数轴上的动点问题
数轴上的动点问题
数轴上的动点问题1、数轴上点A对应的数为-1,点B对应的数为4,点P为数轴上一动点,其对应的数为x,(1)若点P到A、B的距离相等,则点P对应的数为(2)数轴上是否存在点P,使P到点A、点B的距离之和为9?若存在请求出点P。
(3)当点P以每分钟1个单位长度的速度从O点向右运动时,点A以每分钟2个单位长度的速度向左运动,点B以每分钟3个单位长度的速度向右运动,问它们同时出发,几分钟时点P到点A,点B的距离相等?2、数轴上点B对应的数为8,点A是数轴上位于B点左侧一点,且AB=14,动点P从P点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒,(1)写出数轴上点A表示的数,点P表示的数(用含t的式子表示);(2)动点Q从点A出发,以每秒3个单位长度的速度向左匀速运动,若点P、Q同时出发,问点P运动多少秒时AQ=AP?(3)在(2)中P、Q两点运动的过程中,若M为BP的中点,在P点运动的过程中QPQB的值在某一个时间段内为定值,求出这个定值,并直接写出t的取值范围。
QM3. 已知数轴上有A、B、C三点,分别表示有理数-26,-10,10,动点P从A出发,以每秒1个单位的速度向终点C移动,设点P移动时间为t秒.(1)用含t的代数式表示P到点A和点C的距离:PA=________,PC=_____________(2)当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,Q点到达C点后,再立即以同样的速度返回,当点P运动到点C时,P、Q两点运动停止,①当P、Q两点运动停止时,求点P和点Q的距离;②求当t为何值时P、Q两点恰好在途中相遇。
4、已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x. (1)若点P到点A、点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为8?若存在,请求出x的值;若不存在,说明理由;(3)现在点A、点B分别以2个单位长度/秒和0.5个单位长度/秒的速度同时向右运动,点P以6个单位长度/秒的速度同时从O点向左运动.当点A与点B之间的距离为3个单位长度时,求点P所对应的数是多少?5、已知A、B两点在数轴上,点A表示的数为-10,点B在原点的右边,且OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O向右运动(M、N同时出发)(1)、数轴上点B对应的数为;AB=(2)、经过几秒,点M、点N分别到原点的距离相等?(3)、当点M运动到什么位置时,恰好使AM=3BN?6、在数轴上依次有A、B、C三点,其中点A,点B,点C分别为-1,1,5,点A、B、C在数轴上同时运动,点A以每秒1个单位长度的速度从点A向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,t秒后,问BC-AB的值是否随着t的变化而改变?若不变,求出其值。
数轴的动点问题公式
数轴的动点问题公式
数轴的动点问题是指一个点在数轴上按一定规律运动的问题。
为了描述这个运动过程,我们可以使用公式来表示动点的位置。
假设数轴上的起点为0,动点在某个时刻的位置为x。
动点按照某个速度v向左或向右运动,那么在经过t单位时间后,动
点的位置可以用下面的公式表示:
x=x0+vt
其中,x0表示初始位置,v表示速度,t表示时间。
如果速
度为正,表示向右移动;如果速度为负,表示向左移动。
如果动点在数轴上做匀速直线运动,那么速度v是常数,这
时可以将公式简化为:
x=x0+vt
如果动点在数轴上做加速或减速运动,速度v是变化的,那
么我们需要根据具体的问题来确定速度v的表达式。
常见的加
速或减速运动可以用以下几种公式表示:
匀加速运动:v=v0+at,其中v0表示初始速度,a表示加
速度。
匀减速运动:v=v0at,其中v0表示初始速度,a表示减速度。
自由落体运动:h=h0+v0t+(1/2)gt^2,其中h0表示初始高度,v0表示初始速度,g表示重力加速度。
希望上述内容能够对您有所帮助!如有任何疑问,请随时向我提问。
初中数轴上的动点问题
初中数轴上的动点问题1. 什么是数轴上的动点问题数轴嘛,大家都知道,就像一条有方向的线,上面有好多数。
动点问题呢,就是有个点在这个数轴上动来动去的。
比如说,这个点可能从一个数开始,然后按照一定的速度或者规则在数轴上移动。
这就像一个小蚂蚁在一根标了数字的绳子上爬,它一会儿在这个数字这儿,一会儿又跑到另一个数字那儿了。
动点问题可有趣啦,它就像是数轴这个舞台上的小演员,不停地变换位置,而我们呢,就要根据它的表演规则来搞清楚一些事情,比如它什么时候会到达某个特定的数,或者它在移动过程中和其他固定的点或者其他动点之间的距离关系。
2. 常见的动点问题类型求动点与定点的距离。
比如说,有一个点A在数轴上表示3,有个动点P从0开始,以每秒2个单位的速度向右移动,那我们就要算出经过几秒钟,点P和点A的距离是多少。
这就像是在玩一个追逐游戏,一个是站着不动的目标,一个是跑来跑去的追逐者,我们要算出他们之间的距离变化。
动点相遇问题。
就像有两个动点,一个从数轴左边出发,一个从右边出发,它们朝着对方移动,速度也不一样。
我们就得算出它们什么时候会在数轴上的某个地方相遇,就好像两个人在一条路上相对走来,什么时候会碰面一样。
还有动点的中点问题。
假如有两个动点,那它们之间的中点位置会随着它们的移动而改变,我们要找出这个中点在不同时刻所表示的数。
这就像是两个人拉着一根绳子的两端,绳子的中间点会随着他们的走动而移动,我们要知道这个中间点在任何时候的位置。
3. 解决数轴上动点问题的小技巧一定要先确定动点的起始位置和运动方向。
这就好比你要知道小蚂蚁从哪里出发,是向左还是向右爬。
如果题目说一个动点从 - 5开始,以每秒1个单位的速度向左移动,那这个信息就是解题的关键开头。
用代数式表示动点在不同时刻的位置。
比如说那个从0开始,以每秒2个单位速度向右移动的动点P,经过t秒后,它的位置就可以表示为2t。
这就像给小蚂蚁的位置做个标记,让我们能随时知道它在哪里。
数轴上的动点问题
