月选学日语;.4.因为p与q不能同时为真.5.设p:今天是星期一,q:明天是星期二,r:明天是星期三:(1)p→q,真值为1(不会出现前件为真,后件为假的情况);(2)q→p,真值为1(也不会出现前件为真,后件为假的情况);(3)p q,真值为1;(4)p→r,若p为真,则p→r真值为0,否则,p→r真值为1.返回第二章命题逻辑等值演算本章自测答案5.(1):∨∨,成真赋值为00、10、11;(2):0,矛盾式,无成真赋值;(3):∨∨∨∨∨∨∨,重言式,000、001、010、011、100、101、110、111全部为成真赋值;7.(1):∨∨∨∨⇔∧∧;(2):∨∨∨⇔∧∧∧;8.(1):1⇔∨∨∨,重言式;(2):∨⇔∨∨∨∨∨∨;(3):∧∧∧∧∧∧∧⇔0,矛盾式.11.(1):∨∨⇔∧∧∧∧;(2):∨∨∨∨∨∨∨⇔1;(3):0⇔∧∧∧.12.A⇔∧∧∧∧⇔∨∨.第三章命题逻辑的推理理论本章自测答案6.在解本题时,应首先将简单陈述语句符号化,然后写出推理的形式结构*,其次就是判断*是否为重言式,若*是重言式,推理就正确,否则推理就不正确,这里不考虑简单语句之间的内在联系(1)、(3)、(6)推理正确,其余的均不正确,下面以(1)、(2)为例,证明(1)推理正确,(2)推理不正确(1)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*1)在本推理中,从p与q的内在联系可以知道,p与q的内在联系可以知道,p与q不可能同时为真,但在证明时,不考虑这一点,而只考虑*1是否为重言式.可以用多种方法(如真值法、等值演算法、主析取式)证明*1为重言式,特别是,不难看出,当取A为p,B为q时,*1为假言推理定律,即(p→q)∧p→q ⇒ q(2)设p:今天是星期一,q:明天是星期三,推理的形式结构为(p→q)∧p→q(记作*2)可以用多种方法证明*2不是重言式,比如,等值演算法、主析取范式(主和取范式法也可以)等(p→q)∧q→p⇔(┐p∨q) ∧q →p⇔q →p⇔┐p∨┐q⇔⇔∨∨从而可知,*2不是重言式,故推理不正确,注意,虽然这里的p与q同时为真或同时为假,但不考虑内在联系时,*2不是重言式,就认为推理不正确.9.设p:a是奇数,q:a能被2整除,r:a:是偶数推理的形式结构为(p→q┐)∧(r→q)→(r→┐p) (记为*)可以用多种方法证明*为重言式,下面用等值演算法证明:(p→┐q)∧(r→q)→(r→┐p)⇔(┐p∨┐q) ∨(q∨┐r)→(┐q∨┐r) (使用了交换律)⇔(p∨q)∨(┐p∧r)∨┐q∨┐r⇔(┐p∨q)∨(┐q∧┐r)⇔┐p∨(q∨┐q)∧┐r⇔110.设p:a,b两数之积为负数,q:a,b两数种恰有一个负数,r:a,b都是负数.推理的形式结构为(p→q)∧┐p→(┐q∧┐r)⇔(┐p∨q) ∧┐p→(┐q∧┐r)⇔┐p→(┐q∧┐r) (使用了吸收律)⇔p∨(┐q∧┐r)⇔∨∨∨由于主析取范式中只含有5个W极小项,故推理不正确.11.略14.证明的命题序列可不惟一,下面对每一小题各给出一个证明① p→(q→r)前提引入② P前提引入③ q→r①②假言推理④ q前提引入⑤ r③④假言推理⑥ r∨s前提引入(2)证明:① ┐(p∧r)前提引入② ┐q∨┐r①置换③ r前提引入④ ┐q ②③析取三段论⑤ p→q前提引入⑥ ┐p④⑤拒取式(3)证明:① p→q前提引入② ┐q∨q①置换③ (┐p∨q)∧(┐p∨p) ②置换④ ┐p∨(q∧p③置换⑤ p→(p∨q) ④置换15.(1)证明:① S结论否定引入② S→P前提引入③ P①②假言推理④ P→(q→r)前提引入⑤ q→r③④假言推论⑥ q前提引入⑦ r⑤⑥假言推理(2)证明:① p附加前提引入② p∨q①附加③ (p∨q)→(r∧s)前提引入④ r∧s②③假言推理⑤ s④化简⑥ s∨t⑤附加⑦ (s∨t)→u前提引入⑧ u⑥⑦拒取式16.(1)证明:① p结论否定引入② p→ ┐q前提引入③ ┐q ①②假言推理④ ┐r∨q前提引入⑤ ┐r③④析取三段论⑥ r∧┐s前提引入⑦ r⑥化简⑧ ┐r∧r⑤⑦合取(2)证明:① ┐(r∨s)结论否定引入② ┐r∨┐s①置换③ ┐r②化简④ ┐s②化简⑤ p→r前提引入⑥ ┐p③⑤拒取式⑦ q→s前提引入⑧ ┐q④⑦拒取式⑨ ┐p∧┐q⑥⑧合取⑩ ┐(p∨q)⑨置换口p∨q前提引入⑾①口┐(p∨q) ∧(p∨q) ⑩口合取17.设p:A到过受害者房间,q: A在11点以前离开,r:A犯谋杀罪,s:看门人看见过A。

