高中数学会考习题精选

合集下载

高三数学会考试卷及答案

高三数学会考试卷及答案

一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各式中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 3, 6, 9, 12, ...C. 2, 4, 8, 16, ...D. 1, 3, 5, 7, ...2. 已知函数f(x) = x^2 - 4x + 4,则f(x)的图像的对称轴是()A. x = 2B. y = 2C. x = 0D. y = 03. 若复数z满足|z - 1| = |z + 1|,则复数z对应的点在复平面上的轨迹是()A. 一条直线B. 一个圆C. 一条射线D. 两个点4. 已知向量a = (2, 3),向量b = (-1, 2),则向量a和向量b的夹角θ的余弦值是()A. 1/5B. 2/5C. 3/5D. 4/55. 下列各函数中,在其定义域内单调递减的是()A. y = x^2B. y = 2^xC. y = log2(x)D. y = x^36. 已知数列{an}的通项公式an = 2n - 1,则数列的前n项和S_n是()A. n^2B. n^2 - nC. n^2 + nD. n^2 + 2n7. 若函数f(x) = ax^2 + bx + c在x = 1时取得极值,则a + b + c的值是()A. 0B. 1C. -1D. 28. 在三角形ABC中,若∠A = 60°,∠B = 45°,则∠C的大小是()A. 75°B. 105°C. 120°D. 135°9. 已知等比数列{an}的前三项分别是1,-2,4,则该数列的公比q是()A. -1/2B. 1/2C. -2D. 210. 若函数y = ax^2 + bx + c的图像开口向上,且顶点坐标为(1, 2),则a、b、c的符号分别为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b < 0, c < 0D. a < 0, b > 0, c < 011. 若复数z满足|z - 1| = |z + 1|,且z在复平面上的实部为2,则复数z是()A. 2 + iB. 2 - iC. 1 + iD. 1 - i12. 在直角坐标系中,若点P(2, 3)关于直线y = x的对称点为P',则点P'的坐标是()A. (2, 3)B. (3, 2)C. (3, -2)D. (-2, 3)二、填空题(本大题共8小题,每小题5分,共40分)13. 函数y = 3x^2 - 6x + 5的顶点坐标是______。

高中会考数学试题及答案

高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A3. 以下哪个选项是等比数列?A. 2, 4, 6, 8B. 1, 2, 4, 8C. 3, 6, 9, 12D. 5, 10, 15, 20答案:B4. 已知a=3,b=4,求a^2+b^2的值。

A. 25B. 29C. 37D. 415. 一个圆的半径为5,求该圆的面积。

A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D7. 以下哪个选项是不等式x+2>3的解集?A. x>1B. x<1C. x>-1D. x<-1答案:A8. 一个等差数列的首项是2,公差是3,求第5项的值。

A. 17B. 14C. 11D. 8答案:A9. 以下哪个选项是方程2x-3=7的解?B. x=3C. x=1D. x=-1答案:A10. 以下哪个选项是函数y=2sin(x)的图像?A. 正弦波形B. 余弦波形C. 正切波形D. 直线答案:A二、填空题(每题4分,共20分)11. 计算(3+4i)(2-i)的结果为______。

答案:8+5i12. 已知等差数列的第3项是7,第5项是11,求公差d。

答案:213. 计算极限lim(x→0) (sin(x)/x)的值为______。

答案:114. 已知函数f(x)=x^2-4x+3,求f(2)的值。

答案:-115. 计算定积分∫(0 to 1) x^2 dx的结果为______。

答案:1/3三、解答题(每题10分,共50分)16. 求函数y=x^3-3x^2+2x的导数。

答案:y'=3x^2-6x+217. 证明函数f(x)=x^2在(0, +∞)上是增函数。

高三数学会考练习题及答案

高三数学会考练习题及答案

高三数学会考练习题及答案第一题:已知函数 f(x) = x^2 - 3x + 2,求函数 f(x) 的图像与 x 轴交点的坐标。

解析:当函数的图像与 x 轴交点时,即为该函数的零点,即 f(x) = 0。

将 f(x) = x^2 - 3x + 2 置零,得到方程 x^2 - 3x + 2 = 0。

使用因式分解法或配方法,将方程化为 (x - 2)(x - 1) = 0。

解得 x = 2 或 x = 1,即函数 f(x) 的图像与 x 轴交点的坐标为 (2, 0)和 (1, 0)。

答案:(2, 0) 和 (1, 0)第二题:已知等差数列 {an} 的通项公式为 an = 3n + 1,若数列的前 n 项和Sn = 70,求 n 的值。

解析:等差数列的前 n 项和公式为 Sn = (n/2)(a1 + an)。

将已知的等差数列 {an} 的通项公式 an = 3n + 1 代入,得到 Sn =(n/2)(a1 + 3n + 1)。

将 Sn = 70 代入,得到 70 = (n/2)(a1 + 3n + 1)。

化简方程,得到 140 = n(2a1 + 6n + 2)。

由于 a1 = 3(1) + 1 = 4,代入方程,得到 140 = n(2(4) + 6n + 2)。

化简方程,得到 140 = n(12n + 10)。

整理方程,得到 140 = 12n^2 + 10n。

移项得到 12n^2 + 10n - 140 = 0。

使用因式分解法或配方法,将方程化为 (2n - 7)(6n + 20) = 0。

解得 n = 7/2 或 n = -20/6,由于项数不能为负数,所以 n = 7/2。

答案:n = 7/2第三题:已知直角三角形 ABC,∠ABC = 90°,BC = 3 cm,AC = 4 cm,请计算三角形 ABC 的斜边 AB。

解析:根据勾股定理,直角三角形的斜边的长度等于两直角边的平方和的开方。

高中会考试题及答案数学

高中会考试题及答案数学

高中会考试题及答案数学一、选择题(每题4分,共40分)1. 若函数f(x)=x^2-2x-3,那么f(-1)的值是:A. 0B. 4C. -4D. 6答案:B2. 已知等差数列的前三项为2,5,8,那么第10项的值是:A. 19B. 22C. 25D. 28答案:C3. 一个圆的直径为10cm,那么它的面积是:A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2答案:B4. 如果a+b=7,ab=6,那么a^2+b^2的值是:A. 13B. 25C. 37D. 49答案:C5. 计算下列表达式的结果:(3x-2)(2x+3)是:A. 6x^2+7x-6B. 6x^2-7x+6C. 6x^2+7x+6D. 6x^2-7x-6答案:C6. 已知函数f(x)=x^3-3x^2+2x,求f'(x)的值:A. 3x^2-6x+2B. x^2-6x+2C. 3x^2-6xD. 3x^2-6x+1答案:A7. 一个三角形的三个内角之和是:A. 180°B. 360°C. 540°D. 720°答案:A8. 一个等腰三角形的两个底角相等,如果顶角是50°,那么每个底角的度数是:A. 65°B. 75°C. 80°D. 85°答案:B9. 一个数列的前四项为1,2,3,5,那么第五项是:A. 7B. 8C. 9D. 10答案:A10. 已知一个直角三角形的两条直角边分别为3和4,那么斜边的长度是:A. 5B. 6C. 7D. 8答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是2和-2,那么这个数是______。

答案:42. 计算:(2x+1)(3x-2)=______。

答案:6x^2-x-23. 一个圆的半径是5cm,那么它的周长是______。

答案:10π cm4. 已知一个等差数列的前四项为2,5,8,11,那么这个数列的公差是______。

高中会考试题数学及答案

高中会考试题数学及答案

高中会考试题数学及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 + 4x + 3,则f(-1)的值为:A. 0B. 2C. 4D. 6答案:B2. 已知等差数列{a_n}的前三项分别为1, 4, 7,则该数列的公差为:A. 1B. 2C. 3D. 4答案:B3. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 若直线y = 2x + 1与直线y = -x + 3相交,则交点的横坐标为:A. -1B. 0C. 1D. 2答案:C5. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 10B. 11C. 12D. 13答案:B6. 函数y = x^3 - 3x^2 + 4x - 2的导数是:A. 3x^2 - 6x + 4B. 3x^2 - 6x + 2C. 3x^2 - 9x + 4D. 3x^2 - 9x + 2答案:A7. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B的元素个数为:A. 1B. 2C. 3D. 4答案:B8. 若sin(α) = 3/5,且α为第一象限角,则cos(α)的值为:A. 4/5B. -4/5C. 3/5D. -3/5答案:A9. 一个数列的前四项为2, 5, 8, 11,若该数列是等差数列,则第五项为:A. 14B. 15C. 16D. 17答案:A10. 已知函数f(x) = x^2 - 4x + 3,若f(x) = 0,则x的值为:A. 1B. 2C. 3D. 4答案:B二、填空题(每题4分,共20分)1. 已知等比数列{a_n}的前三项分别为2, 6, 18,则该数列的公比为______。

答案:32. 一个矩形的长为10cm,宽为5cm,那么它的对角线长度为______。

答案:5√5 cm3. 函数y = √x的反函数是______。

答案:y = x^24. 已知一个抛物线的顶点为(2, -3),且开口向上,则它的标准方程为______。

高中数学会考试卷

高中数学会考试卷

高中数学会考试卷一、选择题1. 若抛物线$y=ax^2+bx+c$的顶点为$(2,-1)$,则$a+b+c$等于()。

A. 1B. -1C. 0D. 22. 设函数$f(x)=\frac{2x-1}{3x+4}$,则$f(-\frac{4}{3})$等于()。

A. $\frac{5}{3}$B. $\frac{4}{3}$C. $\frac{3}{5}$D. $-\frac{3}{5}$3. 若直线$3x-4y=7$与$x+4y=2$互相垂直,则直线$3x-4y=k$的$k$值为()。

A. -16B. 16C. -8D. 84. 若$\sin\theta=\frac{24}{25}$,$\theta$终边在第一象限,则$\cos\theta$的值为()。

A. $\frac{7}{25}$B. $\frac{1}{25}$C. $\frac{7}{24}$D.$\frac{1}{24}$5. 已知矩阵$A=\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$,$B=\begin{bmatrix} 2 & -3 \\ 1 & 2 \end{bmatrix}$,则$A+B$为()。

A. $\begin{bmatrix} 3 & -1 \\ 0 & 6 \end{bmatrix}$B.$\begin{bmatrix} 3 & -5 \\ 0 & 6 \end{bmatrix}$ C. $\begin{bmatrix} 3 & -1 \\ 2 & 6 \end{bmatrix}$ D. $\begin{bmatrix} 3 & 1 \\ 4 & 6\end{bmatrix}$二、填空题6. 若$f(x)=3x^2+5x-1$,则$f(-2)=$()。

7. 设$a_1=3$,$a_{n+1}=a_n+2$,若$a_{10}=$()。

高三数学会考试卷

高三数学会考试卷

高三数学会考试卷一、选择题(每题4分,共48分) 1、sin3000的值等于 (A )21 (B )-21 (C )23 (D )—23 2、已知直线l 的倾斜角为450,且经过点(-1,0),则直线l 的方程为 (A )x-y+1=0 (B)x-y-1=0 (C) x+y+1=0 (D)x+y-1=0 3、函数y=42-x 的定义域为(A )[]2,2- (B )[)+∞,2 (C )()2,-∞- (D )(]2,-∞-∪[)+∞,2 4、已知直线a , b , c 和平面α,下列命题中正确的是(A ) 若a ⊥c, b ⊥c , 则a ∥b (B)若a ∥c, b ∥c , 则a ∥b ( C )若a ∥α,b ∥α则a ∥b (D ) 若a ∥α,b ⊂α则a ∥b 5、若a, b, c ∈R ,则下列命题中为真命题的是(A )若a>b ,则a 2>b 2 (B)若a>b ,则ac 2>bc 2 (C)若a>|b|,则a 2>b 2 (D )若|a|>b ,则a 2>b 2 6、已知a , b 均为正实数,且a+b=1,则ab 的最大值为 (A ) (B )1/2 (C )1 (D ) 2 7、“2a =”是“直线20ax y +=平行于直线1x y +=”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8、一个学生通过某种英语听力测试的概率是21,他连续测试2次,哪么其中恰有1次获得通过的概率是 A .41 B .31 C .21 D.439.若焦点在x 轴上的椭圆1222=+my x 的离心率为21,则m=( )A .3B .23 C .38 D .32 10.函数13)(23+-=x x x f 是减函数的区间为 ( )A .),2(+∞B .)2,(-∞C .)0,(-∞D .(0,2)11、已知向量a b 、满 │a │=1,│b │=4 且a .b =2则a与b 的夹角为A .6π B .4π C .3π D .2π 12、若πtan 34α⎛⎫-= ⎪⎝⎭,则cot α等于( )A.2- B.12-C.12D.2二、填空题(每题4分,共16) 13.(2x -1x)6展开式中常数项为 (用数字作答) 14.已知向量,//),6,(),3,2(x 且==则x = .15、某校有学生2000人,其中高三学生500人.为了解学生的身体素质情况,采用按年级分层抽样的方法,从该校学生中抽取一个200人的样本.则样本中高三学生的人数为___________.16.圆心为(11),且与直线4x y +=相切的圆的方程是 . 三、解答题:(共36分)17、(6分)成等差数列的三个数之和为15,此数列各项依次加上1、3、9后又成等比数列,求这三个数。

新高考会考数学试卷及答案

新高考会考数学试卷及答案

一、选择题(每小题5分,共50分)1. 下列各数中,有理数是()A. √9B. √16C. √25D. √362. 若a=3,b=-2,则下列代数式中值为负的是()A. a+bB. a-bC. abD. a÷b3. 下列函数中,为一次函数的是()A. y=2x+5B. y=3x^2-4C. y=x^3+2xD. y=5/x4. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数为()A. 60°B. 75°C. 90°D. 120°5. 已知等差数列{an}的前三项分别为1,3,5,则第10项a10的值为()A. 17B. 19C. 21D. 236. 若x=2,则下列不等式中成立的是()A. x^2 < 4B. x^2 ≤ 4C. x^2 > 4D. x^2 ≥ 47. 已知函数f(x)=x^2-4x+4,则f(x)的最小值为()A. 0B. 2C. 4D. 68. 在直角坐标系中,点P(2,3)关于y轴的对称点为()A. (2,3)B. (-2,3)C. (2,-3)D. (-2,-3)9. 下列命题中,正确的是()A. 若a>b,则a^2>b^2B. 若a>b,则ac>bcC. 若a>b,则a/c>b/cD. 若a>b,则a/b>b/a10. 已知等比数列{an}的首项为2,公比为1/2,则第5项a5的值为()A. 2B. 1C. 1/2D. 1/8二、填空题(每小题5分,共50分)11. 若m=2,则代数式2m-3的值为______。

12. 在△ABC中,若∠A=45°,∠B=90°,则∠C的度数为______。

13. 等差数列{an}的前三项分别为1,3,5,则第10项a10的值为______。

14. 若函数f(x)=x^2-4x+4,则f(x)的最小值为______。

高三数学会考试题及答案

高三数学会考试题及答案

高三数学会考试题及答案一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个选项中,只有一个是正确的。

)1. 若函数f(x) = x^2 - 4x + 3的图象关于x=2对称,则下列说法正确的是:A. f(0) = f(4)B. f(1) = f(3)C. f(-1) = f(5)D. f(2) = f(6)2. 已知等比数列{a_n}的首项为1,公比为2,求该数列前5项的和S_5:A. 31B. 16C. 15D. 31/23. 函数y = x^3 - 6x^2 + 9x + 1的导数为:A. 3x^2 - 12x + 9B. 3x^2 - 6x + 9C. 3x^2 - 12x + 3D. 3x^2 - 6x + 14. 若直线l与直线2x - y + 3 = 0平行,则直线l的斜率为:A. 2B. -2C. -1/2D. 1/25. 已知圆C的方程为(x - 1)^2 + (y + 2)^2 = 9,圆心C到直线2x + y - 3 = 0的距离为:A. √5B. 2√5C. √10D. 2√106. 已知向量a = (3, -2),向量b = (1, 2),则向量a与向量b的数量积为:A. -4B. 4C. -1D. 17. 已知双曲线x^2/a^2 - y^2/b^2 = 1的渐近线方程为y =±(√3/3)x,则双曲线的离心率为:A. √3B. 2C. 3D. √68. 若函数f(x) = ln(x + √(x^2 + 1))的定义域为:A. (-∞, 0)B. (-∞, 0]C. (0, +∞)D. [0, +∞)二、填空题(本题共4小题,每小题4分,共16分。

)9. 若复数z满足|z| = √2,且z的实部为1,则z的虚部为_________。

10. 已知函数f(x) = x^3 - 3x^2 + 2,求f'(x) = 0的根为_________。

11. 已知三角形ABC的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,若a = 3,b = 4,则c的长度为_________。

