西南交通大学2013大物参考答案NO8导体 介质中的静电场
西南交大大物试卷答案08A
西南交⼤⼤物试卷答案08A《⼤学物理AII 》作业 No.8 量⼦⼒学基础⼀、选择题1. 如果两种不同质量的粒⼦,其德布罗意波长相同,则这两种粒⼦的 [ A ] (A) 动量⼤⼩相同。
(B) 能量相同。
(C) 速度⼤⼩相同。
(D) 动能相同。
解:由德布罗意关系λhp =可知,粒⼦波长相同,动量⼤⼩必然相同。
由于粒⼦质量不同,所以,粒⼦速度、动能和能量将不同。
2. 若α粒⼦在磁感应强度⼤⼩为B 的均匀磁场中沿半径为R 的圆形轨道运动,则粒⼦的德布罗意波长是 [ A ] (A)eRB h 2 (B) eRBh(C) eRB 21 (D) eRBh 1 解:由B v q F ?=和Rv m F n 2=,有半径eB mvqB mv R 2==,所以德布罗意波长eBRhmv h 2==λ。
3. 设粒⼦运动的波函数图线分别如图(A)、(B)、(C)、(D)所⽰,那么其中确定粒⼦动量的精确度最⾼的波函数是哪个图?[ A ]解:由不确定关系 ≥x p x 可知,x ?⼤,x p ?⼩,图(A)x ?最⼤,所以x p ?最⼩,确定粒⼦动量的精确度最⾼。
4. 关于不确定关系??=≥π2h p x x有以下⼏种理解:(1) 粒⼦的动量不可能确定。
(2) 粒⼦的坐标不可能确定。
(3) 粒⼦的动量和坐标不可能同时确定。
(4) 不确定关系不仅适⽤于电⼦和光⼦,也适⽤于其它粒⼦。
()D xx x ()A()B ()C其中正确的是:[ C ] (A) (1)、(2) (B) (2)、(4) (C) (3)、(4) (D) (4)、(1)5. 已知粒⼦在⼀维矩形⽆限深势阱中运动,其波函数为:()()a x a a x ax ≤≤-?=23cos1πψ那么粒⼦在6/5a x =处出现的概率密度为[ A ] (A)a 21 (B) a 1(C) a21 (D) a1解:概率密度()a x a x 23cos 122πψ=,将6/5a x =代⼊,得()aa a a x 216523cos 122==πψ⼆、填空题1. 若中⼦的德布罗意波长为2?,则它的动能为J1029.321-?。
大物AI作业参考解答_No.08 静电场中的导体和电介质
《大学物理AI 》作业No.08静电场中的导体和电介质班级________学号________姓名_________成绩______--------------------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解静电平衡的条件,理解静电感应、静电屏蔽的原理;2、掌握静电平衡时导体表面感应电荷的分布和电场、电势的计算;3、了解电介质的极化现象和微观解释,理解电位移矢量D的定义,确切理解电介质中的高斯定理,并能利用它求解有电介质存在时具有一定对称性的电场问题;4、理解电容的定义,掌握电容器电容的计算方法;5、掌握电容器的储能公式,理解电场能量密度的概念,并能计算电荷系的静电能;6、理解电流强度和电流密度的概念,理解恒定电场的特点及电源电动势的概念。
--------------------------------------------------------------------------------------------------------------------一、选择题:1.把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示。
设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则[D ](A)U B >U A ≠0(B)U B >U A =0(C)U B =U A (D)U B <U A解:电力线如图所示,电力线指向电势降低的方向,所以U B <U A 。
2.半径分别为R 和r 的两个金属球,相距很远。
用一根细长导线将两球连接在一起并使它们带电。
在忽略导线的影响下,两球表面的电荷面密度之比为[D ](A)R/r (B)R 2/r 2(C)r 2/R 2(D)r/R解:两个金属球用导线相接意味着它们的电势相等,设它们各自带电为21q q 、,选无穷远处为电势0点,那么有:rq Rq 020144,我们对这个等式变下形r R rr r q R R R q 21020144 ,即面电荷密度与半径成反比。
西南交大大学物理A 第八次作业答案
《大学物理AI》作业导体介质中的静电场班级________ 学号________ 姓名_________ 成绩_______ 一、判断题:(用“T”和“F”表示)[ F ] 1.达到静电平衡的导体,电场强度处处为零。
解:达到静电平衡的导体,内部场强处处为0,表面场强处处垂直于表面。
[ F ] 2.负电荷沿导体表面运动时,电场力做正功。
解:达到静电平衡的导体,表面场强与表面处处垂直,所以电场力做功为0。
也可以这样理解:达到静电平衡的导体是个等势体,导体表面是个等势面,那么当电荷在导体表面运动时,电场力不做功(因为电场力做功数值上等于电势能增量的负值)。
[ F ] 3. 导体接地时,导体上的电荷为零。
解:导体接地,仅意味着导体同大地等电势。
导体上的电荷是全部入地还是部分入地就要据实际情况而定了。
[ F ] 4.电介质中的电场是由极化电荷产生的。
解:电介质中的电场是总场,是自由电荷和极化电荷共同产生的。
[ T ] 5.将电介质从已断开电源的电容器极板之间拉出来时,电场力做负功。
解:拔出电介质,电容器的电容减少,而电容器已与电源断开,那么极板上的电量不变,电源不做功。
此时,电容器储能变化为:0222'2>-=∆CQ C Q W ,即电容器储能是增加的,而电场力做功等于电势能增量的负值,那么电场力应该做负功。
二、选择题:1.把A ,B 两块不带电的导体放在一带正电导体的电场中,如图所示。
设无限远处为电势零点,A 的电势为U A ,B 的电势为U B ,则[ D ] (A) U B > U A ≠0(B) U B > U A = 0(C) U B = U A (D) U B < U A解:电力线如图所示,电力线指向电势降低的方向,所以U B < U A 。
2.半径分别为 R 和 r 的两个金属球,相距很远。
用一根细长导线将两球连接在一起并使它们带电。
在忽略导线的影响下,两球表面的电荷面密度之比为[ D ] (A) R/r (B) R 2/r 2(C) r 2/ R 2(D) r/R解:两个金属球用导线相接意味着它们的电势相等,设它们各自带电为21q q 、,选无穷远处为电势0点,那么有:rq Rq 020144πεπε=,我们对这个等式变下形r R rr rq R R R q 21020144σσπεπε=⇒⋅⋅=⋅⋅,即面电荷密度与半径成反比。
