2019八年级数学上册 6.4 数据的离散程度教案 (新版)北师大版
北师大版数学八年级上册6.4数据的离散程度优秀教学案例
师:通过计算,我们得到了跳远比赛成绩的方差和标准差。方差表示数据与其平均值的偏差平方的平均值,标准差则是方差的平方根。它们都可以用来描述数据的波动程度。
3. 教师引导学生学会使用计算器或相关软件进行方差、标准差的计算。
(三)学生小组讨论
3. 小组合作的学习模式
本案例强调小组合作,让学生在合作中学习、成长。学生在小组讨论、交流中,共同完成数据的收集、处理和分析任务,提高了团队协作能力和沟通能力。同时,小组合作也使得学生在互动中相互学习,共同提高。
4. 反思与评价的落实
在教学过程中,本案例注重反思与评价的环节。教师通过课堂小结、作业批改等方式,了解学生的学习情况,及时调整教学策略。学生则通过自我评价和同伴评价,反思自己在学习过程中的优点和不足,不断提高自我认知能力和自主学习能力。
2. 学生分享学பைடு நூலகம்心得,教师给予积极评价。
(五)作业小结
1. 教师布置作业:让学生收集身边的数据,计算其方差和标准差,并分析数据的离散程度。
2. 学生完成作业,巩固所学知识,提高数据处理能力。
3. 教师在课后对学生的作业进行批改和反馈,了解学生的学习情况,为下一步教学做好准备。
五、案例亮点
1. 生活化情境的创设
2. 通过小组合作,让学生在讨论、交流中探究数据离散程度的计算方法,培养团队协作能力和解决问题的能力。
3. 引导学生运用数学知识解决实际问题,培养学生的数学思维能力。
4. 教学过程中,注重培养学生的数据分析观念,使学生掌握研究数据分布特征的一般方法。
(三)情感态度与价值观
1. 培养学生对待数据的严谨态度,认识到数据在现实生活中的重要性。
2019年北师大版八年级上册数学教案:6.4数据的离散程度
在总结回顾环节,我发现学生对本章节知识的掌握程度参差不齐。为了提高整体教学效果,我计划在课后对掌握程度较差的学生进行个别辅导,帮助他们弥补知识漏洞。
其次,实践活动环节,学生们在分组讨论和实验操作过程中表现出较高的积极性,但我也发现部分学生在操作过程中对公式的运用还不够熟练。针对这一点,我认为在实践活动之前,可以增加一些针对性的练习,让学生在操作前对公式有更深入的了解和掌握。
此外,学生在小组讨论环节表现出了较强的思考能力和创新意识。他们能够将离散程度这一概念与实际生活中的问题联系起来,并提出一些有价值的观点。这说明学生们具备了将理论知识应用于实际问题的能力,这也让我深感欣慰。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据的离散程度相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何计算极差、方差和标准差的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
2019年北师大版八年级上册数学教案:6.4数据的离散程度
一、教学内容
2019年北师大版八年级上册数学教案:6.4数据的离散程度
1.离散程度的定义与意义;
2.极差、方差、标准差、离散系数的计算方法;
3.利用离散程度描述数据分布的特征;
4.比较不同数据集的离散程度,分析实际问题的数据波动情况。
结合教材内容,本节课将重点引导学生掌握离散程度的概念及其计算方法,通过实际案例分析,让学生能够运用离散程度描述数据分布的集中与离散程度,培养学生的数据分析能力。同时,注重激发学生思考,提高学生运用数学知识解决实际问题的能力。
北师大版八年级上册第六章第四节数据的分析——数据的离散程度教案
第六章第四节数据的分析——数据的离散程度教案一、教学目标1. 知识目标:学生将了解数据的离散程度的概念和度量方法,包括平均差、方差和标准差。
2. 能力目标:学生将能够计算和分析数据的离散程度,并能够运用这些概念和度量方法解决实际问题。
3. 情感目标:学生将激发对数据处理和分析的兴趣,提高观察、分析和解决问题的能力。
二、教学重点和难点1. 教学重点:学生需要掌握平均差、方差和标准差的计算方法和应用。
2. 教学难点:学生能够理解平均差、方差和标准差的概念,并能够在实际问题中正确应用。
三、教学过程1. 引入新知:通过实例引入数据的离散程度的概念,让学生了解它的重要性。
2. 讲解平均差:详细介绍平均差的概念和计算方法,并通过具体的例子进行演示,帮助学生理解。
3. 讲解方差:详细介绍方差的概念和计算方法,并通过具体的例子进行演示,帮助学生理解。
4. 讲解标准差:详细介绍标准差的概念和计算方法,并通过具体的例子进行演示,帮助学生理解。
5. 比较与联系:通过对比和联系,让学生理解这三个概念在数据分析中的不同作用和联系。
6. 练习与讨论:组织学生进行课堂练习,通过计算例子的平均差、方差和标准差,加深对这三个概念的理解和掌握。
同时,组织学生进行小组讨论,分享解题思路和方法,促进互相学习和提高。
7. 总结与回顾:通过总结与回顾,帮助学生回顾平均差、方差和标准差的计算方法和应用,加深对知识点的理解和记忆。
四、教学方法和手段1. 讲解法:通过讲解,使学生理解平均差、方差和标准差的概念和计算方法。
2. 示范法:通过示范例题,让学生了解如何计算平均差、方差和标准差,掌握解题技巧和方法。
3. 练习法:通过大量练习,加深学生对平均差、方差和标准差的理解和掌握。
4. 讨论法:通过小组讨论,提高学生的交流和合作能力,促进互相学习和提高。
五、课堂练习、作业与评价方式1. 课堂练习:课堂上给出一些练习题,让学生当堂练习,加深对知识的理解和掌握。
北师大版数学八年级上册6.4数据的离散程度教学设计
4.结合网络资源,了解其他衡量数据离散程度的统计量,如变异系数等,并尝试比较它们之间的异同。
要求:撰写一份简短的学习报告,介绍所了解的统计量及其计算方法,并分析其在实际问题中的应用。
5.针对本节课的学习内容,进行自我反思,从知识掌握、学习方法、合作交流等方面进行评价,总结自己的学习收获和不足之处,为下一节课的学习做好准备。
6.教学评价方面,采用多元化评价方式,关注学生的过程性表现,如课堂参与、小组合作、课后作业等,全面评估学生的学习效果。
7.结合课后实践活动,让学生在实际操作中运用所学知识,提高学生的应用意识和实践能力。
四、教学内容与过程
(一)导入新课
1.教师出示一张某班级学生身高的数据表,引导学生观察数据分布的特点,提问:“从这张表中,你能发现什么?这些数据有什么规律?”
2.通过具体的实例,演示方差、标准差的计算过程,让学生理解这些统计量在实际问题中的应用。
3.教师强调方差、标准差在描述数据波动程度方面的重要性,并指出它们在数据分析中的价值。
4.学生动手练习计算方差、标准差,教师巡回指导,解答学生的疑问。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一张含有数据表格的练习纸,要求学生计算数据离散程度。
2.学生通过观察,可能会发现身高数据分布较广,ຫໍສະໝຸດ 的学生身高较高,有的学生身高较低。
3.教师继续提问:“如何描述这些数据的波动情况?是否存在一个指标来衡量数据的离散程度?”