高中会考数学试题及答案

高中会考数学试题及答案

高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(无限循环)B. πC. √2D. 1/32. 函数f(x) = 2x^2 - 3x + 1的图像与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个3. 已知等差数列的前三项和为6,第二项为2,求该数列的首项a1和公差d:A. a1 = 1, d = 1B. a1 = 0, d = 2C. a1 = 2, d = 0D. a1 = 3, d = -14. 集合A={1, 2, 3},集合B={2, 3, 4},求A∩B:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}5. 已知三角形ABC的三边长分别为a=3, b=4, c=5,求其面积:B. 9C. 10D. 126. 根据题目所给的函数y=x^3-2x^2+x-2,求导数y':A. 3x^2-4x+1B. x^3-2x^2+1C. 3x^2-4x+2D. x^3-2x7. 已知sinθ=0.6,求cosθ的值(结果保留根号):A. √(1-0.36)B. -√(1-0.36)C. √(1-0.6^2)D. -√(1-0.6^2)8. 将下列二次方程x^2-4x+4=0进行因式分解:A. (x-2)(x-2)B. (x+2)(x-2)C. (x-1)(x-3)D. (x+1)(x+3)9. 已知圆的方程为(x-2)^2 + (y-3)^2 = 9,求圆心坐标:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)10. 根据题目所给的等比数列求和公式S_n = a1(1-q^n)/(1-q),当n=5,a1=2,q=2时,求S_5:B. 63C. 64D. 65二、填空题(每题4分,共20分)11. 已知函数f(x) = x^2 + bx + c,若f(1) = 2,则b + c =_______。

会考数学试题及答案

会考数学试题及答案

会考数学试题及答案一、选择题1. 下列哪个选项不是实数集合R的子集?A. 整数集合ZB. 有理数集合QC. 无理数集合D. 复数集合C答案:D2. 如果函数f(x) = 2x + 3在x=1处的导数为5,那么下列哪个选项是错误的?A. f'(1) = 5B. f(1) = 5C. f(x)在x=1处的切线斜率为5D. f(1) = 2*1 + 3答案:B二、填空题1. 若二次方程ax² + bx + c = 0的判别式Δ = b² - 4ac,当a > 0且Δ > 0时,方程有____个实数根。

答案:两2. 圆的面积公式为S = πr²,其中r为圆的半径。

若圆的半径为4,则其面积为____。

答案:16π三、解答题1. 已知函数f(x) = x³ - 3x² + 2x - 1,求f(x)的极值点。

解:首先求导数f'(x) = 3x² - 6x + 2。

令f'(x) = 0,解得x₁= 1,x₂ = 2/3。

在x₁和x₂处分别计算f''(x)的值,得到f''(1)= -1,f''(2/3) = 2。

因此,x₁ = 1是极大值点,x₂ = 2/3是极小值点。

2. 某工厂生产一种产品,其成本函数为C(x) = 5000 + 50x,销售价格为P(x) = 130 - 0.05x,其中x为产品数量。

求工厂的盈亏平衡点。

解:盈亏平衡点是指总收入等于总成本的点,即P(x) * x = C(x)。

将P(x)和C(x)代入,得到方程130x - 0.05x² = 5000 + 50x。

化简得0.05x² - 80x + 5000 = 0。

解此二次方程,得到x = 100。

因此,工厂的盈亏平衡点为生产100件产品时。

四、证明题1. 证明:对于任意实数a和b,不等式|a + b| ≤ |a| + |b|恒成立。

数学会考高中试题及答案

数学会考高中试题及答案

数学会考高中试题及答案一、选择题(每题3分,共30分)1. 已知函数\( f(x) = 2x^2 - 4x + 3 \),下列说法正确的是:A. 函数的图像是开口向上的抛物线B. 函数的图像是开口向下的抛物线C. 函数的图像与x轴有两个交点D. 函数的图像与x轴没有交点答案:A2. 圆的方程为\( (x-2)^2 + (y-3)^2 = 9 \),圆心坐标为:A. (2, 3)B. (-2, 3)C. (2, -3)D. (-2, -3)答案:A3. 已知等差数列的前三项依次为1,3,5,则该数列的第五项为:A. 7B. 9C. 11D. 13答案:B4. 函数\( y = \log_2(x) \)的定义域是:A. \( x > 0 \)B. \( x < 0 \)C. \( x \geq 0 \)D. \( x \leq 0 \)答案:A5. 集合\( A = \{1, 2, 3\} \)和集合\( B = \{2, 3, 4\} \)的交集为:A. \( \{1\} \)B. \( \{2, 3\} \)C. \( \{2, 4\} \)D. \( \{3, 4\} \)答案:B6. 直线\( y = 2x + 1 \)与直线\( y = -x + 4 \)的交点坐标为:A. (1, 3)B. (-1, 3)C. (1, -1)D. (-1, -1)答案:A7. 已知\( \sin \alpha = \frac{1}{2} \),\( \alpha \)是第二象限角,则\( \cos \alpha \)的值为:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{\sqrt{3}}{2} \)D. \( -\frac{\sqrt{3}}{2} \)答案:D8. 函数\( f(x) = x^3 - 3x^2 + 3x - 1 \)的单调递增区间为:A. \( (-\infty, 1) \)B. \( (1, +\infty) \)C. \( (-\infty, 2) \)D. \( (2, +\infty) \)答案:B9. 向量\( \vec{a} = (1, 2) \)和向量\( \vec{b} = (2, 1) \)的夹角为:A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{3} \)C. \( \frac{\pi}{2} \)D. \( \frac{2\pi}{3} \)答案:A10. 已知等比数列的前三项依次为2,4,8,则该数列的公比为:A. 2B. 4C. 1D. 0.5答案:A二、填空题(每题4分,共20分)1. 已知\( \tan \theta = 3 \),\( \theta \)是第一象限角,则\( \sin \theta \)的值为______。

高中数学会考试题及答案

高中数学会考试题及答案

高中数学会考试题及答案一、选择题(每题5分,共20分)1. 下列哪个选项是二次函数的图像?A. 直线B. 抛物线C. 双曲线D. 圆答案:B2. 函数f(x) = 3x^2 - 5x + 2的顶点坐标是?A. (1, -2)B. (-1, 2)C. (2, -1)D. (-2, 1)答案:A3. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∩B等于?A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 4}答案:B4. 已知方程x^2 + 6x + 9 = 0的根是?A. x = 0B. x = 3C. x = -3D. x = ±3答案:D二、填空题(每题5分,共20分)5. 函数y = 2x + 3的斜率是______。

答案:26. 一个等差数列的前三项是2, 5, 8,那么它的公差是______。

答案:37. 圆的方程为(x - 2)^2 + (y - 3)^2 = 9,那么它的半径是______。

答案:38. 已知向量a = (3, -4),向量b = (-2, 5),则向量a与向量b的点积是______。

答案:-29三、解答题(每题10分,共20分)9. 解方程:2x^2 - 5x + 2 = 0。

答案:x = 1/2 或 x = 210. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 =c^2,求证:三角形ABC是直角三角形。

