离散数学习题

合集下载

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学试题第一部分选择题一、单项选择题1.下列是两个命题变元p,q的小项是( C )A.p∧┐p∧q B.┐p∨qC.┐p∧q D.┐p∨p∨q2.令p:今天下雪了,q:路滑,则命题“虽然今天下雪了,但是路不滑”可符号化为( D )A.p→┐q B.p∨┐qC.p∧q D.p∧┐q3.下列语句中是命题的只有( A )A.1+1=10 B.x+y=10C.sinx+siny<0 D.x mod 3=24.下列等值式不正确的是( C )A.┐(∀x)A⇔(∃x)┐AB.(∀x)(B→A(x))⇔B→(∀x)A(x)C.(∃x)(A(x)∧B(x))⇔(∃x)A(x)∧(∃x)B(x)D.(∀x)(∀y)(A(x)→B(y))⇔(∃x)A(x)→(∀y)B(y)5.谓词公式(∃x)P(x,y)∧(∀x)(Q(x,z)→(∃x)(∀y)R(x,y,z)中量词∀x的辖域是( C )A.(∀x)Q(x,z)→(∃x)(∀y)R(x,y,z))B.Q(x,z)→(∀y)R(x,y,z)C.Q(x,z)→(∃x)(∀y)R(x,y,z)D.Q(x,z)6.设A={a,b,c,d},A上的等价关系R={<a,b>,<b,a>,<c,d>,<d,c>}∪I A,则对应于R的A的划分是( D )A.{{a},{b,c},{d}} B.{{a,b},{c},{d}}C.{{a},{b},{c},{d}} D.{{a,b},{c,d}}7.设A={Ø},B=P(P(A)),以下正确的式子是( A )A.{Ø,{Ø}}∈B B.{{Ø,Ø}}∈BC.{{Ø},{{Ø}}}∈B D.{Ø,{{Ø}}}∈B8.设X,Y,Z是集合,一是集合相对补运算,下列等式不正确的是( A )A.(X-Y)-Z=X-(Y∩Z)B.(X-Y)-Z=(X-Z)-YC.(X-Y)-Z=(X-Z)-(Y-Z)D.(X-Y)-Z=X-(Y∪Z)9.在自然数集N上,下列定义的运算中不可结合的只有( D )A.a*b=min(a,b)B.a*b=a+bC.a*b=GCD(a,b)(a,b的最大公约数)02324# 离散数学试题第1 页共4页02324# 离散数学试题 第 2 页 共4页D .a*b=a(mod b)10.设R 和S 是集合A 上的关系,R ∩S 必为反对称关系的是( A ) A .当R 是偏序关系,S 是等价关系; B .当R 和S 都是自反关系; C .当R 和S 都是等价关系; D .当R 和S 都是传递关系11.设R 是A 上的二元关系,且R ·R ⊆R,可以肯定R 应是( D ) A .对称关系; B .全序关系; C .自反关系; D .传递关系第二部分 非选择题二、填空题1.设论域是{a,b,c},则(∀x)S(x)等价于命题公式 S(a)∧S(b)∧S(c) ;(x ∃)S(x)等价于命题公式 S(a)∨S(b) ∨S(c) 。

离散数学期末复习习题

离散数学期末复习习题

离散数学一、选择题1△O Y C3A^Q un ㊉iv1.设:P:张三可以作这件事,Q:李四可以作这件事,命题“张三或李四都可以做这件事”的符号化为()A、PVQB、PVi QC、P—QD、-P V -Q2.谓词公式V x(P(x)V m yR(y))fQ(x)中量词V x的作用域是()A. V x(P(x) V3yR(y))B.P(x)C. (P(x) V3yR(y)) D,P(x), Q(x)3.若个体域为整体域,下列公式中哪个值为真?()A. V x 3y(x+y=0)B. 3y V x(x+y=0)C. V x V y(x+y=0)D. n 3x 3y(x+y=0)4.空集①的幂集P (①)的基数是()A. 1B.2C.3D.45.设R、S是集合A上的任意关系,则下面命题是真命题的是()。