4.学生思考、讨论,教师引导过渡到本节课的内容:数据的离散程度。
(二)讲授新知
1.教师讲解数据离散程度的定义,解释方差、标准差的含义和计算方法。
3.教师选取部分学生的作业进行展示,分析解题思路,强调注意事项。
北师大版初二数学上册6.4数据的离散程度(1)教学设计.4数据的离散程度(第1课时)教学设计
第六章数据的分析6.4 数据的离散程度(第 1 课时)一、学情分析学生的技能基础:学生已经学习过平均数、中位数等几个刻画数据的“平均水平”的统计量,具备了一定的数据处理能力和初步的统计思想,但学生对一组数据的波动情况并不了解,它们是否稳定,稳定的依据是什么,学生缺乏直观和理性的认识.学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用,有了一定的活动经验,具备了一定的合作与交流的能力。
二、教学目标1. 知识与技能:了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值。
2. 过程与方法:经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力。
3. 情感与态度:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系。
三、教学过程第一环节:情境引入内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿•现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。
质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:75747476737675777774甲厂:74757576737673787772乙75787277747573797275厂:80717677737871767375把这些数据表示成下图:质量/g 质量/g(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。
(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4 )如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿
3.小游戏:设计一个简单的统计小游戏,让学生在游戏中体验数据离散程度的概念,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.创设生活情境:以学生熟悉的生活实例为背景,提出问题,引导学生运用所学知识解决问题,让他们体会数学在现实生活中的应用价值。
2.合作探究:组织学生进行小组讨论,鼓励他们相互交流、共同探究,培养合作精神和解决问题的能力。
3.激励评价:及时对学生的表现给予肯定和鼓励,提高他们的自信心,激发学习积极性。
4.游戏化教学:设计富有挑战性的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣和动机。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿
一、教材分析
(一)内容概述
本节课选自北师大版数学八年级上册第6章“数据的收集与整理”中的6.4节“数据的离散程度”,是学生在学习了如何收集和整理数据的基础上,对数据特征进行进一步研究的课程。这部分内容在整个课程体系中起到了承上启下的作用,既是对前面所学统计知识的深化,也为后续学习概率统计打下基础。
(二)学习障碍
在学习本节课之前,学生已经掌握了数据的收集、整理和描述的基本方法,具备了一定的统计学基础。然而,他们在面对极差、方差和标准差等抽象概念时,可能会感到难以理解。此外,方差和标准差的计算过程较为繁琐,学生在运算过程中可能会出现错误,导致学习障碍。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
这些资源和技术工具能够丰富教学内容,提高学生的学习兴趣,同时也便于学生更好地理解和掌握知识。
6.4 数据的离散程度北师大版八年级上册数学 6.4 数据的离散程度教案1
6.4 数据的离散程度1.了解极差的意义,掌握极差的计算方法;2.理解方差、标准差的意义,会用样本方差、标准差估计总体的方差、标准差.(重点、难点)一、情境导入从图中我们可以算出甲、乙两人射中的环数都是70环,但教练还是选择乙运动员参赛.问题1:从数学角度,你知道为什么教练员选乙运动员参赛吗?问题2:你在现实生活中遇到过类似情况吗?二、合作探究 探究点一:极差欢欢写了一组数据:9.5,9,8.5,8,7.5,这组数据的极差是( )A .0.5B .8.5C .2.5D .2解析:这组数据的最大值是9.5,最小值是7.5,因此这组数据的极差是:9.5-7.5=2.故选D.方法总结:要计算一组数据的极差,找出最大值与最小值是关键.探究点二:方差、标准差【类型一】方差和标准差的计算求数据7,6,8,8,5,9,7,7,6,7的方差和标准差.解析:一组数据的方差计算有两个常用的简化公式:(1)s 2=1n [(x 21+x 22+…+x 2n )-nx 2];(2)s 2=1n [(x 1′2+x 2′2+…+x n ′2)-nx ′2],其中x 1′=x 1-a ,x 2′=x 2-a ,…,x n ′=x n -a ,a 是接近原数据平均数的一个常数,x ′是x 1′,x 2′,…,x n ′的平均数.解:方法一:因为x =110(7×4+6×2+8×2+5+9)=7,所以s 2=110[(7-7)2+(6-7)2+(8-7)2+(8-7)2+(5-7)2+(9-7)2+(7-7)2+(7-7)2+(6-7)2+(7-7)2]=1.2. 所以标准差s =305. 方法二:同方法一,所以s 2=110[(72+62+82+82+52+92+72+72+62+72)-10×72]=1.2,标准差s =305. 方法三:将各数据减7,得新数据:0,-1,1,1,-2,2,0,0,-1,0.而x ′=0,所以s 2=110[02+(-1)2+12+12+(-2)2+22+02+02+(-1)2+02-10×02]=1.2.所以标准差s =305. 方法总结:计算一组数据的方差和标准差的步骤:先计算该组数据的平均数(或需加减的数值),然后按方差(或标准差)的计算公式计算.【类型二】方差和标准差的应用在一次女子排球比赛中,甲、乙两队参赛选手的年龄(单位:岁)如下:甲队:26,25,28,28,24,28,26,28,27,29;乙队:28,27,25,28,27,26,28,27,27,26.(1)两队参赛选手的平均年龄分别是多少?(2)利用标准差比较说明两队参赛选手年龄波动的情况.解析:先求出两队参赛选手年龄的平均值,再由标准差的定义求出s 甲与s 乙,最后比较大小并作出判断.解:(1)x 甲=110×(26+25+28+28+24+28+26+28+27+29)=26.9(岁),x乙=110×(28+27+25+28+27+26+28+27+27+26)=26.9(岁).(2)s 2甲=110×[(26-26.9)2+(25-26.9)2+…+(29-26.9)2]=2.29,s 2乙=110×[(28-26.9)2+(27-26.9)2+…+(26-26.9)2]=0.89.所以s 甲= 2.29≈1.51, s 乙=0.89≈0.94, 因为s 甲>s 乙,所以甲队参赛选手年龄波动比乙队大. 方法总结:求标准差时,应先求出方差,然后取其算术平方根.标准差越大(小)其数据波动越大(小).【类型三】统计量的综合应用甲、乙两支篮球队在集训期内进行了五场比赛,将比赛成绩进行统计后,绘制成图(a)、(b)所示的统计图.(1)在图(b)中画出折线表示乙队在集训期内这五场比赛成绩的变化情况.(2)已知甲队五场比赛成绩的平均分x 甲=90分,请你计算乙队五场比赛成绩的平均分x 乙.(3)就这五场比赛,分别计算两队成绩的方差.(4)如果从甲、乙两队中选派一支球队参加篮球锦标赛,你认为选派哪支球队参赛更能取得好成绩?解析:第(4)题可根据第(1)(2)(3)题的结果,从平均分、折线的走势、获胜场数和方差四个方面分别进行简要分析.解:(1)如图所示.(2)x 乙=15(110+90+83+87+80)=90(分).(3)甲队成绩的方差s2甲=15[(80-90)2+(86-90)2+(95-90)2+(91-90)2+(98-90)2]=41.2;乙队成绩的方差s2乙=15[(110-90)2+(90-90)2+(83-90)2+(87-90)2+(80-90)2]=111.6.(4)从平均分看,两队的平均分相同,实力大体相当;从折线的走势看,甲队比赛成绩呈上升趋势,而乙队比赛成绩呈下降趋势;从获胜场数看,甲队胜三场,乙队胜两场,甲队成绩较好;从方差看,甲队比赛成绩比乙队比赛成绩波动小,甲队成绩较稳定.综上所述,选派甲队参赛更能取得好成绩.方法总结:本题是反映数据集中程度与离散程度的综合题.从图形中得到两队的成绩,然后从平均数、方差的角度来考虑,在平均数相同的情况下,方差越小的越稳定.三、板书设计数据的离散程度错误!经历表示数据离散程度的几个量的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.通过小组合作,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.。