大学物理A2-静电场中的导体和电介质习题解答
U 0 U q U q U Q q Qq 4 0 r 4 0 a 4 0b q q 1 1 1 Q ( ) 4 0 r a b 4 0b q
2.如图11所示,圆柱形电容器由半径为R1和R2、长度 为L的两同轴金属圆柱面组成,设L>>R2(忽略两端边 缘效应),求该圆柱形电容器的电容。 解:设内外圆柱面分别带电量Q和-Q 。 在两圆柱面之间作半径为r的高斯柱面, 则由高斯定理
a r
q
b
解:(1)由静电感应,金属球壳的内表面上有感应电 荷-q,外表面上带电荷q + Q。 (2)不论球壳内表面上的感应电荷是如何分布的, 因为任一电荷元离O点的距离都是a,所以由这些电 荷在O点产生的电势为
U q
4 0 a
dq
q 4 0 a
(3)球心O点处的总电势为分布在球壳内外表面上 的电荷和点电荷q在O点产生的电势的代数和
q
q
4、
( 1 2 )S Q
3 4 0
1 2 3 4 0 2 0 2 0 2 0 2 0
1 2 3 4 0 2 0 2 0 2 0 2 0
解得:
Q Q 1 2 ; 3 4 2S 2S
大学物理学练习题题解
静电场中的导体和电介质 ——题解 一、选择题
1、D
2、B
根据导体处于静电平衡的性质
4 0 R1
q1
r2
4 0 R2
q2
3、D
U p 0dr
r
Q 4 0 r
2
r2
dr
4、D
2q r R2 , E ;U p Edr 2 R2 4 0 r
大学物理作业-静电场中的电介质一解答
02
圆柱形电容器储能计 算
对于圆柱形电容器,其储能$W = frac{1}{2} pi R^2 L varepsilon_0 E^2$,其中$R$为圆柱底面半径,$L$ 为圆柱高,$varepsilon_0$为真空介电 常数,$E$为电场强度。
03
实例分析
通过具体数值代入公式进行计算,可 得电容器储存的能量。
电介质在生物医学中的应用
近年来,电介质在生物医学领域的应用逐渐受到关注。例 如,利用电介质的生物相容性和导电性,可以开发出用于 生物组织工程、神经刺激和生物传感等方面的新型生物医 学器件和系统。
THANKS
感谢您的观看
绝缘体
绝缘体在静电场中不导电,其内部和 表面均可存在电荷分布。绝缘体的电 导率极低,因此可以保持电荷长时间 不变。
Part
02
电介质在静电场中表现
电介质极化现象
电介质极化定义
电介质在静电场作用下,内部正 负电荷中心发生相对位移,导致 电介质两端出现等量异号电荷的 现象。
极化方式
电介质极化方式包括电子极化、 原子极化和取向极化等。
不同类型电介质特性比较
绝缘体电介质 电阻率高,导电性能差, 1
极化率较低,主要用于电 气绝缘。
分子晶体电介质 4
由分子通过分子间作用力 结合而成,极化率和介电 常数均较低。
半导体电介质
2
电阻率介于导体和绝缘体之间
,具有一些特殊的电学性质,
如压电效应、热电效应等。
离子晶体电介质 3 由正负离子通过离子键结
相关领域前沿动态介绍
01 02 03
电介质材料的研究与应用
随着科技的发展,人们对于电介质材料的研究和应用不断 深入。新型的电介质材料不断涌现,如高介电常数材料、 压电材料、铁电材料等,它们在电子器件、传感器、能源 转换等领域具有广泛的应用前景。
大学物理 第七章静电场中的导体、电介质答案
第七章 静电场中的导体、电介质答案一、选择1.(C )2.(B)3.(C)4.(A)5.(D)6.(D)7.(A)8.(D )9.(A) 10(C) 11(B)12.(C) 13.(C) 14.(B) 15.(D) 16.(A) 17.(D) 18.(C) 19 .(B) 20.( B)21.( C) 22.( B)23.(C) 24.(D) 25.(A) 二、填空1. -q ; -q;2.不变,减小;3.σ(x 、y 、z )/ε0 ,与导体表面垂直朝外(σ>0)或与导体表面垂直朝里(σ<o ) ;4.0、C r q 04πε;5.S Qd 02ε;S Qd0ε; 6.)(21B A q q -; S d q q B A 02)(ε-; 7. 电位移线 、 电力线 ;8.r πλ2/,r r επελ02/ ;9. u/d ,d-t , u/d ;10.σ,)(/r 0εεσ;11.2C 0 ;12.-Q 2/(4C) ;13. R 1/R 2 ; )(4210R R +πε;R 2/R 1 ; 14.r 02πελ;204r L πελ;15. 8.85×10-10C ·m -2 , 负 ;16. 正;17. 9.421310-⋅⨯m V , C 9105-⨯; 18. 2221r r ;19.1/εr20. 2:1, 1:2, 2:9;三、计算题:1. 解:由题给条件(b-a )≤a 和L ≥b ,忽略边缘效应,将两同轴圆筒导体看作是无限长带电体,根据高斯定理可以得到两同轴圆筒导体之间的电场强度为r 00/2/)(επε⎰⎰==∑=⋅s sQ rLE Eds q s d E 内 Lr2QE 0πε= 同轴圆筒之间的电势差: 00ln 22b b a aQ dr Q b U E dl L r L a πεπε=⋅==⎰⎰ 根据电容的定义:02ln L Q C b U aπε== 电容器储存的能量:2201ln 24Q b W cU L aπε==2. 解: (1)设内、外球壳分别带电荷为+Q 和-Q ,则两球壳间的电位移大小为 2=/(4r )D Q π场强大小为20 =/(4r )r E Q πεε2101222020124)()11(442121R R R R Q R R Q r dr Q r d E U r r R R r R R επεεπεεπε-=-==⋅=⎰⎰电量 )/(41221120R R R R U Q r -=επε(2) 电容 12210124R R R R U Q C r -==επε (3)电场能量 1221221021222R R U R R CU W r -==επε3.解:设极板上分别带电量+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为E 1=q/(ε0S )金属片内部场强为E 2=q/(ε0S )金属片内部场强为E ’=0 则两极板间的电势差为 U A -U B =E 1d 1+E 2d 2=[q/(ε0S )](d 1+d 2) =[q/(ε0S )](d-t)由此得C=q/(U A -U B )=ε0S/(d-t) 因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值无影响。
大学物理西南交大作业参考答案