答案:根据勾股定理,如果三角形的三边长满足a^2 + b^2 = c^2,则该三角形为直角三角形。

已知a^2 + b^2 = c^2,所以三角形ABC是直角三角形。

四、证明题(每题10分,共20分)11. 证明:如果一个角的正弦值等于1/2,那么这个角是30°或150°。

答案:设这个角为α,根据正弦函数的性质,当α = 30°时,sin(30°) = 1/2;当α = 150°时,sin(150°) = 1/2。

高中数学会考习题精选

高中数学会考习题精选

⾼中数学会考习题精选⾼中数学会考练习题集练习⼀集合与函数(⼀)1. 已知S ={1,2,3,4,5},A ={1,2},B ={2,3,6},则______=B A I ,______=B A Y ,______)(=B A C S Y .2. 已知},31|{},21|{<<=<<-=x x B x x A则______=B A I ,______=B A Y .3. 集合},,,{d c b a 的所有⼦集个数是_____,含有2个元素⼦集个数是_____.4. 图中阴影部分的集合表⽰正确的有________.(1))(B A C U Y (2))(B A C U I(3))()(B C A C U U Y (4))()(B C A C U U I5. 已知},6|),{(},4|),{(=+==-=y x y x B y x y x A ________B A =则I .6. 下列表达式正确的有__________.(1)A B A B A =??I (2)B A A B A ??=Y(3)A A C A U =)(I (4)U A C A U =)(Y7. 若}2,1{≠?}4,3,2,1{?A ,则满⾜A 集合的个数为____.8. 下列函数可以表⽰同⼀函数的有________.(1)2)()(,)(x x g x x f == (2)2)(,)(x x g x x f == (3)x x x g x x f 0)(,1)(== (4))1()(,1)(+=+?=x x x g x x x f 9. 函数x x x f -+-=32)(的定义域为________.10. 函数291)(x x f -=的定义域为________.11. 若函数_____)1(,)(2=+=x f x x f 则.12. 已知_______)(,12)1(=-=+x f x x f 则.13. 已知1)(-=x x f ,则______)2(=f .14. 已知?≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .15. 函数x y 2-=的值域为________.16. 函数R x x y ∈+=,12的值域为________.17. 函数)3,0(,22∈-=x x x y 的值域为________.18. 下列函数在),0(+∞上是减函数的有__________.(1)12+=x y (2)x y 2= (3)x x y 22+-= (4)12+--=x x y(1)1+=x y (2)x x y -=2 (3)1=y (4)x y 1-=20. 若映射B A f →:把集合A 中的元素(x,y )映射到B 中为),(y x y x +-,则(2, 6)的象是______,则(2, 6)的原象是________.21. 将函数x y 1=的图象向左平移2个单位,再向下平移1个单位,则对应图象的解析式为 .22. 某⼚从1998年起年产值平均每年⽐上⼀年增长%,设该⼚1998年的产值为a ,则该⼚的年产值y 与经过年数x 的函数关系式为________.集合与函数(⼆)1. 已知全集I ={1,2,3,4,5,6},A ={1,2,3,4},B ={3,4,5,6},那么C I (A ∩B )=( ).A.{3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.Ф2. 设集合M ={1,2,3,4,5},集合N ={9|2≤x x },M ∩N =( ).A.{33|≤≤-x x }B.{1,2}C.{1,2,3}D.{31|≤≤x x }3. 设集合M ={-2,0,2},N ={0},则( ).A .N 为空集 B. N ∈M C. N ?M D. M ?N4. 命题“b a >”是命题“22bc ac >”的____________条件.5. 函数y =)1lg(2-x 的定义域是__________________.6. 已知函数f (x )=log 3(8x +7),那么f (21)等于_______________.7. 若f (x )=x + 1x ,则对任意不为零的实数x 恒成⽴的是( ).A. f (x )=f (-x )B. f (x )=f (x 1) C. f (x )=-f (x 1) D. f (x ) f (x1)=0 8. 与函数y = x 有相同图象的⼀个函数是( ). =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 9. 在同⼀坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ).A.关于原点对称D.关于y 轴对称10. 下列函数中,在区间(0,+∞)上是增函数的是( ).=-x 2 = x 2-x +2 =(21)x =x 1log 3.011. 函数y =)(log 2x -是( ).A. 在区间(-∞,0)上的增函数B. 在区间(-∞,0)上的减函数C. 在区间(0,+∞)上的增函数D. 在区间(0,+∞)上的减函数12. 函数f (x )=3x -13x +1 ( ).A. 是偶函数,但不是奇函数B. 是奇函数,但不是偶函数C. 既是奇函数,⼜是偶函数D.不是奇函数,也不是偶函数13. 下列函数中为奇函数的是( ).A. f (x )=x 2+x -1B. f (x )=|x |C. f (x )=23x x +D. f (x )=522xx --14. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.15. 已知函数f (x )=||2x ,那么函数f (x )( ).A. 是奇函数,且在(-∞,0)上是增函数B. 是偶函数,且在(-∞,0)上是减函数C. 是奇函数,且在(0,+∞)上是增函数D. 是偶函数,且在(0,+∞)上是减函数16. 函数y =||log 3x (x ∈R 且x ≠0)( ) .A. 为奇函数且在(-∞,0)上是减函数B. 为奇函数且在(-∞,0)上是增函数C. 是偶函数且在(0,+∞)上是减函数D. 是偶函数且在(0,+∞)上是增函数17. 若f (x )是以4为周期的奇函数,且f (-1)=a (a ≠0),则f (5)的值等于(18. 如果函数y =x a log 的图象过点(91,2),则a =___________.19. 实数2732–3log 22·log 218 +lg4+2lg5的值为_____________.20. 设a =, b = c =则a, b, c 的⼤⼩关系为( )A. bB. aC. aD. c21. 若1log 21>x ,则x 的取值范围是( ).A. 21B.210<x D.0数列(⼀)1. 已知数列{n a }中,12=a ,121+=+n n a a ,则=1a ______.2. – 81是等差数列 – 5 , – 9 , – 13 , … 的第()项.3. 若某⼀数列的通项公式为n a n 41-=,则它的前50项的和为______.4. 等⽐数列,271,91,31,1…的通项公式为________. 5. 等⽐数列,54,18,6,2…的前n 项和公式n S =__________.6. 12-与12+的等⽐中项为__________.7. 若a ,b ,c 成等差数列,且8=++c b a ,则b = .8. 等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=150,则a 2+a 8= .9. 在等差数列{a n }中,若a 5=2,a 10=10,则a 15=________.10. 在等差数列{a n }中,,56=a 583=+a a , 则=9S _____.10. 数列1781,1327,99,53,11,…的⼀个通项公式为________. 11. 在等⽐数列中,各项均为正数,且962=a a ,则)(log 5433 1a a a = .12. 等差数列中,2,241-==d a , 则n S =___________.13. 已知数列{ a n }的前项和为S n = 2n 2 – n ,则该数列的通项公式为_______.14. 已知三个数成等⽐数列,它们的和为14,它们的积为64,则这三个数为 .数列(⼆)1. 在等差数列}{n a 中,85=a ,前5项的和105=S ,2. 在公⽐为2的等⽐数列中,前4项的和为45,则⾸项为_____.3. 在等差数列}{n a 中,已知1554321=++++a a a a a ,则42a a +=_______.4. 在等差数列}{n a 中,已知前n 项的和n n S n -=24, 则=20a _____.5. 在等差数列}{n a 公差为2,前20项和等于100,那么20642...a a a a ++++等于________.6. 已知数列}{n a 中的3231+=+n n a a ,且2053=+a a ,则=8a _______. 7. 已知数列}{n a 满⾜n n a a =-+21,且11=a ,则通项公式=n a ______.8. 数列}{n a 中,如果)1(21≥=+n a a n n ,且21=a ,那么数列的前5项和=5S _.9. 两数15-和15+的等⽐中项是__________________.10. 等差数列}{n a 通项公式为72-=n a n ,那么从第10项到第15项的和为___.11. 已知a, b, c, d 是公⽐为3 的等⽐数列,则dc b a ++22=___________. 12. 在各项均为正数的等⽐数列中,若551=a a ,则=)(log 4325a a a ________.三⾓函数(⼀)1. 下列说法正确的有____________.(1)终边相同的⾓⼀定相等(2)锐⾓是第⼀象限⾓(3)第⼆象限⾓为钝⾓(4)⼩于?90的⾓⼀定为锐⾓ (5)第⼆象限的⾓⼀定⼤于第⼀象限的⾓2. 已知⾓x 的终边与⾓?30的终边关于y 轴对称,则⾓x 的集合可以表⽰为__________________________.3. 终边在y 轴上⾓的集合可以表⽰为________________________.4. 终边在第三象限的⾓可以表⽰为________________________.5. 在??-720~360之间,与⾓?175终边相同的⾓有__________________.6. 在半径为2的圆中,弧度数为3π的圆⼼⾓所对的弧长为________,扇形⾯积为__________.7. 已知⾓α的终边经过点(3,-4),则sin α=______ , cos α=______,tan α=_______ .8. 已知0cos 0sin ><θθ且,则⾓θ⼀定在第______象限.9. “0sin >θ”是“θ是第⼀或第⼆象限⾓”的________条件.10. 计算:πππ2cos cos 0tan 20sin 1223cos 7-+++=________. 11. 化简:tan cos ____θθ=.12. 已知,54cos -=α且α为第三象限⾓,则_____tan _____,sin ==αα . 13. 已知31tan =α,且23παπ<<,则_____cos _____,sin ==αα . 14. 已知2tan =α,则____sin cos cos 2sin =+-αααα. 15. 计算:_____)317sin(=-π, _____)4cos()sin()2sin()cos(=----++αππαπααπ.三⾓函数(⼆)1. 求值: ?165cos =________,=?-)15tan(________.2. 已知21cos -=θ,θ为第三象限⾓,则=+)3sin(θπ________, =+)3cos(θπ________,=+)3 tan(θπ________. 3. 已知x tan ,y tan 是⽅程0762=++x x 的两个根,则=+)tan(y x ______.4. 已知31sin =α,α为第⼆象限⾓,则=α2sin ______, =α2cos ______,=α2tan ______.5. 已知21tan =α,则=α2tan ______.6. 化简或求值:=---y y x y y x cos )cos(sin )sin(______,=??-??170sin 20sin 10cos 70sin ______,=-ααsin 3cos ______,____15tan 115tan 1=?-?+, _____5tan 65tan 35tan 65tan =??-?-?, =??15cos 15sin ____, =-2cos 2sin 22θθ______15.22cos 22-?=______, ?-?150tan 1150tan 22=______.7. 已知,3tan ,2tan ==?θ且?θ,都为锐⾓,则=+?θ______.8. 已知21cos sin =+θθ,则=θ2sin ______. 9. 已知41sin =θ,则=-θθ44cos sin ______. 10. 在ABC ?中,若,53sin ,135cos =-=B A 则=C sin ________.三⾓函数(三)1. 函数)4sin(π+=x y 的图象的⼀个对称中⼼是( ).A. )0,0(B. )1,4(πC. )1,43(πD. )0,43(π 2. 函数)3cos(π-=x y 的图象的⼀条对称轴是( ).B. 3π-=x C. 65π=x D. 3π=x 3. 函数x x y cos sin =的值域是________,周期是______,此函数的为____函数(填奇偶性).4. 函数x x y cos sin -=的值域是________,周期是______,此函数的为____函数(填奇偶性).5. 函数x x y cos 3sin +=的值域是________,周期是______,此函数的为____函数(填奇偶性).8. 函数)42tan(3π-=x y 的定义域是__________________,值域是________,周期是______,此函数为______函数(填奇偶性).9. ⽐较⼤⼩:??530cos ___515cos , )914sin(____)815sin(ππ-- ??143tan ____138tan , ??91tan ___89tan10. 要得到函数)42sin(2π+=x y 的图象,只需将x y 2sin 2=的图象上各点____11. 将函数x y 2cos =的图象向左平移6π个单位,得到图象对应的函数解析式为________________.12. 已知22cos -=θ,)20(πθ<<,则θ可能的值有_________.三⾓函数(四)1. 在??360~0范围内,与-1050o 的⾓终边相同的⾓是___________.2. 在π2~0范围内,与π310终边相同的⾓是___________. 3. 若sinα<0且cosα<0 ,则α为第____象限⾓.4. 在??-360~360之间,与⾓?175终边相同的⾓有_______________.5. 在半径为2的圆中,弧度数为3π的圆⼼⾓所对的弧长为______________. 6. 已知⾓α的终边经过点(3,-4),则cos α=______.7. 命题 “x = π2 ” 是命题 “sin x =1” 的_____________条件. 8. sin(π617-)的值等于___________. 9. 设π4 <α<π2 ,⾓α的正弦. 余弦和正切的值分别为a ,b ,c ,则( ). A. a10. 已知,54cos -=α且α为第三象限⾓,则_____tan =α. 11. 若 tan α=2且sin α<0,则cos α的值等于_____________.12. 要得到函数y =sin(2x -π3 )的图象,只要把函数y =sin2x 的图象( ).A.向左平移π3 个单位B. 向右平移π3 个单位C.向左平移π6 个单位13. 已知tan α=-3 (0<α<2π),那么⾓α所有可能的值是___________14. 化简cos x sin(y -x )+cos(y -x )sin x 等于_____________15. cos25o cos35o –sin25o sin35o 的值等于_____________(写具体值).16. 函数y =sin x +cos x 的值域是( )A.[-1,1]B.[-2,2]C.[-1, 2 ]D.[- 2 , 2 ]17. 函数y =cos x - 3 sin x 的最⼩正周期是( )A.2πB. 4π C. ππ18. 已知sin α=53,90o <α<180o ,那么sin2α的值__________. 19. 函数y=cos 2 x -sin 2x 的最⼩正周期是( )A. 4πB. 2πC. πD. π220. 函数y =sin x cos x 是( )A.周期为2π的奇函数B. 周期为2π的偶函数C. 周期为π的奇函数D. 周期为π的偶函数21. 已知2tan =α,则=α2tan ________.练习九平⾯向量(⼀)1. 下列说法正确的有______________.(1)零向量没有⽅向 (2)零向量和任意向量平⾏(3)单位向量都相等 (4)(a ·b )·c =a ·(b ·c )(5)若a ·c = b ·c ,且c 为⾮零向量,则a =b(6)若a ·b =0,则a,b 中⾄少有⼀个为零向量.2. “b a =”是“a ∥b ”的________________条件.3. 下列各式的运算结果为向量的有________________.(1)a +b (2)a -b (3)a ·b (4)λa (5)||b a + (6)a ·04. 计算:=-++MP MN NQ QP ______.设=AB a, =AC b ,⽤a , b 表⽰下列向量:=BC ________,=AM ________,=MB ________.=AB a,6. 在□ABCD 中,对⾓线AC ,BD 交于O 点,设=AD b ,⽤a , b 表⽰下列向量:=AC ________,.=BD ________,=CO ________,=OB ________.7. 已知21,e e 不共线,则下列每组中a , b 共线的有______________.(1)113,2e b e a -== (2)213,2e b e a -==(3)212121,2e e b e e a +-=-= (4)2121,e e b e e a +=-= 8. 已知,4||,3||==b a 且向量b a,的夹⾓为?120,则=b a ·________,=-||b a __________.9. 已知)1,1(),3,2(-==b a ,则=-b a 2______,=b a ·________,=||a ______,向量b a,的夹⾓的余弦值为_______.12. 已知)1,2(),2,1(-==b a k ,当b a,共线时,k =____;当b a,垂直时,k =____.13. 已知)4,2(),2,1(B A -,)3,(x C ,且A,B,C 三点共线,则x =______.14. 把点)5,3(P 按向量a =(4,5)平移⾄点P ’,则P ’的坐标为_______.15. 将函数22x y =的图象F 按a =(1,-1)平移⾄F ’, 则F ’的函数解析式为____.16. 将⼀函数图象按a =(1,2)平移后,所得函数图象所对应的函数解析式为x y lg =,则原图象的对应的函数解析式为_______.17. 将函数x x y 22+=的图象按某⼀向量平移后得到的图象对应的函数解析式为2x y =,则这个平移向量的坐标为________.18. 已知)3,2(),5,1(B A ,点M 分有向线段的⽐2-=λ,则M 的坐标为____.19. 已知P 点在线段21P P 上,21P P =5,P P 1=1,点P 分有向线段21P P 的⽐为__.20. 已知P 点在线段21P P 的延长线上,21P P =5,P P 2=10,点P 分有向线段21P P 的⽐为_____.21. 在ABC ?中,?=45A ,?=105C ,5=a ,则b =_______.22. 在ABC ?中,2=b ,1=c ,?=45B ,则C =_______.23. 在ABC ?中,32=a ,6=b ,?=30A ,则B =_______.24. 在ABC ?中,3=a ,4=b ,37=c ,则这个三⾓形中最⼤的内⾓为______.25. 在ABC ?中,1=a ,2=b ,?=60C ,则c =_______.26. 在ABC ?中,7=a ,3=c ,?=120A ,则b =_______.平⾯向量(⼆)1. ⼩船以10 3 km/h 的速度向垂直于对岸的⽅向⾏驶,同时河⽔的流速为10km/h ,则⼩船实际航⾏速度的⼤⼩为( ).2 km/h h C. 10 2 km/h D. 10km/h2. 若向量→a =(1,1),→b =(1,-1),→c =(-1,2),则→c =( ).A. -12 →a +32 →bB. 12 →a -32 →bC. 32 →a -12 →bD.- 32 →a +12 →b3. 有以下四个命题:①若→a ·→b =→a ·→c 且→a ≠→0,则→b =→c ;②若→a ·→b =0,则→a =→0或→b =→0;③⊿ABC 中,若→AB ·→AC >0,则⊿ABC 是锐⾓三⾓形;④⊿ABC 中,若→AB ·→BC =0,则⊿ABC 是直⾓三⾓形.其中正确命题的个数是( ).4. 若|→a |=1,|→b |=2,→c =→a +→b ,且→c ⊥→a ,则向量→a 与→b 的夹⾓为( ).D150o5. 已知→a . →b 是两个单位向量,那么下列命题中真命题是( ).A. →a =→bB. →a ·→b =0C. |→a ·→b |<1D. →a 2=→b 26. 在⊿ABC 中,AB =4,BC =6,∠ABC =60o ,则AC 等于( ).A. 28B. 76C. 27D. 2197. 在⊿ABC 中,已知a = 3 +1, b =2, c = 2 ,那么⾓C 等于( ).A. 30oB. 45oC. 60oD. 120o8. 在⊿ABC 中,已知三个内⾓之⽐A :B :C =1:2:3,那么三边之⽐a :b :c =(). A. 1: 3 :2 B. 1:2:3 C. 2: 3 :1 D. 3:2:1不等式1. 不等式3|21|>-x 的解集是__________.2. 不等式2|1|≤-x 的解集是__________.3. 不等式42>x 的解集是__________.4. 不等式022>--x x 的解集是__________.5. 不等式012<++x x 的解集是__________.6. 不等式032≥--xx 的解集是__________. 7. 已知不等式02>++n mx x 的解集是}2,1|{>-则m 和n 的值分别为__________.8. 不等式042>++mx x 对于任意x 值恒成⽴,则m 的取值范围为________.9. 已知d c b a >>,,下列命题是真命题的有_______________.(1)d b c a +>+ (2)d b c a ->- (3)x b x a ->- (4)bd ac > (5)c b d a > (6)22b a > (7)33b a > (8)33b a > (9)ba 11< (11) 22bx ax > 10. 已知64,52<<<<b a ,则b a +的取值范围是______________,则a b -的取值范围是______________,ab 的取值范围是___________. 11. 已知0,>b a 且,2=ab 则b a +的最___值为_______.12. 已知0,>b a 且,2=+b a 则ab 的最___值为_______.13. 已知,0>m 则函数mm y 82+=的最___值为_______,此时m =_______.14. a >0,b >0是ab >0的( ).A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充分必要条件D. 既⾮充分条件也⾮必要条件15. 若0<A. b a 11>B. ab a 11>- C. ||||b a > D. 22b a > 16. 若0>>b a ,0>m ,则下列不等式中⼀定成⽴的是( ).A. m a m b a b ++>B. m b m a b a -->C. m a m b a b ++<D. mb m a b a --< 17. 若0>x ,则函数xx y 1+=的取值范围是( ). A.]2,(--∞ B. ),2[+∞ C. ),2[]2,(+∞--∞Y D. ]2,2[-18. 若0≠x ,则函数22364x xy --=有( ). A. 最⼤值264- B. 最⼩值264-C. 最⼤值264+D. 最⼩值264+19. 解下列不等式:(1) 5|32|1<-≤x (2) 6|5|2>-x x(3) 10|83|2<-+x x解析⼏何(⼀)1. 已知直线l 的倾斜⾓为?135,且过点)3,(),1,4(--m B A ,则m 的值为______.2. 已知直线l 的倾斜⾓为?135,且过点)2,1(,则直线的⽅程为____________.3. 已知直线的斜率为4,且在x .轴.上的截距为2,此直线⽅程为____________.4. 直线023=+-y x 倾斜⾓为____________.5. 直线042=+-y x 与两坐标轴围成的三⾓形⾯积为__________.6. 直线042=+-y x 关于y 轴对称的直线⽅程为________________.7. 过点)3,2(P 且在两坐标轴上截距互为相反数的直线⽅程为_____________.8. 下列各组直线中,互相平⾏的有____________;互相垂直的有__________. (1)022121=+-+=y x x y 与 (2)0322=-+-=y x x y 与 (3)0322=--=y x x y 与 (4)023=++y x 与33+=x y (5)052052=+=+y x 与 (6)052052=-=+x x 与9. 过点(2,3)且平⾏于直线052=-+y x 的⽅程为________________.过点(2,3)且垂直于直线052=-+y x 的⽅程为________________.10. 已知直线01:,022:21=--+=--+a y ax l a ay x l ,当两直线平⾏时,a =______;当两直线垂直时,a =______.11. 直线53=-y x 到直线032=-+y x 的⾓的⼤⼩为__________.12. 设直线0243:,022:,0243:321=+-=++=-+y x l y x l y x l ,则直线21l l 与的交点到3l 的距离为____________.13. 平⾏于直线0243=-+y x 且到它的距离为1的直线⽅程为____________.解析⼏何(⼆)1. 圆⼼在)2,1(-,半径为2的圆的标准⽅程为____________,⼀般⽅程为__________,参数⽅程为______________.2. 圆⼼在点)2,1(-,与y 轴相切的圆的⽅程为________________,与x 轴相切的圆的⽅程为________________,过原点的圆的⽅程为________________3. 半径为5,圆⼼在x 轴上且与x =3相切的圆的⽅程为______________.4. 已知⼀个圆的圆⼼在点)1,1(-,并与直线0334=+-y x 相切,则圆的⽅程为______.5. 点)1,1(-P 和圆024222=--++y x y x 的位置关系为________________.6. 已知4:22=+y x C 圆,(1)过点)3,1(-的圆的切线⽅程为________________.(2)过点)0,3(的圆的切线⽅程为________________.(3)过点)1,2(-的圆的切线⽅程为________________.(4)斜率为-1的圆的切线⽅程为__________________.7. 已知直线⽅程为043=++k y x ,圆的⽅程为05622=+-+x y x(1)若直线过圆⼼,则k =_________.(2)若直线和圆相切,则k =_________.(3)若直线和圆相交,则k 的取值范围是____________. (4)若直线和圆相离,则k 的取值范围是____________.8. 在圆822=+y x 内有⼀点)2,1(-P ,AB 为过点P 的弦.(1)过P 点的弦的最⼤弦长为__________.(2)过P 点的弦的最⼩弦长为__________.解析⼏何(三)1. 已知椭圆的⽅程为116922=+x y ,则它的长轴长为______,短轴长为______,焦点坐标为________,离⼼率为________,准线⽅程为____________.在坐标系中画出图形.2. 已知双曲线的⽅程为116922=-x y ,则它的实轴长为______,虚轴长为______,焦点坐标为________,离⼼率为________,准线⽅程为____________,渐近线⽅程为__________. 在坐标系中画出图形.3. 经过点)2,0(),0,3(--Q P 的椭圆的标准⽅程是_____________.4. 长轴长为20,离⼼率为53,焦点在y 轴上的椭圆⽅程为__________. 5. 焦距为10,离⼼率为35,焦点在x 轴上的双曲线的⽅程为__________. 6. 与椭圆1492422=+y x 有公共焦点,且离⼼率为45的双曲线⽅程为________. 7. 已知椭圆的⽅程为16422=+y x ,若P 是椭圆上⼀点,且,7||1=PF则________||2=PF .8. 已知双曲线⽅程为14491622-=-y x ,若P 是双曲线上⼀点,且,7||1=PF 则________||2=PF .9. 已知双曲线经过)5,2(-P ,且焦点为)6,0(±,则双曲线的标准⽅程为______10. 已知椭圆12516922=+y x 上⼀点P 到左焦点的距离为12,则P 点到左准线的距离为__________.11. 已知双曲线1366422=-y x 上点P 到右准线的距离为532,则P 点到右焦点的距离为__________.12. 已知⼀等轴双曲线的焦距为4,则它的标准⽅程为____________________.13. 已知曲线⽅程为14922=-+-k y k x , (1) 当曲线为椭圆时,k 的取值范围是______________.(2) 当曲线为双曲线时,k 的取值范围是______________.14. ⽅程y 2 = 2px (p >0)中的字母p 表⽰( ).A .顶点、准线间的距离B .焦点、准线间的距离C .原点、焦点间距离D .两准线间的距离15. 抛物线x y 22=的焦点坐标为__________,准线⽅程为____________.16. 抛物线y x 212-=的焦点坐标为__________,准线⽅程为____________.17. 顶点在原点,对称轴为坐标轴,焦点为)0,2(-的抛物线⽅程为________.18. 顶点在原点,对称轴为坐标轴,准线⽅程为81-=y 的抛物线⽅程为____. 19. 经过点)8,4(-P ,顶点在原点,对称轴为x 轴的抛物线⽅程为__________.解析⼏何(四) 1. 如果直线l 与直线3x -4y +5=0关于y 轴对称,那么直线l 的⽅程为_____.2. 直线3x + y +1=0的倾斜⾓的⼤⼩是__________.3. 过点(1,-2)且倾斜⾓的余弦是-35 的直线⽅程是______________.4. 若两条直线l 1: ax +2y +6=0与l 2: x +(a -1)y +3=0平⾏,则a 等于_________.5. 过点(1,3)且垂直于直线052=-+y x 的⽅程为________________.6. 图中的阴影区域可以⽤不等式组表⽰为().A. ≤+-≤≥0110y x y xB.≤+-≥≤0101y x y x C. ≥+-≥≤0101y x y x D. ??≥+-≥≥0101y x y x 7. 已知圆的直径两端点为)4,3(),2,1(-,则圆的⽅程为_____________.8. 圆⼼在点)2,1(-且与x 轴相切的圆的⽅程为________________.9. 已知02024:22=---+y x y x C 圆,它的参数⽅程为_________________.10. 已知圆的参数⽅程是θθsin 2cos 2{==y x (θ为参数),那么该圆的普通⽅程是______ 11. 圆x 2+y 2-10x=0的圆⼼到直线3x +4y -5=0的距离等于___________.12. 过圆x 2+y 2=25上⼀点P(4, 3),并与该圆相切的直线⽅程是____________.13. 已知椭圆的两个焦点是F 1(-2, 0)、F 2(2, 0),且点A(0, 2)在椭圆上,那么这个椭圆的标准⽅程是_________.14. 已知椭圆的⽅程为x 29 +y 225 =1,那么它的离⼼率是__________.15. 已知点P 在椭圆x 236 +y 2100 =1上,且它到左准线的距离等于10,那么点P 到左焦点的距离等于______.16. 与椭圆x 29 +y 24 =1有公共焦点,且离⼼率e =52 的双曲线⽅程是()A. x 2-y 24 =1B. y 2-x 24 =1C. x 24 -y 2=1D. y 24 -x 2=117. 双曲线x 24 -y 29 =1的渐近线⽅程是___________.18. 如果双曲线x 264 -y 236 =1上⼀点P 到它的右焦点的距离是5,那么点P 到它的右准线的距离是___________.19. 抛物线x y 22=的焦点坐标为__________.20. 抛物线y x 212-=的准线⽅程为__________. 21. 若抛物线y 2=2px 上⼀点横坐标为6,这个点与焦点的距离为10,那么此抛物线的焦点到准线的距离是_______.⽴体⼏何(⼀)判断下列说法是否正确:1. 下列条件,是否可以确定⼀个平⾯:[ ](1)不共线的三个点[ ](2)不共线的四个点[ ](3)⼀条直线和⼀个点[ ](4)两条相交或平⾏直线2. 关于空间中的直线,判断下列说法是否正确:[ ](1)如果两直线没有公共点,则它们平⾏[ ](2)如果两条直线分别和第三条直线异⾯,则这两条直线也异⾯[ ](3)分别位于两个平⾯内的两条直线是异⾯直线[ ](4)若βαβα//,,??b a ,则a,b 异⾯[ ](5)不在任何⼀个平⾯的两条直线异⾯[ ](6)两条直线垂直⼀定有垂⾜[ ](7)垂直于同⼀条直线的两条直线平⾏[ ](8)若c a b a //,⊥,则b c ⊥[ ](9)过空间中⼀点有且只有⼀条直线和已知直线垂直[ ](10)过空间中⼀点有且只有⼀条直线和已知直线平⾏3. 关于空间中的直线和平⾯,判断下列说法是否正确:[ ](1)直线和平⾯的公共点个数可以是0个,1个或⽆数[ ](2)若,,//α?b b a 则α//a[ ](3)如果⼀直线和⼀平⾯平⾏,则这条直线和平⾯的任意直线平⾏[ ](4)如果⼀条直线和⼀个平⾯平⾏,则这条直线和这个平⾯内的⽆数条直线平⾏[ ](5)若两条直线同时和⼀个平⾯平⾏,则这两条直线平⾏[ ](6)过平⾯外⼀点,有且只有⼀条直线和已知平⾯平⾏[ ](7)过直线外⼀点,有⽆数个平⾯和已知直线平⾏[ ](8)若共⾯且b a b a ,,,//αα?,则b a //4. 关于空间中的平⾯,判断下列说法是否正确:[ ](1)两个平⾯的公共点的个数可以是0个,1个或⽆数[ ](2)若b a b a //,,βα??,则βα//[ ](3)若βαβα//,,??b a ,则a βαα//,?a β//a αα//,//b a b a //βα//,//a a βα//αβα?a ,//β//a 关于直线与平⾯的垂直,判断下列说法是否正确:[ ](1)如果⼀直线垂直于⼀个平⾯内的所有直线,则这条直线垂直于这个平⾯[ ](2)若αα?⊥a l ,,则a l ⊥[ ](3)若m l m ⊥?,α,则α⊥l[ ](4)若n l m l n m ⊥⊥?,,,α,则α⊥l[ ](5)过⼀点有且只有⼀条直线和已知平⾯垂直[ ](6)过⼀点有⽆数个平⾯和已知直线垂直6. 关于平⾯和平⾯垂直,判断下列说法是否正确:[ ] (1)若,,βα⊥?a a 则βα⊥[ ] (2)若b a b a ⊥??,,βα,则βα⊥[ ] (3)若,,,βαβα??⊥b a ,则b a ⊥[ ] (4)若,,βαα⊥?a 则β⊥a[ ] (6)若γαβα//,⊥,则γβ⊥[ ] (7)垂直于同⼀个平⾯的两个平⾯平⾏[ ] (8)垂直于同⼀条直线的两个平⾯平⾏[ ] (9)过平⾯外⼀点有且只有⼀个平⾯与已知平⾯垂直7. 判断下列说法是否正确:[ ] (1)两条平⾏线和同⼀平⾯所成的⾓相等[ ] (2)若两条直线和同⼀平⾯所的⾓相等,则这两条直线平⾏[ ] (3)平⾯的平⾏线上所有的点到平⾯的距离都相等[ ] (4)若⼀条直线上有两点到⼀个平⾯的距离相等,则这条直线和平⾯平⾏⽴体⼏何(⼆)1. 若平⾯的⼀条斜线长为2,它在平⾯内的射影的长为3,则这条斜线和平⾯所成的⾓为________.2. 在⼀个锐⼆⾯⾓的⼀个⾯内有⼀点,它到棱的距离是到另⼀个平⾯距离的2倍,则这个⼆⾯⾓的⼤⼩为________.3. 已知AB 为平⾯α的⼀条斜线,B 为斜⾜,α⊥AO ,O 为垂⾜,BC 为平⾯内的⼀条直线,?=∠?=∠45,60OBC ABC ,则斜线AB 与平⾯所成的⾓的⼤⼩为________.4. 观察题中正⽅体ABCD-A 1B 1C 1D 1中, ⽤图中已有的直线和平⾯填空:(1) 和直线BC 垂直的直线有_________________.(2) 和直线BB 1垂直且异⾯的直线有__________.(3) 和直线CC 1平⾏的平⾯有________________.(4) 和直线BC 垂直的平⾯有________________.(5) 和平⾯BD 1垂直的直线有________________.5. 在边长为a 正⽅体!111D C B A ABCD -中(1)C B C A 111与所成的⾓为________.(2)1AC 与平⾯ABCD 所成的⾓的余弦值为________.(3)平⾯ABCD 与平⾯11B BDD 所成的⾓为________.(4)平⾯ABCD 与平⾯11B ADC 所成的⾓为________.(5)连结11,,DA BA BD ,则⼆⾯⾓1A BD A --的正切值为________.(6)BC AA 与1的距离为________.(7)11BC AA 与的距离为________.6. 在棱长均为a 的正三棱锥ABC S -中,(1) 棱锥的⾼为______.(2) 棱锥的斜⾼为________.(3) SA 与底⾯ABC 的夹⾓的余弦值为________.(4) ⼆⾯⾓A BC S --的余弦值为________.(5) 取BC 中点M ,连结SM ,则AC 与SM 所成的⾓的余弦值是_____.(6) 若⼀截⾯与底⾯平⾏,交SA 于A ’,且SA’:A’A =2:1,则截⾯的⾯积为______.7. 在棱长均为a 的正四棱锥ABCD S -中,(1) 棱锥的⾼为______.(2) 棱锥的斜⾼为________.(3) SA 与底⾯ABCD 的夹⾓为________.(4) ⼆⾯⾓A BC S --的⼤⼩为________. 8. 已知正四棱锥的底⾯边长为24,侧⾯与底⾯所成的⾓为?45,那么它的侧⾯积为_________.9. 在正三棱柱111C B A ABC -中,底⾯边长和侧棱长均为a , 取AA 1的中点M ,连结CM ,BM ,则⼆⾯⾓A BC M --的⼤⼩为 _________.10.已知长⽅体的长、宽、⾼分别是2、3、4,那么它的⼀条对⾓线长为_____.11. 在正三棱锥中,已知侧⾯都是直⾓三⾓形,那么底⾯边长为a 时,它的全⾯积是______.12. 若球的⼀截⾯的⾯积是π36,且截⾯到球⼼的距离为8,则这个球的体积为______,表⾯积为_________.。