数轴上的动点问题❖ 数轴上的动点问题,是很重要的一部分,但往往使学生感到很棘手.实际上,如果将动点问题“代数化”,“三招”就可轻松解决常见的问题.第一招:平移公式(平移规律)若数轴上点A 表示的数是a ,则当点A 向左平移t 个单位长度时表示的数为a t -;当点A 向右平移t 个单位长度时表示的数为a t +.简记为:左减右加.第二招:距离公式若数轴上,A B 两点表示的数分别是,a b ,则,A B 两点的距离AB a b =-.如果已知,A B 两点的位置关系,比如点A 在点B 的左边,则AB b a =-.第三招:中点公式若数轴上,A B 两点表示的数分别是,a b ,则线段AB 的中点表示的数是2a b + ❖ 常见题型:一、突破基础关—平移与距离数轴上点的平移和两点间的距离是数轴所有难点问题的突破口.点的平移是今后进一步研究动点问题的基础,两点间的距离则可以让学生感知数轴与线段之间的关系. 例1 请利用数轴回答下列问题:①如果点A 表示数3-,将点A 向右移动7个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;②如果点A 表示数3,将A 点先向左移动4个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;③如果点A 表示数3,将A 点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B 表示的数是 ,A 、B 两点间的距离是 ;④一般地,如果A 点表示的数为a ,将A 点向右移动m 个单位长度,再向左移动n 个单位长度,请你猜想终点B 表示的数是 ,A 、B 两点间的距离是 .二、突破应用关—平移、距离、对称、旋转(滚动)1.平移平移是所有动点问题的灵魂所在,也是数轴问题研究的基石,所以我们在突破数轴难点时,有必要进行深层次的探究.例2如果将A点先向左移动4个单位长度,再向右移动5个单位长度,那么终点B表示的数是2,则起点A表示的数为 ,A、B两点间的距离是 .-.例3若AB为数轴上一线段,其中点A表示3,点B表示1①将线段沿着数轴左右平移,若平移后点A对应的数为5,则点B所对应的数是 ;-,则点A对应的数是 , AB的中点C对应的数②若平移后点B对应的数是4是 ;-,则A对应的数是 ,B对应的数③若平移后AB的中点C对应的数是1是 .2.距离距离是今后解决坐标系中数形结合问题的关键所在.在坐标系中,大多数问题归根结底是研究线段与线段之间的数量关系,也就是两点之间的距离.因此在初学数轴时,把水平距离问题理解透彻,对今后坐标系里几何问题的学习大有帮助.例4 数轴上有A、B两点,且A、B两点间的距离是3.①若A为原点,则点B表示的数是 ;②若点A表示的数是1,则点B表示的数是 ;③若点A表示的数是a,则点B表示的数是 ;例5数轴上有三点A、B、C,且A、B两点间的距离是3,B、C两点的距离是2,-,则点C表示的数是 .若A点表示的数为1-,C为例6 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为5数轴上的动点,若C到A的距离是C到B的距离的2倍,求此时C所表示的数是 .3.对称数轴上对称问题的关键是线段的中点.最简单的对称是相反数,它们关于原点对称,由此可把此类问题推广至一般,即关于数轴上任意点的对称.例7数轴上A、B两点表示的数为相反数,且AB的距离为5,点A在点B的右边,则A表示的数是 ,B表示的数是 .例8 将数轴沿着某一点A对折,使得1与6重合.①则A表示的数是 ;-重合的数是 ;②与10重合的数是 ;与3③若MN重合,且MN相距2015个单位长度(M在N的右边),则M表示的数是,N表示的数是 ;例9 数轴上有三个点A、B、C,其中A点表示的数为1,B点表示的数为一3,C为数轴上的动点,当A、B、C三个点中有一个点是另两个点的中点时,求此时C所表示的数.4.旋转(滚动)多边形的旋转问题或圆的滚动问题也是中考热点,实际在这类问题中也可以结合数轴来解答.例10 正方形ABCD在数轴上的位置如图5,点A、D对应的数分别为0和1,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B对应的数为1,则连续翻转2015次后,图5①数轴上数2015对应的点是 ;②连续翻转2015次后,数轴上数2014对应的点是 .例11 (1)如图6,数轴上有一半径为1的圆,起始点A与原点重合.若将圆沿着数轴-重合的,顺时针无滑动地滚动一周,点A所对应的数是 ;若起点A开始时是与2则圆在数轴上无滑动地滚动2周后点A表示的数是 .图6A B C D,(2)如图6所示,圆的周长为4个单位长度,在圆的4等分点处标上字母,,,-所对应的点重合,再让圆沿着数轴按逆先让圆周上字母A所对应的点与数轴上的数2-将与圆周上的字母重合.时针方向作无滑动滚动,那么数轴上的数2015三 、突破动点大题—试卷中经常出现的动点应用题解决此类问题的关键是确定动点表示的数,以及动点的运动方向.以下分为三类问题进行解析:1.方向不变例1 如图1,数轴上点B 表示的数是30,,P Q 两点分别从,O B 两点同时出发,分别以3单位/秒和2单位/秒的速度向右运动,运动时间为t 秒, M 为线段BP 上一点,且13PM PB =,N 为QM 的中点. (1)若12PB BQ =,求t 的值; (2)当t 的值变化时, NQ 的值是否发生变化?为什么?练习1:已知数轴上两点,A B 对应的数为-1 ,3,点P 为数轴上一动点,其对应的数为x .(1)数轴上是否存在点P ,使5PA PB +=?若存在,请求出x 的值;若不存在,请说明理由.(2)当点P 以每分钟1个单位长度的速度从O 点向右运动时,点A 以每分钟5个单位长度的速度向左运动,点B 以每分钟20个单位长度的速度向右运动.在运动的过程中,,M N 分别是,AP OB 的中点,AB OP MN-的值是否改变,为什么?,B点对应的数为练习2:如图,已知A、B分别为数轴上两点,A点对应的数为20100.(1)AB中点M对应的数;(2)现有一只电子蚂蚁甲从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,求C点对应的数;(3)若当电子蚂蚁甲从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁乙恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,求D点对应的数.练习3:已知数轴上两点A、B对应的数分别为—1,3,点P为数轴上一动点,其对应的数为x。
七年级数学数轴上的动点问题
七年级数学数轴上的动点问题
数轴上的动点问题是七年级数学的一个重要内容,主要涉及到动点在数轴上的运动。
解决这类问题,需要通过运动点的初始位置,运动时间t,运动速度v,计算出运动点将会到达哪个坐标。
例如,假设有一个电子蚂蚁P从点A出发,以2单位长度/秒的速度向右运动,同时另一只电子蚂蚁Q恰好从B点出发,以1单位长度/秒的度数向右运动,求经过多长时间两只电子蚂蚁在数轴上到原点的距离相等。
解决这个问题的方法如下:
P、Q在原点左右两侧,此时P、Q表示的数为相反数,即有-6+2t+2+t=0,得t=4/3
P、Q重合,此时P、Q表示的数相等,即有-6+2t=2+t得t=8
综上,经过8秒或4/3秒时,P、Q到原点的距离相等。
这只是一个例子,具体的问题可能会有所不同,但是解题的基本思路是一样的。
数轴上的动点问题
数轴上的运动问题在讲这个问题之前,我们先来看一道行程问题。
【题 1】甲乙两地相距 200 米,小明从甲地步行到乙地,用时 3 分钟,小明的平均速度为多少米每秒?【分析】这个问题的本质,就是把实际生活中的问题剥离出来,抽象成了简单的数学问题,很多学生都会解;初学时,老师会画线段图,用线段的长度来将两点间的距离具象化,如下:小明 甲地 乙地【解法一】直接利用:速度=路程÷时间解决。
200 ÷180 = 10(米/秒)9 【解法二】用方程解。
设速度为 x 米/ 秒,根据路程=时间×速度,得: 200 = 180x ,解得 x = 10。