电势、导体与※电介质中的静电场 (参考答案)班级: 学号: 姓名: 成绩: 一 选择题1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为:(A )r q04πε; (B ))(041R Qrq +πε; (C )rQq 04πε+; (D ))(041R qQ rq -+πε;参考:电势叠加原理。
[ B ]2.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为:(A ))(210114r r Q --πε; (B ))(21114r r qQ-πε;(C ))(210114r r qQ--πε; (D ))(4120r r qQ --πε。
参考:电场力做功=势能的减小量。
A=W a -W b =q(U a -U b ) 。
[ C ]3N 点,有人(A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。
r 2 (-Qbr 1B a(q )[ C ]4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为: (A )0; (B )d q04πε; (C )-R q04πε; (D ))(1140R dq-πε。
外表面无电荷(可分析)。
虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。
[ D ]※5.在半径为R 的球的介质球心处有电荷+Q ,在球面上均匀分布电荷-Q ,则在球内外处的电势分别为: (A )内r Qπε4+,外r Q 04πε-; (B )内r Qπε4+,0; 参考:电势叠加原理。
西南交通大学2013大物参考答案NO6电场强度
O
� E
a P
dr
σ a [1 − ] 2 2 2 ε (a + r ) 0 a +R 0 1 σ a 1 σ 由题意: E = E0 ,即 , [1 − ]= ⋅ 2 2 2 2ε 0 2 2ε 0 a +R 可得 R = 3a E = ∫ dE =
σa 2ε 0
R
∫
rd r
R
2
2
3
=
3.设电荷体密度沿 x 轴方向按余弦规律 ρ = ρ 0 cos x 分布在整个空间,式中 ρ 为电荷体 密度, ρ 0 为其幅值,试求空间的电场强度分布。 (要求:作图、分析) 解:由题意:电荷体密度沿 X 轴方向按余弦规律变化,则带电体可视为沿 X 轴方向不同 位置不同均匀面密度的无限大带电平面组成,因而电场分布具有面对称性。即场强 E 必 沿 X 轴,且相对于 YOZ 平面对称分布。在 ± x 处对称作与 X 轴垂直的两个相同平面,面 积为 S,用与 X 轴平行的侧面将其封闭为高斯面,如图所示。
B
C A
( A)
� E
C A
( B)
C
A
(C )
� E
C
A
� E
( D)
解:点电荷受电场力 F = qE = ma ,质点作曲线运动,法向加速度为 a n 不为零,则 F 、
�
�
�
�
� E 不可能沿切向;又因质点速率递减, a t 一定与运动方向相反,所以
选D
3.在空间有一非均匀电场,其电力线分布如图所示,在电场中作一半径为 R 的闭合球面 S,已知通过球面上某一面元 ∆S 的电场强度通量为 ∆Φe ,则通过该球面其余部分的电场 强度通量为: [ A ] (A) − ∆Φe (B)
2013年高考物理静电场部分
2013年高考物理静电场部分2013年高考真题——(全国卷大纲版)25.(19分)一电荷量为q (q >0)、质量为m 的带电粒子在匀强电场的作用下,在t =0时由静止开始运动,场强随时间变化的规律如图所示。
不计重力,求在t =0到t =T 的时间间隔内(1)粒子位移的大小和方向; (2)粒子沿初始电场反方向运动的时间。
25.(19分)解法一:粒子在0~/4T 、/4T ~/2T 、/2T ~3/4T 、3/4T ~T 时间间隔内做匀变速运动,设加速度分别为a 1、a 2、a 3、a 4,由牛顿第二定律得01qE ma =、022qE ma =-、032qE ma =、04qE ma =- (每个式子1分)由此得带电粒子在0~T 时间间隔内运动的a —t 图像如图(a )所示(2分),对应的v —t 图像如图(b )所示(3分),其中 01144qE TT a m==v (1分) 由图(b )可知,带电粒子在t =0到t =T 时的位移为14Ts =v (2分) 联立解得 2016qE T s m= (2分)它的方向沿初始电场正方向。
(1分)(2)由图(b )可知,粒子在t =3/8T 到t =5/8T 内沿初始电场反方向运动,总的运动时间为 53884T T T t =-= (4分) 解法二:带电粒子在粒子在0~/4T 、/4T ~/2T 、/2T ~3/4T 、3/4T ~T 时间间隔内做匀变速运动,设加速度分别为a 1、a 2、a 3、a 4,由牛顿第二定律得01qE ma =、022qE ma =-、032qE ma =、04qE ma =- (每个式子1分) 设粒子在t =/4T 、t =/2T 、t =3/4T 、t =T 时刻的速度分别为v 1、v 2、v 3、v 4,则有 114T a =v 、2124T a =+v v 、3234T a =+v v 、4344Ta =+v v (每个式子1分) 设带电粒子在t =0到t =T 时的位移为s ,有2334112()22224Ts +++=+++v v v v v v v (4分) 解得 2016qE T s m= (2分)它的方向沿初始电场正方向。
2013高考物理真题分类解析专题8、静电场
2013高考物理分类解析专题八、静电场1. (2013全国新课标理综II 第18题)如图,在光滑绝缘水平面上。
三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电。
整个系统置于方向水平的匀强电场中。
已知静电力常量为k 。
若三个小球均处于静止状态,则匀强电场场强的大小为 A .233l kq B .23l kq C .23lkqD .232l kq 1.B【命题意图】本题考查库仑定律、电场力、平衡条件及其相关知识点,意在考查考生综合运用知识解决问题的能力。
【解题思路】设小球c 带电量Q ,由库仑定律可知小球a 对小球c 的库伦引力为F=k 2qQl ,小球b 对小球c 的库伦引力为F=k2qQl,二力合力为2Fcos30°。
设水平匀强电场的大小为E ,对c 球,由平衡条件可得:QE=2Fcos30°。
解得:E=23kql ,选项B 正确。
【误区警示】错选研究对象,分析小球a 受力或分析小球b 受力,陷入误区。