A.若R、S是自反的,则R・S是自反的B.若R、S是反自反的,则R・S是反自反的C.若R、S是对称的,则R・S是对称的D.若R、S是传递的,则R・S是传递的6.集合 A={1, 2,…,10}上的关系 R={(x, y)|x+y=10 且x, y£A},则 R 的性质为()A.自反的B.对称的C.传递的,对称的口.非自反的,传递的7.含有5个结点,3条边的不同构的简单图有()A.2个B.3个C.4个D.5个8.设G (n, m),且G中每个结点的度数不是K就是K+1,则G中度数为K的结点数()A.2/nB.n(n+1)C.nkD.n(k+1)-2m9.设谓词P(x) :x是奇数,Q(x):x是偶数,谓词公式m(x) (P(x) AQ(x))在下面哪个论域中是可满足的。

()A自然数集 B整数集 C实数集 D以上均不成立10.设C(x): x是运动员,G(x): x是强壮的。

命题“没有一个运动员不是强壮的”可符号化为()A. n V x(C(x) A n G(x))B. iV xOx) — G(x))C. _|m x(C(x)A_|G(x))D. im x(C(x) - 1 G(x))11.设集合 M={x|f (x) =0}, N={x|g (x) =0},则方程 f (x)・g (x) =0 的解集是()A.MANB.MUNC.M ㊉ ND.M-N12.设A=/"a}},下列选项错误的是()A. {a} e p(A)B. {a}U p(A)C. {{a}} e p(A)D. {{a}} e p(A)13.设A={1,2,3,4,5},p{<i,j>|i<j,i,j £ A}则 p 逆的性质是()A.对称的B.自反的C.反对称的D.反自反,反对称,传递的14.设R和S是集合A上的等级关系,则RUS的对称性()A. 一定成立B.一定不成立C.不一定成立D.不可能成立15. K4中含有3条边的不同构生成子图有()A.1个B.3个C.4个D.2个16.设G=<V,E>为无向图,u,v £V,若u,v连通,则()A.d(u,v)>0B.d(u,v)=0C.d(u,v)<0D.d(u,v)三0二、填空题1.命题公式I(P-Q)的主析取范式为(),主合取式的编码表示为().2.设Q(x): x是奇数,Z(x): x是整数,则语句“不是所有整数都是奇数”所对应的谓词公式为()。

