概率论与数理统计第四章自测题
概率论与数理统计第四章习题及答案
概率论与数理统计习题 第四章 随机变量的数字特征习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的).解:设表示一次抽检的10件产品的次品数为ξP =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)]查二项分布表1-=.因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=⎪⎪⎭⎫ ⎝⎛04××=.P (X =1)=⎪⎪⎭⎫ ⎝⎛14××=, P (X =2)= ⎪⎪⎭⎫⎝⎛24××=.P (X =3)=⎪⎪⎭⎫ ⎝⎛34××=, P (X =4)= ⎪⎪⎭⎫ ⎝⎛44××=. 从而E (X )=np =4×=习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==⎭⎬⎫⎩⎨⎧-=+j j X P jjj ,说明X的数学期望不存在.解: 由于1111133322(1)((1))3j j j j j j j j j P X j j j j ∞∞∞++===-=-==∑∑∑,而级数112j j ∞=∑发散,故级数11133(1)((1))j jj j j P X j j∞++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X-2 0 2 k p求)53(),(),(22+X E X E X E .解 E (X )=(-2)+0+2=由关于随机变量函数的数学期望的定理,知E (X 2)=(-2)2+02+22=E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[322+5]=如利用数学期望的性质,则有E (3X 2+5)=3E (X 2)+5=3+5=4.135)(3)53(,8.23.04.0)(,2.03.023.004.02)(222222)2(=+=+=⨯+⨯=-=⨯+⨯+⨯-=-X E X E X E X E习题4-4 设随机变量X 的概率密度为⎩⎨⎧≤>=-0,0,0,)(x x e x f x 求XeY X Y 2)2(;2)1(-==的数学期望.解22)(2)0(2)(2)2()()(00=-=+-=+⋅===∞-∞+-∞-+∞-∞-+∞∞-⎰⎰⎰⎰xx xx e dx e xe dx xe dx x dx x xf X E Y E I3131)()()(0303022=-==⋅==∞-∞+-∞+---⎰⎰xx x x X edx e dx e e e E Y E II 习题4-5 设),(Y X 的概率密度为⎩⎨⎧≤≤≤=其它,0,10,12),(2x y y y x f求)(),(),(),(22Y X E XY E Y E X E +.解 各数学期望均可按照⎰⎰+∞∞-+∞∞-=dxdy y x f y x g Y X g E ),(),()],([计算。
gll07_lx0401概率论与数理统计 第四章练习题及答案
第四章测试题一、单项选择题1.设随机变量X的方差DX=2,EX2=38,则X的数学期望E(X)等于()A.6B.C.36D.402.已知随机变量X的数学期望EX=2,方差DX=4,则EX2=()A.9B.18C.8D.63.设随机变量X的的函数为,则数学期望()A.3B.C.6D.14.设X服从二项分布B(n,p),则()A.E(2X-1)=2npB.D(2X+1)=4np(1-p)+1C.E(2X+1)=4np+1D.D(2X-1)=4np(1-p)5.设随机变量X~N(1,4),则D(2X+7)=()A.2B.6C.16D.46.设X~B(n,p),则DX-EX=()A.np(1-p)B.np2C.np2(1-p)D.-np27.设8.若随机变量ξ的分布函数二、填空题。
1.把4个球随机地投入4个袋子中去,设X表示空袋子的个数,则E(X)为。
2.设二维连续型随机变量(X,Y)在单位圆D={(x,y)|x2+y2≤1}内服从均匀分布,则X和Y的相关系数ρXY=_______。
3.设随机变量X和Y相互独立,且X~N(1,2),Y~N(-3,4),则Z=-2X+3Y+7的数学期望为_____,方差为______。
4.已知X~B(n,p),且E(X)=8,D(X)=4.8,则n= 。
三、计算题1.已知随机变量X~B(n,p),EX=12,DX=8,求p和n。
2.设X为随机变量,K为任意常数,证明D(KX)=K2DX。
3.设随机变量X的分布函数为求:(1)常数A;(2)X的密度函数f(x);(3)P{X≤1}4.某射手有3发子弹,射一次命中的概率为,如果命中了就停止射击,否则一直独立射到子弹用尽。
求:(1)耗用子弹数X的分布列;(2)EX;(3)DX。
四、综合题1.设随机变量X的密度函数求:(1)常数C;(2)X取值落入区间(0.3,0.7)内的概率;(3)X的分布函数F(x)。
2.甲、乙两台自动机床,生产同一种标准件,生产2000只所出的次品数分别用X、Y来表示,经过一段时间的考察,X、问哪一台加工的产品质量好些?答案部分一、单项选择题1.【正确答案】 A【答案解析】 DX=EX2-(EX)2,得(EX)2=EX2-DX=38-2=36,E(X)=6,因此选A。
(完整版)自考概率论与数理统计第四章习题