八年级数学上册6.4数据的离散程度教案 新版北师大版
八年级数学上册6.4数据的离散程度教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第六章第四节主要介绍了数据的离散程度。
这一节的内容是在学生已经掌握了数据的收集、整理、描述和分析的基础上进行的,是进一步研究数据的重要内容。
通过本节课的学习,学生能够理解离散程度的含义,掌握离散程度的计算方法,并能运用离散程度分析实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数据的收集、整理和分析有一定的了解。
但是,对于数据的离散程度这一概念,学生可能比较陌生,需要通过具体的例子和实际操作来理解和掌握。
同时,学生可能对于如何运用离散程度分析实际问题还不够清楚,需要在教学中进行引导和培养。
三. 教学目标1.知识与技能:学生能够理解离散程度的含义,掌握离散程度的计算方法,并能运用离散程度分析实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等过程,培养数据分析的能力和解决问题的能力。
3.情感态度与价值观:学生能够认识到数据分析在生活中的重要性,培养对数学的兴趣和自信心。
四. 教学重难点1.重点:学生能够理解离散程度的含义,掌握离散程度的计算方法。
2.难点:学生能够运用离散程度分析实际问题。
五. 教学方法1.情境教学法:通过具体的例子和实际操作,让学生理解和掌握离散程度的含义和计算方法。
2.互动教学法:引导学生进行观察、思考、交流,培养学生的数据分析能力和解决问题的能力。
3.案例教学法:通过分析实际问题,让学生学会运用离散程度进行问题分析和解决。
六. 教学准备1.教具准备:多媒体教学设备、黑板、粉笔。
2.学具准备:学生自带的学习用品,如笔记本、笔等。
3.教学资源:教学课件、案例资料、练习题等。
七. 教学过程1.导入(5分钟)通过一个具体的问题引出离散程度的概念,如“为什么运动员的身高数据更接近于正态分布,而体重数据更接近于偏态分布?”让学生思考和讨论,引出离散程度的概念。
2.呈现(10分钟)利用多媒体教学设备,展示离散程度的定义和计算方法,让学生理解和掌握。
2019-2020学年八年级数学上册-6.4.1-数据的离散程度教案1-北师大版
2019-2020学年八年级数学上册 6.4.1 数据的离散程度教案1 北师大版教学目标:1.了解刻画数据程度的三个量——极差、方差和标准差,并在具体情境中加以应用.能借助计算器求相应的数值.2.通过经历表示数据离散程度的几个量的探索,体会用样本估计总体的思想,感悟其实际运用价值,培养学生的合作意识和处理问题的能力.3.经历用方差刻画数据离散程度的过程,发展数据分析观念.教学重点与难点:重点:利用极差、标准差和方差解决实际问题.难点:理解极差、方差和标准差的概念.课前准备:计算器、多媒体课件.教学过程:一、创设情境,引入新课[师]:我们学校田径队准备选拔一名运动员参加中学生运动会,在激烈的竞争中,侯潇同学和赵伟强同学脱颖而出,下表是两位同学在8次百米跑训练中的成绩:序数1234567812.012.213.012.613.112.512.412.2侯潇的成绩/秒赵伟强的成12.212.412.712.512.912.212.812.3绩/秒[师]:田径队李教练认真分析两个队员的成绩,做出了一个艰难的决定,你想知道李教练为什么决定这么艰难吗?首先请同学们完成下面的问题.活动内容1:引例探究1.请同学们根据上表信息完成下表:( 多媒体展示)2.根据你所得到的信息分析两名运动员的成绩,你认为谁的成绩更好?你觉得李教练最终选择了哪名运动员呢?处理方式:同桌之间分工合作完成两位同学的平均数、中位数以及众数的计算,然后小组交流后汇总比较.教师确定是否完全一致后再进行分析和比较成绩,为了给学生更好的直观感觉,教师绘制折现统计图给学生展示,帮助学生分析问题.让学生假设自己是李教练进行选择并说出选择的理由,小组交流完成,有的人会认为侯潇的成绩较好,因为侯潇超过13秒的较多,也有的会认为赵伟强的成绩较好,因为成绩比较稳定在平均数的周围,通过学生深入地探究让学生感受这几个量无法满足现实问题,从而引出本节课学习的内容. (1)附统计图:根据上表中的数据完成下面的折线统计图(2)附答案:赵伟强成绩统计图成绩/秒成绩/秒侯潇成绩统计图侯潇12.5 12.45 12.2赵伟强12.5 12.45 12.2[师]:我们研究的平均数、中位数、众数都是刻画数据集中趋势的三个量,但有时仅有集中趋势还难以准确刻画一组数据,实际生活中,我们还常常关注数据的离散程度,即它们相对于集中趋势的偏离程度(多媒体展示)本节课我们来探讨它.(板书课题)设计意图:通过两个层次的问题的精心设计,既复习了上节课所学习了的知识,又引导学生有目的地进行思考和探究,让学生充分感受只有那些量是不能完全地对数据进行处理的,刻画数据离散程度的量的引入就成了必然.二、合作探究,展示汇报活动内容2:规范引领[师]:刚才同学们用观察的方法判断了数据的离散程度,我们来考虑将我们所观察的用什么具体的数值来清晰地表示呢?处理方式:小组交流探讨后,找小组代表回答.绝大对数同学应该会很容易就会想到用最大值和最小值的差,之后确定极差是刻画数据偏离程度的一个统计量.极差引入后肯定有些同学会疏忽单位的问题,一定要强调极差的单位与原单位相同.极差是指一组数据中最大数据与最小数据的差.(教师板书)设计意图:延续原来的教学情境,顺利引入研究数据的其它量:极差.这样,既能吸引了学生的注意力,又激发了学生的求知欲,也能让学生感受生活离不开数学.三、巩固提高,再探新知活动内容3:巩固应用[师]:利用你所学到的知识解决下面问题.某外贸公司要出口一批规格为75g的鸡腿,现有两个厂家提供货源,他们的价格相同,鸡腿品质相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿的质量(单位:g)如下:(多媒体展示)甲厂75 74 74 76 73 76 75 77 77 74把这些数据表示成如图所示:(1)从甲、乙两厂抽取的鸡腿的平均质量分别是什么?在图中画出纵坐标等于平均质量的直线?(2)如果只考虑鸡腿的价格,你认为外贸公司应该买那个厂家的鸡腿?处理方式:多媒体展示甲乙两厂的鸡腿问题,要求学生同桌之间分工完成平均质量的计算,然后小组交流后汇总,学生也可以参考课本图形完成老师提问,学生很容易就可以利用极差解决题目中的问题.如果学生画出纵坐标等于平均质量的直线后,在分析过程中可能会出现它们的值谁的更集中在平均数的周围这样的想法,这时可以提醒学生将所有数据都和平均数比较差距并取其绝对值,并引导学生明确74克的鸡腿和76克的鸡腿的偏离程度是相同的,涉及平均差的概念,平均差是刻画数据偏离程度的一个统计量.平均差即各个数据与平均数之差的绝对值的平均数.(平均差的概念可以看学生能力决定,也可以不涉及)设计意图:通过又一个实际情景和图示,让学生更直观地估计两厂抽取的20只鸡腿的平均质量;更进一步地让学生体会两组数据的平均数相近时,它们的离散程度未必相同.活动内容4:再探新知[师]:市场竞争是激烈的,如果丙厂也参与了竞争,从该厂抽样的20只鸡腿如图所示:(3)在甲和丙两个厂家中,你认为哪个厂的鸡腿更符合要求呢?( 多媒体展示) 处理方式:将两个厂家的数据用一个统计图展示给学生以直观,如果之前没有提及平均差的话,就让同桌之间按顺序分工完成题目中的甲厂和丙厂的问题,得出(1)数值后汇总就容易发现了极差所不能解决的这个实际问题,在解决问题(2)的时候,学生找差距容易带有符号,这时应提出探讨74克和76克的鸡腿的偏离程度是否是一样的,因此提出用鸡腿质量和平均数的差的绝对值来刻画,可以将它们求和也可以将它们求平均数(即平均差).问题(3)的处理可以借助图像直观得出结论也可以用求和或者求平均的方法解决.如果前面已经提及平均差的话就可以让学生自主分析选择哪一个更符合要求.[师]:我们探讨了用极差(和平均差)来表示数据的离散程度,数据的离散程度还可以用方差或者标准差来刻画.请同学们阅读课本150页,并思考计算一组数据的方差的步骤.处理方式:阅读时间两分钟,学生独立完成阅读后小组方差的计算步骤,教师强调::70707274767880质量/g乙厂丙厂方差是各个数据与平均数之差的平方的平均数,即s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中x是x1,x2,…,x n的平均数,s2是方差,而标准差(S)就是方差的算术平方根.一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.小组研究较简单的记忆方法,交流出结论后让小组代表概括,如果小组代表的语言不够严谨,教师可引导学生完成,可以简单地记作:先平均,后求差,平方后,再平均.(教师板书黑体部分)完成交流后独立计算丙厂的方差和甲厂比较.等待学生完成后教师强调:(1)极差和标准差的单位和原单位一致;(2)方差的单位应该为原单位的平方,但是不具有什么实际意义,一般都省略不写.(3)计算器不具有求方差的功能,可以先求出标准差,再平方即可求出方差.设计意图:在前面的问题情境中,极差很容易比较出两个厂家的鸡腿的离散程度.