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案

《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学练习题

离散数学练习题

离散数学练习题1、图中度为零的结点称为孤立结点。

A. 正确B. 错误正确:【A】2、域是整环。

A. 正确B. 错误正确:【A】3、有限格都是有界格。

A. 正确B. 错误正确:【A】4、连通且不含圈的图称为树。

A. 正确B. 错误正确:【A】5、“如果1+1≠3,则2+2≠4”是真命题。

A. 正确B. 错误正确:【B】6、无向图G为欧拉图,则G是连通的。

A. 正确B. 错误正确:【A】7、若A和B都是谓词公式,则(A∧B)、(A∨B)、(A→B)、(A<->B)都是谓词公式。

A. 正确B. 错误8、设A, B, C是命题公式,则AVBV﹁C 也是命题公式。

A. 正确B. 错误正确:【A】9、设〈L,≤〉是格,则格的交∧和并∨运算满足等幂律。

A. 正确B. 错误正确:【A】10、“x+3>1。

”是命题。

A. 正确B. 错误正确:【B】11、半群满足交换律。

A. 正确B. 错误正确:【B】12、在任何图中,奇数度的结点数必是偶数。

A. 正确B. 错误正确:【A】13、在格〈L,∨,∧〉中,如果交运算对并运算是可分配的,则并运算对交运算也是可分配的。

A. 正确B. 错误正确:【A】14、完全图Kn没有割集,它的连通性能是最好的。

A. 正确B. 错误15、对任意集合A,都有∅⊆A。

A. 正确B. 错误正确:【A】17、强连通图一定是单向连通图。

A. 正确B. 错误正确:【A】18、代数系统〈G,∘〉为群的条件是存在零元素。

A. 正确B. 错误正确:【B】19、对应日常生活中的“任意的”,“所有的”,“一切的”等词,用符号“任意”表示。

A. 正确B. 错误正确:【A】20、如果a是集合A中的元素,则称a属于A,记作a∉A。

A. 正确B. 错误正确:【B】21、A,B是集合,P(A),P(B)为其幂集,且,则P(A)∩P(B)为()A. B.C. D.正确:【B】22、设M={x|f1(x)=0},N={x|f2(x)=0},则方程f1(x)•f2(x)=0的解为()A. M∩NB. M∪NC. MND. M-N正确:【B】23、设集合A={1,2,3},下列关系R中不是等价关系的是()A. R={<1,1>,<2,2>,<3,3>}B. R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C. R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>} 正确:【C】24、设<A,?,*>是环,则下列说法不正确的是()A. <A,?>是交换群B. <A,*>是半群C. *对?是可分配的D. ?对*是可分配的正确:【D】25、平面图(如下)的三个面的次数分别是()A. 11,3,4B. 11,3,5C. 12,3,6D. 10,4,3正确:【A】26、下列命题正确的是()A. {l,2} {{1,2},{l,2,3},1}B. {1,2} {1,{l,2},{l,2,3},2}C. {1,2} {{1},{2},{1,2}}D. {1,2}∈{1,2,{2},{l,2,3}}正确:【B】27、设D的结点数大于1,D=<V,E>是强连通图,当且仅当()A. D中至少有一条通路B. D中至少有一条回路C. D中有通过每个结点至少一次的通路D. D中有通过每个结点至少一次的回路正确:【D】28、下列等价式正确的是()A. ┐┐AB.C. ┐┐AD.正确:【C】29、设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A. PQB. PQC. QPD. Q=P正确:【C】30、设,则有()A. B.C. D.正确:【C】31、下列各图中既是欧拉图,又是汉密尔顿图的是()A. B.C. D.正确:【C】32、无向图G是欧拉图当且仅当G是连通的且()A. G中各顶点的度数均相等B. G中各顶点的度数之和为偶数C. G中各顶点的度数均为偶数D. G中各顶点的度数均为奇数正确:【C】33、下列式子正确的是()A. (A-B)-C = A-(B∪C)B. A-(B∪C)=(A-B)∪CC. ~(A-B)= ~(B-A)D.正确:【A】34、设有代数系统G=〈A,*〉,其中A是所有命题公式的集合,*为命题公式的合取运算,则G的幺元是()A. 矛盾式B. 重言式C. 可满足D. 公式p∧q正确:【B】35、设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不在室内运动”可符合化为()A. ┐P∧QB. ┐P→QC. ┐P→┐QD. P→┐Q正确:【C】36、集合A={1,2,…,10}上的关系R={<x,y>|x+y=10,x∈A,y ∈A},则R的性质是()A. 自反的B. 对称的C. 传递的、对称的D. 反自反的、传递的正确:【B】37、设集合A={a,b, c}上的关系如下,具有传递性的是()A. R={<a,c>,<c,a>,<a,b>,<b,a>}B. R={<a,c>,<c,a>}C. R={<a,b>,<c,c>,<b,a>,<b,c>}D. R={<a,a>}正确:【D】38、下列等价式不正确的是()A. B.C. D.正确:【A】39、设M(x):x是人;F(x):x要吃饭。

离散数学习题

离散数学习题
2若张超与李志都是计算机系学生则王红是中文系学生若王红是中文系学生则她爱看小说可是王红不爱看小说张超是计算机系学生所以李志不是计算机系的学生
习题一
一、 将下列命题符号化: 1、蓝色和黄色可以调配成绿色。 2、蓝色和黄色都是常用的颜色。 3、 2和 5 之和是无理数。 4、 2和 5 都是有理数。 5、小丽一边吃苹果,一边看电视。 6、王大力不仅是百米冠军,而且是 500 米冠军。 7、李冰只能选学英语或只能选学法语。 8、种瓜得瓜,种豆得豆。 9、经一事,长一智,并且不经一事,不长一智。 10、 经一事,长一智,并且不长一智,不经一事。 11、 李和平是山西人或陕西人。 12、 王小红虽然没上过大学,但她自学成才。 二、 求复合命题的真值: 设 p:4 是素数,q:南京在北京的北边,r:苹果树是落叶乔木。
五、在有限个体域内消去公式中的量词:
个体域 D a,b, c
1、 xF x yGy 2、 xyFx Gy
3、 xFx yGy H y 个体域 D 1,2,3,4。
六、求前束范式:
习题二
2、若 2 是素数,则 4 不是素数。
4、除非 6 是素数,否则 4 是素数。
七、求主析取范式和主合取范式,成真赋值和成假赋值:
1、 p q r q p r 2、 p q r q 3、 p q r p q r 4、 p q q p 5、 p q p q q p
结论:r s
2、 前提: p q r, r s, s p
结论:q
3、 前提:p q r , s p, q
结论:s r
4、 前提:p r, p q, q s
结论:r s
前提:p r, p q 5、