9如果在线段图上,用一个具体的数来表示甲地和乙地,从甲往乙的方向规定为正方向建立数轴,这个问题就转化为数轴上的运动问题了。
【题 2】如图,数轴上有两点 A 、B ,点 A 表示的数为0 ,点 B 表示的数为 200 ,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。
设运动时间为 t 。
(1) 用含 t 的代数式表示电子蚂蚁 P 运动的距离;(2) 用含 t 的代数式表示电子蚂蚁 P 表示的数;(3) 用含 t 的代数式表示电子蚂蚁 P 到数 B 的距离。
(4) 当电子蚂蚁运动多少时间后,点 P 为线段 AB 的三等分点?【分析】引入数轴后,其本质是把线段图换成了带方向带单位长度的直线,将有限的实际距离推广到了无限的距离问题。
所以,对于运动的点,处理的核心思想依然是路程=速度×时间。
其余的点的距离,利用数 轴上两点间距离公式解决。
(1) 根据路程=速度×时间,有: AP = t ;(2) AP = t ,故点 P 表示的数为t ;(3) 点 B 表示的数为 200,点 P 表示的数为t ,且 P 在 B 左边,故 PB = 200 - t 。
(4) 若 P 为 AB 的三等分点,有两种情况: ①AP=2PB ,即: t = 2 ⨯ (200 - t ),解得t =400 秒;3 ②2AP=PB ,即: 2t = 200 - t ,解得t = 200 秒;3 现在,我们将【题 2】一般化,线段 AB 一般化为在数轴上的一条定长线段,便得到如下的题:【题 3】如图,数轴上有两点 A 、B ,点 A 表示的数为 a ,点 B 表示的数为b ,且数 A 和数 B 的距离为 200 个单位长度,一只电子蚂蚁 P 从 A 出发,以1个单位每秒的速度由 A 往 B 运动,到 B 点运动停止。
(完整版)数轴上的动点问题
数轴上的线段与动点问题一、与数轴上的动点问题相关的基本概念主要涉及以下几个概数轴上的动点问题离不开数轴上两点之间的距离.念:,=|a-b|1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d右边点表示的数=也即用右边的数减去左边的数的差.即数轴上两点间的距离.—左边点表示的数÷2.中点坐标=(a+b)2.两点中点公式:线段AB因此向右运动的速点在数轴上运动时,由于数轴向右的方向为正方向,3.这样在起点的基础上加上点的度看作正速度,而向左运动的速度看作负速度.b,向左运动运动路程就可以直接得到运动后点的坐标.即一个点表示的数为a.a+bb;向右运动b个单位后所表示的数为个单位后表示的数为a—点分析数轴上点的运动要结合图形进行分析,4.数轴是数形结合的产物,. 在数轴上运动形成的路径可看作数轴上线段的和差关系数轴上的动点问题基本解题思路和方法:二、t.、表示出题目中动点运动后的坐标(一般用含有时间的式子表示)1t的式子表示). 根据两点间的距离公式表示出题目中相关线段长度 2、(一般用含有时间 3、根据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程.4、解绝对值方程并根据实际问题验算结果.注:数轴上线段的动点问题方法类似AB两点对应数为-2、4,P为数轴上一动点,对应的数为x、已知数轴上1. 、 A B-2 -1 0 1 2 3 4(1) 若P为AB线段的三等分点,求P对应的数;(2)数轴上是否存在P,使P到A点、B点距离和为10,若存在,求出x;若不存在,说明理由.(3)若点A,点B和点P(点P在原点)同时向左运动,它们的速度分别为1,2,1个长度单位/分,则第几分钟时,P为AB的中点?2 ++|abb、|=0c满足(c2、已知:-5b)是最小的正整数,且,请回答问题a、=________ b=________,c,1)请直接写出a、b、c的值.a=________(、、、、,xPc所对应的点分别为AB为一动点,其对应的数为C)(2a,点b+5|. -1|+2|xx ≤2时),请化简式子:|x+1|-|x0≤点P在0到2之间运动时(即请问个单位长度的速度向左运动,点C分别以每秒1个单位和2(3)若点A、CA,之间的距离为1个单位长度?几秒时,、、个单位长度的速度向左1A(4)点A以每秒BC开始在数轴上运动,若点个单位长度的速度向右个单位长度和5和点运动,同时,点BC分别以每秒2之A 之间的距离表示为BC,点与点BCt运动,假设秒钟过后,若点B与点的变化而改变?若变化,tAB的值是否随着时间BC间的距离表示为AB.请问:-请说明理由;若不变,请求其值.2b满足,且a,A在数轴上对应的数为a,点B在数轴上对应的数为b2.如图,若点2 B0. 1)= A -+|a2|+(b的长;(1)求线段AB1的根,在数轴上是否存在2x+-x1=C(2)点在数轴上对应的数为x,且x是方程2 2. P 对应的数;若不存在,说明理由PB+=PC,若存在,求出点点P,使PA点左侧运动时,点在ANPB的中点为,当PM左侧的一点,)若(3P是APA的中点为,的值不变,其中只有一个结论正确,PM的值不变;②PN-+有两个结论:①PMPN.请判断正确结论,并求出其值3,=10cm(如图所示)=60cm,BCCB、,满足OA=20cm,AB如图,3、在射线OM上有三点A、CO 从点C出发在线段出发,沿OOM方向以1cm/s的速度匀速运动,点Q点P从点. 匀速运动,两点同时出发上向点OQ运动的速度;Q运动到的位置恰好是线段AB的三等分点,求点=2(1)当PAPB时,点、两点相距70cm3cm/s,Q运动的速度为经过多长时间P;Q2()若点AP?OB、.的值,求EABOPABP3()当点运动到线段上时,取和的中点F EF4。
数轴中的动点问题洋葱数学
数轴中的动点问题洋葱数学【最新版】目录1.数轴上的动点问题概述2.动点问题的应用3.动点问题的解决方法4.结论正文一、数轴上的动点问题概述在数学中,我们经常遇到一些问题涉及到数轴上的点,如点间距离、中点公式等。
然而,当这些点开始在数轴上运动时,就产生了所谓的动点问题。
动点问题是指在数轴上,已知一个或多个动点,要求解与这些动点相关的一些数学问题。
这类问题不仅在数学领域具有重要意义,而且在实际生活和科学研究中也有着广泛的应用。
二、动点问题的应用动点问题在实际生活中的应用非常广泛,例如在物理学、工程学、计算机科学等领域。
以下举几个具体的应用实例:1.物体在数轴上的运动:在物理学中,研究物体在数轴上的运动,可以更好地理解物体的速度、加速度等物理量。
2.数据压缩:在计算机科学中,数据压缩技术可以有效地减少数据存储空间。
通过对数据进行编码,可以将数据压缩成更小的空间,从而提高存储效率。
3.算法设计:在计算机科学中,算法设计是非常重要的。
动点问题可以为算法设计提供一些思路,如求解最短路径问题、最小生成树问题等。
三、动点问题的解决方法解决动点问题的方法有很多,主要包括以下几种:1.几何法:通过几何图形的性质和公式,可以求解一些简单的动点问题。
例如,求解两个动点之间的最短距离问题。
2.代数法:代数法是解决动点问题的主要方法。
通过设方程、解方程,可以求解复杂的动点问题。
例如,求解动点在数轴上的运动轨迹问题。
3.数形结合法:数形结合法是将几何方法和代数方法结合起来,综合运用求解动点问题。
