下拉电阻电路和上拉电阻电路
上拉电阻和下拉电阻的原理以及部分应用总结
上拉电阻和下拉电阻的原理以及部分应用总结推荐图中上下两个电阻分别为下拉电阻和上拉电阻,上拉就是将A点的电位拉高,下拉就是将A点的电位拉低,图中的12k有些是没有画出来的,或者是没有的.他们的作用就是在电路驱动器关闭时,给该节点一个固定的电平.上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS 电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
【硬件设计】上拉电阻和下拉电阻用法
【硬件设计】上拉电阻和下拉电阻的用法一、什么是上拉电阻?什么是下拉电阻?上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
二、上拉电阻及下拉电阻作用:1、提高電壓准位:a.当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
b.OC门电路必须加上拉电阻,以提高输出的搞电平值。
2、加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
3、N/A pin防靜電、防干擾:在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
同時管脚悬空就比较容易接受外界的电磁干扰。
4、电阻匹配,抑制反射波干扰:长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
5、預設空閒狀態/缺省電位:在一些 CMOS 输入端接上或下拉电阻是为了预设缺省电位. 当你不用这些引脚的时候, 这些输入端下拉接 0 或上拉接 1。
在I2C 总线等总线上,空闲时的状态是由上下拉电阻获得。
6. 提高芯片输入信号的噪声容限:输入端如果是高阻状态,或者高阻抗输入端处于悬空状态,此时需要加上拉或下拉,以免收到随机电平而影响电路工作。
同样如果输出端处于被动状态,需要加上拉或下拉,如输出端仅仅是一个三极管的集电极。
从而提高芯片输入信号的噪声容限增强抗干扰能力。
三、上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
上拉电阻、下拉电阻的作用
上拉电阻、下拉电阻的作用上拉电阻是指将某点电位采用电阻与电源VDD相连的电阻。
下拉电阻是指在某点电位用电阻与地相连的电阻。
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的搞电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
什么时候使用上、下拉电阻呢
上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。
同理,下拉电阻是把不确定的信号钳位在低电平。
上拉电阻是指器件的输入电流,而下拉指的是输出电流。
那么在什么时候使用上、下拉电阻呢?
1、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的
最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的搞电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
另外,上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
上拉电阻和下拉电阻
上拉电阻和下拉电阻上拉电阻:1、当TTL电路驱动COMS电路时,假定TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需求在TTL的输出端接上拉电阻,早年进输出高电平的值。