011001[离散数学(1)] 天津大学考试题库及答案

011001[离散数学(1)]  天津大学考试题库及答案

1 / 6离散数学(1)复习题一、填空题1、集合S={n 100 | n ∈N}的基数为( 0ℵ )。

2、设R 是集合A 上的二元关系,则R 是对称的,当且仅当其关系矩阵( 为对称矩阵 )。

3、集合P={Ф,{a}}的幂集ρ(P)=( {Ф,{Ф},{a}, {Ф,{a}} } )。

4、设A={1,2,7,8},B={i │i ∈N 且i 2<50},则A —B=( {8} )。

5、设(A ,≤)是一个有界格,只要满足( 每个元素均有补元 ),它也是有补格。

6、设S 为非空有限集,代数系统(ρ(S),Y ,I )中,ρ(S)对Y 的零元为( S ),ρ(S)对I 的单位元为( Ф )。

7、重言式的否定式是( 矛盾 )。

8、设A=φ,B={φ,{φ}},则B -A=( {}{}φφ, )。

9、集合A={1,2,…,10}上的关系R={(x ,y )│x+y=10且x 、y ∈A},则R 的性质为( 对称的 )。

10、有界格(P ,∧,∨)对于“∧”运算的零元为( 0 )。

11、设P :张三可以做这件事,Q :李四可以做这件事。

则命题“张三或李四可以做这件事”符号化为( P Q ∨ )。

12、设M={x| f 1(x )=0},N={x| f 2(x )=0},则方程f 1(x )·f 2(x )=0的答案为( M N U )。

13、设 |A|=m ,|B|=n ,则 |ρ(A ×B) | 等于( 2m n ⨯ )。

二、计算与证明题1、设A={0,1},B={a ,b},求:(1)A ×B ;(2)B ×A答:(1)()()()(){}0,,0,,1,,1,A B a b a b ⨯=(2)()()()(){},0,,0,,1,,1B A a b a b ⨯=2、(1)叙述幂集的定义;(2)求集合P={Ф,{a}}的幂集ρ(P).。