例如,求解两个动点之间的最小生成树问题。
四、结论总之,动点问题是数学中的一个重要问题,涉及到多个领域的应用。
解决动点问题的方法有很多,需要根据具体问题选择合适的方法。
数轴上含速度的动点问题
数轴上含速度的动点问题一、基本概念1. 动点- 想象数轴就像一条长长的马路,动点呢,就像是马路上一辆跑来跑去的小汽车。
这个点不是固定在一个位置的,它会按照一定的速度移动。
- 比如说,有个点A在数轴上,它以每秒2个单位长度的速度向右移动。
这就好比汽车以每小时60千米的速度沿着马路向前开一样。
2. 起始位置- 动点开始的地方很重要哦。
就像汽车出发的时候是从停车场出发的,动点也有它的起始点。
比如点B在数轴上的位置是 - 3,这就是它的起始位置。
3. 方向- 动点在数轴上移动是有方向的,要么向左,要么向右。
向左就像汽车倒车一样,在数轴上表示数值越来越小;向右就像汽车正常向前开,数值越来越大。
如果一个动点以速度v向左移动,那它的位置变化就是不断地减去vt(t是时间);如果向右移动,就是不断地加上vt。
二、常见问题类型及解法1. 相遇问题- 就好比两辆车在马路上开,最后碰到一起了。
假设有两个动点A和B,A从数轴上的1这个位置出发,速度是每秒3个单位长度向右移动;B从5这个位置出发,速度是每秒2个单位长度向左移动。
- 那我们怎么知道它们什么时候相遇呢?我们可以设经过t秒相遇。
A移动后的位置是1 + 3t,B移动后的位置是5 - 2t。
当它们相遇的时候,这两个位置是相等的,也就是1+3t = 5 - 2t。
- 然后我们就像解普通方程一样,把t求出来。
首先把含有t的项移到一边,得到3t+2t = 5 - 1,也就是5t = 4,解得t = 0.8秒。
2. 追及问题- 这就像一辆车去追另一辆车。
比如说有动点C在数轴上2的位置,速度是每秒1个单位长度向右移动;动点D在5的位置,速度是每秒3个单位长度向右移动。
- 我们想知道D什么时候能追上C。
设经过t秒D追上C。
C移动后的位置是2+t,D移动后的位置是5 + 3t。
当D追上C的时候,它们的位置相同,也就是2+t = 5+3t。
- 移项得到3t - t=2 - 5,2t=-3,解得t=-1.5秒。
数轴动点问题公式
数轴动点问题公式数轴上的动点问题是数学中常见的一个问题类型。
在这类问题中,通常给出一个点在数轴上随时间变化的位置,然后要求求解该点的位置函数或速度函数等相关函数。
下面将分别介绍数轴动点问题的一般公式及求解方法。
一、数轴动点问题的一般公式假设点P在数轴上以时间t为自变量随时间变化,点P在数轴上的位置用变量x表示,即x=x(t)。
点P在时间t0时刻的位置为x0,则在t时刻的位置可以表示为x=x(t)=f(t)+x0,其中f(t)是关于t的函数,表示点P的位移。
二、数轴动点问题的求解方法1.求解位置函数:当给出点P在不同时刻的位置时,可以通过对位置函数的求解来求得该点在任意时刻的位置。
(1)如果已知点P在时间t1时刻的位置为x1,时间t2时刻的位置为x2,可以通过构建方程的方法求解位置函数。
设点P在时间t时刻的位置为x,则有x=f(t)+x1,x=f(t2)+x2、将这两个方程联立,消去f(t),得到x=(x2-x1)/(t2-t1)*(t-t1)+x1、这样就得到了点P在时间t时刻的位置函数x=f(t)。
(2)如果已知点P在时间t1时刻的位置为x1,速度为v1,点P在时间t2时刻的位置为x2,速度为v2,还可以通过使用速度函数的方法求解位置函数。
设点P在时间t时刻的速度为v,则有v = g(t),其中g(t)是点P的速度函数。
由于速度可以理解为位移对时间的导数,即v = dx / dt。
由此,可以得到dx = g(t) * dt,对上式两边同时积分,即得到x = ∫g(t) * dt + C,其中C是常数。
由于点P在时间t1时刻的位置为x1,可以得到∫ g(t) * dt + C = x1,再由点P在时间t2时刻的位置为x2,得到∫ g(t) * dt + C = x2、通过这两个方程可以解出C,从而得到函数x = f(t)。
2.求解速度函数:当给出点P在不同时刻的位置时,可以通过求解速度函数来确定点P在任意时刻的速度。
七年级数学动点题50道
七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。
(1)当t = 1时,求PQ的长度。
(2)求经过多少秒后,PQ = 5。
解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。
所以公式。
(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。
则公式。
当公式时,即公式。
则公式或公式。
当公式时,公式,公式(舍去,因为时间不能为负)。
当公式时,公式,公式。
2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。
解析:因为点C在点A、B之间,公式,公式。
又因为公式,所以公式。
去括号得公式。
移项得公式。
合并同类项得公式。
解得公式。
3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。
(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。
解析:(1)点P表示的数为公式。
当点P到点B的距离为2时,公式。
则公式或公式。
解得公式或公式。
(2)点Q表示的数为公式,公式。
当公式时,公式。
即公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。
(1)求t秒后,点M表示的数和点N表示的数。
(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。
(2)当点M与点N相距4个单位长度时,公式。
则公式或公式。
当公式时,公式,公式。
当公式时,公式,公式。
(完整版)数轴上动点问题(电子蚂蚁)
一、与数轴上的动点问题有关的基本见解数轴上的动点问题离不开数轴上两点之间的距离。
主要波及以下几个概念:1 .数轴上两点间的距离,即为这两点所对应的坐标差的绝对值d=|a-b|也即用右侧的数减去左侧的数的差。
即数轴上两点间的距离= 右侧点表示的数—左侧点表示的数。
两点中点公式:线段AB 中点坐标 = ( a+b) ÷22.点在数轴上运动时,因为数轴向右的方向为正方向,所以向右运动的速度看作正速度,而向作运动的速度看作负速度。
这样在起点的基础上加上点的运动行程就能够直接获得运动后点的坐标。
即一个点表示的数为a ,向左运动b 个单位后表示的数为 a— b ;向右运动 b 个单位后所表示的数为 a+b 。
3 .数轴是数形联合的产物,解析数轴上点的运动要联合图形进行解析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
二、数轴上的动点问题基本解题思路和方法:1、表示出题目中动点运动后的坐标(一般用含有时间t 的式子表示)。
2、依据两点间的距离公式表示出题目中有关线段长度(一般用含有时间 t 的式子表示)。