在这里增加一个丙厂,目的是通过与前两个厂的对比,发现仅有极差刻画数据的离散程度是不够的从而引出其他量.设计丙厂的数据时,和课本比较有了一个数据的改动,目的是让甲和丙的平均数和极差都完全相同,给学生离散程度的比较制造更大的难度,能够更大程度地激起学生的求知欲和探索交流的欲望,也为方差和标准差的呈现做好充分的准备.同时使学生在实际问题的解决过程中认识到离散程度的意义和影响,形成一定的数据意识和解决问题的能力,进一步体会数学的应用价值.[师]:看来方差的计算比极差的计算麻烦多了,使用计算器可以很方便地帮助我们计算方差.大家利用课余时间自学课本151页,计算后与课本比较是否正确.四、应用举例、概念加深活动内容5:规范应用[师]:掌握了刻画数据离散程度的几种方法,让我们一起来帮助农民伯伯做判断吧!农民伯伯为了比较甲、乙两种棉花结桃情况,任意抽取每种棉花各10棵,统计它们结桃数的情况如下:(多媒体展示)甲种棉花 84,79,81,84,85,82,83,86,87,89;乙种棉花 86,85,90,80,82,92,80,77,83,85.请你对这两组数据进行分析比较,看看能获得什么结论?处理方式:两位学生到黑板板演,其他学生自主完成,两位同学的方法不一定完全不同,教师可以做一些引导,以便达到更好的示范效果.附答案:解:x 甲=101(84+79+81+84+85+82+83+86+87+89)=84(分) x 乙=101(86+85+90+80+82+92+80+77+83+85)=84(分) s 2甲=101[(84-84)2+(79-84)2+(81-84)2+(84-84)2+(85-84)2+(82-84)2+(83-84)2+(86-84)2+(87-84)2+(89-84)2]=7.8s 2乙=101[(86-84)2+(85-84)2+(90-84)2+(80-84)2+(82-84)2+(92-84)2+(80-84)2+(77-84)2+(83-84)2+(85-84)2]=19.2因为 7.8<19.2,所以甲种棉花更稳定.设计意图:尽情体会不同的方法刻画数据的离散程度,并在观察比较中获得最简单的方法;另一个目的是规范学生的解题过程,尤其是方差的计算.五、归纳小结、反思提高[师]:通过今天学习和探讨,你有哪些收获,请大家各自总结一下,然后共同分享! 处理方式:学生归纳总结,教师补充升华.设计意图:教给学生反思的方法,注重学生知识的掌握和探究过程的完成情况.引导学生小结本节知识及学习活动,让学生畅所欲言,相互进行补充,能用自己的话对本节课的重点内容进行归纳总结;养成学习—总结—再学习的良好学习习惯,发挥自我评价的作用,进一步培养学生的语言表达能力.[师]下面我们利用大家归纳的知识和方法进行自我评价完成过关检测习题,比一比,看一看,谁能领先.六、分层达标,反馈矫正A 组:基础达标题( 多媒体展示)1.数据 1 ,2 ,3,x 的极差是 6 ,则x =________.2.若一组数据的方差为0.16,那么这组数据的标准差为________.3.对甲、乙两个小麦品种各100株小麦的株高x (单位:m )进行测量,算出x 甲= 0.95,s 2甲=1.01, x 乙= 0.95,s 2乙=1.35,于是可估计株高较整齐的小麦品种是________.B 组:能力挑战题( 多媒体展示)4. 甲、乙两名同学进行射击训练,在相同条件下各射靶5次,成绩统计如下:请你评价两人的射击水平,则谁的射击成绩更稳定些?处理方式:学生做题的时候教师巡视,监督学生独立完成,但尽量少指导,因为会影响学生独立思考和做题的进度.学生做完后教师及时批改,初步了解掌握学生解题情况.七、作业分层,各显其能必做题:课本151页和152页.选做题:1.已知三组数据1、2、3、4、5;11、12、13、14、15和3、6、9、12、15.(1)求这三组数据的平均数、方差和标准差.(2)对照结果,你能从中发现哪些有趣的结论?(3)请你用发现的结论来解决以下的问题:已知数据a1,a2,a3,…,a n的平均数为X,方差为Y标准差为Z.则①数据a1+3,a2 + 3,a3 +3 ,…,a n +3的平均数为,方差为,标准差为.②数据3a1,3a2,3a3,…,3a n的平均数为,方差为,标准差为.③数据2a1-3,2a2-3,2a3-3 ,…,2a n-3的平均数为,方差为,标准差为.结束语:在数学的天地里重要不是我们知道了什么,而是我们怎么知道什么!——毕达哥拉斯板书设计。
北师大版数学8年级上册教案6.4 数据的离散程度
4数据的离散程度教学目标【知识与技能】1.理解方差与标准差的概念与作用.2.灵活运用方差与标准差来处理数据.3.能用计算器求数据的方差和标准差.【过程与方法】经历探索用方差与标准差来分析数据、做出决策的过程,培养学生运用数学知识解决实际问题的意识和“让数字来说话”的习惯.【情感、态度与价值观】1.通过生活学习数学,了解数学与生活的紧密联系.2.通过生活学习数学,并通过用数学知识解决生活中的问题来激发学生的学习热情.教学重难点【重点】方差和标准差概念的理解.【难点】应用方差和标准差分析数据,并做出决策.教学过程一、温故知新创设问题情境:两台机床都生产直径为(20±0.2)mm的零件,为了检验产品质量,从产品中各抽取10个进行测量,结果如下:为了判断两台机床加工零件的精度的稳定情况,我们先用上节课学习的特征量来判断,中位数都是20.0 mm,平均数还是20.0 mm.如何反映这两组数据的区别呢?二、讲授新课探究解决问题:机床A的数据:机床A 每个数据与平均数的偏差和为: (x 1-x)+(x 2-x)+…+(x 10+x)=0+(-0.2)+0.1+0.2+(-0.1)+0+0.2+(-0.2)+0.2+(-0.2) =0机床B 的数据:机床B 每个数据与平均数的偏差和为:(x 1-x)+(x 2-x)+…+(x 10-x)=0+0+(-0.1)+0+(-0.1)+0.2+0+0.1+0.1+(-0.2) =0这样计算,我们还是无法区分两台机床的精度. 如何求各个偏差的绝对值|x i -x|的平均数呢? 机床A 数据的平均偏差:|x 1-x|+|x 2-x|+…+|x 10-x|10=0.14,机床B 数据的平均偏差:|x 1-x|+|x 2-x|+…+|x 10-x|10=0.08,显然,机床B 加工零件的精度比较好. 一般地,平均偏差=|x 1-x|+|x 2-x|+…+|x n -x|n (n 是数据的个数),可以用来表示一组数据的离散程度,但用这个公式计算绝对值,为避免涉及绝对值,统计学中常用的方法是以偏差的平方即(x i -x)2代替|x i -x|,于是有下面的方法:设一组数据是x 1,x 2,…,x 10,它们的平均数是x ,我们用s 2=1n [(x 1-x)2+(x 2-x)2+…+(x n -x)2]来衡量这组数据的离散程度,并把它叫做这组数据的方差.下面来计算机床A 、B 的方差:s 2A =0.026(mm 2),s 2B =0.012(mm 2),由于0.026>0.012,可知机床A 生产的10个零件直径比机床B 生产的10个零件直径波动要大.一组数据的方差越大,说明这组数据的离散程度越大,当两组数据的平均数相同或差异比较小时,可用方差来比较这两组数据的离散程度.求方差的步骤为: (1)求平均数. (2)求偏差.(3)求偏差的平方和. (4)求平方和的平均数.由于方差是各个数据偏差的平方的平均数,它的单位和原数据的单位不一致,因此,在有些情况下,需要用方差的算术平方根,即标准差来衡量数据的离散程度.s=1n[(x1-x)2+(x2-x)2+…+(x n-x)2]三、例题讲解求一组数据的标准差和方差,用计算器更方便.【例1】用计算器求下列数据的标准差和方差(结果保留2位小数):138,156,131,141,128,139,135,130【解】按键方法:(1)设定计算模式,在打开计算器后,先按“2ndf”,“MODE”1将其设定至“Stat”状态.(2)按键“2ndf”,“DEL”清除计算器原先在“Stat”模式下所储存的数据.(3)输入数据,依次按以下各按键:138“DATA”156“DATA”131“DATA”141“DATA”128“DATA”139“DATA”135“DATA”130“DAT A”(4)求标准差和方差,在计算器的键盘上,用ax表示一组数据的标准差.按键“RCL”、“ax”显示标准差:ax=8.302860953而键盘上无表示方差的按键,所以要利用标准差与方差的关系来求方差.按键“x2”、“=”显示方差:ANS2=68.9375由上可得,S≈8.30,S2≈69.94.【例2】为了考察甲、乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位:cm):甲:12,13,14,15,10,16,13,11,15,11;乙:11,16,17,14,13,19,6,8,10,16.哪种小麦长得比较整齐?【解】x甲=110×(12+13+14+15+10+16+13+11+15+11)=13(cm);x乙=110×(11+16+17+14+13+19+6+8+10+16)=13(cm).s2甲=110×[(12-13)2+(13-13)2+(14-13)2+(15-13)2+(10-13)2+(16-13)2+(13-13)2+(11-13)2+(15-13)2+(11-13)2]=3.6(cm2);s2乙=110×[(11-13)2+(16-13)2+(17-13)2+(14-13)2+(13-13)2+(19-13)2+(6-13)2+(8-13)2+(16-13)2]=15.8(cm2).因为s2甲<s2乙,所以甲种小麦长得比较整齐.【例3】张强和金佳两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?【解】x 1=x 2=(10+13+16+14+12)÷5=13, s 21=15(0+12+0+12+0)=0.4, s 22=15(32+0+32+12+12)=4. s 21<s 22,∴张强的成绩比金佳的成绩要稳定. 四、课堂小结本课主要学习了用方差与标准差可表示出一组数据与其平均值的离散程度,即稳定性.方差越小,稳定性越好.注意:用“先平均,再求差,然后平方,最后再平均”得到的结果.。