2、OC门电路有必要加上拉电阻,才调运用。
3、为加大输出引脚的驱动才调,有的单片机管脚上也常运用上拉电阻。
4、在COMS芯片上,为了避免静电构成损坏,不必的管脚不能悬空,一般接上拉电阻发作下降输入阻抗,供给泄荷通路。
5、芯片的管脚加上拉电阻来跋涉输出电平,然后跋涉芯片输入信号的噪声容限增强抗烦扰才调。
6、跋涉总线的抗电磁烦扰才调。
管脚悬空就比照简略承受外界的电磁烦扰。
7、长线传输中电阻不匹配简略致使反射波烦扰,加上下拉电阻是电阻匹配,有用的按捺反射波烦扰。
上拉电阻阻值的挑选准则包含:1、从节省功耗及芯片的灌电流才调思考应当满意大;电阻大,电流小。
2、从确保满意的驱动电流思考应当满意小;电阻小,电流大。
3、关于高速电路,过大的上拉电阻或许边际变峻峭。
归纳思考以上三点,一般在1k到十k之间挑选。
对下拉电阻也有相似道理对上拉电阻和下拉电阻的挑选应联络开关管特性和下级电路的输入特性进行设定,首要需求思考以下几个要素:1.驱动才调与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动才调越强,但功耗越大,方案是应留神两者之间的均衡。
2.下级电路的驱动需求。
相同以上拉电阻为例,当输出高电往常,开关管断开,上拉电阻应恰当挑选以能够向下级电路供给满意的电流。
3.凹凸电平的设定。
纷歧样电路的凹凸电平的门槛电平会有纷歧样,电阻应恰当设定以确保能输出精确的电平。
以上拉电阻为例,当输出低电往常,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会构成RC推延,电阻越大,推延越大。
上拉电阻的设定应思考电路在这方面的需求。
下拉电阻的设定的准则和上拉电阻是相同的。
上拉电阻、下拉电阻详细解读
上拉电阻、下拉电阻详细解读电阻在电路中起限制电流的作用。
上拉电阻和下拉电阻是经常提到也是经常用到的电阻,在每个系统的设计中都用到了大量的上拉电阻和下拉电阻。
在上拉电阻和下拉电阻的电路中,经常有的疑问是:上拉电阻为何能上拉?下拉电阻为何能下拉?下拉电阻旁边为何经常会串一个电阻?简单概括为:●电源到器件引脚上的电阻叫上拉电阻,作用是平时使该引脚为高电平;●地到器件引脚上的电阻叫下拉电阻,作用是平时使该引脚为低电平。
●低电平在IC内部与GND相连接;●高电平在IC内部与超大电阻相连接。
上拉就是将不确定的信号通过一个电阻钳位在高电平,电阻同时起限流作用,下拉同理。
对于非集电极(或漏极)开路输出型电路(如普通门电路,其提升电流和电压的能力是有限的,上拉和下拉电阻的主要功能是为集电极开路输出型电路提供输出电流通道。
上拉是对器件注入电流,下拉是输出电流;强弱只是上拉或下拉电阻的阻值不同,没有什么严格区分。
当IC的I/O端口,节点为高电平时:节点处和GND之间的阻抗很大,可以理解为无穷大,这个时候通过上拉电阻(如4.7K欧,10K欧电阻)接到VCC上,上拉电阻的分压几乎可以忽略不计;当I/O端口节点需要为低电平时:直接接GND就可以了,这个时候VCC与GND 是通过刚才的上拉电阻(如4.7K欧,10K欧电阻)连接的,通过的电流很小,可以忽略不计。
电平值的大小、高低是相对于地电平来说的,因此在看电平值的大小时要参考地的电平值来看。
看看那些引脚是否接到地上,与自己是否连接外围器件没有关系,因为其实高电平还是低电平是相对于地平面来说的。
在节点与+5V之间接10K欧或4.7K欧的上拉电阻,能够把这个节点的电位拉上来,往往这个节点要求应用单片机或其它控制器来控制它(及这个节点与I/O连接)为高电平或低电平。
如果单纯的想要使这个节点成为高电平,并且输出阻抗非常大,则直接接电源也无妨,但是如果单片机要使这个节点拉低,即单片机内部使节点接地,这样5V电源和地之间就短路了。
什么是上拉电阻,什么是下拉电阻.