第四章、随机变量数字特征08年1月7.设X~B (10,31),则E (X )=( )A.31 B.1 C.310 D. 108.设X~N (1,23),则下列选项中,不成立...的是( ) A.E (X )=1 B.D (X )=3 C.P (X=1)=0D.P (X<1)=0.520.设随机变量X 具有分布P {}k X ==,5,4,3,2,1,51=k 则E ( X )= ___________。
21.设随机变量X 在区间(0,1)上服从均匀分布,Y=3X-2,则E ( Y )= ___________。
29.设离散型随机变量X 的分布律为:求(1)D(X);(2)D(Y);(3)Cov( X,Y ).08年4月6.设E (X ),E (Y ),D (X ),D (Y )及Cov(X,Y )均存在,则D (X-Y )=( ) A .D (X )+D (Y )B .D (X )-D (Y )C .D (X )+D (Y )-2Cov(X,Y )D .D (X )-D (Y )+2Cov(X,Y )7.设随机变量X ~B (10,21),Y ~N (2,10),又E (XY )=14,则X 与Y 的相关系数=XY ρ( )A .-0.8B .-0.16C .0.16D .0.8,令Y=2X ,8.已知随机变量X 的分布律为E (X )=1,则常数x =( ) A .2 C .6 D .821.已知随机变量X 的分布律为 则{}=<)(X E X P _______. 22.已知E (X )=-1,D (X )=3,则E (3X 2-2)=___________.23.设X 1,X 2,Y 均为随机变量,已知Cov(X 1,Y )=-1,Cov(X 2,Y )=3,则Cov(X 1+2X 2,Y )=_______. 四、综合题(本大题共2小题,每小题12分,共24分) 28.设二维随机变量(X ,Y )的分布律为,且已知E (Y )=1,试求:(1)常数α,β;(2)E (XY );(3)E (X )08年7月8.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( ) A .-21B .0C .21 D .219.设X~N (0,1),Y~B (16,21),且两随机变量相互独立,则D(2X+Y)= ________________.27.设随机变量X 只取非负整数值,其概率为P }{k X ==1k k )a 1(a ++,其中a=12-,试求E (X )及D (X )。
《概率论与数理统计》习题及答案第四章
·34·《概率论与数理统计》习题及答案第四章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y的分布列为12311106121112666113126其中(1,1)(1)(1|1)P X Y P X P Y X (1,2)(1)(2|P XYP X P Y X 121436余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32kP Xk C k,于是(,)X Y 的分布列和边缘分布为XY·35·012333610088811230088813318888jip p 其中(0,1)(0)(1|0)P X Y P X P Y X ,13313(1,1)(1)(1|1)()128P XYP XP YXC ,余者类推。
3.设(,)X Y 的概率密度为1(6),02,24,(,)8,.x y x y f x y 其它又(1){(,)|1,3}D x y x y;(2){(,)|3}Dx y xy。
求{(,)}P X Y D 解(1)1321{(,)}(6)8P x y D xy d xd x y1194368228;(2)1321{(,)}(6)8xP X Y D x y d x d y112113(1)[(3)4]82x x d xx d x524.4.设(,)X Y 的概率密度为22222(),,(,),.C Rxy xyR f x y 其他求(1)系数C ;(2)(,)X Y 落在圆222()xyr rR 内的概率.解(1)22222232001()RxyRCRxy d xd y C R Cr d rdYX xx+y=3422y·36·333233R R C RC,33CR.(2)设222{(,)|}Dx y x yr ,所求概率为2222233{(,)}()xyrP X Y D R xy d x d yR322323232133r r r R rRRR.5.已知随机变量X 和Y 的联合概率密度为4,1,01(,)0,.x y xyf x y 其它求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则(,)(,)xyF x y f u v d u d v01001000,00,4,1,01,4,01,1,4,1,01,1,1, 1.xyxyxy uv du d v xyu yd u d y x y xvd xd v x y xy 或22220,00,,01,01,,01,1,,1,01,1,1,1.x yx y x y x xy yx y xy或解2由联合密度可见,,X Y 独立,边缘密度分别为2,1,()0,;X x xf x 其他2,01,()0,.Y y yf y 其它边缘分布函数分别为(),()X Y F x F y ,则·37·20,0,()(),01,1, 1.xX X x F x f u d u x x x 20,0,()(),01,1,1.yY Xy F y fv d v y y y设(,)X Y 的分布函数为(,)F x y ,则22220,00,,01,01(,)()(),01,1,,1,01,1,1,1.X Y x y x y x y F x y F x F y x xy y x y x y或6.设二维随机变量(,)X Y 在区域:01D x,||y x 内服从均匀分布,求边缘概率密度。