(完整word版)高中会考试卷数学试题(word文档良心出品)

(完整word版)高中会考试卷数学试题(word文档良心出品)

高中会考试卷数学试题一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选都不给分)1.数轴上两点A ,B 的坐标分别为2,-1,则有向线段AB 的数量是}}}8.底面半径为3,母线长为4的圆锥侧面积是(A)6π (B)12π (C)15π (D)24π9.下列函数中,在定义域内是增函数的是(A)y =(21)x (B)y =1x(C)y =x 2 (D)y =lg x10.在平行四边形ABCD 中,AB AD +u u u r u u u r 等于11.若一个圆的圆心在直线2y x =上,在y 轴上截得的弦的长度等于2,且与直线0x y -+=相切,则这个圆的方程可能是12.在ΔABC 中,如果sin A cos A =-513,那么ΔABC 的形状是 (D)3a-1,y =(A)向左平移4π个单位(B)向右平移4π个单位 (C)向左平移2π个单位(D)向右平移2π个单位18.已知函数y =f (x )的反函数为y =()1f x -,若f (3)=2,则()12f -为(A)3 (B)31 (C)2(D)21 19.如果函数y =log a x (a >0且a ≠1)在[1,3]上的最大值与最小值的差为2,则满足条件的a 值的集合是(A){3} (B){33}(C){3,33}(D){3,3}20.已知直线m ⊥平面α.直线n 平面β,则下列命题正确(A)α⊥β⇒m ⊥n (B)α⊥β⇒m ∥n (C)m ⊥n ⇒α∥β(D)m ∥n ⇒α⊥β21.一个正方体的表面展开图如图所示,图中的AB ,CD 在原正方体中是两条(A)平行直线 (B)相交直线(C)异面直线且成60°角 (D)异面直线且互相垂直22.已知数列{a n }的前n 项和Sn =q n -1(q >0且q 为常数),某同学研究此数列后,得知如下三个结论:①{a n }的通项公式是a n =(q -1)q n -1;②{a n }是等比数列;③当q ≠1时,221n n n S S S ++•<.其中结论正确的个数有(A)0个 (B)1个 (C)2个(D)3个二、填空题(本题有6小题,每小题3分,共18分) 23.计算:已知向量a r 、b r ,2a =r ,(3,4)b =r ,a r 与b r 夹角等于30︒,则a b⋅r r 等于.24.计算sin 240︒的值为。

高中数学会考专题训练大全(完全版)

高中数学会考专题训练大全(完全版)

所以函数 y = f ( x ) 为奇函数.
(3)设 y = log a
x+2 x+2 2a y + 2 = a y ,解得 x = y ,有 , x−2 x−2 a −1
2a x + 2 x ∈{x | x ≠ 1, x ∈ R} , . a x −1
所以 f
−1
( x) =
数学 会考夹角、距离、简单多面体与球专题训练 高中 高中数学 数学会考
动点.若函数 f(x)= x 2 + ax + 1 没有不动点,则实数 a 的取值范围 是 。
三、解答题:(本大题共 4 小题,共 36 分) 17、试判断函数 f ( x) = x +
2 在[ 2 ,+∞)上的单调性. x
18 、 函 数 y = f ( x ) 在 ( - 1 , 1 ) 上 是 减 函 数 , 且 为 奇 函 数 , 满 足
6、在四棱锥的四个侧面中,可以是直角三角形的个数最多是 A、4 个 B、3 个 C、2 个 D、1 个
7、三棱锥 P-ABC 中,若 PA=PB=PC,则顶点 P 在底面三角形的射影是底面三角形的 A、内心 B、外心 C、重心 D、垂心
8、四棱柱成为平行六面体的一个充分不必要条件是 A、底面是矩形 C、有一个侧面为矩形 B、底面是平行四边形 D、两个相邻侧面是矩形
∵ 2 ≤ x1 < x 2 < +∞ , x1 − x 2 < 0 且 x1 x 2 − 2 > 0 , x1 x 2 > 0 ,
所以 f ( x1 ) − f ( x 2 ) < 0 ,即 f ( x1 ) < f ( x 2 ) . 所以函数 y = f ( x) 在区间[ 2 ,+∞)上单调递增. 18.解:由题意, f ( a 2 − a − 1) + f ( a − 2) > 0 ,即 f ( a 2 − a − 1) > − f ( a − 2) , 而又函数 y = f ( x) 为奇函数,所以 f ( a 2 − a − 1) > f ( 2 − a ) . 又函数 y = f ( x ) 在(-1,1)上是减函数,有

高中数学会考试题及答案

高中数学会考试题及答案

高中数学会考试题及答案第一部分:选择题1. 下列哪个不是一次函数?A. f(x) = 2x + 3B. f(x) = 5x^2 - 3C. f(x) = 4x - 1D. f(x) = x/2 + 12. 已知直角三角形ABC,∠A = 90°,AB = 5 cm,AC = 12 cm,求BC的长度。

A. 10 cmB. 11 cmC. 13 cmD. 15 cm3. 解方程2x + 5 = 17的解为:A. x = 6B. x = 7C. x = 8D. x = 94. 已知函数f(x) = 3x - 2,求f(a + b)的值。

A. 4a + b - 2B. 2a + 3b - 2C. 3a + 3b - 2D. 3a + 3b + 25. 若三角形的三边分别为a, b, c,且满足c^2 = a^2 + b^2,这个三角形是:A. 等腰三角形B. 锐角三角形C. 直角三角形D. 钝角三角形第二部分:填空题6. 一个几何中心名为 ____________。