什么是上拉电阻,什么是下下拉电阻?它们有什么作用?(提示:如果图片显示不完整,请保存下来再看就行了。
A:如下图的两个 Bias Resaitor 电阻就是上拉电阻和下拉电阻。
图中,上部的一个Bias Resaitor 电阻因为是接地,因而叫做下拉电阻,意思是将电路节点A 的电平向低方向(地)拉;同样,图中,下部的一个Bias Resaitor 电阻因为是电源(正),因而叫做上拉电阻,意思是将电路节点A的电平向高方向(电源正)拉。
当然,许多电路中上拉下拉电阻中间的那个12k电阻是没有的或者看不到的。
我找来这个图是RS-485/RS-422总线上的,可以一下子认识上拉下拉的意思。
但许多电路只有一个上拉或下拉电阻,而且实际中,还是上拉电阻的为多。
上拉下拉电阻的主要作用是在电路驱动器关闭时给线路(节点)以一个固定的电平。
1 在RS-485总线中,它们的主要作用就是在线路所有驱动器都释放总线时让所有节点的A-B端电压在200mV或200mV以上(不考虑极性)。
不然,如果接收器输入端A和B间的电平低于±200mV(绝对值小于200mV,接收器输出的逻辑电平将被当作所传输数据的末位而被接收起来,这样显然是极容易产生通讯错误的。
2 最容易见到的上拉电阻应当是NE555电路7脚作为输出用的时候。
实际上,它和一个三极管的C极或MOS管的D极有一个电阻接到电源+上是一样道理的。
它的作用就是:当管子(晶体管或MOS管)输入关断电平时,C极或D极有一个高电平(空载时约等于电源电压);当管子(晶体管或MOS管)输入导通电平时,C极或D极将与电源地(-)接通,因而有一个低电平。
理想的应为0V,但因为管子有导通电阻,因而有一定的电压,不同的管子可能不一样,相同的管子也可能因参数差异而小有差别,即便是真正的金属接触的电源开关,也是有接触电阻/导通压降(虽然不同电流下压降不同)的;仅仅就导通而言,对于不同系列的集成电路来说,因为应用对象不同,导通后的输出电压有不同的规定,典型是TTL电平和CMOS电平的不同。
数字电路中上拉电阻和下拉电阻作用和选用选择
数字电路中上拉电阻和下拉电阻作用和选用选择文章内容为数字中上拉和下拉电阻作用和选用挑选,希翼对大家有协助。
上拉电阻:1、当TTL电路驱动COMS电路时,假如TTL电路输出的高电平低于COMS电路的最低高电平(普通为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必需加上拉电阻,才干用法。
3、为加大输出引脚的驱动能力,有的管脚上也常用法上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,普通接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增加抗干扰能力。
6、提高的抗电磁干扰能力。
管脚悬空就比较简单接受外界的电磁干扰。
7、长线传输中电阻不匹配简单引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的挑选原则包括:1、从节省功耗及芯片的灌能力考虑应该足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应该足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的挑选应结合开关管特性和下级电路的输入特性举行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,普通地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注重两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平常,开关管断开,上拉电阻应适当挑选以能够向下级电路提供足够的电流。
3.凹凸电平的设定。
不同电路的凹凸电平的门槛电平会有不同,电阻第1页共6页。
单片机上拉与下拉电阻
上拉与下拉电阻上拉电阻就是把不确定的信号通过一个电阻钳位在高电平,此电阻还起到限流的作用。
同理,下拉电阻是把不确定的信号钳位在低电平。
上拉电阻是指器件的输入电流,而下拉指的是输出电流。
总结:1、当TTL电路驱动CMOS电路时,如果TTL电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
(TTL集成电路使用TTL管,也就是PN结。
功耗较大,驱动能力强,一般工作电压+5V CMOS 集成电路使用MOS管,功耗小,工作电压范围很大,一般速度也低。
TTL电路是电流控制器件,而coms电路是电压控制器件。
TTL在室温下,一般输出高电平是3.5V,输出低电平是0.2V。
CMOS电平:1逻辑电平电压接近于电源电压,0逻辑电平接近于0V。
因为TTL和COMS 的高低电平的值不一样,所以互相连接时需要电平的转换:就是用两个电阻对电平分压。
)2、OC门电路必须加上拉电阻,以提高输出的搞电平值。
实际使用中,有时需要两个或两个以上与非门的输出端连接在同一条导线上,将这些与非门上的数据用同一条导线输送出去。
因此,需要一种新的与非门电路来实现线与逻辑,这种门电路就是集电极开路与非门电路,简称OC门。
电路的特点是输出管T5的集电极悬空,使用时需外接一个负载电阻RP和电源Ec。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限,增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值通常在1k 到10k 之间选取。