3、依据题目问题中线段的等量关系(一般是和、差关系)列绝对值方程。
4、解绝对值方程并依据实指责题验算结果。
(解绝对值方程平常用 0 点分类谈论方法)已知: b 是最小的正整数,且a、 b 知足( c-5 )2+|a+b|=0 ,请回答以下问题(1)请直接写出 a、b、c 的值. a=________,b=________,c=________(2) a、 b、 c 所对应的点分别为 A、B、C,点 P 为易动点,其对应的数为 x,点 P 在 0 到 2 之间运动时(即 0≤x≤2 时),请化简式子: |x+1|-|x-1|+2|x+5|(3)(3)在( 1)( 2)的条件下,点 A、B、C 开始在数轴上运动,若点 A 以每秒 1 个单位长度的速度向左运动,同时,点 B 和点 C 分别以每秒 2 个单位长度和 p 个单位长度的速度向右运动,假定t 秒钟事后,若点 B 与点 C 之间的距离表示为 BC,点 A 与点 B 之间的距离表示为AB.请问: BC-AB的值能否跟着时间 t 的变化而改变?若变化,请说明原因;若不变,恳求其值.二、典例解析例1.已知数轴上有 A、B、C三点,分别代表— 24,— 10,10,两只电子蚂蚁甲、乙分别从 A、 C 两点同时相向而行,甲的速度为 4 个单位 / 秒。
数轴上的动点问题
数轴上的动点问题在数学的世界里,数轴是一个非常基础且重要的概念。
而其中的动点问题,则是许多同学在学习过程中感到头疼的一部分。
今天,咱们就来好好聊聊数轴上的动点问题,争取把它弄个明白。
首先,咱们得清楚数轴是啥。
简单来说,数轴就是一条带有方向、原点和单位长度的直线。
它就像是一个跑道,上面的点都有自己对应的位置。
那么动点问题又是怎么回事呢?动点,顾名思义,就是在数轴上移动的点。
这个点不像那些固定的数字一样老老实实待在原地,而是会按照一定的规律或者条件到处“跑”。
比如说,有一个点 A 在数轴上从某个位置开始,以每秒 2 个单位长度的速度向右移动。
这就是一个典型的动点问题描述。
那咱们怎么去解决这类问题呢?第一步,咱们要仔细读题,把题目中的关键信息都找出来。
比如动点的初始位置、移动的速度、方向,还有可能存在的时间限制等等。
就拿刚才那个例子来说,点 A 初始位置如果是在-3 这个点上,向右移动的速度是每秒 2 个单位长度,移动了 5 秒钟。
那咱们就能算出 5 秒钟后点 A 跑到哪儿去了。
因为向右移动是增加,速度是每秒 2 个单位长度,移动了 5 秒,所以一共移动了 2×5 = 10 个单位长度。
再加上初始位置-3,那么 5 秒钟后点 A 的位置就是-3 + 10 = 7 。
但是,动点问题可没这么简单,有时候会有多个动点同时在数轴上移动。
比如说,点 B 从 2 的位置开始,以每秒 1 个单位长度的速度向左移动,同时点 A 从-5 的位置开始,以每秒 3 个单位长度的速度向右移动。
经过多少秒,点 A 和点 B 会相遇?这时候,咱们就得设经过 t 秒它们相遇。
相遇的时候,点 A 和点 B所在的位置是一样的。
点 A 移动的路程就是 3t ,点 B 移动的路程就是 t (因为向左移动是减少)。
那么就可以列出方程:-5 + 3t = 2 t 。
解这个方程:3t + t = 2 + 5 ,4t = 7 ,t = 7/4 。
专题——数轴上的动点问题
专题——数轴上的动点问题数轴上的动点问题处理数轴上动点问题的策略:1.两点间距离的计算:两点间距离等于它们对应的坐标差的绝对值,即右边点的坐标减去左边点的坐标。
2.数的表示:在数轴上,向右运动的速度看作正速度,向左运动的速度看作负速度。
点在起点的基础上加上运动路程就可以得到运动后的坐标。
例如,一个点表示的数为a,向左运动b个单位后表示的数为a-b,向右运动b个单位后表示的数为a+b。
3.分类讨论:数轴是数形结合的产物,分析点的运动要结合图形进行分析,注意多种情况的分类讨论。
4.绝对值策略:若点的左右位置关系不明确或有多种情况,可用两点距离的绝对值表示它们之间的距离,从而避免复杂分类讨论。
5.中点公式:若数轴上点A,B表示的数分别为a,b,M为线段AB中点,则M点表示的数为(a+b)/2.类型一:数轴上两点距离的应用例1:已知数轴上A,B两点表示的数分别为-2和5,点P为数轴上一点1)若点P到A,B两点的距离相等,求P点表示的数。
2)若PA=2PB,求P点表示的数。
3)若点P到点A和点B的距离之和为13,求点P所表示的数。
练1:已知数轴上A、B两点对应数分别为-2和4,P为数轴上一动点,对应数为x。
(1)若P为线段AB的三等分点,则x的值为-1;(2)若线段PA=3PB,则P点表示的数为2;(3)若点P到A点、B点距离之和为10,则P点表示的数为1.类型二:绝对值的处理策略例2:已知数轴上A,B两点表示的数分别为-8和20,点P,Q分别从A,B两点同时出发,P点运动速度为每秒3个单位,Q点运动速度为每秒1个单位,设运动时间为t秒1)点P向右运动,Q点向左运动,当t为何值时,P,Q两点之间距离为8?2)若P点和Q点都向右运动,多少秒后,P,Q两点之间距离为8?3)在(2)的条件下,另一动点M同时从O点出发,以每秒2个单位的速度向右运动,多少秒后,点M到点P和点Q的距离相等?练2、已知数轴上有A、B两点,其中点A对应的数为-8,点B对应的数为4.动点P从点A出发,以每秒2个单位长度的速度向右运动,同时动点Q从点B出发,以每秒1个单位长度的速度向左运动。
数轴中的动点问题洋葱数学
数轴中的动点问题洋葱数学
摘要:
1.数轴上的动点问题的概念
2.动点问题的应用
3.动点问题的解题方法
4.动点问题的挑战与展望
正文:
一、数轴上的动点问题的概念
数轴上的动点问题指的是在数轴上,有一个或多个动点,其位置随时间变化而变化。
我们需要研究这些动点的位置关系、运动规律以及相关性质。
在数学领域中,动点问题是一个重要的研究方向,其应用广泛,涉及到多个数学分支。
二、动点问题的应用
动点问题在实际生活中有很多应用,例如在物理学中,粒子在数轴上的运动可以看作是一个动点问题;在计算机科学中,算法中的动态规划也涉及到动点问题;此外,动点问题还与最优化理论、微积分等数学分支密切相关。
三、动点问题的解题方法
解决动点问题有多种方法,如几何法、代数法、逻辑法等。
几何法主要是利用几何图形的性质来解决问题,例如通过作图找到动点的位置关系;代数法则是通过建立数学模型,利用代数方法求解;逻辑法则是利用逻辑推理来解决问题。
在实际解题过程中,我们需要灵活运用各种方法。
四、动点问题的挑战与展望
尽管动点问题在数学领域中取得了很多成果,但仍然存在许多挑战和未解决的问题。
例如,如何更好地描述动点的运动规律,如何求解更复杂的动点问题等。
在今后的研究中,我们需要不断探索新的方法和技巧,以解决这些挑战。
总之,数轴上的动点问题既是一个有趣的数学问题,也是一个具有广泛应用价值的研究方向。
从物理学到计算机科学,从最优化理论到微积分,动点问题都发挥着重要作用。
数轴动点问题经典例题
数轴动点问题经典例题
经典的数轴动点问题有很多,以下是其中一些例题:
1. 在数轴上,一个小球从原点出发,每次可以向左或向右移动1个单位。
设小球第n次移动后的位置为Sn,请问当n=10时,小球的位置在哪里?