离散数学习题

离散数学习题

离散数学习题集合论1.A={?,1},B={{a}}求A的幂集、A×B、A∪B、A+B。

2.A={1,2,3,4,5},R={(x,y)|x3.A={a,b,c},R={(a,a),(b,a)},求R-1,R2,R-I A,I A-R,r(R),s(R),t(R),st(R),ts(R)。

4.A={a,b,c},R= I A∪{(a,b),(b,a)},求a和b关于R的等价类。

5.R是A上的等价关系,A/R={{1,2},{3}},求A,R。

6.请分别判断以下结论是否一定成立,如果一定成立请证明,否则请举出反例。

①如果A∪B?C,则A?C或者B?C。

②如果A×B=A×C且A≠?,则B=C。

7.如果R是A上的等价关系,R2,r(R)是否一定是A上的等价关系?证明或举例。

8.已知A∩C?B∩C,A-C?B-C,证明:A?B。

9.证明:A X(B∩C)=(A X B)∩(A X C)10.证明:P(A)∪P(B)?P(A∪B)11.证明:R[sym] iff R=R-112.证明:r(R)=R∪I A,S(R)=R∪R-1,t(R)=R∪R2∪...13.证明:s(R∪S)=s(R)∪s(S)14.R是A上的关系,证明:如果R是对称的,则r(R)也是对称的。

15.I是整数集,R={(x,y)|x-y是3的倍数},证明:R是I上的等价关系。

16.如果R是A上的等价关系,则A/R一定是A的划分。

17.R是集合A上的自反关系,S是A上的自反和对称关系,证明t(R∪S)是A上的等价关系。

18.I是正整数集合,R是I×I上的二元关系,R={<,>|xv=yu},证明:R是等价关系。

19.f:A→B,R是B上的等价关系,令S={|x∈A且y∈A且∈R},证明:S是A上的等价关系。

20.R是集合A上的自反关系,S是A上的自反和对称关系,证明t(R∪S)是A上的等价关系。

《离散数学》复习题及答案

《离散数学》复习题及答案

页眉内容《离散数学》试题及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。

答:x,y, x,z5、判断下列语句是不是命题。

若是,给出命题的真值。

( )(1)北京是中华人民共和国的首都。

(2) 陕西师大是一座工厂。

(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。

(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。

答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。

(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PP⌝P→⌝↔(4)QQ→⌝(2)QP⌝→(3)Q8、设个体域为整数集,则下列公式的意义是( )。

(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。

离散数学练习题(含答案)

离散数学练习题(含答案)

离散数学练习题(含答案)题目1. 对于集合 $A={1,2,3,...,10}$ 和 $B={n|n是偶数,2<n<8}$,求 $A \cap B$ 的元素。

2. 存在三个可识别的状态A,B,C。

置换群 $S_3$ 作用在状态集上。

定义四个动作:$α: A → C, β: A → B, γ: C→ A, δ: B→ C$。

确定式子,描述 $\{α,β,γ,δ\}$ 的乘法表。

3. 证明 $\forall n \in \mathbb{N}$,合数的个数不小于$n$。

4. 给定一个无向带权图,图中每个节点编号分别是$1,2,...,n$,证明下列结论:a. 如果从节点$i$到$j$只有一条权值最小的路径,则这条路径的任意子路径都是最短路径。

b. 如果从节点$i$到$j$有两条或两条以上权值相等的路径,则从$i$到$j$的最短路径可能不唯一。

答案1. $A \cap B = \{2,4,6\}$。

2. 乘法表:3. 对于任意$n$,我们可以选择$n+1$个连续的自然数$k+1,k+2,...,k+n,k+n+1$中的$n$个数,其中$k \in \mathbb{Z}$。