在数字电路中不用的输入脚都要接固定电平,通过1k 电阻接高电平或接地。
单片机上拉电阻、下拉电阻的详解和选取
一、定义1、上拉就是将不确定的信号通过一个电阻嵌位在高电平,电阻同时起限流作用。
下拉同理。
2、上拉是对器件注入电流,下拉是输出电流。
3、弱强只是上拉电阻的阻值不同,没有什么严格区分。
4、对于非集电极(或漏极)开路输出型电路(如普通门电路),提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路提供电流通道。
二、上、下拉电阻作用1、一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一个电阻。
2、数字电路有三种状态:高电平、低电平和高阻状态。
有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使其处于稳定状态,具体视设计要求而定。
3、一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接。
I/O端口的输出类似于一个三极管的C,当C接通一个电阻和电源连接在一起的时候,该电阻成为上拉电阻。
也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻成为下拉电阻,使该端口平时为低电平。
比如:当一个接有上拉电阻的端口设为输入状态时,它的常态就为高电平,用于检测低电平的输入。
4、上拉电阻是用来解决总线驱动能力不足时提供电流的。
一般说法是拉电流,下拉电阻是用来吸收电流的,也就是我们通常所说的灌电流。
5、接电阻就是为了防止输入端悬空。
6、减弱外部电流对芯片产生的干扰。
7、保护CMOS内的保护二极管,一般电流不大于10mA。
8、通过上拉或下拉来增加或减小驱动电流。
9、改变电平的电位,常用在TTL-CMOS匹配。
10、在引脚悬空时有确定的状态。
11、增加高电平输出时的驱动能力。
12、为OC门提供电流。
三、上拉电阻应用原则1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
上拉电阻电路和下拉电阻电路
上拉电阻电路和下拉电阻电路数字电路的应用中,时常会听到上拉电阻、下拉电阻这两个词,上拉电阻、下拉电阻在电路中起着稳定电路工作状恣的作用。
1.下拉电阻电路图1-107所示是下拉电阻电路,这是数字电路中的反相器,输入端U通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。
如果没有下拉电阻Rl,反相器输入端悬空,为高阻抗,外界的高电平干扰很容易从输入端加入到反相器中,从而引起反相朝输出低电平方向翻转的误动作。
在接入下拉电阻R1后,电源电压为+5V时,下拉电阻Rl一般取值在100~470Ω,由于Rl阻值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。
2.上拉电阻电路图1-108所示是上拉电阻电路,这是数字电路中的反相器,当反相器输入端U没有输入低电平时,上拉电阻R可以使反相器输入端稳定地处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。
如果没有上拉电阻Rl,反相器输入端悬空,KI661- KI662外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。
在接入上拉电阻R1后,电源电压为+5V时,上拉电阻R1一般取值在4.7~10kΩ之间,上拉电阻Rl使输入端为高电平状态,没有足够的低电平融发,反相器不会翻转,达到抗干扰的目的。
开关式电容器电路现场可编程模拟阵列中,通常使用开关式电容器电路( switched-capacitor circuits)在只含电容器的IC芯片里,去实现各式的模拟电路。
在芯片中,使用电容器比使用电阻简单许多。
电容器也提供其他优点,如没有功率的消耗。
在一伞电路中,假如需要电阻时,开关式电容器就可以被仿效当作成电阻。
可编程开关式电容器可以改变其电阻值,达到更精确及稳定的电阻。
然而,当你设计一个FPAA时,软件会将你隔离出复杂的电路细节中。
在学完本节后,我们应该能够:描述开关式电容器电路的基本操作;说明开关式电容器电路如何代替电阻。
上拉电阻、下拉电阻的原理图
上拉电阻、下拉电阻的原理图
加装上拉电阻或下拉电阻就是从电源V+或V-端到集成电路器件输出端加装一个电阻,具体操作很简单,就是直接在器件的输出脚到电源V+或V-端焊接一个电阻即可。
1、上拉电阻对器件注入电流,常见的加装目的有两个:
(1)提高输出电平。
如TTL输出驱动COM的电平匹配,这是非常必要的。
(2)加大输出驱动能力,但对于非OC或OD输出型电路其作用是有限的,如果用于驱动类似LED不加上拉或下拉电阻也是可以的,应该从负载限流电阻等方面考虑解决,如果负载比较重,应该加装输出缓冲或功率驱动电路。
对于OC或OD电路,必须由上拉电阻提供输出电流通道,否则不能工作,因此,在设计和生产时已经安装,就不必再加装了。
2、下拉电阻增加器件输出电流,主要用来设定低电平或阻抗匹配。
3、加装的电阻值大小因加装目的、负载情况以及器件极限参数等条件而异,阻值的大小决定加装作用的弱强。
具体原理图随后绘制上传。
回答
·上传原理图。
顺便说明,为了不引起误会,图中把上拉电阻和下拉电阻分别画在输出和输入端了,在本级的输入端安装可以看作是前级的输出端安装下拉电阻。
事实上,选择安装下拉电阻时基本上都是设在后级的输入端,一是前级无输出时下拉以确保后级的输入电平为低电平,二是与前级阻抗匹配。
(整理)最经典解析:上拉电阻、下拉电阻、拉电流、灌电流.