2. 在数轴上有5个点A、B、C、D、E,它们的位置依次为-5,-3,0,2,4。
现在有3个小球,分别从A,C和E出发,每
次可以向左或向右移动1个单位。
设小球分别到达位置X、Y
和Z的可能性分别为PX,PY和PZ,请问PX、PY和PZ分
别等于多少?
3. 有一个长度为6的数轴,现在有两只小虫,分别在位置-3和3。
每次小虫可以同时向左或向右移动任意距离,但不能超出
数轴的边界。
问两只小虫移动n次后,它们相遇的概率是多少?
4. 在数轴上有5个点A、B、C、D、E,它们的位置依次为-4,-2,0,2,4。
现在有2个小球,分别从A和E出发,每次可
以向左或向右移动1个单位。
问小球分别到达位置C的可能
性分别是多少?
这些题目都涉及到在数轴上进行移动,并通过计算概率或者判断位置来求解。
这是数轴动点问题的经典应用。
初一数学上册数轴动点问题
初一数学上册数轴动点问题一、什么是数轴动点问题数轴动点问题呢,就是在数轴这个特定的数学环境里,有一些点是可以动来动去的,然后让我们根据这些点的运动情况去解决各种各样的数学问题。
比如说,一个点从数轴上的某个位置开始,按照一定的速度向左或者向右移动,然后问我们在某个时刻这个点的位置在哪里呀,或者几个点之间的距离是多少啦之类的。
这就像一群小蚂蚁在数轴这条小路上跑来跑去,我们得搞清楚它们的位置变化情况。
二、常见的题型类型1. 求动点表示的数这种题就是给你一个动点在数轴上的初始位置,还有它运动的方向和速度,然后让你求出经过一段时间后这个动点所表示的数。
比如说,一个点在数轴上表示3,它以每秒2个单位长度的速度向右运动,经过5秒后,这个点就向右移动了2×5 = 10个单位长度,那这个点表示的数就变成了3+10 = 13啦。
2. 求两点之间的距离有时候会给你两个动点,它们分别在数轴上运动,然后问你在某个时刻这两个动点之间的距离是多少。
这就需要我们先算出这两个动点在那个时刻分别在数轴上的位置,然后用较大的数减去较小的数(如果是求绝对值距离的话就直接求两个数差的绝对值)。
就像两个人在数轴这条跑道上跑,我们要看看他们之间隔了多远。
3. 动点与线段的关系还有一种题型是关于动点和线段的关系的。
比如说,一个动点在数轴上运动,问这个动点什么时候会在线段的中点上,或者什么时候这个动点会把某条线段分成一定比例的两段。
这就比较复杂啦,我们要综合考虑线段的端点位置、动点的运动情况等很多因素呢。
三、解决数轴动点问题的小技巧1. 画数轴这可是超级重要的一步哦。
把题目中的情况在数轴上画出来,这样我们就能很直观地看到各个点的位置关系啦。
就像画画一样,把那些抽象的数字和动点变成我们能看得见的东西。
比如说,题目里说一个点在 -2的位置,另一个点在4的位置,我们就把它们在数轴上标出来,然后再根据动点的运动情况,一点一点地画出它们的新位置。
数轴上的动点问题
数轴上的动点问题数轴上的动点问题一.解答题(共15小题)1.数轴上有两点A,B,点C,D分别从原点O与点B出发,沿BA 方向同时向左运动.(1)如图,若点N为线段OB上一点,AB=16,ON =2,当点C,D分别运动到AO,BN的中点时,求CD的长;(2)若点C在线段OA上运动,点D在线段OB上运动,速度分别为每秒1cm,4cm,在点C,D运动的过程中,满足OD=4AC,若点M 为直线AB上一点,且AMBM=OM ,求的值.2.已知在数轴上A,B两点对应数分别为4,20.(1)若P点为线段AB的中点,求P点对应的数.(2)若点A、点B同时分别以2个单位长度/秒的速度相向运动,点M(M点在原点)同时以4个单位长度/秒的速度向右运动.几秒后点M 到点A、点B的距离相等?求此时M对应的数.(3)在(2)的条件下,是否存在M点,使3MA=2MB?若存在,求出点M对应的数;若不存在,请说明理由.第1页(共8页)3.如图,A、B分别为数轴上的两点,A点对应的数为20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?4.已知数轴上A,B两点对应数分别为2和5,P为数轴上一点,对应数为x.(1)若P为线段AB的三等分点(把一条线段平均分成相等的三部分的两个点),求P 点对应的数.(2)数轴上是否存在点P,使P点到A点,B点距离和为10?若存在,求出x值;若不存在,请说明理由.(3)若点A,点B和点P(P点在原点)同时向左运动,它们的速度分别为1,6,3个长度单位/分,则第几分钟时,A,B,P三点中,其中一点是另外两点连成的线段的中点?第2页(共8页)5.已知数轴上两点A.B对应的数分别为2和7,点M为数轴上一动点.(1)请画出数轴,并在数轴上标出点A、点B;(2)若点M到A的距离是点M到B的距离的两倍,我们就称点M 是【A,B】的好点.①若点M运动到原点O时,此时点M【A,B】的好点(填是或者不是)②若点M以每秒1个单位的速度从原点O开始运动,当M是【B,A】的好点时,求点M的运动方向和运动时间(3)试探究线段BM和AM的差即BMAM的值是否一定发生变化?若变化,请说明理由:若不变,请求其值.6.已知数轴上有A、B、C三点,分别表示有理数26,10,10,动点P从A出发,沿AC方向,以每秒1个单位的速度向终点C运动,设点P运动时间为t秒.(1)用含t的代数式表示点P到点A、C的距离,P A=;PC=.(2)当点P运动到点B时,点Q从C点出发,沿CA方向,以每秒3个单位的速度向A 点运动,当其中一点到达目的地时,另一点也停止运动.①当t=,点P、Q相遇,此时点Q运动了秒.②请用含t的代数式表示出在P、Q同时运动的过程中PQ的长.第3页(共8页)7.如图A在数轴上所对应的数为2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B 两点相距4个单位长度.8.如图,A,B分别为数轴上的两点,点A对应的数是2,点B对应的数是10.现有点P 从点A出发,以4个单位长度/秒的速度向右运动,同时另一点Q从点B出发,以1个单位长度/秒的速度向右运动,设运动时间为t秒.(1)A、B两点之间的距离为;(2)当t=1时,P、B两点之间的距离为;(3)在运动过程中,线段PB、BQ、PQ中是否会有两条线段相等?若有,请求出此时t 的值;若没有,请说明理由.第4页(共8页)9.已知数轴上三点A,O,B表示的数分别为6,0,4,动点P从A 出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.10.(1)数轴上是否存在点P,使点P到点A、点B的距离之和为6 ?若存在,请求出x的值;若不存在,说明理由;(2)当x为何值时,点P到点A的距离等于点P到点B的距离的2倍?(3)当x=2时,点A以2个单位长度/秒的速度向右运动,同时点B以1个单位长度/秒向右运动,问多长时间后点P到点A,点B的距离相等?第5页(共8页)11.【背景知识】数轴上A点、B点表示的数为a、b,则A、B两点之间的距离AB=|ab|;线段AB的中点M 表示的数为.【问题情境】已知数轴上有A、B两点,分别表示的数为40和20,点A以每秒3个单位的速度沿数轴向右匀速运动,点B以每秒2个单位向左匀速运动.设运动时间为t秒(t>0).(1)运动开始前,A、B两点的距离为;线段AB的中点M所表示的数为.(2)它们按上述方式运动,A、B两点经过多少秒会相遇,相遇点所表示的数是什么?(3)当t为多少时,线段AB的中点M表示的数为5?12.