这$n$个数构成的$n$个正整数均为合数,因为它们都至少有一个小于它自身的因子,所以不是质数。

所以合数的个数不小于任意$n$。

4.a. 根据题意,从$i$到$j$只有一条权值最小的路径,即这条最短路径已被确定。

如果从这条路径中任意取出一段子路径,假设这段子路径不是这个节点到$j$的最短路径,那么存在其他从$i$到$j$的路径比这段子路径更优,又因为这条路径是最短路径,所以这段子路径也一定不优于最短路径,矛盾。

所以从这条路径中任意取出的子路径都是最短路径。

b. 如果从节点$i$到$j$有多条权值相等的路径,则这些路径权值都是最短路径的权值。

因为所有最短路径的权值相等,所以这些路径的权值就是最短路径的权值。

所以从$i$到$j$的最短路径可能不唯一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章习题1.1判断下列语句是否为命题,若是命题请指出是简单命题还是复合命题。

(1)2是无理数。

(2)5能被2整除。

(3)现在开会吗?(4)x+5>0(5)这朵花真是好看!(6)2是素数当且仅当三角形有三条边。

(7)雪是黑色的当且仅当太阳是从东方升起。

(8)2000年10月1日天气晴好。

(9)太阳系以外的星球上有生物。

(10)小李在宿舍里。

(11)全体起立。

(12)4是2的倍数或是3的倍数。

(13)4是偶数且是奇数。

(14)李明和王华是同学。

(15)蓝色和黄色可以调配成绿色。

1..2 将上题中的命题符号化,并讨论他们的真值。

1.3判断下列各命题的真值。

(1)若2+2=4,则3+3=6;(2)若2+2=4,则3+3≠6;(3)若2+2≠=4,则3+3=6;(4)若2+2≠=4,则3+3≠=6;(5)2+2=4,当且仅当3+3=6;(6)2+2=4,当且仅当3+3≠6;(7)2+2≠4,当且仅当3+3=6;(8)2+2≠4,当且仅当3+3≠6;1.4将下列命题符号化,并讨论其真值。

(1)如果今天是1号,则明天是2号;(2)如果今天是1号,则明天是3号;1.5将下列命题符号化。

(1)2是偶数不是素数;(2)小王不但聪明而且用功;(3)虽然天气冷。

老王还是来了;(4)他一边吃饭,一边看电视;(5)如果天下大雨,他就乘公交汽车来;(6)只有天下大雨,他才乘公交汽车来;(7)除非天下大雨,否则他不乘公交汽车来;(8)不经一事,不长一智;1.5设p,q的真值为0 ,r,s的真值为1,求下列命题公式的真值。

(1)p∨(q∧r);(2)(p↔r)∧(⌝p∨s);(3)(p∧(q∨r)→((p∨q)∧(r∧s);(4)⌝(p∨(q→r∧⌝p)))→(r∨⌝s);设p:2+3=5。

q:大熊猫产在中国。

r:复旦大学在广州。

求下列复合命题的真值:(1)(p q)→r(2)(r→(p∧q))┐p (3)┐r→(┐p∨┐q∨r)(4)(p∧q∧┐r)((┐p∨┐q)→r).用真值表判断下列公式的类型:方法不限。

(1)p→(p∨q∨r)(2)(p→┐q)→┐q(3)┐(q→r)∧r(4)(p→q)→(┐q→┐p)(5)(p∧r)(┐p∧┐q)(6)((p→q)∧(q→r))→(p→r)(7)(p→q)(rs)1.8用等值演算法证明下列等值式。

(1)(p∧q)∧(p∧⌝q)⇔p;(2)((p→q)∧(p→r))⇔(p→(q∧r));(3)⌝(p↔q)⇔(q∨p)∧⌝(p∧q))1.9设 A,B,C 为任意的命题公式。

(1)已知A∨C⇔B∨C,问A⇔B吗?(2)已知A∧C⇔B∧C,问A⇔B吗?(3)已知⌝A⇔⌝B, 问A⇔B吗?求下列命题公式的主析取范式,主合取范式,成真赋值,成假赋值。