7. 一条直线和一个平面相交,交点个数为 ____________。

8. 未知数的指数为负数,表示 ____________。

9. 若两个角的和等于180°,则这两个角称为 ____________。

10. 在一个等边三角形中,每个内角大小为 ____________。

第三部分:解答题11. 用二分法求方程x^2 - 4x + 3 = 0在区间[1, 3]上的一个根的精确值。

12. 已知函数f(x) = 3x^2 - 12x + 9,求f(x)的最小值。

13. 若平面内通过点A(-2, 3)和点B(4, 1)的直线与x轴交于点C,求直线AC的斜率和方程。

答案:1. B2. C3. A4. B5. C6. 几何中心7. 一个8. 负数9. 互补角10. 60°11. 使用二分法可得根的精确值为2。

12. f(x)的最小值为 0。

高中数学会考习题集

高中数学会考习题集

高中数学会考练习题集集合与函数(一)1. 已知S ={1,2,3,4,5},A ={1,2},B ={2,3,6},则______=B A ,______=B A ,______)(=B A C S .2. 已知},31|{},21|{<<=<<-=x x B x x A则______=B A ,______=B A .3. 集合},,,{d c b a 的所有子集个数是_____,含有2个元素子集个数是_____.4. 图中阴影部分的集合表示正确的有________.(1))(B A C U (2))(B A C U(3))()(B C A C U U (4))()(B C A C U U5. 已知},6|),{(},4|),{(=+==-=y x y x B y x y x A ________B A =则 .6. 下列表达式正确的有__________.(1)A B A B A =⇒⊆ (2)B A A B A ⊆⇒=(3)A A C A U =)( (4)U A C A U =)(7. 若}2,1{≠⊂}4,3,2,1{⊆A ,则满足A 集合的个数为____.8. 下列函数可以表示同一函数的有________.(1)2)()(,)(x x g x x f == (2)2)(,)(x x g x x f ==(3)x x x g x x f 0)(,1)(== (4))1()(,1)(+=+⋅=x x x g x x x f 9. 函数x x x f -+-=32)(的定义域为________.10. 函数291)(x x f -=的定义域为________.11. 若函数_____)1(,)(2=+=x f x x f 则.12. 已知_______)(,12)1(=-=+x f x x f 则.13. 已知1)(-=x x f ,则______)2(=f .14. 已知⎩⎨⎧≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .15. 函数xy 2-=的值域为________. 16. 函数R x x y ∈+=,12的值域为________.17. 函数)3,0(,22∈-=x x x y 的值域为________.18. 下列函数在),0(+∞上是减函数的有__________.(1)12+=x y (2)xy 2=(3)x x y 22+-= (4)12+--=x x y 19. 下列函数为奇函数的有________.(1)1+=x y (2)x x y -=2 (3)1=y (4)x y 1-= 20. 若映射B A f →:把集合A 中的元素(x,y )映射到B 中为),(y x y x +-,则(2, 6)的象是______,则(2, 6)的原象是________.21. 将函数xy 1=的图象向左平移2个单位,再向下平移1个单位,则对应 图象的解析式为 .22. 某厂从1998年起年产值平均每年比上一年增长12.4%,设该厂1998年的产值为a , 则该厂的年产值y 与经过年数x 的函数关系式为________.集合与函数(二)1. 已知全集I ={1,2,3,4,5,6},A ={1,2,3,4},B ={3,4,5,6}, 那么C I (A ∩B )=( ).A.{3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.Ф2. 设集合M ={1,2,3,4,5},集合N ={9|2≤x x },M ∩N =( ).A.{33|≤≤-x x }B.{1,2}C.{1,2,3}D.{31|≤≤x x }3. 设集合M ={-2,0,2},N ={0},则( ).A .N 为空集 B. N ∈M C. N ⊂M D. M ⊂N4. 命题“b a >”是命题“22bc ac >”的____________条件.5. 函数y =)1lg(2-x 的定义域是__________________.6. 已知函数f (x )=log 3(8x +7),那么f (21)等于_______________. 7. 若f (x )=x + 1x ,则对任意不为零的实数x 恒成立的是( ).A. f (x )=f (-x )B. f (x )=f (x 1) C. f (x )=-f (x 1) D. f (x ) f (x1)=0 8. 与函数y = x 有相同图象的一个函数是( ).A .y =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 9. 在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ).A.关于原点对称B.关于x 轴对称C.关于直线y =1对称.D.关于y 轴对称10. 下列函数中,在区间(0,+∞)上是增函数的是( ).A.y =-x 2B.y = x 2-x +2C.y =(21)xD.y =x 1log 3.011. 函数y =)(log 2x -是( ).A. 在区间(-∞,0)上的增函数B. 在区间(-∞,0)上的减函数C. 在区间(0,+∞)上的增函数D. 在区间(0,+∞)上的减函数12. 函数f (x )=3x-13x +1 ( ).A. 是偶函数,但不是奇函数B. 是奇函数,但不是偶函数C. 既是奇函数,又是偶函数D.不是奇函数,也不是偶函数13. 下列函数中为奇函数的是( ).A. f (x )=x 2+x -1B. f (x )=|x |C. f (x )=23x x +D. f (x )=522x x --14. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.15. 已知函数f (x )=||2x ,那么函数f (x )( ).A. 是奇函数,且在(-∞,0)上是增函数B. 是偶函数,且在(-∞,0)上是减函数C. 是奇函数,且在(0,+∞)上是增函数D. 是偶函数,且在(0,+∞)上是减函数16. 函数y =||log 3x (x ∈R 且x ≠0)( ) .A. 为奇函数且在(-∞,0)上是减函数B. 为奇函数且在(-∞,0)上是增函数C. 是偶函数且在(0,+∞)上是减函数D. 是偶函数且在(0,+∞)上是增函数17. 若f (x )是以4为周期的奇函数,且f (-1)=a (a ≠0),则f (5)的值等于(). A. 5a B. -a C. a D. 1-a18. 如果函数y =x a log 的图象过点(91,2),则a =___________.19. 实数2732–3log 22·log 218 +lg4+2lg5的值为_____________.20. 设a =log 26.7, b =log 0.24.3, c =log 0.25.6,则a, b, c 的大小关系为( )A. b <c <aB. a <c <bC. a <b <cD. c <b <a21. 若1log 21>x ,则x 的取值范围是( ).A. 21<x B.210<<x C.21>x D.0<x数列(一)1. 已知数列{n a }中,12=a ,121+=+n n a a ,则=1a ______.2. – 81是等差数列 – 5 , – 9 , – 13 , … 的第( )项.3. 若某一数列的通项公式为n a n 41-=,则它的前50项的和为______.4. 等比数列,271,91,31,1…的通项公式为________. 5. 等比数列,54,18,6,2…的前n 项和公式n S =__________.6. 12-与12+的等比中项为__________.7. 若a ,b ,c 成等差数列,且8=++c b a ,则b = .8. 等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=150,则a 2+a 8= .9. 在等差数列{a n }中,若a 5=2,a 10=10,则a 15=________.10. 在等差数列{a n }中,,56=a 583=+a a , 则=9S _____.10. 数列1781,1327,99,53,11,…的一个通项公式为________. 11. 在等比数列中,各项均为正数,且962=a a ,则)(log 54331a a a = .12. 等差数列中,2,241-==d a , 则n S =___________.13. 已知数列{ a n }的前项和为S n = 2n 2 – n ,则该数列的通项公式为_______.14. 已知三个数成等比数列,它们的和为14,它们的积为64,则这三个数为 .数列(二)1. 在等差数列}{n a 中,85=a ,前5项的和105=S ,它的首项是__________,公差是__________.2. 在公比为2的等比数列中,前4项的和为45,则首项为_____.3. 在等差数列}{n a 中,已知1554321=++++a a a a a ,则42a a +=_______.4. 在等差数列}{n a 中,已知前n 项的和n n S n -=24, 则=20a _____.5. 在等差数列}{n a 公差为2,前20项和等于100,那么20642...a a a a ++++等于________.6. 已知数列}{n a 中的3231+=+n n a a ,且2053=+a a ,则=8a _______. 7. 已知数列}{n a 满足n n a a =-+21,且11=a ,则通项公式=n a ______.8. 数列}{n a 中,如果)1(21≥=+n a a n n ,且21=a ,那么数列的前5项和=5S _.9. 两数15-和15+的等比中项是__________________.10. 等差数列}{n a 通项公式为72-=n a n ,那么从第10项到第15项的和为___.11. 已知a, b, c, d 是公比为3 的等比数列,则dc b a ++22=___________. 12. 在各项均为正数的等比数列中,若551=a a ,则=)(log 4325a a a ________.三角函数(一)1. 下列说法正确的有____________.(1)终边相同的角一定相等(2)锐角是第一象限角(3)第二象限角为钝角(4)小于︒90的角一定为锐角 (5)第二象限的角一定大于第一象限的角2. 已知角x 的终边与角︒30的终边关于y 轴对称,则角x 的集合可以表示为__________________________.3. 终边在y 轴上角的集合可以表示为________________________.4. 终边在第三象限的角可以表示为________________________.5. 在︒︒-720~360之间,与角︒175终边相同的角有__________________.6. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为________,扇形面积为__________.7. 已知角α的终边经过点(3,-4),则sin α=______ , cos α=______, tan α=_______ .8. 已知0cos 0sin ><θθ且,则角θ一定在第______象限.9. “0sin >θ”是“θ是第一或第二象限角”的________条件.10. 计算:πππ2cos cos 0tan 20sin 1223cos 7-+++=________. 11. 化简:tan cos ____θθ=.12. 已知,54cos -=α 且α为第三象限角,则_____tan _____,sin ==αα . 13. 已知31tan =α,且23παπ<<,则_____cos _____,sin ==αα . 14. 已知2tan =α,则____sin cos cos 2sin =+-αααα. 15. 计算:_____)317sin(=-π, _____)417cos(=-π. 16. 化简:____)cos()sin()2sin()cos(=----++αππαπααπ.三角函数(二)1. 求值: ︒165cos =________,=︒-)15tan(________.2. 已知21cos -=θ,θ为第三象限角,则=+)3sin(θπ________, =+)3cos(θπ________,=+)3tan(θπ________. 3. 已知x tan ,y tan 是方程0762=++x x 的两个根,则=+)tan(y x ______.4. 已知31sin =α,α为第二象限角,则=α2sin ______, =α2cos ______,=α2tan ______.5. 已知21tan =α,则=α2tan ______.6. 化简或求值:=---y y x y y x cos )cos(sin )sin(______,=︒︒-︒︒170sin 20sin 10cos 70sin ______, =-ααsin 3cos ______, ____15tan 115tan 1=︒-︒+, _____5tan 65tan 35tan 65tan =︒︒-︒-︒, =︒︒15cos 15sin ____, =-2cos 2sin 22θθ______ 15.22cos 22-︒=______, ︒-︒150tan 1150tan 22=______. 7. 已知,3tan ,2tan ==ϕθ且ϕθ,都为锐角,则=+ϕθ______.8. 已知21cos sin =+θθ,则=θ2sin ______. 9. 已知41sin =θ,则=-θθ44cos sin ______. 10. 在ABC ∆中,若,53sin ,135cos =-=B A 则=C sin ________.三角函数(三)1. 函数)4sin(π+=x y 的图象的一个对称中心是( ).A. )0,0(B. )1,4(πC. )1,43(πD. )0,43(π 2. 函数)3cos(π-=x y 的图象的一条对称轴是( ). A. y 轴 B. 3π-=x C. 65π=x D. 3π=x 3. 函数x x y cos sin =的值域是________,周期是______,此函数的为____函数(填奇偶性).4. 函数x x y cos sin -=的值域是________,周期是______,此函数的为____函数(填奇偶性).5. 函数x x y cos 3sin +=的值域是________,周期是______,此函数的为____函数(填奇偶性).8. 函数)42tan(3π-=x y 的定义域是__________________,值域是________,周期是______,此函数为______函数(填奇偶性).9. 比较大小:︒︒530cos ___515cos , )914sin(____)815sin(ππ-- ︒︒143t a n ____138t a n , ︒︒91tan ___89tan10. 要得到函数)42sin(2π+=x y 的图象,只需将x y 2sin 2=的图象上各点____11. 将函数x y 2cos =的图象向左平移6π个单位,得到图象对应的函数解析式为________________.12. 已知22cos -=θ,)20(πθ<<,则θ可能的值有_________.三角函数(四)1. 在︒︒360~0范围内,与-1050o 的角终边相同的角是___________.2. 在π2~0范围内,与π310终边相同的角是___________. 3. 若sinα<0且cosα<0 ,则α为第____象限角.4. 在︒︒-360~360之间,与角︒175终边相同的角有_______________.5. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为______________. 6. 已知角α的终边经过点(3,-4),则cos α=______. 7. 命题 “x = π2 ” 是命题 “sin x =1” 的_____________条件.8. sin(π617-)的值等于___________. 9. 设π4 <α<π2 ,角α的正弦. 余弦和正切的值分别为a ,b ,c ,则( ). A. a <b <c B. b <a <c C. a <c <b D. c <b <a10. 已知,54cos -=α 且α为第三象限角,则_____tan =α. 11. 若 tan α=2且sin α<0,则cos α的值等于_____________.12. 要得到函数y =sin(2x -π3 )的图象,只要把函数y =sin2x 的图象( ).A.向左平移π3 个单位B. 向右平移π3 个单位C.向左平移π6 个单位D. 向右平移π6 个单位13. 已知tan α=-3 (0<α<2π),那么角α所有可能的值是___________14. 化简cos x sin(y -x )+cos(y -x )sin x 等于_____________15. cos25o cos35o –sin25o sin35o 的值等于_____________(写具体值).16. 函数y =sin x +cos x 的值域是( )A.[-1,1]B.[-2,2]C.[-1, 2 ]D.[- 2 , 2 ]17. 函数y =cos x - 3 sin x 的最小正周期是( )A.2π B. 4π C. π D.2π 18. 已知sin α=53,90o <α<180o ,那么sin2α的值__________. 19. 函数y=cos 2 x -sin 2x 的最小正周期是( )A. 4πB. 2πC. πD. π220. 函数y =sin x cos x 是( )A.周期为2π的奇函数B. 周期为2π的偶函数C. 周期为π的奇函数D. 周期为π的偶函数21. 已知2tan =α,则=α2tan ________.平面向量(一)1. 下列说法正确的有______________.(1)零向量没有方向 (2)零向量和任意向量平行(3)单位向量都相等 (4)(a ·b )·c =a ·(b ·c )(5)若a ·c = b ·c ,且c 为非零向量,则a =b(6)若a ·b =0,则a,b 中至少有一个为零向量.2. “b a =”是“a ∥b ”的________________条件.3. 下列各式的运算结果为向量的有________________.(1)a +b (2)a -b (3)a ·b (4)λa (5)||b a + (6)a4. 计算:=-++MP MN NQ QP ______.5. 如图,在ABC ∆中,BC 边上的中点为M ,设=a, = b ,用a , b 表示下列向量: =________,=________,=________.6. 在□ABCD 中,对角线AC ,BD 交于O 点,设=AB a,=AD b ,用a , b 表示下列向量:=AC ________,. =BD ________,=CO ________,=OB ________.7. 已知21,e e 不共线,则下列每组中a , b 共线的有______________.(1)113,2e b e a -== (2)213,2e b e a -==(3)212121,2e e b e e a +-=-= (4)2121,e e b e e a +=-= 8. 已知,4||,3||==b a 且向量b a,的夹角为︒120,则=b a ·________, =-||b a __________.9. 已知)1,1(),3,2(-==b a ,则=-b a 2______,=b a ·________, =||a ______,向量b a,的夹角的余弦值为_______.12. 已知)1,2(),2,1(-==b a k ,当b a,共线时,k =____;当b a,垂直时,k =____.13. 已知)4,2(),2,1(B A -,)3,(x C ,且A,B,C 三点共线,则x =______.14. 把点)5,3(P 按向量a =(4,5)平移至点P ’,则P ’的坐标为_______.15. 将函数22x y =的图象F 按a =(1,-1)平移至F ’, 则F ’的函数解析式为____.16. 将一函数图象按a =(1,2)平移后,所得函数图象所对应的函数解析式为x y lg =,则原图象的对应的函数解析式为_______.17. 将函数x x y 22+=的图象按某一向量平移后得到的图象对应的函数解析式为2x y =,则这个平移向量的坐标为________.18. 已知)3,2(),5,1(B A ,点M 分有向线段的比2-=λ,则M 的坐标为____.19. 已知P 点在线段21P P 上,21P P =5,P P 1=1,点P 分有向线段21P P 的比为__.20. 