(整理)最经典解析:上拉电阻、下拉电阻、拉电流、灌电流.(⼀)上拉电阻的使⽤场合:1、当TTL电路驱动COMS电路时,如果TTL电路输出的⾼电平低于COMS电路的最低⾼电平(⼀般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提⾼输出⾼电平的值。
2、OC门电路必须加上拉电阻,才能使⽤。
3、为加⼤输出引脚的驱动能⼒,有的单⽚机管脚上也常使⽤上拉电阻。
4、在COMS芯⽚上,为了防⽌静电造成损坏,不⽤的管脚不能悬空,⼀般接上拉电阻产⽣降低输⼊阻抗,提供泄荷通路。
同時管脚悬空就⽐较容易接受外界的电磁⼲扰(MOS器件为⾼输⼊阻抗,极容易引⼊外界⼲扰)。
5、芯⽚的管脚加上拉电阻来提⾼输出电平,从⽽提⾼芯⽚输⼊信号的噪声容限增强抗⼲扰能⼒。
6、提⾼总线的抗电磁⼲扰能⼒。
管脚悬空就⽐较容易接受外界的电磁⼲扰。
7、长线传输中电阻不匹配容易引起反射波⼲扰,加上下拉电阻是电阻匹配,有效的抑制反射波⼲扰。
(⼆)上拉电阻阻值的选择原则包括:1、从节约功耗及芯⽚的灌电流能⼒考虑应当⾜够⼤:电阻⼤,电流⼩。
2、从确保⾜够的驱动电流考虑应当⾜够⼩:电阻⼩,电流⼤。
3、对于⾼速电路,过⼤的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
(三)对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输⼊特性进⾏设定,主要需要考虑以下⼏个因素:1.驱动能⼒与功耗的平衡。
以上拉电阻为例,⼀般地说,上拉电阻越⼩,驱动能⼒越强,但功耗越⼤,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出⾼电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供⾜够的电流。
3.⾼低电平的设定。
不同电路的⾼低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4.频率特性。
上拉、下拉电阻,分压电路
上拉、下拉电阻,分压电路(2009-05-23 22:59:26)分类:GlobalKnowledge 标签:分压电路上拉电阻ttl电路下拉电阻it上拉电阻是指:将某电位点采用电阻与电源VDD相连的电阻。
比如,LM339比较器的输出端在输出高电平时,输出端是悬空的(集电极输出),采用上拉电阻可以将电源电压通过该电阻向负载输出电流,而输出端低电平时,输出端对地短接。
下拉电阻就是在某电位点用电阻与地相连的电阻。
如果某电位点有下拉和上拉电阻就组成了分压电路,此时,电阻又叫分压电阻。
作用1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,以提高输出的高电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理。
上拉、下拉电阻
上拉、下拉电阻上下拉电阻上拉就是将不确定的信号通过一个电阻钳位在高电平!电阻同时起限流作用!下拉同理!上拉是对器件注入电流,下拉是输出电流;弱强只是上拉电阻的阻值不同,没有什么严格区分;对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
上下拉电阻:1、当TTL电路驱动CMOS电路时,如果电路输出的高电平低于CMOS电路的最低高电平(一般为3.5V), 这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