2. (2013全国新课标理综1第15题)如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有a 、 b 、d 三个点,a 和b 、b 和c 、 c 和d 间的距离均为R ,在a 点处有一电荷量为q (q>O)的固定点电荷.已知b 点处的场强为零,则d 点处场强的大小为(k 为静电力常量)A. k 23R qB. k 2910R qC. k 29R q Q +D. k 299R q Q +【命题意图】本题考查电场叠加、点电荷电场强度公式等基础知识点,意在考查考生应用相关知识定量分析物理问题,解决问题的能力。
答案:B解析:根据题述b 点处的场强为零,可知a 点处电荷量为q 的固定点电荷在b 点产生的电场的场强与圆盘在b 点产生的电场的场强大小相等方向相反,即圆盘在b 点产生的电场的场强大小E Q =k 2R q 。
大学物理静电场中的导体和电介质习题答案
第13章 静电场中的导体和电介质P70.13.1 一带电量为q ,半径为r A 的金属球A ,与一原先不带电、内外半径分别为r B 和r C 的金属球壳B 同心放置,如图所示,则图中P 点的电场强度如何?若用导线将A 和B 连接起来,则A 球的电势为多少?(设无穷远处电势为零)[解答]过P 点作一个同心球面作为高斯面,尽管金属球壳内侧会感应出异种,但是高斯面内只有电荷q .根据高斯定理可得 E 4πr 2 = q /ε0, 可得P 点的电场强度为204q E rπε=.当金属球壳内侧会感应出异种电荷-q 时,外侧将出现同种电荷q .用导线将A 和B 连接起来后,正负电荷将中和.A 球是一个等势体,其电势等于球心的电势.A 球的电势是球壳外侧的电荷产生的,这些电荷到球心的距离都是r c ,所以A 球的电势为04cq U r πε=.13.2 同轴电缆是由半径为R 1的导体圆柱和半径为R 2的同轴薄圆筒构成的,其间充满了相对介电常数为εr 的均匀电介质,设沿轴线单位长度上导线的圆筒的带电量分别为+λ和-λ,则通过介质内长为l ,半径为r 的同轴封闭圆柱面的电位移通量为多少?圆柱面上任一点的场强为多少?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,根据介质中的高斯定理,通过圆柱面的电位移通过等于该面包含的自由电荷,即 Φd = q = λl .设高斯面的侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,可得电位移为 D = λ/2πr , 其方向垂直中心轴向外.电场强度为 E = D/ε0εr = λ/2πε0εr r , 方向也垂直中心轴向外.13.3 金属球壳原来带有电量Q ,壳内外半径分别为a 、b ,壳内距球心为r 处有一点电荷q ,求球心o 的电势为多少?[解答]点电荷q 在内壳上感应出负电荷-q ,不论电荷如何分布,距离球心都为a .外壳上就有电荷q+Q ,距离球为b .球心的电势是所有电荷产生的电势叠加,大小为000111444o q q Q qU r a bπεπεπε-+=++13.4 三块平行金属板A 、B 和C ,面积都是S = 100cm 2,A 、B 相距d 1 = 2mm ,A 、C 相距d 2 = 4mm ,B 、C 接地,A 板带有正电荷q = 3×10-8C ,忽略边缘效应.求(1)B 、C 板上的电荷为多少?图14.3图14.4(2)A板电势为多少?[解答](1)设A的左右两面的电荷面密度分别为σ1和σ2,所带电量分别为q1 = σ1S和q2 = σ2S,在B、C板上分别感应异号电荷-q1和-q2,由电荷守恒得方程q = q1 + q2 = σ1S + σ2S.①A、B间的场强为E1 = σ1/ε0,A、C间的场强为E2 = σ2/ε0.设A板与B板的电势差和A板与C板的的电势差相等,设为ΔU,则ΔU = E1d1 = E2d2,②即σ1d1 = σ2d2.③解联立方程①和③得σ1 = qd2/S(d1 + d2),所以q1 = σ1S = qd2/(d1+d2) = 2×10-8(C);q2 = q - q1 = 1×10-8(C).B、C板上的电荷分别为q B= -q1 = -2×10-8(C);q C= -q2 = -1×10-8(C).(2)两板电势差为ΔU = E1d1 = σ1d1/ε0 = qd1d2/ε0S(d1+d2),由于k = 9×109 = 1/4πε0,所以ε0 = 10-9/36π,因此ΔU = 144π= 452.4(V).由于B板和C板的电势为零,所以U A = ΔU = 452.4(V).13.5 一无限大均匀带电平面A,带电量为q,在它的附近放一块与A平行的金属导体板B,板B有一定的厚度,如图所示.则在板B的两个表面1和2上的感应电荷分别为多少?[解答]由于板B原来不带电,两边感应出电荷后,由电荷守恒得q1 + q2 = 0.①虽然两板是无限大的,为了计算的方便,不妨设它们的面积为S,则面电荷密度分别为σ1 = q1/S、σ2 = q2/S、σ = q/S,它们产生的场强大小分别为E1 = σ1/ε0、E2 = σ2/ε0、E = σ/ε0.在B板内部任取一点P,其场强为零,其中1面产生的场强向右,2面和A板产生的场强向左,取向右的方向为正,可得E1 - E2–E = 0,即σ1 - σ2–σ= 0,或者说q1 - q2 + q = 0.②解得电量分别为q2 = q/2,q1 = -q2 = -q/2.13.6 两平行金属板带有等异号电荷,若两板的电势差为120V,两板间相距为1.2mm,忽略边缘效应,求每一个金属板表面的电荷密度各为多少?[解答]由于左板接地,所以σ1 = 0.由于两板之间的电荷相互吸引,右板右面的电荷会全部吸引到右板左面,所以σ4 = 0.由于两板带等量异号的电荷,所以σ2 = -σ3.两板之间的场强为E = σ3/ε0,而 E = U/d,所以面电荷密度分别为σ3 = ε0E = ε0U/d = 8.84×10-7(C·m-2),σ2 = -σ3 = -8.84×10-7(C·m-2).13.7 一球形电容器,内外球壳半径分别为R1和R2,球壳与地面及其他物体相距很远.将内球用细导线接地.试证:球面间电容可用公式202214RCR Rπε=-表示.(提示:可看作两个球电容器的并联,且地球半径R>>R2)[证明]方法一:并联电容法.在外球外面再接一个半径为R3大外球壳,外壳也接地.内球壳和外球壳之间是一个电容器,电容为P2图14.5图14.61210012211441/1/R R C R R R R πεπε==--外球壳和大外球壳之间也是一个电容器,电容为2023141/1/C R R πε=-.外球壳是一极,由于内球壳和大外球壳都接地,共用一极,所以两个电容并联.当R 3趋于无穷大时,C 2 = 4πε0R 2.