1(()();2()();3();p q v p q r p q q p p q q r ∨∧→∧∧⌝→→⌝∨⌝→∧∧()()()通过求主析取范式判断下列各组命题公式是不是等值。

();2();2;2;p q r q p r p q p q →→→→↑↓(1)1,,()1,,有一探测队有3名队员,有一天取得一块矿样,3人的判断如下:甲说:这不是铁,也不是铜;已说:这不是铁,是锡;丙说:这不是锡,是铁;经实验鉴定后发现,其中一人两个判断是正确的,一个人判断对一半,一个人的判断全错了,根据以上的情况判断矿样的种类。

判断下列的推理是不是正确,先将命题符号化,在写出前提和结论,然后在进行判断。

(1)如果今天是1号,则明天是5号,今天是1号,所以明天是5号。

(1)如果今天是1号,则明天是5号,明天是5号,所以今天是1号。

(1)如果今天是1号,则明天是5号,明天不是5号,所以今天不是1号。

(1)如果今天是1号,则明天是5号,今天不是1号,所以明天不是5号。

构造下面的推理的证明。

(),,..(2)34p p q q r r p ⌝∧⌝⌝∨⌝⌝→→∨⌝→→→∧→↔↔∧∧∧∧(1)前提:结论:前提:p (q s),q,p r;结论:r s.()前提:p q.结论:p (p q)()前提:q p,q s,s t,t r.结论:p q r s.如果他是理科学生,他必学好数学,如果他不是文科学生,他必是理科学生,他没有学好数学,所以他不是文科学生。

判断上面的推理是不是正确,并且证明你的结论。

给定命题公式如下;上述公式的成真赋值A ,成假赋值为B ,公式的类型为C 。

供选择的答案:① 无 ② 全体赋值 ③ 010,100,101,111 ④010,100,101,110,111 B: ① 无 ② 全体赋值 ③000,001,011, ④000,010,110C: ①重言式 ②矛盾式 ③ 可满足式给定命题公式如下;上述公式的主析取范式中含的极小项的个数为A ,主合取范式含的极大项的个数为B ,成真值的赋值为C供选择的答案A ① 2 ② 3 ③ 5 ④ 0 ⑤ 8B ① 0 ② 8 ③ 5 ④ 3C ① 000,001,110; ②001,011,101,110,111; ③全体赋值 ④ 无给定下列三组前提。

(),,(2)(),,(3),,p q q r rp q r r s sp q q r r s ⌝∧⌝⌝∨⌝∧→⌝∨⌝⌝∨⌝∨→(1)上述前提中,(1)的逻辑结论(有效结论)为A ,(2)的逻辑结论为B ,(3)的逻辑结论C 。

供选择的答案A,B,C:① r ② q ③p ⌝ ④ s ⑤p q ⌝∨⌝ ⑥p s → ⑦p q ∧设计一个符合下列要求的室类照明控制的线路,在房间的门外、门类及其床头分别装一个可以控制同一个电灯F 的3个开关A,B,C, 当且仅当一个开关的搬键向上或3 个开关的搬键都向上时候电灯亮,则F 的逻辑关系式可以化简为A 供选择的答案A:① A B C ∨∨ ②()A B C A B C ∨∨∨∧∧.某电路中有一个灯泡和三个开关A,B,C 。

已知在且仅在下述四种情况下灯亮:(1)C 的扳键向上,A,B 的扳键向下。

(2)A 的扳键向上,B,C 的扳键向下。

(3)B,C 的扳键向上,A 的扳键向下。

(4)A,B 的扳键向上,C 的扳键向下。

设F 为1表示灯亮,p,q,r 分别表示A,B,C 的扳键向上。

(a )求F 的主析取范式。

(b )在联结词完备集{┐,∧}上构造F.(c )在联结词完备集{┐,→,}上构造F. .一个排队线路,输入为A,B,C ,其输出分别为F A ,F B ,F C 。