如图数轴上三点A,B,C对应的数分别为6,2,x.请回答问题:(1)若点A先沿着数轴向右移动8个单位长度,再向左移动5个单位长度后所对应的数字是;(2)若点C到点A、点B的距离相等,那么x对应的值是;(3)若点C到点A、点B的距离之和是10,那么x对应的值是;(4)如果点A以每秒4个单位长度的速度向右运动,点B以每秒2个单位长度的速度向左运动,点C从原点以每秒1个单位长度的速度向左运动,且三点同时出发.设运动时间为t秒,请问t为何值时点C到点A、点B的距离相等?第6页(共8页)13.如图,已知数轴上有A、B、C三个点,它们表示的数分别是24,10,10.(1)填空:AB=,BC=;(2)若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BCAB的值是否随着时间的变化而改变?请说明理由.14.已知点P,Q是数轴上的两个动点,且P,Q两点的速度比是3:5.(速度单位:单位长度/秒)(1)动点P从原点出发向数轴正方向运动,同时,动点Q也从原点出发向数轴负方向运动,6秒时,两点相距96个单位长度.则动点P的速度是,此时点Q表示的有理数是;(2)如果P,Q两点从(1)中6秒时的位置同时向数轴正方向运动,那么再经过秒,点P,Q到数轴上表示有理数20的点的距离相等.第7页(共8页)15.如图,A、B分别为数轴上的两点,A点对应的数为20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C 点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D 点相遇,你知道D点对应的数是多少吗?。
专题02 数轴上的三种动点问题
专题02 数轴上的三种动点问题引言在数学中,数轴是一个常见的工具,用于表示实数集合。
它是一条无限长的直线,上面的每个点都对应着一个实数。
在数轴上,我们可以研究各种动点问题,这些问题涉及到点在数轴上的移动和相对位置的变化。
本文将介绍三种常见的数轴上的动点问题,并提供解决问题的方法和示例。
问题一:点的坐标变化问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B的坐标分别是多少?解决方法这个问题可以通过简单的数学运算来解决。
首先,我们可以得到点A和点B在t秒后的位移分别为xt和-yt。
将初始坐标与位移相加,即可得到点A和点B在t秒后的坐标。
具体而言,点A在t秒后的坐标为:坐标A = a + xt点B在t秒后的坐标为:坐标B = b - yt示例假设点A的初始坐标为5,点B的初始坐标为10,点A每秒钟向右移动2个单位,点B每秒钟向左移动3个单位。
我们要求在2秒后,点A和点B的坐标。
根据上述解决方法,点A在2秒后的坐标为:坐标A = 5 + 2*2 = 9点B在2秒后的坐标为:坐标B = 10 - 3*2 = 4因此,点A在2秒后的坐标是9,点B在2秒后的坐标是4。
问题二:点的相对位置问题问题描述在数轴上,有两个动点A和B,初始坐标分别为a和b。
点A每秒钟向右移动x个单位,点B每秒钟向左移动y个单位。
问在t秒后,点A和点B相对位置发生了怎样的变化?解决方法要解决这个问题,我们可以通过分析点A和点B的运动情况来确定它们的相对位置是否发生了变化。
首先,我们需要确定点A和点B在t秒内是否相遇。
如果点A在t秒内移动的距离和点B在t秒内移动的距离之和大于等于它们的初始距离,那么它们相遇;反之,则它们没有相遇。
如果它们相遇了,我们可以继续分析它们的相对位置。
如果点A在相遇时位于点B的左侧,则相对位置发生了变化;反之,则相对位置没有发生变化。
数轴上的动点问题
数轴上的动点问题1、如图,点A、B在数轴上表示的数分别是60、一80(单位厘米) .甲蜗牛从点 A出发,沿着射线 A0一直以每分钟 a厘米的速度爬行,乙蜗牛从点B出发,沿着射线 B0一直匀速爬行,乙蜗牛的速度是甲蜗牛速度的一半多1厘米,两只蜗牛同时出发,同时停止运动。
(1)若甲、乙蜗牛爬行20分钟后,求甲、乙蜗牛所在的位置对应的数分别是多少? (用含a式子表示)(2)若 a=2厘米/分,经过多长时间,两只蜗牛相距30厘米?2、如图,A、B分别为数轴上的两点,A点对应的数为-20,B点对应的数为100.①请写出与A、B两点距离相等的点M所对应的数;②现有一只电子蚂蚁P从B点出发,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?③当电子蚂蚁P从B点出发时,以6单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4单位/秒的速度也向左运动,设两只电子蚂蚁在数轴上的D点相遇,你知道D点对应的数是多少吗?…新起点单元测试卷3、如图,点A在数轴上表示有理数-26,将点A向右平移16个单位得到点B①求点B表示的有理数②点C表示的有理数为m,m=2015(a+b)+(cd+1)3+2e,其中a、b互为相反数,c、d 互为倒数,e为最小的正整数,求m的值③在②的条件下,动点P从点A出发,以每秒1个单位的速度向终点C移动,当点P运动到B点时,点Q从A点出发,以每秒3个单位的速度向C点运动,问当点Q从A点出发几秒钟时,点P和点Q相距2个单位长度?写出此时点Q在数轴上表示的有理数。
A B C……金阶梯4、已知数轴上A、B两点所表示的数分别为a和b.(1)如图,a=﹣1,b=7时①求线段AB的长;②若点P为数轴上与A、B不重合的动点,M为PA的中点,N为PB的中点,当点P在数轴上运动时,MN的长度是否发生改变?若不变,并求出线段MN的长;若改变,请说明理由.(2)不相等的有理数a、b、c在数轴上的对应点分别为A、B、Q,如果|a﹣c|﹣|b﹣c|=|a﹣b|,那么,Q点应在什么位置?请说明理由.……网络5、已知:如图数轴上两动点A、B原始位置所对应的数分别为-3、1,(1)若点P是线段AB的中点,点P对应的数记为a,请直接写出a的值;(2)若点A以每秒钟4个单位向右运动,同时点B以每秒钟2个单位长度也向右运动,求点A和点B相遇时的位置所表示的数b的值;(3)当另一动点Q以每秒钟1个单位长度的速度从原点O向右运动时,同时点A以每秒钟4个单位长度向右运动,点B以每秒钟2个单位长度向右运动,问几秒钟后QA=2QB?……网络6、已知:如图①,点O为所给数轴的原点,表示的数为0,点A、B分别在原点的两侧,且点A所表示的数为+8,点A与点B之间的距离为18个单位长度.⑴直接写出点B所表示的数是;⑵点C、点D在数轴的位置如图②所示,点C到点B的距离与点D到点A的距离相等,且C、D两点之间的距离为10个单位长度,设点C所表示的数为a,点D所表示的数为b,求丨2a-b丨的值;⑶在⑵的条件下,点E是点C右侧的一点,动点P从点C出发,向终点E匀速运动,同时动点Q从点E出发,向终点C 匀速运动,当运动时间为1秒和2秒时,点P与点Q之间的距离均为2个单位长度,求点E所表示的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、引探——自主学习、探究问题
例1:解方程
=18
归纳点评:虽然x-2,x+4的正负不能确定,但在某个具体 的区段内都是确定的,这正是零点分段讨论法的优点,采 用此法的一般步骤是: 1.求零点:分别令各绝对值符号内的代数式为零,求出 零点(不一定是两个).