并联电容为12120022144R R C C C R R R πεπε=+=+-202214R R R πε=-. 方法二:电容定义法.假设外壳带正电为q ,则内壳将感应电荷q`.内球的电势是两个电荷产生的叠加的结果.由于内球接地,所以其电势为零;由于内球是一个等势体,其球心的电势为0201`044q q R R πεπε+=,因此感应电荷为12`R q q R =-. 根据高斯定理可得两球壳之间的场强为122002`44R q q E r R rπεπε==-, 负号表示场强方向由外球壳指向内球壳.取外球壳指向内球壳的一条电力线,两球壳之间的电势差为1122d d R R R R U E r =⋅=⎰⎰E l121202()d 4R R R qr R rπε=-⎰ 1212021202()11()44R q R R q R R R R πεπε-=-= 球面间的电容为202214R q C U R R πε==-.13.8 球形电容器的内、外半径分别为R 1和R 2,其间一半充满相对介电常量为εr 的均匀电介质,求电容C 为多少?[解答]球形电容器的电容为120012211441/1/R R C R R R R πεπε==--.对于半球来说,由于相对面积减少了一半,所以电容也减少一半:0121212R R C R R πε=-.当电容器中充满介质时,电容为:0122212r R R C R R πεε=-.由于内球是一极,外球是一极,所以两个电容器并联:01212212(1)r R R C C C R R πεε+=+=-.13.9 设板面积为S 的平板电容器析板间有两层介质,介电常量分别为ε1和ε2,厚度分别为d 1和d 2,求电容器的电容.[解答]假设在两介质的介面插入一薄导体,可知两个电容器串联,电容分别为C 1 = ε1S/d 1和C 2 = ε2S/d 2. 总电容的倒数为122112*********d d d d C C C S S Sεεεεεε+=+=+=, 总电容为 122112SC d d εεεε=+.13.10 圆柱形电容器是由半径为R 1的导线和与它同轴的内半径为R 2的导体圆筒构成的,其长为l ,其间充满了介电常量为ε的介质.设沿轴线单位长度导线上的电荷为λ,圆筒的电荷为-λ,略去边缘效应.求:(1)两极的电势差U ;(2)介质中的电场强度E 、电位移D ; (3)电容C ,它是真空时电容的多少倍?[解答]介质中的电场强度和电位移是轴对称分布的.在内外半径之间作一个半径为r 、长为l 的圆柱形高斯面,侧面为S 0,上下两底面分别为S 1和S 2.通过高斯面的电位移通量为d d SΦ=⋅⎰D S12d d d 2S S S rlD π=⋅+⋅+⋅=⎰⎰⎰D S D S D S ,高斯面包围的自由电荷为 q = λl , 根据介质中的高斯定理 Φd = q , 可得电位为 D = λ/2πr , 方向垂直中心轴向外.电场强度为 E = D/ε = λ/2πεr , 方向也垂直中心轴向外.取一条电力线为积分路径,电势差为21d d d 2R LLR U E r r r λπε=⋅==⎰⎰⎰E l 21ln 2R R λπε=. 电容为 212ln(/)q lC U R R πε==. 在真空时的电容为00212ln(/)l q C U R R πε==, 所以倍数为C/C 0 = ε/ε0.13.11 在半径为R 1的金属球外还有一层半径为R 2的均匀介质,相对介电常量为εr .设金属球带电Q 0,求:(1)介质层内、外D 、E 、P 的分布; (2)介质层内、外表面的极化电荷面密度.[解答](1)在介质内,电场强度和电位移以及极化强度是球对称分布的.在内外半径之间作一个半径为r 的球形高斯面,通过高斯面的电位移通量为2d d 4d SSD S r D Φπ=⋅==⎰⎰D S高斯面包围的自由电荷为q = Q 0, 根据介质中的高斯定理 Φd = q , 可得电位为 D = Q 0/4πr 2, 方向沿着径向.用矢量表示为D = Q 0r /4πr 3.电场强度为E = D /ε0εr = Q 0r /4πε0εr r 3, 方向沿着径向.由于 D = ε0E + P , 所以 P = D - ε0E = 031(1)4rQ rεπ-r. 在介质之外是真空,真空可当作介电常量εr = 1的介质处理,所以D = Q 0r /4πr 3,E = Q 0r /4πε0r 3,P = 0. (2)在介质层内靠近金属球处,自由电荷Q 0产生的场为E 0 = Q 0r /4πε0r 3;极化电荷q 1`产生的场强为E` = q 1`r /4πε0r 3;总场强为 E = Q 0r /4πε0εr r 3. 由于 E = E 0 + E `,解得极化电荷为 `101(1)rq Q ε=-,介质层内表面的极化电荷面密度为``01122111(1)44r Q q R R σπεπ==-. 在介质层外表面,极化电荷为``21q q =-,面密度为``02222221(1)44r Q q R R σπεπ==-.13.12 两个电容器电容之比C 1:C 2 = 1:2,把它们串联后接电源上充电,它们的静电能量之比为多少?如果把它们并联后接到电源上充电,它们的静电能之比又是多少?[解答]两个电容器串联后充电,每个电容器带电量是相同的,根据静电能量公式W = Q 2/2C ,得静电能之比为W 1:W 2 = C 2:C 1 = 2:1. 两个电容器并联后充电,每个电容器两端的电压是相同的,根据静电能量公式W = CU 2/2,得静电能之比为W 1:W 2 = C 1:C 2 = 1:2. 13.13 一平行板电容器板面积为S ,板间距离为d ,接在电源上维持其电压为U .将一块厚度为d 相对介电常量为εr 的均匀介电质板插入电容器的一半空间内,求电容器的静电能为多少?[解答]平行板电容器的电容为C = ε0S/d ,当面积减少一半时,电容为C 1 = ε0S /2d ; 另一半插入电介质时,电容为C 2 = ε0εr S /2d .两个电容器并联,总电容为C = C 1 + C 2 = (1 + εr )ε0S /2d ,静电能为W = CU 2/2 = (1 + εr )ε0SU 2/4d . 13.14 一平行板电容器板面积为S ,板间距离为d ,两板竖直放着.若电容器两板充电到电压为U 时,断开电源,使电容器的一半浸在相对介电常量为εr 的液体中.求:(1)电容器的电容C ;(2)浸入液体后电容器的静电能; (3)极板上的自由电荷面密度.[解答](1)如前所述,两电容器并联的电容为C = (1 + εr )ε0S /2d . (2)电容器充电前的电容为C 0 = ε0S/d , 充电后所带电量为 Q = C 0U . 