高中数学11-1

高中数学11-1

第十一章第1课时(本栏目内容,在学生用书中以独立形式分册装订!)一、选择题1.下列说法中正确的是()A.某厂一批产品的次品率为110,则任意抽取其中10件产品一定会发现一件次品B.气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨C.某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个病人就一定能治愈D.掷一枚均匀硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5解析:概率是指某一事件发生可能性的大小,根据这一定义可知,只有选项D正确.答案: D2.从1,2,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个是奇数和两个数都是奇数;③至少有一个奇数和两个数都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是()A.①B.②④C.③D.①③解析:从1,2,…,9中任取2个数字包括一奇一偶、二奇、二偶共三种互斥事件,所以只有③中的两个事件才是对立的.答案: C3.某产品分甲、乙、丙三级,其中乙、丙均属于次品,若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对产品抽查一件,恰好得正品的概率为()A.0.99 B.0.98C.0.97 D.0.96解析:记事件A={甲级品},B={乙级品},C={丙级品},事件A、B、C彼此互斥,且A与B∪C是对立事件,所以P(A)=1-P(B∪C)=1-P(B)-P(C)=1-0.03-0.01=0.96. 答案: D4.在第3、6、16路公共汽车的一个停靠站(假定这个车站只能停靠一辆公共汽车),有一位乘客需在5分钟之内乘上公共汽车赶到厂里,他可乘3路或6路公共汽车到厂里,已知3路车、6路车在5分钟之内到此车站的概率分别为0.20和0.60,则该乘客在5分钟内能乘上所需要的车的概率为( )A .0.20B .0.60C .0.80D .0.12解析: 令“能上车”记为事件A ,则3路或6路车有一辆路过即事件发生,故P (A )=0.20+0.60=0.80.答案: C5.甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是( )A .甲获胜的概率是16B .甲不输的概率是12C .乙输了的概率是23D .乙不输的概率是12解析: “甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率是P =1-12-13=16; 设事件A 为“甲不输”,则A 是“甲胜”、“和棋”这两个互斥事件的并事件,所以P (A )=16+12=23(或设事件A 为“甲不输”看作是“乙胜”的对立事件,所以P (A )=1-13=23).答案: A6.某城市2011年的空气质量状况如表所示:时,空气质量为轻微污染.该城市2011年空气质量达到良或优的概率为( )A.35B.1180C.119D.56解析: 由题意知,0≤T ≤100时,空气质量达到良或优,故空气质量为优或良的概率为110+16+13=35.答案: A 二、填空题7.已知某台纺纱机在1小时内发生0次、1次、2次断头的概率分别是0.8,0.12,0.05,则这台纺纱机在1小时内断头不超过两次的概率和断头超过两次的概率分别为________和________.解析: P 1=0.8+0.12+0.05=0.97.P 2=1-P 1=1-0.97=0.03. 答案: 0.97 0.038.向三个相邻的军火库各投一枚炸弹.击中第一个军火库的概率是0.025,击中另两个军火库的概率各为0.1,并且只要击中一个,另两个也爆炸,则军火库爆炸的概率为________.解析: 设A 、B 、C 分别表示击中第一、二、三个军火库,易知事件A 、B 、C 彼此互斥,且P (A )=0.025,P (B )=P (C )=0.1.设D 表示军火库爆炸,则P (D )=P (A )+P (B )+P (C )=0.025+0.1+0.1=0.225. 所以军火库爆炸的概率为0.225. 答案: 0.2259.箱子中共有2 000只灯泡,随机选择100只灯泡进行测试,发现有10只是坏的,预计整箱中有________只坏灯泡.解析: 坏灯泡的个数为2 000×10100=200.答案: 200 三、解答题10.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为14,得到黑球或黄球的概率为512,得到黄球或绿球的概率是12,试求得到黑球、黄球、绿球的概率各是多少?解析: 分别记得到红球、黑球、黄球、绿球为事件A 、B 、C 、D .由于A 、B 、C 、D 为互斥事件,根据已知得⎩⎪⎨⎪⎧ 14+P (B )+P (C )+P (D )=1P (B )+P (C )=512P (C )+P (D )=12,解得⎩⎪⎨⎪⎧P (B )=14P (C )=16P (D )=13故得到黑球、黄球、绿球的概率分别是14,16,13.11.已知射手甲射击一次,命中7环以下的概率为0.1,命中9环(含9环)以上的概率为0.56,命中8环的概率为0.22,命中7环的概率为0.12.(1)求甲射击一次,命中不足8环的概率;(2)求甲射击一次,至少命中7环的概率.解析:记“甲射击一次,命中7环以下”为事件A,“甲射击一次,命中7环”为事件B,由于在一次射击中,A与B不可能同时发生,故A与B是互斥事件.(1)“甲射击一次,命中不足8环”的事件为A+B.由互斥事件的概率加法公式,得P(A+B)=P(A)+P(B)=0.1+0.12=0.22.故甲射击一次,命中不足8环的概率是0.22.(2)“甲射击一次,至少命中7环”为事件A,故P(A)=1-P(A)=1-0.1=0.9.故甲射击一次,至少命中7环的概率为0.9.12.(2011·陕西卷)如图,地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10~2020~3030~4040~5050~60选择L1的人数612181212选择L2的人数041616 4..(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解析:(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有12+12+16+4=44(人),∴用频率估计相应的概率为0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为:所用时间(分钟)10~2020~3030~4040~5050~60(3)设A1,A2分别表示甲选择L1和L2时,在40分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)=0.1+0.2+0.3=0.6,P(A2)=0.1+0.4=0.5,P(A1)>P(A2),∴甲应选择L1.同理,P(B1)=0.1+0.2+0.3+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,P(B1)<P(B2),∴乙应选择L2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档