2.分段:根据第一步求出的零点,将数轴上的点划分为 若干个区段,使在各区段内每个绝对值符号内 的部分的正负能够确定. 3.分区段讨论:在各区段内去掉绝对值符号分别考察问题
利用零点分段法去掉绝对值符号
:
所谓零点分段法
是指:若数x1,x2,……xn,分别使含有|X-x1|,|X-x2|,……, |X-xn|的代数式中相应绝对值为零,称x1,x2,……,xn为相应绝对 值的零点,零点x1,x2,……,xn将数轴分为n+1段,利用绝对值的意 义化去绝对值符号,得到代数式在各段上的简化式,从而化为不含 绝对值符号的一般等式来解,即令每项等于零,得到的值作为讨论 的分区点,然后再分区间讨论绝对值方程,最后应求出解的并解。 零点分段法是解含绝对值符号的方程的常用解法,这种方法主要体 现了化归、分类讨论等数学思想方法,它可以把求解条理化、思路 直观化。
(4)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的 速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位 长度的速度距离表示为AB.请问:BC-AB的值是否随 着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.
例3:如果a、b为定值, 关于x的方程 无论k为何值, 它的解总是x=1, 求a、b的值. 解:将X=1代入方程得
2k a 1 bk 2 3 6
2kx a x bk 2 3 6
化简方程,得 (4+b)k=13-2a 这个方程可以看作,关于K的一元一次方程有任意解 则4+b=0,13-2a=0 ∴a=6.5 b =-4
二个零点把数轴上的数分为三个部分
当x≥2时,x-2≥o,x+4>0 原方程化简为2(x-2)-(x+4)=18 解方程得 x=26 当-4≤x<2时,x-2<o,x+4≥0 原方程化简为-2(x-2)-(x+4)=18 解方程得 x=-6 因为-4≤x<2,所以x=-6不符合,应舍去 当x<-4时,x-2<o,x+4<0 原方程化简为-2(x-2)+(x+4)=18 解方程得 x=-10 综上所述:原方程的解为x=26或x=-10
一、导疑——情境导入、提出疑问
如果数轴上任意两点A、B所对应的数分别为a,b,则 A、B之间的距离为:AB=|a-b|
ab AB的中点坐标为: 2
如图,数轴上两点A,B对应的数分别为-4和2,数轴上 另有一点C,点C到点B距离的2倍与它到点A距离的差 是18,则点C对应的数是多少?
A B
=18
一、导疑——情境导入、提出疑问 1、零点分段法
4、数轴是数形结合的产物,分析数轴上点的运动要结合 图形进行分析,点在数轴上运动形成的路径可看作数轴上 线段的和差关系.
例4、已知:b是最小的正整数,且a、b、c满足 (c-5)2+|a+b|=0, 请回答问题 (1)请直接写出a、b、c的值.a=________, b=________,c=________. (2)a、b、c所对应的点分别为A、B、C,点P为一动点, 其对应的数为x,点P在0到2之间运动时(即0≤x≤2时), 请化简式子:|x+1|-|x-1|+2|x+5|. (3)若点A、点C分别以每秒1个单位和2个单位长度的 速度向左运动,请问几秒时,A,C之间的距离为1个单 位长度?
3、借助方程解决数轴上的动点问题。 数轴上的动点问题离不开数轴上两点之间的距离. 主要涉及以下几个概念: 1、数轴上两点A、B之间的距离为:AB=|a-b|
三、释疑——主动展示、阐释疑点
ab 2、AB的中点坐标为: 2 3、点在数轴上运动时,由于数轴向右的方向为正方向,因此向右 运动的速度看作正速度,而向左运动的速度看作负速度.这样在 起点的基础上加上点的运动路程就可以直接得到运动后点的坐标. 即一个点表示的数为a,向左运动b个单位后表示的数为a—b; 向右运动b个单位后所表示的数为a+b.
二、引探——自主学习、探究问题
例1:解方程
=18
思路分析:本类型的题既没有条件限制,又没有
数轴信息,要对各种情况分类讨论,可采用零点分段讨论 法,本例的难点在于x-2,x+4的正负不能确定,由于x是不 断变化的,所以它们为正、为负、为零都有可能,应当对 各种情况—一讨论.
例1:解方程
=18
解:令x-2=0得零点:x=2;令x+4=0得零点:x=-4
4.总结综合:将各区段内的情形综合起来,得到问题的 答案.
二、引探——自主学习、探究问题
2、含字母系数的一元一次方程
(一)根据方程解的情况来确定字母系数
例2:关于x的方程mx+4=3x-n, 分别求m, n满足什么条件 时,原方程 (1)有唯一解; (2) 有无数多个解; (3) 无解. 解:将原方程变形为(3-m)x=n+4 n4 (1)当3-m≠0时,即m≠3时,原方程有唯一解x= 3 m (2)当3-m=0,n+4=0时,即m=3,n=-4时,原方程有无数个解 (3)当3-m=0,n+4≠0时,即m=3,n≠-4时,原方程无解;
例4、已知:b是最小的正整数,且a、b、c满足 (c-5)2+|a+b|=0, 请回答问题 -1 , (1)请直接写出a、b、c的值.a=________ b=________ 1 ,c=_____. 5
例4、已知:b是最小的正整数,且a、b、c满足 (c-5)2+|a+b|=0, 请回答问题 (2)a、b、c所对应的点分别为A、B、C,点P为一动点, 其对应的数为x,点P在0到2之间运动时(即0≤x≤2时), 请化简式子:|x+1|-|x-1|+2|x+5|. 解:(2)当-0≤x≤1时,x+1>o,x-1≤0,x+5>0 则|x+1|-|x-1|+2|x+5| =x+1-(1-x)+2(x+5) =4x+10 当1<x≤2时,x+1>o,x-1>0,x+5>0 则|x+1|-|x-1|+2|x+5| =x+1-(x-1)+2(x+5) =2x+12