上拉电阻2、OC门电路必须加上拉电阻,以提高输出的高电平值。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在CMOS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗, 提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻:就是从电源高电平引出的电阻接到输出1,如果电平用OC(集电极开路,TTL)或OD(漏极开路,CMOS)输出,那么不用上拉电阻是不能工作的, 这个很容易理解,管子没有电源就不能输出高电平了。
2,如果输出电流比较大,输出的电平就会降低(电路中已经有了一个上拉电阻,但是电阻太大,压降太高),就可以用上拉电阻提供电流分量,把电平“拉高”。
(就是并一个电阻在IC内部的上拉电阻上, 让它的压降小一点)。
当然管子按需要该工作在线性范围的上拉电阻不能太小。
当然也会用这个方式来实现门电路电平的匹配。
注意事项需要注意的是,上拉电阻太大会引起输出电平的延迟。
(RC延时) 一般CMOS门电路输出不能给它悬空,都是接上拉电阻设定成高电平。
下拉电阻:和上拉电阻的原理差不多, 只是拉到GND去而已。
上拉电阻和下拉电阻的选型和计算
上拉电阻和下拉电阻的选型和计算1.上拉电阻的选型和计算:上拉电阻是指在输入信号引脚与Vcc之间连接一个电阻,用于将输入信号拉高到高电平。
选型和计算上拉电阻时,需要考虑以下几个因素:-输入电流需求:根据输入引脚的规格书或芯片数据手册,确定输入电流的最小要求。
一般情况下,使用的上拉电阻的电阻值应小于输入电流要求。
-电阻范围:根据所使用的电阻范围选择合适的上拉电阻。
一般而言,常用的电阻值为1kΩ到10kΩ,但在一些特殊应用中,也可能需要其他电阻值。
- 上拉电阻计算:上拉电阻的计算可以根据公式R = (Vcc - Vih) / Iin 得到。
其中,R为上拉电阻的电阻值,Vcc为供电电压,Vih为输入高电平阈值,Iin为输入电流。
根据具体输入信号的电压要求和设计要求,可以计算得到合适的上拉电阻值。
2.下拉电阻的选型和计算:下拉电阻是指在输入信号引脚与地之间连接一个电阻,用于将输入信号拉低到低电平。
选型和计算下拉电阻时,需要考虑以下几个因素:-输入电流需求:根据输入引脚的规格书或芯片数据手册,确定输入电流的最大要求。
在选择下拉电阻时,要确保电流不会超过引脚的最大输入电流。
-电阻范围:根据所使用的电阻范围选择合适的下拉电阻。
一般而言,常用的电阻值为1kΩ到10kΩ,但在一些特殊应用中,也可能需要其他电阻值。
- 下拉电阻计算:下拉电阻的计算可以根据公式R = Vil / Iin 得到。
其中,R为下拉电阻的电阻值,Vil为输入低电平阈值,Iin为输入电流。
根据具体输入信号的电压要求和设计要求,可以计算得到合适的下拉电阻值。
需要注意的是,选型和计算上拉电阻和下拉电阻时,还需要考虑输入电流对电路性能的影响,以及电阻功率和稳定性的要求等因素。
总结:上拉电阻和下拉电阻的选型和计算需要根据具体的输入电流和电压要求、电阻范围以及电路设计需求等因素进行考虑。
通过使用适当的电阻值,可以将输入信号拉升或拉低到期望的电平,从而实现电子电路的正常工作。
上拉电阻与下拉电阻详解
上拉电阻:1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。
管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。
对下拉电阻也有类似道理对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:1.驱动能力与功耗的平衡。
以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2.下级电路的驱动需求。
同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3.高低电平的设定。