《概率论与数理统计》第4-7 章复习与自测题
《概率论与数理统计》第4-7章复习第四章 随机变量的数字特征常用分布的期望与方差第五章 大数定律及中心极限定理第六章 数理统计的基本概念第七章参数估计常用概率分布的参数估计表自测题第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤1 0 其他, 求数学期望EX 。
2.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。
3. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0, 若X ,Y 相互独立,求: E(XY)4. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。
DX=1λ, E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ5.设随机变量的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 1 2 0 1/4 1/12 2 1/6 1/2 求:(1) E(X), E(Y);(2)D(X), D(Y);(3) ρxy 。
6.设二维随机变量(X ,Y)的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 0 1 3 0 0.1 0.2 0.1 1 0.2 0.4 0,求(1)E(XY); (2)Cov(X,Y)。
试问:X 与Y 是否相互独立?为什么?7. 设随机变量X 的分布律为 ⎣⎡⎦⎤X -2 0 1 2P 0.2 0.3 0.4 0.1.记Y =X 2, 求:(1)D (X ),D (Y );(2)Cov(X,Y ), ρxy .8. 已知投资某短期项目的收益率R 是一随机变量,其分布为:⎣⎡⎦⎤R -2% 0% 3% 10%P 0.1 0.1 0.3 0.5 。
(1) 求R 的数学期望值E(R)与方差D(R);(2) 若一位投资者在该项目上投资100万元,求他预期获得多少收益(纯利润)(万元)?9. 假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。
概率论与数理统计第四章测试题
第4章 随机变量的数字特征一、选择题1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X-2Y 的方差是 (A) 8 (B) 16 (C) 28 (D) 442.若随机变量X 和Y 的协方差(),0Cov X Y =,则以下结论正确的是( )(A) X 与Y 相互独立 (B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY 3.设随机变量X 和Y 相互独立,且()()221122,,,XN Y N μσμσ,则2Z X Y =+( ) (A) ()221212,2N μμσσ++ (B) ()221212,N μμσσ++(C) ()2212122,4N μμσσ++ (D) ()2212122,4N μμσσ--4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X-Y 不相关的充要条件为(A) EX=EY (B) E(X 2)- (EX)2= E(Y 2)- (EY)2(C) E(X 2)= E(Y 2)(D) E(X 2)+(EX)2= E(Y 2)+ (EY)25.设X 、Y 是两个相互独立的随机变量且都服从于()0,1N ,则()max ,Z X Y =的数学 期望()E Z =( ) (A)(B) 0 (C) (D) 6.设X 、Y 是相互独立且在()0,θ上服从于均匀分布的随机变量,则()min ,E X Y =⎡⎤⎣⎦( )(A)2θ (B) θ (C) 3θ (D) 4θ7.设随机变量X 和Y 的方差存在且不等于0,则D(X+Y)=DX+DY 是X 和Y ( )(A) 不相关的充分条件,但不是必要条件 (B) 独立的充分条件,但不是必要条件 (C) 不相关的充分必要条件 (D) 独立的充分必要条件 8.若离散型随机变量X 的分布列为(){}()1121,2,2nnnP X n =-⋅==,则()E X =( ) (A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n 次,以X 和Y 分别表示正面向上和反面向上的次数,则X 和Y 的相关系数等于(A )-1 (B )0 (C )21 (D )110.设随机变量X 和Y 独立同分布,具有方差2σ>0,则随机变量U=X+Y 和V=X-Y (A )独立 (B) 不独立 (C ) 相关 (D) 不相关11.随机变量X 的方差存在,且E(X)=μ,则对于任意常数C ,必有 。