北师大版数学八年级上册4《数据的离散程度》教学设计1
北师大版数学八年级上册4《数据的离散程度》教学设计1一. 教材分析《数据的离散程度》是北师大版数学八年级上册第四单元的内容。
本节课的主要内容是让学生了解离散程度的定义,掌握极差、方差、标准差的概念和计算方法,并能够运用这些统计量描述数据的离散程度。
教材通过具体的例子和实际问题,引导学生探究数据的离散程度,培养学生的数据分析能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经学习了数据的收集、整理和描述的基本方法,对平均数、中位数、众数等统计量有一定的了解。
但学生可能对离散程度的概念和计算方法较为陌生,需要通过具体的例子和实际问题来理解和掌握。
此外,学生可能对数据的波动性和离散程度的概念有一定的困惑,需要教师进行解释和引导。
三. 教学目标1.了解离散程度的定义,掌握极差、方差、标准差的概念和计算方法。
2.能够运用极差、方差、标准差描述数据的离散程度,培养数据分析能力。
3.通过实际问题,培养解决问题的能力。
四. 教学重难点1.离散程度的定义和计算方法。
2.数据的波动性和离散程度的概念。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际问题,引导学生探究数据的离散程度,培养学生的数据分析能力和解决问题的能力。
同时,采用小组合作学习的方式,让学生在讨论和交流中共同解决问题,提高学生的合作能力和沟通能力。
六. 教学准备1.准备相关的例子和实际问题,用于引导学生探究数据的离散程度。
2.准备计算器等辅助教学工具,用于计算极差、方差、标准差。
七. 教学过程1.导入(5分钟)通过一个具体的例子,如某班级学生的身高数据,引导学生思考如何描述数据的离散程度。
2.呈现(10分钟)呈现离散程度的定义,以及极差、方差、标准差的概念和计算方法。
通过具体的例子,解释这些概念和计算方法的含义。
3.操练(10分钟)让学生分组讨论,每组选择一组数据,计算其极差、方差、标准差,并描述数据的离散程度。
教师在旁边进行指导,解答学生的问题。
2024年北师大版八年级上册教学设计第六章6.4 数据的离散程度
课时目标1.能够理解一组数据的极差、方差、标准差,并能用它们对数据的离散程度作出判断.2.根据描述计算一组数据极差、方差、标准差的大小,对实际问题做出解释,培养学生解决问题的能力.3.通过实验和探索,体会用三个统计量表示数据波动情况的合理性,并能用它们解决有关实际问题.4.通过解决现实情境中的问题,提高学生数学统计的素养,用数学的眼光看世界.通过小组活动,培养学生的合作意识和能力.学习重点了解极差、方差、标准差的意义,并根据它们的概念计算一组数据的极差、方差、标准差.学习难点利用方差解决实际问题,具体问题具体分析.课时活动设计情境引入为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75 g的鸡腿,现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75,74,74,76,73,76,75,77,77,74,74,75,75,76,73,76,73,78,77,72;乙厂:75,78,72,77,74,75,73,79,72,75,80,71,76,77,73,78,71,76,73,75;把这些数据表示成下图:(1)你能从图中估计出甲、乙两厂被抽取的鸡腿的平均质量吗?(2)求甲、乙两厂被抽取的鸡腿的平均质量,并在图中分别画出纵坐标等于平均质量的直线.(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家厂家的鸡腿?说明你的理由.解:(1)能,估计均为75 g.(2)甲的平均质量=(72+73×3+74×4+75×4+76×4+77×3+78)÷20=75(g),乙的平均质量=(71×2+72×2+73×3+74+75×4+76×2+77×2+78×2+79+80)÷20=75(g).(3)从甲厂抽取的这20只鸡腿质量的最大值是78 g,最小值72 g,它们相差78-72=6(g);从乙厂抽取这20只鸡腿质量的最大值是80 g,最小值71 g,它们相差80-71=9(g).(4)如果只考虑鸡腿的规格,我认为外贸公司应购买甲厂的鸡腿.因为甲厂鸡腿质量相差不大,比较均匀.教师归纳:一组数据中最大数据与最小数据的差称作极差.极差是刻画数据离散程度的一个统计量.设计意图:让学生感受到平均值的局限性,让原有的知识与新的问题情境产生碰撞,使学生能够更好地理解概念.探究新知如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图:(1)丙厂这20只鸡腿质量的平均数和极差分别是多少?(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距.(3)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么?分析:可以大致先估计丙厂这20只鸡腿质量的平均数,然后再具体计算.刻画丙厂这20只鸡腿的质量与其平均数的差距时,教师引导学生可分别用这20只鸡腿的质量与其平均数的差的绝对值刻画.解:(1)平均数为(72×3+73×2+74×4+75×2+76×3+77×3+78×2+79×1)÷20=75.1(g),极差为79-72=7(g).(2)可分别用这20只鸡腿的质量与其平均数差的绝对值刻画.甲厂的20只鸡腿的质量与其平均数差的绝对值(单位:g)依次为0,1,1,1,2,1,0,2,2,1,1,0,0,1,2,1,2,3,2,3.丙厂相应的数据为0.1,1.1,2.1,2.9,3.1,0.9,1.1,0.9,1.1,0.1,1.1,3.1,2.1,3.1,2.9,0.9,1.9,1.9,1.9,3.9.(3)一般认为,甲厂的鸡腿质量更符合要求.这可以从统计图直观看出,也可以用上面所说的差距的和来说明.教师归纳:所以,数据的离散程度除了极差,还可以用方差或标准差来刻画.1.方差(s2)是各个数据与平均数差的平方的平均数,即s2=1n [(x1-x-)2+(x2-x-)2+...+(x n-x-)2],2.标准差就是方差的算术平方根.而一般说来,一组数据的极差、方差或标准差越小,这组数据就越稳定.问题延伸:计算从甲厂抽取的20只鸡腿质量的方差.[(72−75)2+(73−75)2×3+(74−解:s2=12075)2×4+(75-75)2×4+(76-75)2×4+(77-75)2×3+(78-75)2]=2.5.拓展补充:用计算器求标准差的步骤:1.按“MODE”键启动统计功能;2.再输入“2”之后就可以输入数据,每输入一个数据按“M+”键,如是重复.3.输入完毕点“SHIFT”键,按数字提示选择“2”,再按“=”键,就得到了标准差.设计意图:通过丙厂与甲、乙两厂的对比,发现有时仅有极差还难以精确地刻画一组数据的离散程度,从而引入刻画一组数据离散程度的另外两个量:方差和标准差.典例精讲例某射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了8次测试,测试成绩(单位:环)如下表:(1)根据表格中的数据,计算出甲的平均成绩是9环,乙的平均成绩是9环.(2)分别计算甲、乙两名运动员8次测试成绩的方差.(3)根据(1)(2)计算的结果,你认为推荐谁参加全国比赛更合适?并说明理由.分析:计算甲和乙的方差,方差越小越稳定,更适合参加全国比赛.[(10−9)2×3+(8−9)2×3+(9−9)2×2]=0.75,解:(2)甲的方差=18[(10−9)2×4+(9−9)2+(8−9)2×2+(7-9)2]=1.25.乙的方差=18(3)推荐甲参加全国比赛更合适.因为9=9,0.75<1.25,甲、乙的平均成绩相同,但甲的方差小,所以甲比较稳定,故推荐甲参加全国比赛更加合适.教师归纳:1.在解决实际问题时,方差可以反应数据的波动大小,方差越大,数据的波动越大;方差越小,数据的波动越小.可以用样本的方差估计总体的方差,但不能认为方差越小就表示这组数据越好,而是认为方差越小表示这组数据越稳定,至于数据的好坏,则要根据具体的情况进行具体分析.2.运用方差解决实际问题的一般步骤:(1)计算数据样本平均数.(2)两组数据的平均数相等或相近时,利用样本方差来估计总体数据的波动情况.(3)在实际应用中,不是数据越稳定就越好,要根据实际情况进行具体分析.设计意图:通过学生计算方差的练习,理解方差对数据波动的影响程度,能够对实际问题做出具体分析,培养学生解决问题的能力.巩固训练1.