已知P 点在线段21P P 的延长线上,21P P =5,P P 2=10,点P 分有向线段21P P 的比为_____.21. 在ABC ∆中,︒=45A ,︒=105C ,5=a ,则b =_______.22. 在ABC ∆中,2=b ,1=c ,︒=45B ,则C =_______.23. 在ABC ∆中,32=a ,6=b ,︒=30A ,则B =_______.24. 在ABC ∆中,3=a ,4=b ,37=c ,则这个三角形中最大的内角为______.25. 在ABC ∆中,1=a ,2=b ,︒=60C ,则c =_______.26. 在ABC ∆中,7=a ,3=c ,︒=120A ,则b =_______.平面向量(二)1. 小船以10 3 km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为( ).A.20 2 km/hB.20km/hC. 10 2 km/hD. 10km/h2. 若向量→a =(1,1),→b =(1,-1),→c =(-1,2),则→c =( ).A. -12 →a +32 →bB. 12 →a -32 →bC. 32 →a -12 →bD.- 32 →a +12→b 3. 有以下四个命题:① 若→a ·→b =→a ·→c 且→a ≠→0,则→b =→c ; ② 若→a ·→b =0,则→a =→0或→b =→0; ③ ⊿ABC 中,若→AB ·→AC >0,则⊿ABC 是锐角三角形; ④ ⊿ABC 中,若→AB ·→BC =0,则⊿ABC 是直角三角形. 其中正确命题的个数是( ). A.0 B.1 C.2 D.34. 若|→a |=1,|→b |=2,→c =→a +→b ,且→c ⊥→a ,则向量→a 与→b 的夹角为( ).A.30oB.60oC.120o D150o5. 已知→a . →b 是两个单位向量,那么下列命题中真命题是( ).A. →a =→bB. →a ·→b =0C. |→a ·→b |<1D. →a 2=→b 2 6. 在⊿ABC 中,AB =4,BC =6,∠ABC =60o ,则AC 等于( ).A. 28B. 76C. 27D. 2197. 在⊿ABC 中,已知a = 3 +1, b =2, c = 2 ,那么角C 等于( ).A. 30oB. 45oC. 60oD. 120o8. 在⊿ABC 中,已知三个内角之比A :B :C =1:2:3,那么三边之比a :b :c =( ).A. 1: 3 :2B. 1:2:3C. 2: 3 :1D. 3:2:1不等式1. 不等式3|21|>-x 的解集是__________.2. 不等式2|1|≤-x 的解集是__________.3. 不等式42>x 的解集是__________.4. 不等式022>--x x 的解集是__________.5. 不等式012<++x x 的解集是__________.6. 不等式032≥--xx 的解集是__________. 7. 已知不等式02>++n mx x 的解集是}2,1|{>-<x x x 或,则m 和n 的值分别为__________.8. 不等式042>++mx x 对于任意x 值恒成立,则m 的取值范围为________.9. 已知d c b a >>,,下列命题是真命题的有_______________.(1)d b c a +>+ (2)d b c a ->- (3)x b x a ->- (4)bd ac >(5)c b d a > (6)22b a > (7)33b a > (8)33b a > (9)ba 11< (11) 22bx ax > 10. 已知64,52<<<<b a ,则b a +的取值范围是______________,则a b -的取值范围是______________,ab 的取值范围是___________. 11. 已知0,>b a 且,2=ab 则b a +的最___值为_______.12. 已知0,>b a 且,2=+b a 则ab 的最___值为_______.13. 已知,0>m 则函数mm y 82+=的最___值为_______, 此时m =_______.14. a >0,b >0是ab >0的( ).A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充分必要条件D. 既非充分条件也非必要条件15. 若0<<b a ,则下列不等关系不能成立的是( ).A. b a 11>B. ab a 11>- C. ||||b a > D. 22b a > 16. 若0>>b a ,0>m ,则下列不等式中一定成立的是( ).A. m a m b a b ++>B. m b m a b a -->C. m a m b a b ++<D. mb m a b a --< 17. 若0>x ,则函数xx y 1+=的取值范围是( ). A.]2,(--∞ B. ),2[+∞ C. ),2[]2,(+∞--∞ D. ]2,2[-18. 若0≠x ,则函数22364x xy --=有( ). A. 最大值264- B. 最小值264-C. 最大值264+D. 最小值264+19. 解下列不等式:(1) 5|32|1<-≤x (2) 6|5|2>-x x(3) 10|83|2<-+x x解析几何(一)1. 已知直线l 的倾斜角为︒135,且过点)3,(),1,4(--m B A ,则m 的值为______.2. 已知直线l 的倾斜角为︒135,且过点)2,1(,则直线的方程为____________.3. 已知直线的斜率为4,且在x .轴.上的截距为2,此直线方程为____________. 4. 直线023=+-y x 倾斜角为____________.5. 直线042=+-y x 与两坐标轴围成的三角形面积为__________.6. 直线042=+-y x 关于y 轴对称的直线方程为________________.7. 过点)3,2(P 且在两坐标轴上截距互为相反数的直线方程为_____________.8. 下列各组直线中,互相平行的有____________;互相垂直的有__________.(1)022121=+-+=y x x y 与 (2)0322=-+-=y x x y 与 (3)0322=--=y x x y 与 (4)023=++y x 与33+=x y(5)052052=+=+y x 与 (6)052052=-=+x x 与9. 过点(2,3)且平行于直线052=-+y x 的方程为________________. 过点(2,3)且垂直于直线052=-+y x 的方程为________________.10. 已知直线01:,022:21=--+=--+a y ax l a ay x l ,当两直线平行时, a =______;当两直线垂直时,a =______.11. 直线53=-y x 到直线032=-+y x 的角的大小为__________.12. 设直线0243:,022:,0243:321=+-=++=-+y x l y x l y x l ,则直线 21l l 与的交点到3l 的距离为____________.13. 平行于直线0243=-+y x 且到它的距离为1的直线方程为____________.解析几何(二)1. 圆心在)2,1(-,半径为2的圆的标准方程为____________,一般方程为__________,参数方程为______________.2. 圆心在点)2,1(-,与y 轴相切的圆的方程为________________,与x 轴相切的圆的方程为________________,过原点的圆的方程为________________3. 半径为5,圆心在x 轴上且与x =3相切的圆的方程为______________.4. 已知一个圆的圆心在点)1,1(-,并与直线0334=+-y x 相切,则圆的方程为______.5. 点)1,1(-P 和圆024222=--++y x y x 的位置关系为________________.6. 已知4:22=+y x C 圆,(1)过点)3,1(-的圆的切线方程为________________.(2)过点)0,3(的圆的切线方程为________________.(3)过点)1,2(-的圆的切线方程为________________.(4)斜率为-1的圆的切线方程为__________________.7. 已知直线方程为043=++k y x ,圆的方程为05622=+-+x y x(1)若直线过圆心,则k =_________.(2)若直线和圆相切,则k =_________.(3)若直线和圆相交,则k 的取值范围是____________. (4)若直线和圆相离,则k 的取值范围是____________.8. 在圆822=+y x 内有一点)2,1(-P ,AB 为过点P 的弦.(1)过P 点的弦的最大弦长为__________.(2)过P 点的弦的最小弦长为__________.解析几何(三)1. 已知椭圆的方程为116922=+x y ,则它的长轴长为______,短轴长为______, 焦点坐标为________,离心率为________,准线方程为____________. 在坐标系中画出图形.2. 已知双曲线的方程为116922=-x y ,则它的实轴长为______,虚轴长为______,焦点坐标为________,离心率为________,准线方程为____________,渐近线方程为__________. 在坐标系中画出图形.3. 经过点)2,0(),0,3(--Q P 的椭圆的标准方程是_____________.4. 长轴长为20,离心率为53,焦点在y 轴上的椭圆方程为__________. 5. 焦距为10,离心率为35,焦点在x 轴上的双曲线的方程为__________.6. 与椭圆1492422=+y x 有公共焦点,且离心率为45的双曲线方程为________. 7. 已知椭圆的方程为16422=+y x ,若P 是椭圆上一点,且,7||1=PF 则________||2=PF .8. 已知双曲线方程为14491622-=-y x ,若P 是双曲线上一点,且,7||1=PF 则________||2=PF .9. 已知双曲线经过)5,2(-P ,且焦点为)6,0(±,则双曲线的标准方程为______10. 已知椭圆12516922=+y x 上一点P 到左焦点的距离为12,则P 点到左准线的距离为__________.11. 已知双曲线1366422=-y x 上点P 到右准线的距离为532,则P 点到右焦点的距离为__________.12. 已知一等轴双曲线的焦距为4,则它的标准方程为____________________.13. 已知曲线方程为14922=-+-k y k x , (1) 当曲线为椭圆时,k 的取值范围是______________.(2) 当曲线为双曲线时,k 的取值范围是______________.14. 方程y 2 = 2px (p >0)中的字母p 表示( ).A .顶点、准线间的距离B .焦点、准线间的距离C .原点、焦点间距离D .两准线间的距离15. 抛物线x y 22=的焦点坐标为__________,准线方程为____________.16. 抛物线y x 212-=的焦点坐标为__________,准线方程为____________. 17. 顶点在原点,对称轴为坐标轴,焦点为)0,2(-的抛物线方程为________.18. 顶点在原点,对称轴为坐标轴,准线方程为81-=y 的抛物线方程为____. 19. 经过点)8,4(-P ,顶点在原点,对称轴为x 轴的抛物线方程为__________.解析几何(四) 1. 如果直线l 与直线3x -4y +5=0关于y 轴对称,那么直线l 的方程为_____.2. 直线3x + y +1=0的倾斜角的大小是__________.3. 过点(1,-2)且倾斜角的余弦是-35 的直线方程是______________.4. 若两条直线l 1: ax +2y +6=0与l 2: x +(a -1)y +3=0平行,则a 等于_________.5. 过点(1,3)且垂直于直线052=-+y x 的方程为________________.6. 图中的阴影区域可以用不等式组表示为( ).A. ⎪⎩⎪⎨⎧≤+-≤≥0110y x y xB.⎪⎩⎪⎨⎧≤+-≥≤0101y x y x C. ⎪⎩⎪⎨⎧≥+-≥≤0101y x y xD. ⎪⎩⎪⎨⎧≥+-≥≥0101y x y x7. 已知圆的直径两端点为)4,3(),2,1(-,则圆的方程为_____________.8. 圆心在点)2,1(-且与x 轴相切的圆的方程为________________.9. 已知02024:22=---+y x y x C 圆,它的参数方程为_________________.10. 已知圆的参数方程是θθsin 2cos 2{==y x (θ为参数),那么该圆的普通方程是______11. 圆x 2+y 2-10x=0的圆心到直线3x +4y -5=0的距离等于___________.12. 过圆x 2+y 2=25上一点P(4, 3),并与该圆相切的直线方程是____________.13. 已知椭圆的两个焦点是F 1(-2, 0)、F 2(2, 0),且点A(0, 2)在椭圆上, 那么这个椭圆的标准方程是_________.14. 已知椭圆的方程为x 29 +y 225 =1,那么它的离心率是__________.15. 已知点P 在椭圆x 236 +y 2100 =1上,且它到左准线的距离等于10,那么点P 到左焦点的距离等于______.16. 与椭圆x 29 +y 24 =1有公共焦点,且离心率e =52 的双曲线方程是( )A. x 2-y 24 =1B. y 2-x 24 =1C. x 24 -y 2=1D. y 24 -x 2=117. 双曲线x 24 -y 29 =1的渐近线方程是___________.18. 如果双曲线x 264 -y 236 =1上一点P 到它的右焦点的距离是5,那么点P 到它的右准线的距离是___________.19. 抛物线x y 22=的焦点坐标为__________.20. 抛物线y x 212-=的准线方程为__________. 21. 若抛物线y 2=2px 上一点横坐标为6,这个点与焦点的距离为10,那么此 抛物线的焦点到准线的距离是_______.立体几何(一)判断下列说法是否正确:1. 下列条件,是否可以确定一个平面:[ ](1)不共线的三个点[ ](2)不共线的四个点[ ](3)一条直线和一个点[ ](4)两条相交或平行直线2. 关于空间中的直线,判断下列说法是否正确:[ ](1)如果两直线没有公共点,则它们平行[ ](2)如果两条直线分别和第三条直线异面,则这两条直线也异面[ ](3)分别位于两个平面内的两条直线是异面直线[ ](4)若βαβα//,,⊂⊂b a ,则a,b 异面[ ](5)不在任何一个平面的两条直线异面[ ](6)两条直线垂直一定有垂足[ ](7)垂直于同一条直线的两条直线平行[ ](8)若c a b a //,⊥,则b c ⊥[ ](9)过空间中一点有且只有一条直线和已知直线垂直[ ](10)过空间中一点有且只有一条直线和已知直线平行3. 关于空间中的直线和平面,判断下列说法是否正确:[ ](1)直线和平面的公共点个数可以是0个,1个或无数[ ](2)若,,//α⊂b b a 则α//a[ ](3)如果一直线和一平面平行,则这条直线和平面的任意直线平行[ ](4)如果一条直线和一个平面平行,则这条直线和这个平面内的无数条直线平行[ ](5)若两条直线同时和一个平面平行,则这两条直线平行[ ](6)过平面外一点,有且只有一条直线和已知平面平行[ ](7)过直线外一点,有无数个平面和已知直线平行[ ](8)若共面且b a b a ,,,//αα⊂,则b a //4. 关于空间中的平面,判断下列说法是否正确:[ ](1)两个平面的公共点的个数可以是0个,1个或无数[ ](2)若b a b a //,,βα⊂⊂,则βα//[ ](3)若βαβα//,,⊂⊂b a ,则a //b[ ](4)若βαα//,⊂a ,则β//a[ ](5)若αα//,//b a ,则b a //[ ](6)若βα//,//a a ,则βα//[ ](7)若一个平面内的无数条直线和另一个平面平行,则这两个平面平行[ ](8)若αβα⊂a ,//,则β//a[ ](9)若两个平面同时和第三个平面平行,则这两个平面平行[ ](10)若一个平面同两个平面相交且它们的交线平行,则两平面平行[ ](11)过平面外一点,有且只有一个平面和已知平面平行5. 关于直线与平面的垂直,判断下列说法是否正确:[ ](1)如果一直线垂直于一个平面内的所有直线,则这条直线垂直于这个平面[ ](2)若αα⊂⊥a l ,,则a l ⊥[ ](3)若m l m ⊥⊂,α,则α⊥l[ ](4)若n l m l n m ⊥⊥⊂,,,α,则α⊥l[ ](5)过一点有且只有一条直线和已知平面垂直[ ](6)过一点有无数个平面和已知直线垂直6. 关于平面和平面垂直,判断下列说法是否正确:[ ] (1)若,,βα⊥⊂a a 则βα⊥[ ] (2)若b a b a ⊥⊂⊂,,βα,则βα⊥[ ] (3)若,,,βαβα⊂⊂⊥b a ,则b a ⊥[ ] (4)若,,βαα⊥⊂a 则β⊥a[ ] (6)若γαβα//,⊥,则γβ⊥[ ] (7)垂直于同一个平面的两个平面平行[ ] (8)垂直于同一条直线的两个平面平行[ ] (9)过平面外一点有且只有一个平面与已知平面垂直7. 判断下列说法是否正确:[ ] (1)两条平行线和同一平面所成的角相等[ ] (2)若两条直线和同一平面所的角相等,则这两条直线平行[ ] (3)平面的平行线上所有的点到平面的距离都相等[ ] (4)若一条直线上有两点到一个平面的距离相等,则这条直线和平面平行立体几何(二)1. 若平面的一条斜线长为2,它在平面内的射影的长为3,则这条斜线和平面所成的角为________.2. 在一个锐二面角的一个面内有一点,它到棱的距离是到另一个平面距离的2倍,则这个二面角的大小为________.3. 已知AB 为平面α的一条斜线,B 为斜足,α⊥AO ,O 为垂足,BC 为平面内的一条直线,︒=∠︒=∠45,60OBC ABC ,则斜线AB 与平面所成的角的大小为________.4. 观察题中正方体ABCD-A 1B 1C 1D 1中, 用图中已有的直线和平面填空:(1) 和直线BC 垂直的直线有_________________.(2) 和直线BB 1垂直且异面的直线有__________.(3) 和直线CC 1平行的平面有________________.(4) 和直线BC 垂直的平面有________________.(5) 和平面BD 1垂直的直线有________________.5. 在边长为a 正方体!111D C B A ABCD -中(1)C B C A 111与所成的角为________.(2)1AC 与平面ABCD 所成的角的余弦值为________.(3)平面ABCD 与平面11B BDD 所成的角为________.(4)平面ABCD 与平面11B ADC 所成的角为________.(5)连结11,,DA BA BD ,则二面角1A BD A --的正切值为________.(6)BC AA 与1的距离为________.(7)11BC AA 与的距离为________.6. 在棱长均为a 的正三棱锥ABC S -中,(1) 棱锥的高为______.(2) 棱锥的斜高为________.(3) SA 与底面ABC 的夹角的余弦值为________.(4) 二面角A BC S --的余弦值为________.(5) 取BC 中点M ,连结SM ,则AC 与SM 所成的角的余弦值是_____.(6) 若一截面与底面平行,交SA 于A ’,且SA’:A’A =2:1,则截面的面积为______.7. 在棱长均为a 的正四棱锥ABCD S -中,(1) 棱锥的高为______.(2) 棱锥的斜高为________.(3) SA 与底面ABCD 的夹角为________.(4) 二面角A BC S --的大小为________.8. 已知正四棱锥的底面边长为24,侧面与底面所成的角为︒45,那么它的侧面积为_________.9. 在正三棱柱111C B A ABC -中,底面边长和侧棱长均为a , 取AA 1的中点M ,连结CM ,BM ,则二面角A BC M --的大小为 _________.10.已知长方体的长、宽、高分别是2、3、4,那么它的一条对角线长为_____.11. 在正三棱锥中,已知侧面都是直角三角形,那么底面边长为a 时,它的全面积是______.12. 若球的一截面的面积是π36,且截面到球心的距离为8,则这个球的体积为______,表面积为_________.13. 半径为R 球的内接正方体的体积为__________.14. 已知两个球的大圆面积比为1:4,则它们的半径之比为________,表面积之比为_______,体积之比为______.立体几何(三)解答题:1. 在四棱锥ABCD P -中,底面是边长为a 的正方形,侧棱a PD =,a PC PA 2==.(1) 求证:ABCD PD 平面⊥;(2) 求证:AC PB ⊥;(3) 求P A 与底面所成角的大小;(4) 求PB 与底面所成角的余弦值.2. 