概率论与数理统计第四章.试题
第四章历年试题一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设随机变量X 服从参数为2的泊松分布,则下列结论中正确的是( ) A.E (X )=0.5,D (X )=0.5 B.E (X )=0.5,D (X )=0.25 C.E (X )=2,D (X )=4D.E (X )=2,D (X )=22.设随机变量X 与Y 相互独立,且X ~N (1,4),Y ~N (0,1),令Z=X -Y ,则D (Z )=( )A.1B.3C.5D.63.已知D (X )=4,D (Y )=25,Cov (X ,Y )=4,则ρXY =()A.0.004B.0.04C.0.4D.44.设X ,Y 是任意随机变量,C 为常数,则下列各式中正确的是( ) A .D (X+Y )=D (X )+D (Y ) B .D (X+C )=D (X )+C C .D (X-Y )=D (X )-D (Y )D .D (X-C )=D (X )5.设随机变量X的分布函数为F(x)=⎪⎪⎩⎪⎪⎨⎧≥<≤-<;4,1;4212;2,0x x ,xx则E (X )=( )A .31B .21C .23D .36.设随机变量X 与Y 相互独立,且X~B (36,61),Y~B (12,31),则D (X-Y+1)=( )A .34B .37C .323D .3267.设随机变量X 服从参数为2的指数分布,则下列各项中正确的是( )A .E (X )=0.5,D (X )=0.25B .E (X )=2,D (X )=2C .E (X )=0.5,D (X )=0.5 D .E (X )=2,D (X )=4 8.设随机变量X 服从参数为3的泊松分布,Y~B (8,31),且X ,Y 相互独立,则D (X-3Y -4)=( ) A .-13 B .15C .19D .239.已知D (X )=1,D (Y )=25,ρXY =0.4,则D (X-Y )=( )A .6B .22C .30D .4610.设X~B (10,31),则E (X )=( )A.31 B.1 C.310D. 1011.设X~N (1,23),则下列选项中,不成立...的是( ) A.E (X )=1 B.D (X )=3 C.P (X=1)=0D.P (X<1)=0.512.设E (X ),E (Y ),D (X ),D (Y )及Cov(X,Y )均存在,则D (X-Y )=( ) A .D (X )+D (Y )B .D (X )-D (Y )C .D (X )+D (Y )-2Cov(X,Y )D .D (X )-D (Y )+2Cov(X,Y )13.设随机变量X ~B (10,21),Y ~N (2,10),又E (XY )=14,则X 与Y 的相关系数=XY ρ( )A .-0.8B .-0.16C .0.16D .0.814.已知随机变量X 的分布律为,且E (X )=1,则常数x =( )A .2B .4C .6D .815.已知随机变量X 服从参数为2的指数分布,则随机变量X 的期望为( )A .-21 B .0 C .21D .216.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(N D .)45,11(N17.设X~B(10, 31), 则=)X (E )X (D ( )A.31 B.32 C.1D.31018.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.;0x e 1x2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21D.E(X)=21, D(X)=41二、填空题(本大题共15小题,每空2分,共30分)请在每小题的空格中填上正确答案。
概率论与数理统计 第四章
【分析】
E(X )
=
1
,
D( X
)
=
1 2
,所以
1
=
1 2
,解得
=
4。
( ) ( ) 4、设离散型随机变量 X 的分布律为 P
X = 2k
=2 3k
,
k = 1, 2,
,则 E X
========。
( ) ( ) 【分析】 E
X
+
= xk p xk
k =1
=
+
2k
k =1
2 3k
=
2
+ k =1
2 3
k
= 2 2 3 = 4 1−2 3
5、设 X、Y 是两个相互独立且均服从正态分布 N (0, 1 ) 的随机变量,则随机变量 X − Y 2
的数学期望 E( X − Y ) = = = = = = = = = 。
【分析】因为 X、Y 是两个相互独立且均服从正态分布 N (0, 1 ) , 2
3、设随机变量 X
的概率密度为
(
x)
=
ax2
+
bx
+
c,
0,
0 x 1,已知 EX 其他
= 0.5,
DX = 0.15 ,则关于系数 a,b,c 的正确选项为(= A= = ) A、 a=12,b= −12,c=3 = = = = = = = = B、 a=12,b=12,c=3 = = = C、 a=-12,b=12,c=3= = = = = = = = = D、 a=-12,b= −12,c=3
k =0
k=0 k !