观察下列统计图,回答问题.(1)从下面两幅图中,你能分别“读”出甲、乙两队员射击成绩的平均数吗?(2)通过估计比较甲、乙两队员射击成绩的方差的大小,说说你的估计过程.(3)分别计算甲、乙两队员射击成绩的方差,看看刚才自己的估计是否正确.解:(1)甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷10=8(环).(2)乙的方差<甲的方差,因为乙的射击成绩中,位于平均数的次数多,故乙的方差小.[(6-8)2+3×(7-8)2+2×(8-8)2+3×(9-8)2+(10-8)2]=1.4;(3)甲队的方差=110[(6-8)2+2×(7-8)2+4×(8-8)2+2×(9-8)2+(10-8)2]=1.2.乙队的方差=110所以甲的方差是1.4,乙的方差是1.2,估算正确.2.甲、乙、丙三人的射击成绩如下图:三人中,谁的射击成绩更好,谁更稳定?你是怎么判断的?解:甲的平均数为7.9,方差为3.29;乙的平均数为7.9,方差为0.49;丙的平均数为5.2,方差为0.36.从平均成绩看,甲和乙的成绩比较好;从方差看,乙和丙发挥的都比甲稳定,但结合平均成绩看,乙的水平更高.设计意图:通过练习,及时巩固本节课所学内容.并考查学生的知识应用能力,使教师及时了解学生对刻画数据离散程度的三个量极差、标准差和方差的理解情况,以便教师及时对学生进行矫正.课堂小结1.本节课描述数据的离散程度学习了几个统计量?2.在解决实际问题时,方差的作用与一般步骤是什么?3.一组数据方差越小,这组数据就越稳定,是不是方差越小表示这组数据越好?设计意图:通过小结,总结回顾本节课学习内容,帮助学生梳理归纳、巩固所学知识.课堂8分钟.1.教材第151,152页习题6.5第1,2题,第155,156页习题6.6第1,2,3题.2.七彩作业.教学反思。
6.4数据的离散程度(第一课时)教学设计2024-2025学年北师大版数学八年级上册
- 《统计学基础》:介绍了统计学的基本概念、原理和方法,包括数据的收集、处理和分析,其中涉及方差、标准差等离散程度的度量。
- 《生活中的统计学》:通过生活中的实例,展示了统计学在各个领域的应用,让学生了解统计学的实用性和广泛性。
- 《数据可视化》:介绍了如何利用图表、图像等可视化手段展示数据的特征和规律,包括离散程度的相关图表。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源
1. 硬件资源:多媒体教学设备、投影仪、黑板、计算器。
2. 软件资源:教学课件、统计软件(如Excel)、数学学科软件。
3. 课程平台:学校教学管理系统、课堂互动平台。
4. 信息化资源:电子教材、教学视频、在线统计图表工具。
学情分析
八年级学生在知识层面,已具备基本的数学运算能力和数据收集、整理、描述的能力,掌握了平均数的概念及其应用。在能力方面,他们具有一定的逻辑思维和问题解决能力,但对方差和标准差的深入理解及实际应用尚属初步阶段。素质方面,学生的合作意识和探究精神逐渐增强,但个别学生在自主学习能力和习惯上存在差异。
学生在前期的学习中,对统计图表的绘制和使用有一定的实践经验,但对于数据的离散程度及其意义的理解可能还不够深入。此外,部分学生在数学学习中可能存在畏惧心理,对复杂计算和抽象概念接受度不高,这可能会影响他们对本节课内容的理解和掌握。
在观察环节,我发现学生在小组讨论时积极参与,互相交流,通过讨论加深对方差和标准差的理解。但在课堂测试环节,部分学生在计算方差时出现了一些错误,尤其是在公式的应用上。
针对这些问题,我在课后进行了认真的作业批改和点评,对学生的作业进行了详细的反馈。在作业中,我不仅纠正了学生的错误,还给出了一些改进的建议,鼓励学生继续努力,提高自己的计算能力和数据分析能力。
八年级数学上册第六章数据的分析6.4数据的离散程度教案(新版)北师大版
课题
数据的离散程度
课时安排
共(1)课时
课程标准
149-151
学习目标
1.知道极差、方差、标准差的概念.
2.会求一组数据的极差、方差、标准差,并会用它们表示数据的离散程度.
教学重点
方差的概念和计算.
教学难点
应用方差对数据的波动情况进行比较、判断.
教学 方法
合作交流法
教学准备
先自学课本149页
其中, 是x1,x2,…,xn的平均数,s2是方差.而标准差(stan darddeviation)就是方差的算术平方根.
一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.
课中作业
先自学自研教材 第150页“做一做”和上方的例题,然后与同伴进行交流.
环
节
二
利用图象分析数据的离散程度,再通过计算加以验证,让学生进一 步体会方差是衡量一组数据稳定性的重要标志.
课前作 业
让学生通过阅读教材后,独立完成“自学互研”的所有内容,并要求做完了的小组长督促组员迅速完成.
教学过程
教学环节
课堂合作交流
二次 备课
(修人:)
环
节一
先阅读教材第150页“做一做”的内容,并完成书中设置的前两个问题
学上,数据的离散程度还可以用方差或标准差刻画.方差(variance)是 各个数据与平均数差的平方的平均数,即s2= [(x1- )2+(x2- )2+…+(xn- )2].
知识模块二 用计算器计算方差和标准差
知识模块三 平均数与方差的综合运用
课后作业设计:课本153页
(修改人:)
板书设计:
教学反思:
经历表示数据离散程度的几个量的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.通过小组合作,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.
北师大版-数学-八年级上册-6.4 数据的离散程度(1) 教案
数据的离散程度(1)教学目标经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。
教学重难点方差产生的必要性和应用方差公式解决实际问题。
掌握其求法.自学指导学生看课本注意以下问题:什么是极差、方差?如何找一组数据的方差?方差有何意义。
课堂教学1.引例为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。
质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76 73 75把这些数据表示成下图:(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。
(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。
2.概念:极差是指一组数据中最大数据与最小数据的差. 设有n 个数据nx x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用])()()[(1222212x x x x x x n x n -++-+-=来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance ),记作2s 。
意义:用来衡量一批数据的波动大小在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
八年级数学上册 第六章 数据的分析 4 数据的离散程度教案 (新版)北师大版-(新版)北师大版初中八
4 数据的离散程度(第1课时)一、学生知识状况分析学生的技能基础:学生已经学习过平均数、中位数等几个刻画数据的“平均水平”的统计量,具备了一定的数据处理能力和初步的统计思想,但学生对一组数据的波动情况并不了解,它们是否稳定,稳定的依据是什么,学生缺乏直观和理性的认识.学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用,有了一定的活动经验,具备了一定的合作与交流的能力.二、教学任务分析依据新课标制定教学重点:能对数据进行相应的处理和分类的基础上,又安排学生怎样对数据进行分析,力图使学生在统计意识和方法上再上一个台阶.依据新课标制定教学难点:通过对现实生活中的某外贸公司对几个不同的厂家鸡腿的质量进行分析,引出极差、方差、标准差等相关概念,从而培养学生的统计应用能力.1. 教学目标:了解刻画数据离散程度的三个量度极差、标准差和方差,能借助计算器求出相应的数值.2. 知识目标:经历表示数据离散程度的几个量度的探索过程,通过实例体会用样本估计总体的统计思想,培养学生的数学应用能力.3. 能力目标:通过小组合作活动,培养学生的合作意识;通过解决实际问题,让学生体会数学与生活的密切联系.三、教学过程分析本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业.第一环节:情境引入内容:为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76 73 75把这些数据表示成下图:质量/g甲厂乙厂(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线.(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由.在学生讨论交流的的基础上,教师结合实例给出极差的概念:极差是指一组数据中最大数据与最小数据的差.