在正四棱柱1111D C B A ABCD -中,AB =1,21=AA .(1) 求1BC 与ABCD 平面所成角的余弦值;(2) 证明:BD AC ⊥1;(3) 求1AC 与ABCD 平面所成角的余弦值.3. 在直三棱柱ABC-A 1B 1C 1中,D 是AB 的中点, AC =BC=2,AA 1=32.(1) 求证:DC D A ⊥1;(2) 求二面角A CD A --1的正切值;(3) 求二面角A BC A --1的大小.4. 四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD , 且BD =6, PB 与底面所成角的正切值为66(1) 求证:PB ⊥AC ;(2) 求P 点到AC 的距离.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学会考练习题集 练习一 集合与函数(一)1. 已知S ={1,2,3,4,5},A ={1,2},B ={2,3,6}, 则______=B A ,______=B A ,______)(=B A C S .2. 已知},31|{},21|{<<=<<-=x x B x x A则______=B A ,______=B A .3. 集合},,,{d c b a 的所有子集个数是_____,含有2个元素子集个数是_____.4. 图中阴影部分的集合表示正确的有________.(1))(B A C U (2))(B A C U(3))()(B C A C U U (4))()(B C A C U U5. 已知},6|),{(},4|),{(=+==-=y x y x B y x y x A ________B A =则 .6. 下列表达式正确的有__________.(1)A B A B A =⇒⊆ (2)B A A B A ⊆⇒=(3)A A C A U =)( (4)U A C A U =)(7. 若}2,1{≠⊂}4,3,2,1{⊆A ,则满足A 集合的个数为____.8. 下列函数可以表示同一函数的有________.(1)2)()(,)(x x g x x f == (2)2)(,)(x x g x x f == (3)x x x g x x f 0)(,1)(== (4))1()(,1)(+=+⋅=x x x g x x x f 9. 函数x x x f -+-=32)(的定义域为________.10. 函数291)(x x f -=的定义域为________.11. 若函数_____)1(,)(2=+=x f x x f 则.12. 已知_______)(,12)1(=-=+x f x x f 则.13. 已知1)(-=x x f ,则______)2(=f .14. 已知⎩⎨⎧≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .15. 函数x y 2-=的值域为________.16. 函数R x x y ∈+=,12的值域为________.17. 函数)3,0(,22∈-=x x x y 的值域为________.18. 下列函数在),0(+∞上是减函数的有__________.(1)12+=x y (2)x y 2= (3)x x y 22+-= (4)12+--=x x y19. 下列函数为奇函数的有________.(1)1+=x y (2)x x y -=2 (3)1=y (4)x y 1-=20. 若映射B A f →:把集合A 中的元素(x,y )映射到B 中为),(y x y x +-,则(2, 6)的象是______,则(2, 6)的原象是________.21. 将函数x y 1=的图象向左平移2个单位,再向下平移1个单位,则对应图象的解析式为 .22. 某厂从1998年起年产值平均每年比上一年增长%,设该厂1998年的产值为a ,则该厂的年产值y 与经过年数x 的函数关系式为________.集合与函数(二)1. 已知全集I ={1,2,3,4,5,6},A ={1,2,3,4},B ={3,4,5,6}, 那么C I (A ∩B )=( ).A.{3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.Ф2. 设集合M ={1,2,3,4,5},集合N ={9|2≤x x },M ∩N =( ).A.{33|≤≤-x x }B.{1,2}C.{1,2,3}D.{31|≤≤x x }3. 设集合M ={-2,0,2},N ={0},则( ).A .N 为空集 B. N ∈M C. N ⊂M D. M ⊂N4. 命题“b a >”是命题“22bc ac >”的____________条件.5. 函数y =)1lg(2-x 的定义域是__________________.6. 已知函数f (x )=log 3(8x +7),那么f (21)等于_______________.7. 若f (x )=x + 1x ,则对任意不为零的实数x 恒成立的是( ).A. f (x )=f (-x )B. f (x )=f (x 1) C. f (x )=-f (x 1) D. f (x ) f (x1)=0 8. 与函数y = x 有相同图象的一个函数是( ). =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 9. 在同一坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ).A.关于原点对称B.关于x 轴对称C.关于直线y =1对称.D.关于y 轴对称10. 下列函数中,在区间(0,+∞)上是增函数的是( ).=-x 2 = x 2-x +2 =(21)x =x 1log 3.011. 函数y =)(log 2x -是( ).A. 在区间(-∞,0)上的增函数B. 在区间(-∞,0)上的减函数C. 在区间(0,+∞)上的增函数D. 在区间(0,+∞)上的减函数12. 函数f (x )=3x -13x +1 ( ).A. 是偶函数,但不是奇函数B. 是奇函数,但不是偶函数C. 既是奇函数,又是偶函数D.不是奇函数,也不是偶函数13. 下列函数中为奇函数的是( ).A. f (x )=x 2+x -1B. f (x )=|x |C. f (x )=23x x +D. f (x )=522xx --14. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.15. 已知函数f (x )=||2x ,那么函数f (x )( ).A. 是奇函数,且在(-∞,0)上是增函数B. 是偶函数,且在(-∞,0)上是减函数C. 是奇函数,且在(0,+∞)上是增函数D. 是偶函数,且在(0,+∞)上是减函数16. 函数y =||log 3x (x ∈R 且x ≠0)( ) .A. 为奇函数且在(-∞,0)上是减函数B. 为奇函数且在(-∞,0)上是增函数C. 是偶函数且在(0,+∞)上是减函数D. 是偶函数且在(0,+∞)上是增函数17. 若f (x )是以4为周期的奇函数,且f (-1)=a (a ≠0),则f (5)的值等于(). A. 5a B. -a C. a D. 1-a18. 如果函数y =x a log 的图象过点(91,2),则a =___________.19. 实数2732–3log 22·log 218 +lg4+2lg5的值为_____________.20. 设a =, b = c =则a, b, c 的大小关系为( )A. b <c <aB. a <c <bC. a <b <cD. c <b <a21. 若1log 21>x ,则x 的取值范围是( ).A. 21<xB.210<<x C.21>x D.0<x数列(一)1. 已知数列{n a }中,12=a ,121+=+n n a a ,则=1a ______.2. – 81是等差数列 – 5 , – 9 , – 13 , … 的第( )项.3. 若某一数列的通项公式为n a n 41-=,则它的前50项的和为______.4. 等比数列,271,91,31,1…的通项公式为________. 5. 等比数列,54,18,6,2…的前n 项和公式n S =__________.6. 12-与12+的等比中项为__________.7. 若a ,b ,c 成等差数列,且8=++c b a ,则b = .8. 等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=150,则a 2+a 8= .9. 在等差数列{a n }中,若a 5=2,a 10=10,则a 15=________.10. 在等差数列{a n }中,,56=a 583=+a a , 则=9S _____.10. 数列1781,1327,99,53,11,…的一个通项公式为________. 11. 在等比数列中,各项均为正数,且962=a a ,则)(log 54331a a a = .12. 等差数列中,2,241-==d a , 则n S =___________.13. 已知数列{ a n }的前项和为S n = 2n 2 – n ,则该数列的通项公式为_______.14. 已知三个数成等比数列,它们的和为14,它们的积为64, 则这三个数为 .数列(二)1. 在等差数列}{n a 中,85=a ,前5项的和105=S ,它的首项是__________,公差是__________.2. 在公比为2的等比数列中,前4项的和为45,则首项为_____.3. 在等差数列}{n a 中,已知1554321=++++a a a a a ,则42a a +=_______.4. 在等差数列}{n a 中,已知前n 项的和n n S n -=24, 则=20a _____.5. 在等差数列}{n a 公差为2,前20项和等于100,那么20642...a a a a ++++等于________.6. 已知数列}{n a 中的3231+=+n n a a ,且2053=+a a ,则=8a _______. 7. 已知数列}{n a 满足n n a a =-+21,且11=a ,则通项公式=n a ______.8. 数列}{n a 中,如果)1(21≥=+n a a n n ,且21=a ,那么数列的前5项和=5S _.9. 两数15-和15+的等比中项是__________________.10. 等差数列}{n a 通项公式为72-=n a n ,那么从第10项到第15项的和为___.11. 已知a, b, c, d 是公比为3 的等比数列,则dc b a ++22=___________. 12. 在各项均为正数的等比数列中,若551=a a ,则=)(log 4325a a a ________.三角函数(一)1. 下列说法正确的有____________.(1)终边相同的角一定相等(2)锐角是第一象限角(3)第二象限角为钝角(4)小于︒90的角一定为锐角 (5)第二象限的角一定大于第一象限的角2. 已知角x 的终边与角︒30的终边关于y 轴对称,则角x 的集合可以表示为__________________________.3. 终边在y 轴上角的集合可以表示为________________________.4. 终边在第三象限的角可以表示为________________________.5. 在︒︒-720~360之间,与角︒175终边相同的角有__________________.6. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为________,扇形面积为__________.7. 已知角α的终边经过点(3,-4),则sin α=______ , cos α=______,tan α=_______ .8. 已知0cos 0sin ><θθ且,则角θ一定在第______象限.9. “0sin >θ”是“θ是第一或第二象限角”的________条件.10. 计算:πππ2cos cos 0tan 20sin 1223cos 7-+++=________. 11. 化简:tan cos ____θθ=.12. 已知,54cos -=α 且α为第三象限角,则_____tan _____,sin ==αα . 13. 已知31tan =α,且23παπ<<,则_____cos _____,sin ==αα . 14. 已知2tan =α,则____sin cos cos 2sin =+-αααα. 15. 计算:_____)317sin(=-π, _____)417cos(=-π. 16. 化简:____)cos()sin()2sin()cos(=----++αππαπααπ.三角函数(二)1. 求值: ︒165cos =________,=︒-)15tan(________.2. 已知21cos -=θ,θ为第三象限角,则=+)3sin(θπ________, =+)3cos(θπ________,=+)3tan(θπ________. 3. 已知x tan ,y tan 是方程0762=++x x 的两个根,则=+)tan(y x ______.4. 已知31sin =α,α为第二象限角,则=α2sin ______, =α2cos ______,=α2tan ______.5. 已知21tan =α,则=α2tan ______.6. 化简或求值:=---y y x y y x cos )cos(sin )sin(______,=︒︒-︒︒170sin 20sin 10cos 70sin ______,=-ααsin 3cos ______,____15tan 115tan 1=︒-︒+, _____5tan 65tan 35tan 65tan =︒︒-︒-︒, =︒︒15cos 15sin ____, =-2cos 2sin 22θθ______15.22cos 22-︒=______, ︒-︒150tan 1150tan 22=______.7. 已知,3tan ,2tan ==ϕθ且ϕθ,都为锐角,则=+ϕθ______.8. 已知21cos sin =+θθ,则=θ2sin ______. 9. 已知41sin =θ,则=-θθ44cos sin ______. 10. 在ABC ∆中,若,53sin ,135cos =-=B A 则=C sin ________.三角函数(三)1. 函数)4sin(π+=x y 的图象的一个对称中心是( ).A. )0,0(B. )1,4(πC. )1,43(πD. )0,43(π 2. 函数)3cos(π-=x y 的图象的一条对称轴是( ).A. y 轴B. 3π-=x C. 65π=x D. 3π=x 3. 函数x x y cos sin =的值域是________,周期是______,此函数的为____函数(填奇偶性).4. 函数x x y cos sin -=的值域是________,周期是______,此函数的为____函数(填奇偶性).5. 函数x x y cos 3sin +=的值域是________,周期是______,此函数的为____函数(填奇偶性).8. 函数)42tan(3π-=x y 的定义域是__________________,值域是________,周期是______,此函数为______函数(填奇偶性).9. 比较大小:︒︒530cos ___515cos , )914sin(____)815sin(ππ-- ︒︒143tan ____138tan , ︒︒91tan ___89tan10. 要得到函数)42sin(2π+=x y 的图象,只需将x y 2sin 2=的图象上各点____11. 将函数x y 2cos =的图象向左平移6π个单位,得到图象对应的函数解析式为________________.12. 已知22cos -=θ,)20(πθ<<,则θ可能的值有_________.三角函数(四)1. 在︒︒360~0范围内,与-1050o 的角终边相同的角是___________.2. 在π2~0范围内,与π310终边相同的角是___________. 3. 若sinα<0且cosα<0 ,则α为第____象限角.4. 在︒︒-360~360之间,与角︒175终边相同的角有_______________.5. 在半径为2的圆中,弧度数为3π的圆心角所对的弧长为______________. 6. 已知角α的终边经过点(3,-4),则cos α=______.7. 命题 “x = π2 ” 是命题 “sin x =1” 的_____________条件. 8. sin(π617-)的值等于___________. 9. 设π4 <α<π2 ,角α的正弦. 余弦和正切的值分别为a ,b ,c ,则( ). A. a <b <c B. b <a <c C. a <c <b D. c <b <a10. 已知,54cos -=α 且α为第三象限角,则_____tan =α. 11. 若 tan α=2且sin α<0,则cos α的值等于_____________.12. 要得到函数y =sin(2x -π3 )的图象,只要把函数y =sin2x 的图象( ).A.向左平移π3 个单位B. 向右平移π3 个单位C.向左平移π6 个单位D. 向右平移π6 个单位13. 已知tan α=-3 (0<α<2π),那么角α所有可能的值是___________14. 化简cos x sin(y -x )+cos(y -x )sin x 等于_____________15. cos25o cos35o –sin25o sin35o 的值等于_____________(写具体值).16. 函数y =sin x +cos x 的值域是( )A.[-1,1]B.[-2,2]C.[-1, 2 ]D.[- 2 , 2 ]17. 函数y =cos x - 3 sin x 的最小正周期是( )A.2πB. 4π C. π π18. 已知sin α=53,90o <α<180o ,那么sin2α的值__________. 19. 函数y=cos 2 x -sin 2x 的最小正周期是( )A. 4πB. 2πC. πD. π220. 函数y =sin x cos x 是( )A.周期为2π的奇函数B. 周期为2π的偶函数C. 周期为π的奇函数D. 周期为π的偶函数21. 已知2tan =α,则=α2tan ________.练习九 平面向量(一)1. 下列说法正确的有______________.(1)零向量没有方向 (2)零向量和任意向量平行(3)单位向量都相等 (4)(a ·b )·c =a ·(b ·c )(5)若a ·c = b ·c ,且c 为非零向量,则a =b(6)若a ·b =0,则a,b 中至少有一个为零向量.2. “b a =”是“a ∥b ”的________________条件.3. 下列各式的运算结果为向量的有________________.(1)a +b (2)a -b (3)a ·b (4)λa (5)||b a + (6)a ·04. 计算:=-++MP MN NQ QP ______.5. 如图,在ABC ∆中,BC 边上的中点为M ,设=AB a, =AC b ,用a , b 表示下列向量:=BC ________,=AM ________,=MB ________.=AB a,6. 在□ABCD 中,对角线AC ,BD 交于O 点,设=AD b ,用a , b 表示下列向量:=AC ________,.=BD ________,=CO ________,=OB ________.7. 已知21,e e 不共线,则下列每组中a , b 共线的有______________.(1)113,2e b e a -== (2)213,2e b e a -==(3)212121,2e e b e e a +-=-= (4)2121,e e b e e a +=-= 8. 已知,4||,3||==b a 且向量b a,的夹角为︒120,则=b a ·________, =-||b a __________.9. 已知)1,1(),3,2(-==b a ,则=-b a 2______,=b a ·________, =||a ______,向量b a,的夹角的余弦值为_______.12. 已知)1,2(),2,1(-==b a k ,当b a,共线时,k =____;当b a,垂直时,k =____.13. 已知)4,2(),2,1(B A -,)3,(x C ,且A,B,C 三点共线,则x =______.14. 把点)5,3(P 按向量a =(4,5)平移至点P ’,则P ’的坐标为_______.15. 将函数22x y =的图象F 按a =(1,-1)平移至F ’, 则F ’的函数解析式为____.16. 将一函数图象按a =(1,2)平移后,所得函数图象所对应的函数解析式为x y lg =,则原图象的对应的函数解析式为_______.17. 将函数x x y 22+=的图象按某一向量平移后得到的图象对应的函数解析式为2x y =,则这个平移向量的坐标为________.18. 已知)3,2(),5,1(B A ,点M 分有向线段AB 的比2-=λ,则M 的坐标为____.19. 已知P 点在线段21P P 上,21P P =5,P P 1=1,点P 分有向线段21P P 的比为__.20. 已知P 点在线段21P P 的延长线上,21P P =5,P P 2=10,点P 分有向线段21P P 的比为_____.21. 在ABC ∆中,︒=45A ,︒=105C ,5=a ,则b =_______.22. 