当电容器的一半浸在介质中后,电容虽然改变了,但是电量不变,所以静电能为W = Q 2/2C = C 02U 2/2C = ε0SU 2/(1 + εr )d . (3)电容器的一半浸入介质后,真空的一半的电容为 C 1 = ε0S /2d ;介质中的一半的电容为 C 2 = ε0εr S /2d . 设两半的所带自由电荷分别为Q 1和Q 2,则Q 1 + Q 2 = Q . ① 由于C = Q/U ,所以U = Q 1/C 1 = Q 2/C 2. ② 解联立方程得01112211/C U C QQ C C C C ==++, 真空中一半电容器的自由电荷面密度为00112122/2(1/)(1)r C U U Q S C C S dεσε===++. 同理,介质中一半电容器的自由电荷面密度为0021222(/1)(1)r r C U UC C S dεεσε==++.13.15 平行板电容器极板面积为200cm 2,板间距离为1.0mm ,电容器内有一块1.0mm 厚的玻璃板(εr = 5).将电容器与300V 的电源相连.求:(1)维持两极板电压不变抽出玻璃板,电容器的能量变化为多少?(2)断开电源维持板上电量不变,抽出玻璃板,电容器能量变化为多少?[解答]平行板电容器的电容为C 0 = ε0εr S/d ,静电能为 W 0 = C 0U 2/2. 玻璃板抽出之后的电容为C = ε0S/d .(1)保持电压不变抽出玻璃板,静电能为 W = CU 2/2, 电能器能量变化为ΔW = W - W 0 = (C - C 0)U 2/2 = (1 - εr )ε0SU 2/2d = -3.18×10-5(J). (2)充电后所带电量为 Q = C 0U , 保持电量不变抽出玻璃板,静电能为W = Q 2/2C ,电能器能量变化为2000(1)2C C U W W W C ∆=-=- 20(1)2r r SU dεεε=-= 1.59×10-4(J).13.16 设圆柱形电容器的内、外圆筒半径分别为a 、b .试证明电容器能量的一半储存在半径R =[解答]设圆柱形电容器电荷线密度为λ,场强为 E = λ/2πε0r , 能量密度为 w = ε0E 2/2, 体积元为 d V = 2πrl d r , 能量元为 d W = w d V .在半径a 到R 的圆柱体储存的能量为20d d 2VVW w V E V ε==⎰⎰2200d ln 44Ral l R r r a λλπεπε==⎰.当R = b 时,能量为210ln 4l b W aλπε=;当R =22200ln48l l b W aλλπεπε==,所以W 2 = W 1/2,即电容器能量的一半储存在半径R =13.17 两个同轴的圆柱面,长度均为l ,半径分别为a 、b ,柱面之间充满介电常量为ε的电介质(忽略边缘效应).当这两个导体带有等量异号电荷(±Q )时,求:(1)在半径为r (a < r < b )、厚度为d r 、长度为l 的圆柱薄壳中任一点处,电场能量体密度是多少?整个薄壳层中总能量是多少?(2)电介质中总能量是多少(由积分算出)?(3)由电容器能量公式推算出圆柱形电容器的电容公式?[解答](1)圆柱形内柱面的电荷线密度为 λ = Q/l ,根据介质是高斯定理,可知电位移为D = λ/2πr = Q /2πrl ,场强为 E = D/ε = Q /2πεrl , 能量密度为w = D ·E /2 = DE /2 = Q 2/8π2εr 2l 2.薄壳的体积为d V = 2πrl d r , 能量为 d W = w d V = Q 2d r /4πεlr .(2)电介质中总能量为22d d ln 44bV aQ Q bW W r lr l a πεπε===⎰⎰.(3)由公式W = Q 2/2C 得电容为222ln(/)Q lC W b a πε==.13.18 两个电容器,分别标明为200PF/500V 和300PF/900V .把它们串联起来,等效电容多大?如果两端加上1000V 电压,是否会被击穿?[解答]当两个电容串联时,由公式211212111C C C C C C C +=+=, 得 1212120PF C C C C C ==+.加上U = 1000V 的电压后,带电量为Q = CU ,第一个电容器两端的电压为U1 = Q/C1 = CU/C1 = 600(V);第二个电容器两端的电压为U2 = Q/C2 = CU/C2 = 400(V).由此可知:第一个电容器上的电压超过它的耐压值,因此会被击穿;当第一个电容器被击穿后,两极连在一起,全部电压就加在第二个电容器上,因此第二个电容器也接着被击穿.。
大学物理西南交大作业参考答案
大学物理西南交大作业参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]电势、导体与※电介质中的静电场 (参考答案)班级: 学号: 姓名: 成绩: 一 选择题1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为:(A )r q04πε; (B ))(041R Qrq +πε; (C )rQq 04πε+; (D ))(041R qQ rq -+πε;参考:电势叠加原理。
[ B ]2.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为:(A ))(210114r r Q --πε; (B ))(21114r r qQ-πε;(C ))(210114r r qQ--πε; (D ))(4120r r qQ --πε。
参考:电场力做功=势能的减小量。
A=W a -W b =q(U a -U b ) 。
[ C ]3点,有人(A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。
r 2 (-br 1B a(q[ C ]4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为: (A )0; (B )d q04πε; (C )-R q04πε; (D ))(1140R dq-πε。
外表面无电荷(可分析)。
虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。
[ D ]※5.在半径为R 的球的介质球心处有电荷+Q ,在球面上均匀分布电荷-Q ,则在球内外处的电势分别为: (A )内r Q πε4+,外r Q 04πε-; (B )内r Qπε4+,0; 参考:电势叠加原理。
[精品]2013年全国高考物理试题精编静电场及答案