它是刻画数据离散程度的一个统计量.目的:通过一个实际问题情境,让学生感受仅有平均水平是很难对所有事物进行分析,从而顺利引入研究数据的其它量度:极差.注意事项:当一组数据的平均数与中位数相近时,学生在原有的知识与遇到问题情境产生知识碰撞时,才能较好地理解概念.第二环节:合作探究内容1:如果丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,它们的质量数据如下图:质量/g (1)丙厂这20只鸡腿质量的平均数和极差分别是多少?(2)如何刻画丙厂这20只鸡腿的质量与其平均数的差距?分别求出甲、丙两厂的20只鸡腿质量与其相应平均数的差距.(3)在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么? 数学上,数据的离散程度还可以用方差或标准差刻画. 方差是各个数据与平均数之差的平方的平均数,即: ()()()[]222212 (1)x x x x x x ns n -++-+-=注:x 是这一组数据x 1,x 2,…,x n 的平均数,s 2是方差,而标准差就是方差的算术平方根.一般说来,一组数据的极差、方差、标准差越小,这组数据就越稳定.说明:标准差的单位与已知数据的单位相同,使用时应当标明单位;方差的单位是已知单位的平方,使用时可以不标明单位.目的:通过对丙厂与甲、乙两厂的对比发现,仅有极差还不能准确刻画一组数据的离散程度,从而引入另两个统计量:标准差和方差.注意事项:这段内容若学生难以理解,可以再举一些涉及产品规格(比赛用球等)的实例,让学生知道为什么要研究这类问题.内容2:由学生自主探索用计算器求下列一组数据的标准差:98 99 101 102 100 96 104 99 101 100 请你使用计算器探索求一组数据的标准差的具体操作步骤. 具体操作步骤是(以CZ1206为例): 1;2.输入数据然后按,显示的结果是输入数据的累计个数;3.按即可直接得出结果.目的:通过学生自主探索用计算器求一组数据的标准差的操作步骤.注意事项:这段教学应在教师的指导下,让学生自主地探索出用计算器求标准差的方法.内容3:1.分别计算从甲、丙两厂抽取的20只鸡腿质量的方差.2.根据计算结果,你认为哪家的产品更符合规格要?通过用计算器能计算出甲、丙两厂抽取的20只鸡腿的方差,得出方差较小的甲厂的产品更符合要求.目的:通过学生计算方差的练习,巩固学生对方差的计算熟练程度,并理解方差对数据波动的影响程度.注意事项:让学生亲自做一做,体会方差对数据波动的影响程度.第三环节:运用提高内容:1、甲、乙两支仪仗队队员的身高(单位:cm)如下:甲队:178 177 179 179 178 178 177 178 177 179乙队:178 177 179 176 178 180 180 178 176 178哪支仪仗队队员的身高更为整齐?你是怎么判断的?学生在正确计算出两队的方差后,可判断出方差较小的仪仗队更为整齐.目的:通过学生的反馈练习,使教师及时了解学生对刻画数据离散程度的三个量度极差、标准差和方差的理解情况,以便教师及时对学生进行矫正.注意事项:教师要及时对学生的学习情况进行评价.第四环节:课堂小结内容:引导学生用“我知道了…”,“我发现了…”,“我学会了…”,“我想我以后将…”的语言小结方差和标准差的运用.目的: 发挥学生的主观能动性,培养学生归纳总结知识的能力.注意事项:在发挥学生的主观能动性的同时,不要忽略教师的主导作用.第五环节:布置作业课本习题6.5的第1,2,3,4题.4 数据的离散程度(第2课时)一、学生知识状况分析学生的技能基础:学生已经有了初步的统计意识,在第一课时的学习中,学生已经接触了极差、方差与标准差的概念,并进行了简单的应用,但对这些概念的理解很单一,认为方差越小越好.学生活动经验基础:在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用.课堂主要采用实验讨论、自主探索、合作交流等学习方式,学生有一定的活动基础,具备了一定的合作与交流的能力.二、教学任务分析依据新课标制定教学重点:对极差、方差、标准差等概念都有了一定的认识之后,学生对这些刻画数据离散程度的三个统计量的认识上还存在一个误区.依据新课标制定教学难点:因此,本节课安排了学生对一些实际问题的辨析,从而使学生对这三个统计量有一个更深刻的认识.1. 教学目标:进一步了解极差、方差、标准差的求法;会用极差、方差、标准差对实际问题做出判断.2. 知识目标:经历对统计图中数据的读取与处理,发展学生初步的统计意识和数据处理能力.根据极差、方差、标准差的大小对实际问题作出解释,培养学生解决问题能力.3. 能力目标:通过解决现实情境中的问题,提高学生数学统计的素养,用数学的眼光看世界.通过小组活动,培养学生的合作意识和交流能力.三、教学过程分析本节课设计了五个教学环节:第一环节:情境引入;第二环节:合作探究;第三环节:运用提高;第四环节:课堂小结;第五环节:布置作业.第一环节:情境引入内容:(1)回顾:什么是极差、方差、标准差?方差的计算公式是什么?一组数据的方差与这组数据的波动有怎样的关系?(2)计算下列两组数据的方差与标准差:①1,2,3,4,5;②103,102,98,101,99.目的:复习极差、方差、标准差等概念及计算,巩固学生对刻画数据离散程度的三个统计量的认识.注意事项:复习的内容主要让中下等学生来回答和反馈信息,掌握上节课的教学效果,及时鼓励学生或校正偏差.第二环节:合作探究内容1:试一试:如图是某一天A、B两地的气温变化图,请回答下列问题:(1)这一天A、B两地的平均气温分别是多少?(2)A地这一天气温的极差、方差分别是多少?B地呢?(3)A、B两地的气候各有什么特点?目的:通过两地气温的变化的例子,培养学生从图表中读取信息、分析数据的能力,更准确地理解方差及其在现实生活中的应用.注意事项:由于读取的数据多且复杂,引导学生利用计算器来高效完成.内容2:我们知道,一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组数据越好呢?我们通过实例来探讨.议一议:某校从甲、乙两名优秀选手中选一名选手参加全市中学生运动会跳远比赛,该校预先对这两名选手测试了10次,测试成绩如下表:1 2 3 4 5 6 7 8 9 10选手甲的成绩(cm)585 596 610 598 612 597 604 600 613 601选手乙的成绩(cm)613 618 580 574 618 593 585 590 598 624(1)他们的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到596cm就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?(5)如果历届比赛表明,成绩达到610cm就能打破记录,你认为为了打破记录应选谁参加这项比赛?目的:针对不少同学认为的方差越小越好的错误认识,课本设计了一个现实生活中的例子,旨在消除学生的这种不正确的看法,从而认识到要针对具体情况来分析方差对于问题的影响,体会数据的波动是广泛而有特点的.注意事项:学生对两名运动员特点的回答呈多样性,如甲较稳定,乙有潜力等,对于第(4)(5)题的回答则有不同的意见,经大家分析后,再统一认识.内容3:做一做:(1)两人一组,在安静的环境中,一人估计1分钟的时间,另一人记下实际时间,将结果记录下来.(2)在吵闹的环境中,再做一次这样的试验.(3)将全班的结果汇总起来,并分别计算安静状态和吵闹环境中估计结果的平均值和方差.(4)两种情况下的结果是否一致?说明理由.目的:实验的两种结果不一致,差别较大.力图让学生再次经历数据的收集和处理的过程,体会环境对个人心理状态的影响,同时培养学生的统计意识和估计能力.注意事项:本次实验的安静状态和吵闹环境可以在教室里营造,让学生亲自经历这两种环境下的统计过程而达到认识是很重要的.第三环节:运用提高内容:1.请回答:三人中,谁射击成绩更好,谁更稳定?你是怎么判断的?2.某校从甲乙两名优秀选手中选一名选手参加全市中学生田径百米比赛(100米记录为12.2秒,通常情况下成绩为12.5秒可获冠军).该校预先对这两名选手测试了8次,测试成绩如下表:根据测试成绩,请你运用所学过的统计知识做出判断,派哪一位选手参加比赛更好?为什么?目的:通过学生的反馈练习,使教师及时了解学生对刻画数据离散程度的三个统计量极差、方差和标准差的理解掌握情况,以便教师及时对学生进行矫正.注意事项:在正确计算出两位选手的方差后,并比较了两位选手的特点,由学生得出正确的结论,提高认识.第四环节:课堂小结内容:在本节课的学习中,你对方差的大小有什么新的认识?(学生交流,教师点拨,达成共识).新认识:方差越小表示这组数据越稳定,但不是方差越小就表示这组数据越好,而是对具体的情况进行具体分析才能得出正确的结论.目的: 发挥学生的主观能动性,提高学生统计的意识和分析数据的能力,学会用数学的眼光看世界.注意事项:在发挥学生的主观能动性的同时,不要忽略教师的主导作用.第五环节:布置作业“读一读”,并利用计算机上Excel软件求平均数、中位数和众数.2.课本习题6.6的第1,2,3,4题.。
北师大版八年级上册数学 6.4 数据的离散程度精选教案2
6.4 数据的离散程度第一环节:情境引入内容:(1)回顾:什么是极差、方差、标准差?方差的计算公式是什么?一组数据的方差与这组数据的波动有怎样的关系?(2)计算下列两组数据的方差与标准差:①1,2,3,4,5;②103,102,98,101,99。