在ABC ∆中,2=b ,1=c ,︒=45B ,则C =_______.23. 在ABC ∆中,32=a ,6=b ,︒=30A ,则B =_______.24. 在ABC ∆中,3=a ,4=b ,37=c ,则这个三角形中最大的内角为______.25. 在ABC ∆中,1=a ,2=b ,︒=60C ,则c =_______.26. 在ABC ∆中,7=a ,3=c ,︒=120A ,则b =_______.平面向量(二)1. 小船以10 3 km/h 的速度向垂直于对岸的方向行驶,同时河水的流速为10km/h ,则小船实际航行速度的大小为( ).2 km/h h C. 10 2 km/h D. 10km/h2. 若向量→a =(1,1),→b =(1,-1),→c =(-1,2),则→c =( ).A. -12 →a +32 →bB. 12 →a -32 →bC. 32 →a -12 →bD.- 32 →a +12 →b3. 有以下四个命题:① 若→a ·→b =→a ·→c 且→a ≠→0,则→b =→c ;② 若→a ·→b =0,则→a =→0或→b =→0;③ ⊿ABC 中,若→AB ·→AC >0,则⊿ABC 是锐角三角形;④ ⊿ABC 中,若→AB ·→BC =0,则⊿ABC 是直角三角形.其中正确命题的个数是( ).4. 若|→a |=1,|→b |=2,→c =→a +→b ,且→c ⊥→a ,则向量→a 与→b 的夹角为( ).D150o5. 已知→a . →b 是两个单位向量,那么下列命题中真命题是( ).A. →a =→bB. →a ·→b =0C. |→a ·→b |<1D. →a 2=→b 26. 在⊿ABC 中,AB =4,BC =6,∠ABC =60o ,则AC 等于( ).A. 28B. 76C. 27D. 2197. 在⊿ABC 中,已知a = 3 +1, b =2, c = 2 ,那么角C 等于( ).A. 30oB. 45oC. 60oD. 120o8. 在⊿ABC 中,已知三个内角之比A :B :C =1:2:3,那么三边之比a :b :c =(). A. 1: 3 :2 B. 1:2:3 C. 2: 3 :1 D. 3:2:1不等式1. 不等式3|21|>-x 的解集是__________.2. 不等式2|1|≤-x 的解集是__________.3. 不等式42>x 的解集是__________.4. 不等式022>--x x 的解集是__________.5. 不等式012<++x x 的解集是__________.6. 不等式032≥--xx 的解集是__________. 7. 已知不等式02>++n mx x 的解集是}2,1|{>-<x x x 或,则m 和n 的值分别为__________.8. 不等式042>++mx x 对于任意x 值恒成立,则m 的取值范围为________.9. 已知d c b a >>,,下列命题是真命题的有_______________.(1)d b c a +>+ (2)d b c a ->- (3)x b x a ->- (4)bd ac > (5)c b d a > (6)22b a > (7)33b a > (8)33b a > (9)ba 11< (11) 22bx ax > 10. 已知64,52<<<<b a ,则b a +的取值范围是______________,则a b -的取值范围是______________,ab 的取值范围是___________. 11. 已知0,>b a 且,2=ab 则b a +的最___值为_______.12. 已知0,>b a 且,2=+b a 则ab 的最___值为_______.13. 已知,0>m 则函数mm y 82+=的最___值为_______, 此时m =_______.14. a >0,b >0是ab >0的( ).A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充分必要条件D. 既非充分条件也非必要条件15. 若0<<b a ,则下列不等关系不能成立的是( ).A. b a 11>B. ab a 11>- C. ||||b a > D. 22b a > 16. 若0>>b a ,0>m ,则下列不等式中一定成立的是( ).A. m a m b a b ++>B. m b m a b a -->C. m a m b a b ++<D. mb m a b a --< 17. 若0>x ,则函数xx y 1+=的取值范围是( ). A.]2,(--∞ B. ),2[+∞ C. ),2[]2,(+∞--∞ D. ]2,2[-18. 若0≠x ,则函数22364x xy --=有( ). A. 最大值264- B. 最小值264-C. 最大值264+D. 最小值264+19. 解下列不等式:(1) 5|32|1<-≤x (2) 6|5|2>-x x(3) 10|83|2<-+x x解析几何(一)1. 已知直线l 的倾斜角为︒135,且过点)3,(),1,4(--m B A ,则m 的值为______.2. 已知直线l 的倾斜角为︒135,且过点)2,1(,则直线的方程为____________.3. 已知直线的斜率为4,且在x .轴.上的截距为2,此直线方程为____________.4. 直线023=+-y x 倾斜角为____________.5. 直线042=+-y x 与两坐标轴围成的三角形面积为__________.6. 直线042=+-y x 关于y 轴对称的直线方程为________________.7. 过点)3,2(P 且在两坐标轴上截距互为相反数的直线方程为_____________.8. 下列各组直线中,互相平行的有____________;互相垂直的有__________.(1)022121=+-+=y x x y 与 (2)0322=-+-=y x x y 与 (3)0322=--=y x x y 与 (4)023=++y x 与33+=x y(5)052052=+=+y x 与 (6)052052=-=+x x 与9. 过点(2,3)且平行于直线052=-+y x 的方程为________________.过点(2,3)且垂直于直线052=-+y x 的方程为________________.10. 已知直线01:,022:21=--+=--+a y ax l a ay x l ,当两直线平行时,a =______;当两直线垂直时,a =______.11. 直线53=-y x 到直线032=-+y x 的角的大小为__________.12. 设直线0243:,022:,0243:321=+-=++=-+y x l y x l y x l ,则直线21l l 与的交点到3l 的距离为____________.13. 平行于直线0243=-+y x 且到它的距离为1的直线方程为____________.解析几何(二)1. 圆心在)2,1(-,半径为2的圆的标准方程为____________,一般方程为__________,参数方程为______________.2. 圆心在点)2,1(-,与y 轴相切的圆的方程为________________,与x 轴相切的圆的方程为________________,过原点的圆的方程为________________3. 半径为5,圆心在x 轴上且与x =3相切的圆的方程为______________.4. 已知一个圆的圆心在点)1,1(-,并与直线0334=+-y x 相切,则圆的方程为______.5. 点)1,1(-P 和圆024222=--++y x y x 的位置关系为________________.6. 已知4:22=+y x C 圆,(1)过点)3,1(-的圆的切线方程为________________.(2)过点)0,3(的圆的切线方程为________________.(3)过点)1,2(-的圆的切线方程为________________.(4)斜率为-1的圆的切线方程为__________________.7. 已知直线方程为043=++k y x ,圆的方程为05622=+-+x y x(1)若直线过圆心,则k =_________.(2)若直线和圆相切,则k =_________.(3)若直线和圆相交,则k 的取值范围是____________. (4)若直线和圆相离,则k 的取值范围是____________.8. 在圆822=+y x 内有一点)2,1(-P ,AB 为过点P 的弦.(1)过P 点的弦的最大弦长为__________.(2)过P 点的弦的最小弦长为__________.解析几何(三)1. 已知椭圆的方程为116922=+x y ,则它的长轴长为______,短轴长为______, 焦点坐标为________,离心率为________,准线方程为____________.在坐标系中画出图形.2. 已知双曲线的方程为116922=-x y ,则它的实轴长为______,虚轴长为______,焦点坐标为________,离心率为________,准线方程为____________,渐近线方程为__________. 在坐标系中画出图形.3. 经过点)2,0(),0,3(--Q P 的椭圆的标准方程是_____________.4. 长轴长为20,离心率为53,焦点在y 轴上的椭圆方程为__________. 5. 焦距为10,离心率为35,焦点在x 轴上的双曲线的方程为__________. 6. 与椭圆1492422=+y x 有公共焦点,且离心率为45的双曲线方程为________. 7. 已知椭圆的方程为16422=+y x ,若P 是椭圆上一点,且,7||1=PF则________||2=PF .8. 已知双曲线方程为14491622-=-y x ,若P 是双曲线上一点,且,7||1=PF 则________||2=PF .9. 已知双曲线经过)5,2(-P ,且焦点为)6,0(±,则双曲线的标准方程为______10. 已知椭圆12516922=+y x 上一点P 到左焦点的距离为12,则P 点到左准线的距离为__________.11. 已知双曲线1366422=-y x 上点P 到右准线的距离为532,则P 点到右焦点的距离为__________.12. 已知一等轴双曲线的焦距为4,则它的标准方程为____________________.13. 已知曲线方程为14922=-+-k y k x , (1) 当曲线为椭圆时,k 的取值范围是______________.(2) 当曲线为双曲线时,k 的取值范围是______________.14. 方程y 2 = 2px (p >0)中的字母p 表示( ).A .顶点、准线间的距离B .焦点、准线间的距离C .原点、焦点间距离D .两准线间的距离15. 抛物线x y 22=的焦点坐标为__________,准线方程为____________.16. 抛物线y x 212-=的焦点坐标为__________,准线方程为____________.17. 顶点在原点,对称轴为坐标轴,焦点为)0,2(-的抛物线方程为________.18. 顶点在原点,对称轴为坐标轴,准线方程为81-=y 的抛物线方程为____. 19. 经过点)8,4(-P ,顶点在原点,对称轴为x 轴的抛物线方程为__________.解析几何(四) 1. 如果直线l 与直线3x -4y +5=0关于y 轴对称,那么直线l 的方程为_____.2. 直线3x + y +1=0的倾斜角的大小是__________.3. 过点(1,-2)且倾斜角的余弦是-35 的直线方程是______________.4. 若两条直线l 1: ax +2y +6=0与l 2: x +(a -1)y +3=0平行,则a 等于_________.5. 过点(1,3)且垂直于直线052=-+y x 的方程为________________.6. 图中的阴影区域可以用不等式组表示为( ).A. ⎪⎩⎪⎨⎧≤+-≤≥0110y x y xB.⎪⎩⎪⎨⎧≤+-≥≤0101y x y x C. ⎪⎩⎪⎨⎧≥+-≥≤0101y x y x D. ⎪⎩⎪⎨⎧≥+-≥≥0101y x y x 7. 已知圆的直径两端点为)4,3(),2,1(-,则圆的方程为_____________.8. 圆心在点)2,1(-且与x 轴相切的圆的方程为________________.9. 已知02024:22=---+y x y x C 圆,它的参数方程为_________________.10. 已知圆的参数方程是θθsin 2cos 2{==y x (θ为参数),那么该圆的普通方程是______ 11. 圆x 2+y 2-10x=0的圆心到直线3x +4y -5=0的距离等于___________.12. 过圆x 2+y 2=25上一点P(4, 3),并与该圆相切的直线方程是____________.13. 已知椭圆的两个焦点是F 1(-2, 0)、F 2(2, 0),且点A(0, 2)在椭圆上,那么这个椭圆的标准方程是_________.14. 已知椭圆的方程为x 29 +y 225 =1,那么它的离心率是__________.15. 已知点P 在椭圆x 236 +y 2100 =1上,且它到左准线的距离等于10,那么点P 到左焦点的距离等于______.16. 与椭圆x 29 +y 24 =1有公共焦点,且离心率e =52 的双曲线方程是( )A. x 2-y 24 =1B. y 2-x 24 =1C. x 24 -y 2=1D. y 24 -x 2=117. 双曲线x 24 -y 29 =1的渐近线方程是___________.18. 如果双曲线x 264 -y 236 =1上一点P 到它的右焦点的距离是5,那么点P 到它的右准线的距离是___________.19. 抛物线x y 22=的焦点坐标为__________.20. 抛物线y x 212-=的准线方程为__________. 21. 若抛物线y 2=2px 上一点横坐标为6,这个点与焦点的距离为10,那么此 抛物线的焦点到准线的距离是_______.立体几何(一)判断下列说法是否正确:1. 下列条件,是否可以确定一个平面:[ ](1)不共线的三个点[ ](2)不共线的四个点[ ](3)一条直线和一个点[ ](4)两条相交或平行直线2. 关于空间中的直线,判断下列说法是否正确:[ ](1)如果两直线没有公共点,则它们平行[ ](2)如果两条直线分别和第三条直线异面,则这两条直线也异面[ ](3)分别位于两个平面内的两条直线是异面直线[ ](4)若βαβα//,,⊂⊂b a ,则a,b 异面[ ](5)不在任何一个平面的两条直线异面[ ](6)两条直线垂直一定有垂足[ ](7)垂直于同一条直线的两条直线平行[ ](8)若c a b a //,⊥,则b c ⊥[ ](9)过空间中一点有且只有一条直线和已知直线垂直[ ](10)过空间中一点有且只有一条直线和已知直线平行3. 关于空间中的直线和平面,判断下列说法是否正确:[ ](1)直线和平面的公共点个数可以是0个,1个或无数[ ](2)若,,//α⊂b b a 则α//a[ ](3)如果一直线和一平面平行,则这条直线和平面的任意直线平行[ ](4)如果一条直线和一个平面平行,则这条直线和这个平面内的无数条直线平行[ ](5)若两条直线同时和一个平面平行,则这两条直线平行[ ](6)过平面外一点,有且只有一条直线和已知平面平行[ ](7)过直线外一点,有无数个平面和已知直线平行[ ](8)若共面且b a b a ,,,//αα⊂,则b a //4. 关于空间中的平面,判断下列说法是否正确:[ ](1)两个平面的公共点的个数可以是0个,1个或无数[ ](2)若b a b a //,,βα⊂⊂,则βα//[ ](3)若βαβα//,,⊂⊂b a ,则a βαα//,⊂a β//a αα//,//b a b a //βα//,//a a βα//αβα⊂a ,//β//a 关于直线与平面的垂直,判断下列说法是否正确:[ ](1)如果一直线垂直于一个平面内的所有直线,则这条直线垂直于这个平面[ ](2)若αα⊂⊥a l ,,则a l ⊥[ ](3)若m l m ⊥⊂,α,则α⊥l[ ](4)若n l m l n m ⊥⊥⊂,,,α,则α⊥l[ ](5)过一点有且只有一条直线和已知平面垂直[ ](6)过一点有无数个平面和已知直线垂直6. 关于平面和平面垂直,判断下列说法是否正确:[ ] (1)若,,βα⊥⊂a a 则βα⊥[ ] (2)若b a b a ⊥⊂⊂,,βα,则βα⊥[ ] (3)若,,,βαβα⊂⊂⊥b a ,则b a ⊥[ ] (4)若,,βαα⊥⊂a 则β⊥a[ ] (6)若γαβα//,⊥,则γβ⊥[ ] (7)垂直于同一个平面的两个平面平行[ ] (8)垂直于同一条直线的两个平面平行[ ] (9)过平面外一点有且只有一个平面与已知平面垂直7. 判断下列说法是否正确:[ ] (1)两条平行线和同一平面所成的角相等[ ] (2)若两条直线和同一平面所的角相等,则这两条直线平行[ ] (3)平面的平行线上所有的点到平面的距离都相等[ ] (4)若一条直线上有两点到一个平面的距离相等,则这条直线和平面平行立体几何(二)1. 若平面的一条斜线长为2,它在平面内的射影的长为3,则这条斜线和平面所成的角为________.2. 在一个锐二面角的一个面内有一点,它到棱的距离是到另一个平面距离的2倍,则这个二面角的大小为________.3. 已知AB 为平面α的一条斜线,B 为斜足,α⊥AO ,O 为垂足,BC 为平面内的一条直线,︒=∠︒=∠45,60OBC ABC ,则斜线AB 与平面所成的角的大小为________.4. 观察题中正方体ABCD-A 1B 1C 1D 1中, 用图中已有的直线和平面填空:(1) 和直线BC 垂直的直线有_________________.(2) 和直线BB 1垂直且异面的直线有__________.(3) 和直线CC 1平行的平面有________________.(4) 和直线BC 垂直的平面有________________.(5) 和平面BD 1垂直的直线有________________.5. 在边长为a 正方体!111D C B A ABCD -中(1)C B C A 111与所成的角为________.(2)1AC 与平面ABCD 所成的角的余弦值为________.(3)平面ABCD 与平面11B BDD 所成的角为________.(4)平面ABCD 与平面11B ADC 所成的角为________.(5)连结11,,DA BA BD ,则二面角1A BD A --的正切值为________.(6)BC AA 与1的距离为________.(7)11BC AA 与的距离为________.6. 在棱长均为a 的正三棱锥ABC S -中,(1) 棱锥的高为______.(2) 棱锥的斜高为________.(3) SA 与底面ABC 的夹角的余弦值为________.(4) 二面角A BC S --的余弦值为________.(5) 取BC 中点M ,连结SM ,则AC 与SM 所成的角的余弦值是_____.(6) 若一截面与底面平行,交SA 于A ’,且SA’:A’A =2:1,则截面的面积为______.7. 在棱长均为a 的正四棱锥ABCD S -中,(1) 棱锥的高为______.(2) 棱锥的斜高为________.(3) SA 与底面ABCD 的夹角为________.(4) 二面角A BC S --的大小为________. 8. 已知正四棱锥的底面边长为24,侧面与底面所成的角为︒45,那么它的侧面积为_________.9. 在正三棱柱111C B A ABC -中,底面边长和侧棱长均为a , 取AA 1的中点M ,连结CM ,BM ,则二面角A BC M --的大小为 _________.10.已知长方体的长、宽、高分别是2、3、4,那么它的一条对角线长为_____.11. 在正三棱锥中,已知侧面都是直角三角形,那么底面边长为a 时,它的全面积是______.12. 若球的一截面的面积是π36,且截面到球心的距离为8,则这个球的体积为______,表面积为_________.13. 半径为R 球的内接正方体的体积为__________.14. 已知两个球的大圆面积比为1:4,则它们的半径之比为________,表面积之比为_______,体积之比为______. 练习二十 立体几何(三)解答题:1. 在四棱锥ABCD P -中,底面是边长为a 的正方形,侧棱a PD =,a PC PA 2==.(1) 求证:ABCD PD 平面⊥;(2) 求证:AC PB ⊥;(3) 求PA 与底面所成角的大小;(4) 求PB 与底面所成角的余弦值.2. 在正四棱柱1111D C B A ABCD -中,AB =1,21=AA .(1) 求1BC 与ABCD 平面所成角的余弦值;(2) 证明:BD AC ⊥1;(3) 求1AC 与ABCD 平面所成角的余弦值.3. 在直三棱柱ABC-A 1B 1C 1中,D 是AB 的中点,AC =BC=2,AA 1=32.(1) 求证:DC D A ⊥1;(2) 求二面角A CD A --1的正切值;(3) 求二面角A BC A --1的大小.4. 四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD ,且BD =6, PB 与底面所成角的正切值为66(1) 求证:PB ⊥AC ;(2) 求P 点到AC 的距离.。

相关文档
最新文档