本线路中,在同一时间内只能有一个信号通过,若同时有两个和两个以上信号申请输出时,则按A,B,C 的顺序输出。

写出F A ,F B ,F C 在联结词完备集{┐,∨}中的表达式。

第二章习题在一阶逻辑中将下列命题符号化.(1)鸟都会飞翔.(2)并不是所有人都爱吃糖.(3)有人爱看小说.(4)没有不爱看电影的人.在一阶逻辑中将下列命题符号化,并指出个命题的真值.个体域分别为 (a )自然数集合N (N 中含O ).(b )整数集合Z.(c )实数集合R.(1)对于任意的x ,均由()22121x x x +=++(2 )存在x ,使得x+2=0.(3 ) 存在x ,使得5x=1.在一阶逻辑中将下列命题符号化.(1)每个大学生不是文科生就是理科生.(2)有些人喜欢所有的花.(3)没有不犯错误的人.(4)在北京工作的人未必就是北京人.(5)任何金属都可以溶解在某种液体中.(6)凡对顶角都相等. 在一阶逻辑中将下面命题符号化,并分别讨论个体域限制为(a),(b)时命题的真值:(1)对于任意的x ,均有x 2-2=(x+)(x-)。

(2)存在x ,使得x+5=9。

其中(a)个体域为自然数集合,(b)个体域为实数集合。

将下列各式翻译成自然语言,然后再不同领域中却定它们的真值.(1)(.0)(2)(.0)(3)(.1)(4)(.1)(5)(.)(6)(.)(7)()x y x y x y x y x y x y x y x y x y x y x x y x y x x y z x y z ∀∃=∃∀=∀∃=∃∀=∀∃=∃∀=∀∀∃-=个体域分别为(a )实数集合(b)整数集合(c)正整数集合(d)(非0 实数集合)设个体域D={a,b,c},消去下列各式的量词:(1)xy(F(x)∧G(y))(2)xy(F(x)∨G(y)) (3)xF(x)→yG(y) (4)x(F(x,y)→yG(y)).设个体域D={1,2},请给出两种不同的解释I1和I2,使得下面公式在I1下都是真命题,而在I2下都是假命题。

(1) x(F(x)→G(x))(2) x(F(x)∧G(x).给定解释I如下:(a) 个体域D={3,4}。

(b) (x)为(3)=4,(4)=3。

(c) (x,y)为(3,3)=(4,4)=0,(3,4)=(4,3)=1。

试求下列公式在I下的真值:(1)xyF(x,y) (2)xyF(x,y) (3)xy(F(x,y)→F(f(x),f(y)).在自然推理系统F中构造下面推理的证明:(1) 前提:x(F(x)→(G(a)∧R(x))),xF(x)结论:x(F(x)∧R(x))(2) 前提:x(F(x)∨G(x)),┐xG(x)结论:xF(x)(3) 前提:x(F(x)∨G(x)),x(┐G(x)∨┐R(x)),xR(x)结论:xF(x).在自然推理系统F 中,证明下面推理:(1) 每个有理数都是实数,有的有理数是整数,因此有的实数是整数。

(2) 有理数、无理数都是实数,虚数不是实数,因此虚数既不是有理数、也不是无理数。

(3) 不存在能表示成分数的无理数,有理数都能表示成分数,因此有理数都不是无理数。

(1) 试给出解释,使得(()())(()())x F x G x x F x G x ∀→∀∧与在下具有不同的真值(2)试给出解释,使得(()())(()())x F x G x x F x G x ∃∧∃→与在下具有不同的真值给出解释,使下面的两个公式在解释下面为假,从而说明这两个公式都不是逻辑有效式(用真式)(1)(()())(()())(2)(()())(()())x F x G x xF x xG x xF x xG x x F x G x ∀∨→∀∨∀∃∧∃→∃∧ 设个体域,在D={a,b,c }下D 验证量词否定等值式(1)()()(2)()()xA x x A x xA x x A x ⌝∀⇔∃⌝⌝∃⇔∀⌝ 2.14在一阶逻辑中将下面的命符号化,并且要求只能使用全称量词(1)没有人长绿色的头发(2)有的北京人没有去过香山设个体域,在D={a,b,c },消去下列公式中的量词。

∀→∃∀∧∃∃∀(1)xF(x)yG(y)(2)x(F(x)yG(y))(3)y xH(x,y)求下列各式的前束范式,要求使用自由变换换名规则。

相关文档
最新文档