目的:复习极差、方差、标准差等概念及计算,巩固学生对刻画数据离散程度的三个统计量的认识。
注意事项:复习的内容主要让中下等学生来回答和反馈信息,掌握上节课的教学效果,及时鼓励学生或校正偏差。
第二环节:合作探究内容1:试一试:如图是某一天A、B两地的气温变化图,请回答下列问题:(1)这一天A、B两地的平均气温分别是多少?(2)A地这一天气温的极差、方差分别是多少?B地呢?(3)A、B两地的气候各有什么特点?B地目的:通过两地气温的变化的例子,培养学生从图表中读取信息、分析数据的能力,更准确地理解方差及其在现实生活中的应用。
注意事项:由于读取的数据多且复杂,引导学生利用计算器来高效完成。
内容2:我们知道,一组数据的方差越小,这组数据就越稳定,那么,是不是方差越小就表示这组数据越好呢?我们通过实例来探讨。
议一议:某校从甲、乙两名优秀选手中选一名选手参加全市中学生运动会跳远比赛,该校预先对这两名选手测试了10次,测试成绩如下表:1 2 3 4 5 6 7 8 9 10604 600 613 601 选手甲的成绩(cm)585 596 610 598 612 597选手乙的成绩(cm)613 618 580 574 618 593 585 590 598 624 (1)他们的平均成绩分别是多少?(2)甲、乙这10次比赛成绩的方差分别是多少?(3)这两名运动员的运动成绩各有什么特点?(4)历届比赛表明,成绩达到596cm就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?(5)如果历届比赛表明,成绩达到610cm就能打破记录,你认为为了打破记录应选谁参加这项比赛?目的:针对不少同学认为的方差越小越好的错误认识,课本设计了一个现实生活中的例子,旨在消除学生的这种不正确的看法,从而认识到要针对具体情况来分析方差对于问题的影响,体会数据的波动是广泛而有特点的。
北师大版数学八年级上册6.4数据的离散程度(第二课时)优秀教学案例
(二)讲授新知
1.离散程度的定义:教师讲解离散程度的定义,让学生理解离散程度是衡量数据波动程度的一个统计量。
2.方差和标准差:教师介绍方差和标准差的概念,讲解它们的计算方法及其在描述数据波动程度方面的作用。
3.计算器的使用:教师演示如何使用计算器求解数据的离散程度,让学生掌握计算器的操作方法。
二、教学目标
(一)知识与技能
1.让学生掌握离散程度的定义,了解方差、标准差等统计量,并理解它们在描述数据波动程度方面的作用。
2.培养学生运用离散程度分析实际问题的能力,能够从生活中发现并提取相关数据,通过计算和分析,对数据的波动程度做出合理的判断。
3.让学生熟练运用计算器求解数据的离散程度,提高他们的数据处理能力。
(五)作业小结
1.作业布置:教师布置相关的作业,让学生巩固所学知识,提高实际应用能力。
2.课堂小结:教师引导学生对本节课的学习内容进行小结,帮助学生梳理知识体系。
3.课后反思:教师鼓励学生在课后反思自己的学习过程,找出不足之处,为下一节课的学习做好准备。
五、案例亮点
1.生活实例引入:通过展示某地区近年来的气温变化图表,让学生直观地感受气温的波动情况,激发了学生的探究欲望,增强了学生对知识的兴趣。
5.作业小结:教师引导学生对本节课的学习内容进行小结,帮助学生梳理知识体系,巩固所学知识,提高实际应用能力。
本节课以生活实例为导入,通过问题导向、小组合作、反思与评价等教学策略,充分发挥了学生的主动性,培养了学生的思考能力、团队合作精神以及反思能力,使学生在实践中掌握离散程度的概念和计算方法,提高了学生的数学应用能力。
-数据波动程度有哪些衡量方法?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.某校要从甲、乙两名跳远运动员中挑选一人参加一项比赛.在最近的10次选拔赛中,他们的成绩(单位:cm)如下:
甲:585596 610598612597604600613601
乙:613618580574618593585590598次比赛成绩的方差分别是多少?
A.4,15 B.3,15C.4,16 D.3,16
学生认真回忆并作答
学生回顾叫极差、方差、标准差相关知识,温故而知新.
思
(1)这一天A,B两地的平均气温分别是多少?
(2)A地这一天气温的极差、方差分别是多少?B地呢?
(3)A,B两地的气候各有什么特点?
学生独立思考
通过对问题串的解决,使学生直观地估计从甲、乙两厂抽取的20只鸡腿的平均质量,同时让学生初步体会“平均水平”相近时,两者的离散程度未必相同,从而顺理成章地引入刻画数据离散程度的一个量度 ——极差
数据的离散程度
课程标准描述
体会刻画数据离散程度的意义,会计算简单数据的方差。
考试大纲描述
会计算一组数据的极差、方差、标准差。
教材内容分析
本节课在学生在有了初步的统计 意识,并能对数据进行相应的处理和分类的基础上,又安排学生怎样对数据进行分析,力图使学生在统计意识和方法上再上一个台阶。通过对现实生活中的某外贸公司对几个不同的厂家鸡腿的质量进行分析,引出极差、方差、标准差等相关概念,从而培养学生的统计应用能力。
4.人数相等的甲、乙两班学生参加了同一次数学测验 ,班级平均分和方差如下:平均分都为110,甲、乙两班的方差分别为340,280,则成绩较为稳定的班级为()
A.甲班B.乙班C.两班成绩一样稳定D.无法确定
5.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数 分别是 ()
(3)这两名运动员的运动成绩各有什么特点?
(4)历届比赛表明,成绩达到5.96 m就很可能夺冠,你认为为了夺冠应选谁参加这项比赛?
(5)如果历届比赛成绩表明,成绩达到6.10 m就能打破纪录,那么你认为为了打破纪录应选谁参加这项比赛?
以小组为单位,学生之间互相讨论,整理知识。
1、在上面的情境中,学生很容易比较甲、乙两厂被抽取鸡腿质量的极差,即可得出结论。这里增加一个丙厂,其平均质量和极差与甲厂相同,此时导致学生思想认识上的矛盾,为引出另两 个刻画数据离散程度的量度——标准差和方差作铺垫。
教学反思
方差与标准差都是用来衡量一个样本波动大小的统计 量,对一组数据的变化情况起着至关重要的作用。因此,在教学中,切忌将这些概念与公式直接教给学生,要让学生在体会仅有平均水平还难以准确地刻画一组数据时,使学生的现有知识与现实矛盾产生碰撞时而产生一种急于解决问题的心情,从而探索出这两个概念,使学生在解决实际问题的过程中认识到“波动状况”的意义和影响,形成一定的统计意识和解决问题的能力,进一步体会数学的应用价值。
学生分析
学生已 经学习过平均数、中位数等几个刻画数据的“平均水平”的统计量,具备了一定的数据处理能力和初步的统计思想,但学生对一组数据的波动情况并不了解,它们是否稳定,稳定的依据是什么,学生缺乏直观和理性的认识.
在以往的统计课程学习中,学生经历了大量的统计活动,感受到了数据收集和处理的必要性和作用,有了一定的活动经验,具备了一定的合作与交流的能力。
A.众数是3.9米B.中位数是3.8米
C.极差是0.6米D.平均数是4.0米
5.小明和小华本学期都参加了5次数学考试(总分均为100分),数学老师想判断这两位同学谁的数学成绩更稳定,在作统计分析时,老师需比较这两人5次数学成绩的()
A.平均数B.方差C.众数D.中位数
进一步巩固当天所学知识。 了解学生对刻画数据离散程度的三个统计量极差、方差和标准差的理解掌握情况,以便教师及时对学生进行矫正.
2、通过学生的反馈练习,使教师及时了解学生对刻画数据离散程度的三个量度极差、标准差和方差的理解情况,以便教师及时对学生进行矫正。
展
学生展示成果,教师巡视。
各小组推荐代表在黑板上展示,其他学生观察,如果有不同,可说出自己的结论。
通过学生的反馈练习,使教师及时了解学生对刻画数据离散程度的三个统计量极差、方差和标准差的理解掌握情况,以便教师及时对学生进行矫正.
学习目标
1、能够用极差、方差统计、分析生活中的简单问 题.
2、通过实际问题的解释,培养学生解决问题的能力.
重点
用方差等概念解释统计过程中反映出的问题.
难点
在具体情况下,具体分析方差对问题的影响.
教学过程
教师活动
学生活动
设计意图(备注)
导
1.什么叫极差、方差、标准差
2.方差的计算公式是什么?
3.已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是.
评
总结:
1.极差的应用多在统计图中考查,要能够准确分析统计图中的量,根据问题进行解答,折线统计图一般能判断数据的稳定性.
2.利用方差的大小判断数据稳定性的步骤:
①先计算数据的平均数;
②计算方差;
③根据方差大小作出判断.
学生认真听讲,并做笔记
发挥学生的主观能动性,提高学生统计的意识和分析数据的能力,学会用数学的眼光看世界。
检
1.方差是指各个数据与平均数差的平方的.
2.数据1,6,3,9,8的方差是.
3.甲、乙两机器分别罐装每瓶质量为500克的矿泉水,从甲、乙罐装的矿泉水中分别抽取了30瓶,测算它们实际质量的方差是:=4 .8,=3.6,那么罐装的矿泉水质量比较稳定.(填“甲”或“乙”)
4.小明准备参加学校运动会的跳远比赛,下面是他近 期六次跳远的成绩(单位:米):3.6,3.8,4.2,4. 0,3.8,4.0,那么这组数据的()