3(2013重庆卷).如题3图所示,高速运动的α粒子被位于O点的重原子核散射,实线表示α粒子运动的轨迹,M、N和Q为轨迹上的三点,N点离核最近,Q点比M点离核更远,则A.α粒子在M点的速率比在Q点的大B.三点中,α粒子在N点的电势能最大.在重核产生的电场中,M点的电势比Q点的低D.α粒子从M点运动到Q点,电场力对它做的总功为负功答案B圆环大小相同,所带电荷量已在3【2013江苏高考】下列选项中的各14圆环间彼此绝缘坐标原点O 处电场图中标出,且电荷均匀分布,各14强度最大的是答案:B6【2013江苏高考】将一电荷量为+Q 的小球放在不带电的金属球附近,所形成的电场线分布如图所示,金属球表面的电势处处相等、b 为电场中的两点,则(A) 点的电场强度比b 点的大(B) 点的电势比b 点的高()检验电荷-q 在点的电势能比在b 点的大(D)将检验电荷-q 从点移到b 点的过程中,电场力做负功答案:ABD15【2013广东高考】喷墨打印机的简模型如图4所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中A向负极板偏转B电势能逐渐增大运动轨迹是抛物线D运动轨迹与带电量无关答案:10【2013上海高考】.两异种点电荷电场中的部分等势面如图所示,已知A点电势高于B点电势。
若位于、b处点电荷的电荷量大小分别为q和q b,则(A)处为正电荷,q<q b(B)处为正电荷,q>q b()处为负电荷,q<q b(D)处为负电荷,q>q b答案:B32【2013上海高考】.(12分)半径为R ,均匀带正图4电荷的球体在空间产生球对称的电场;场强大小沿半径分布如图所示,图中E 0已知,E -r 曲线下O -R 部分的面积等于R -2R 部分的面积。
(1)写出E -r 曲线下面积的单位;(2)己知带电球在r ≥R 处的场强E =Q /r 2,式中为静电力常量,该均匀带电球所带的电荷量Q 为多大? (3)求球心与球表面间的电势差△U ;(4)质量为,电荷量为q 的负电荷在球面处需具有多大的速度可以刚好运动到2R 处?27.(1)V (伏特)(2)02QE k R=20E R Q k=(3)01""2U S E R ∆==(4)由动能定2001122mv q U q E R =∆=15(2013全国新课标I )、如图,一半径为R 的圆盘上均匀分布着电荷量为Q 的电荷,在垂直于圆盘且过圆心c 的轴线上有、b 、d 三个点,和b 、b 和c 、c 和d 间的距离均为R ,在点处有一电荷量为q 的固定点电荷。
大学物理西南交大作业参考答案
大学物理西南交大作业参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]电势、导体与※电介质中的静电场 (参考答案)班级: 学号: 姓名: 成绩: 一 选择题1.真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示,设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处的电势为:(A )r q04πε; (B ))(041R Qrq +πε; (C )rQq 04πε+; (D ))(041R qQ rq -+πε;参考:电势叠加原理。
[ B ]2.在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移动到b ,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图,则移动过程中电场力做功为:(A ))(210114r r Q --πε; (B ))(21114r r qQ-πε;(C ))(210114r r qQ--πε; (D ))(4120r r qQ --πε。
参考:电场力做功=势能的减小量。
A=W a -W b =q(U a -U b ) 。
[ C ]3点,有人(A )电场强度E M <E N ; (B )电势U M <U N ; (C )电势能W M <W N ; (D )电场力的功A >0。
r 2 (-br 1B a(q[ C ]4.一个未带电的空腔导体球壳内半径为R ,在腔内离球心距离为d (d <R )处,固定一电量为+q 的点电荷,用导线把球壳接地后,再把地线撤去,选无穷远处为电势零点,则球心O 处的点势为: (A )0; (B )d q04πε; (C )-R q04πε; (D ))(1140R dq-πε。
外表面无电荷(可分析)。
虽然内表面电荷分布不均,但到O 点的距离相同,故由电势叠加原理可得。
[ D ]※5.在半径为R 的球的介质球心处有电荷+Q ,在球面上均匀分布电荷-Q ,则在球内外处的电势分别为: (A )内r Q πε4+,外r Q 04πε-; (B )内r Qπε4+,0; 参考:电势叠加原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各向同性均匀电介质,这时两极板上的电荷是原来的___ ε r ___倍;电场强度是原来的
_1___倍;电场能量是原来的____ ε r ______倍。
解:充满相对介电常量为εr 的各向同性均匀电介质后,
电容为 C′ = ε 0ε r S / d = ε r C
电荷为 Q′ = C′V = ε 0ε r S / dV = ε r Q
分布为
E = λ /(2πε r)
设电容器内外两极板半径分别为 r0,R,则极板间电压为
∫ ⋅ ∫ R � � R
U = E dr =
λ
λR d r = ln
r
r 2πε r
2πε r0
电介质中场强最大处在内柱面上,当这里场强达到 E0 时电容器击穿,这时应有
λ = 2πε r0 E0
R U = r0 E0 ln r0
解:由静电感应现象,空腔导体 A� 内表面带等量负电荷,A、B 间电场线如图所示,而电
场线总是指向电势降低的方向( E = −∇U ),球壳,半径分别为 R1 和 R(2 R1 < R2 ) ,若分别带上电量为 q1 和 q2 的 电荷,则两者的电势分别为U1 和U 2 (设无穷远处为电势零点)。现用导线将两
3.一半径 r1 = 5 cm 的金属球 A,带电荷 q1 = +2.0×10-8 C,另一内半径为 r2 = 10 cm、 外 半径为 r3 = 15 cm 的金属球壳 B, 带电荷 q2 = +4.0×10-8 C,两球同心放置,如图所示。
若以无穷远处为电势零点,则 A 球电势 UA = ___5400V______,B 球电势 UB = _____3600V。
解:
解:设相联后导体球带电 q,取无穷远处为电势零点,则
导体球电势:
q U 0 = 4πε 0r
内球壳电势:
U1
=
Q1 − q 4πε 0 R1
+ Q2 4πε 0 R2
q
导体球和内球壳等电势,即
= Q1 − q +
Q2
4πε 0r 4πε 0 R1 4πε 0 R2
解得