不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。
以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在低电平门槛之下。
4.频率特性。
以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。
上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
电阻的上拉与下拉
电阻的上拉与下拉在网上看到一些对电阻的上拉和下拉不太明白的,输入端的上拉及下拉非常简单但也非常重要,下面先说明一下电阻的作用:1. 电阻作用:-------接电阻就是为了防止输入端悬空-------减弱外部电流对芯片产生的干扰-------保护cmos内的保护二极管,一般电流不大于10mA-------上拉和下拉、限流-------改变电平的电位,常用在TTL-CMOS匹配-------在引脚悬空时有确定的状态-------增加高电平输出时的驱动能力。
-------为OC门提供电流2、定义:上拉:通过一个电阻对电源相连。
下拉:通过一个电阻到地。
-------上拉就是将不确定的信号通过一个电阻嵌位在高电平!电阻同时起限流作用!下拉同理!-------上拉是对器件注入电流,下拉是输出电流-------弱强只是上拉电阻的阻值不同,没有什么严格区分-------对于非集电极(或漏极)开路输出型电路(如普通门电路)提升电流和电压的能力是有限的,上拉电阻的功能主要是为集电极开路输出型电路输出电流通道。
3、为什么要使用拉电阻:-------一般作单键触发使用时,如果IC本身没有内接电阻,为了使单键维持在不被触发的状态或是触发后回到原状态,必须在IC外部另接一电阻。
-------数字电路有三种状态:高电平、低电平、和高阻状态,有些应用场合不希望出现高阻状态,可以通过上拉电阻或下拉电阻的方式使处于稳定状态,具体视设计要求而定!-------一般说的是I/O端口,有的可以设置,有的不可以设置,有的是内置,有的是需要外接,I/O端口的输出类似与一个三极管的C,当C接通过一个电阻和电源连接在一起的时候,该电阻成为上C拉电阻,也就是说,如果该端口正常时为高电平,C通过一个电阻和地连接在一起的时候,该电阻称为下拉电阻,使该端口平时为低电平,作用比如:当一个接有上拉电阻的端口设为输如状态时,他的常态就为高电平,用于检测低电平的输入。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下拉电阻电路和上拉电阻电路
在数字电路的应用中,时常会听到上拉电阻器和下拉电阻器这个词,其实上拉电阻和下拉电阻都是起稳定电路工作状态的作用。
1:下拉电阻是如何工作的:
如图:U1是数字电路中的反相器,输入端Ui通过下拉电阻R1接地,这样在没有高电平输入时,可以使输入端稳定地处于低电平状态,防止了可能出现的高电平干扰使反相器误动作。
如果没有下拉电阻R,反相器输入端悬空,而输入端为高阻状态,外界的高电平干扰很容易从输入端加入到反向其中,从而引起反相器朝输出低电平方向翻转的误动作。
在接入下拉电阻R后,电源电压在+5V时,上拉电阻R的取值一般在470R 左右,由于R值很小,所以将输入端的各种高电平干扰短接到地,达到抗干扰的目的。
2:上拉电阻是如何工作的:
如图:U1是数字电路中的反相器,当反相器输入端Ui没有输入低电平时,上拉电阻R可以使反相器输入端稳定的处于高电平状态,防止了可能出现的低电平干扰使反相器出现误动作。
如果没有上拉电阻R,反相器输入端悬空,外界的低电平干扰很容易从输入端加入到反相器中,从而引起反相器朝输出高电平方向翻转的误动作。
在接入上拉电阻R后,电源电压在+5V时,上拉电阻R的取值一般在5—10K之间,上拉电阻R使输入端为高电平状态,没有足够的低电平触发,反相器不会翻转,达到抗干扰的目的。