q = r(R2Q1 + R1Q2 )
V12 = 100 V ,并联等效电容电荷总量为 Q = C12V = 100C12 , C12 与 C3 串联, C3 上电
荷也为 Q = 100C12
,此时 C3 上电压降为V3
=
Q C3
= 100C12 C3
= 200 V ,故此电容器组
的耐压值为V = V12 + V3 = 100 + 200 = 300 V
适当选择 r0 的值,可使 U 有极大值,即令
dU /d r0 = E0 ln(R / r0 ) − E0 = 0
得 显然有
r0 = R / e
d2 U
< 0, 故当
d r0 2
r0 = R / e
时电容器可承受最高的电压
U max = RE0 / e = 147 kV
3.一电容为 C 的空气平行板电容器,接端电压为 U 的电源充电后随即断开。试求
电场强度 E′ = σ ′ / ε 0ε r = Q′ / S / ε 0ε r = ε rQ / S / ε 0ε r = E
电场能量W ′
=
1 C′V 2 2
=
1 2 ε rCV
2
= ε rW
即分别为 ε r ,1, ε r 倍
5.一空气平行板电容器,电容为 C,两极板间距离为 d。充电后,两极板间相互作用力
b
c
a
e
d
2.在一个不带电的导体球壳内,先放进一电荷为+q 的点电荷,点电荷 不与球壳内壁接触。然后使该球壳与地接触一下,再将点电荷+q 取走。
B
r2
A
O
r3 r1
此时,球壳的电荷为____-q _____,电场分布的范围是___球壳外的整个空间______。
解:由于静电感应,导体球壳内表面带等量异号电荷,外表面带等量同号电荷,在球壳 与地接触一下后,球壳外表面电荷消失,再将点电荷+q 取走,则球壳的电荷为球壳内表 面的电荷-q,由高斯定理知电场分布的范围是球壳外的整个空间。
者相连接,则它们的电势为:
[ B ] (A) U1
(B) U 2
(C) U1+U 2
(D)
解:用导线将两者相连接,则由静电感应知两者成为一等势体,感应电荷只分布在
q + q R(2 R1 < R2 ) 的外表面,且为 1
,由金属球壳内、外区域电势分布规律有两者相
2
连接后电势为U 2 。
选B
S
3.在一点电荷的静电场中,一块电介质如图所示,以点电荷所在处为球心,
解:不断开电源使电容器两极板间距离拉大
极板上电势差 U 将保持不变
由 C = ε 0 S / d 得电容值减小 由 Q = CU 得极板上的电荷 Q 减小
由 E = U / d 得电场强度 E 减小大
由W = 1 CU 2 得电场能量 W 减小
选B
2
三、填空题: 1.将下列各命题的标号(a、b、c、…等)适当地填入下面的方框中,使之表达出它们之间
©西南交大物理系_2013_02
《大学物理 AI》作业
No.08 导体 介质中的静电场
班级 ________ 学号 ________ 姓名 _________ 成绩 _______
一、判断题:(用“T”和“F”表示)
[ F ] 1.静电平衡时,空腔导体上的电荷只能分布于导体外表面。 解:表述不全面,因为如果是腔内有电荷的空腔导体,内表面是有电荷的。 如果同学把题改为“静电平衡时,腔内无电荷的空腔导体上的电荷只能分布于导体外表 面”,那么答案是 T。
选B
4.三个电容器连接如图,已知电容 C1 = C2 = C3 ,而 C1 , C2 , C3 的耐
C1
C3
压值分别为100 V, 200 V,300 V。则此电容器组的耐压值为:
[ C ] (A) 500 V (C) 300 V
(B) 400 V
C2
(D) 150 V
(E) 600 V
解: C1 , C2 并联,等效电容为 C12 = C1 + C2 ,最高耐压值为 C1 的耐压值 100 V,即
Q2 (8πε R)。”,那么答案是 T。 0
[ F ] 5.将电介质插入已断开电源的电容器极板之间,电场力做负功。 解:插入电介质,电容器的电容增加,而电容器已于电源断开,那么极板上的电量不变,
Q2 Q2
电源不做功。此时,电容器储能变化为: ∆W =
− < 0 ,即电容器储能是减
2C ' 2C
小的,而电场力做功等于电势能增量的负值,那么电场力应该做正功。
A 球电势 U A
= q1 4πε 0r1
+
q内 4πε 0r2
+
q外 4πε 0 r3
= 5400 V
B 球电势 U B
= q1 4πε 0r3
+
q内 4πε 0r3
+
q外 4πε 0 r3
=
q外 4πε 0r3
= 3600 V
4.一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的
为 F。则两极板间的电势差为______________,极板上的电荷为______________。
解:设两极板间的电势差为U ,则平行板电容器贮能为W = 1 CU 2 ,此能来源于两极 2
板间相互作用力 F 对电荷作的总功 A = Fd ,即W = A = Fd ,由功能原理知
两极板间的电势差为
二、选择题:
1.在一个原来不带电的外表面为球形的空腔导体A内,放有一带电量为+Q
的带电导体B,如图所示,则比较空腔导体A的电势UA 和导体B的电势UB 时,
B
可得以下结论:
+Q
[ C ] (A) U A = U B (C) U A < U B
者无法比较
(B) U A > U B
A
(D) 因空腔形状不是球形,两
的正确逻辑关系。
a.在静电平衡条件下,净电荷只能分布在均匀导体外表面上
b.导体内部含有大量自由电子,在电场力作用下,它们会作
宏观定向运动
c.处于静电平衡状态的导体是一个等势体
d.处于静电平衡状态的均匀导体内部场强处处为零
e.导体内部没有电荷的宏观定向运动的状态,称作静电平衡状态
解:由导体静电感应规律知正确逻辑关系如下图
把两个极板间距离增大至 n 倍时外力所作的功。
解:
解:断开电源后电容器极板上所带电荷 q = CU 将保持不变
而电容值由
C = ε 0S / d → C′ = ε 0 S /(nd ) = C / n
电容器储存的静电能(电场能量)由
W = 1 q 2 / C → W ′ = 1 q 2 / C′ = 1 (nq 2 ) / C
[ F ] 4.一个半径为R,表面(这两个字去掉)均匀带电Q的介质球,其电场能量等于
Q2 (8πε R)。 0
解:这个题目的是要大家搞清楚带相同电量的介质球和导体球的电场能量是不同的。
Q2
(8πε
)是带电量为Q的导体球的电场能量。
R
0
如果同学把题改为“一个半径为 R,表面均匀带电 Q 的导体球,其电场能量等于
2
2
2
∆W = W ′ − W = 1 (nq 2 ) / C − 1 q 2 / C > 0
2
2
能量增加来源于拉开极板间距离时外力所作之功