概率论与数理统计 4,5章自测题答案
x = r cos θ , y = r sin θ EZ = ∫ dr ∫
0 2 +∞ 0 +∞ 2π 0
π 1 − r2 r e rdθ = 2π 2
1 − r2 r e rdθ = 2 2π
2
2
2
EZ = ∫ dr ∫ DZ = 2 −
2π
0
π
2
2
5、 E ( X + Y ) 四、综合题(35 分) 1、
2、对随机变量 X 来说,如果 EX ≠ DX ,则可断定 X 不服从( (A) 二项分布 (C) 正态分布 (B) 指数分布 (D) 泊松分布
)
3、设ξ1,ξ2,…,ξn,…为独立随机变量序列,且ξi(i=1,2,…)服从参数为λ的指数 分布,则下列选项正确的是( (A) )
lim P⎨ ⎢∑ ξ ⎩⎣
(
) = E( X
2
+ 2 XY + Y 2 ) = DX + DY + 2 EXEY = 2 .
x 1 − 1 −4 P (Y = 300) = ∫ e dx = 1 − 1.25e 4 0 4 ; 设盈利为 Y,则 1
P (Y = 100) = 1.25e EY = 300 − 250e
2、
− 1 4
n 2 ≤ y) = ϕ ( y)
X− P(| X− P(| n 4 n
n 2 |< 0.1) ≥ 0.9
n 2 |< 0.2 n ) ≥ 0.9
ϕ (0.2 n ) ≥ 0.95
n ≥ 68
五、 (1) EX =
∫
b
a
xp( x)dx ≥ a ∫ p( x)dx = a
概率论与数理统计第四章测试题
概率论与数理统计第四章测试题第4章 随机变量的数字特征一、选择题1.设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量3X-2Y 的方差是 (A) 8 (B) 16 (C) 28 (D) 44 2.若随机变量X 和Y 的协方差(),0Cov X Y =,则以下结论正确的是( ) (A)X与Y 相互独立 (B) D(X+Y)=DX+DY(C)D(X-Y)=DX-DY (D) D(XY)=DXDY 3.设随机变量X和Y相互独立,且()()221122,,,X N Y N μσμσ::,则2Z X Y =+:( )(A) ()221212,2N μμσσ++ (B) ()221212,N μμσσ++ (C) ()2212122,4N μμσσ++ (D) ()2212122,4N μμσσ--4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y 与η=X-Y 不相关的充要条件为(A) EX=EY (B) E(X 2)- (EX)2= E(Y 2)- (EY)2(C) E(X 2)= E(Y 2) (D) E(X 2)+(EX)2=E(Y 2)+ (EY)25.设X 、Y 是两个相互独立的随机变量且都服从于()0,1N ,则()max ,Z X Y =的数学10.设随机变量X 和Y 独立同分布,具有方差2σ>0,则随机变量U=X+Y 和V=X-Y(A )独立 (B) 不独立 (C ) 相关 (D) 不相关11.随机变量X 的方差存在,且E(X)=μ,则对于任意常数C ,必有 。
(A )E(X-C)2=E(X 2)-C 2 (B )E(X-C)2=E(X-μ)2(C )E(X-C)2< E(X-μ)2(D )E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=31, 则P(1<X<3) =( )(A )0 (B )41 (C )31 (D )21二、填空题1.设X 表示10次独立重复射击命中目标的次数,每次命中目标的概率为0.4,则()2E X =2.设一次试验成功的概率为p ,进行了100次独立重复试验,当p = 时,成功的次数的标准差的值最大,其最大值为3.设随机变量X 在区间[-1,2]上服从均匀分布,随机变量100010X Y X X >⎧⎪= =⎨⎪- <⎩,则Y 的方差DY=4.()4D X =,()9D Y =,0.5XYρ=,则()D X Y -=,()D X Y +=5.设随机变量X 服从于参数为λ的泊松分布,且已知()()121E X X --=⎡⎤⎣⎦,则λ= 6.设(X,Y)的概率分布为:则),cov(22Y X= 。
概率论与数理统计 自测题4
=
1 n
n
∑
i=1
Xi
,则【
】
( A)
Cov(
X1
,
Y
)
=
σ2 n
.
(C)
D(
X1
+
Y
)
=
(n
+ n
2)
σ
2.
(B) Cov( X1,Y ) = σ 2.
(D)
D( X1
−Y
)
=
n +1σ n
2.
三、计算
1.
设随机变量X1服从 λ
=
1 2
的指数分布,X2的概率分布密度函数
f
(
x)
=
⎧⎪⎨cxe−
x 2
A 18
B9
C 30
D 36
3.设X是随机变量,EX=μ,DX=σ2,则对任意常数C,必有 【 】
A
E(X-C)2=EX2-C2
B E(X-C)2=E(X-μ)2
C
E(X-C)2≤E(X-μ)2
D E(X-C)2≥E(X-μ)2
23
4.设随机变量 X 的密度函数为
f (x) =
π
(1
1 +
x
2
)
(−∞
10.随机变量 X 服从参数为λ的指数分布,则 P{X > DX } = 。
1 0.15 0.20
。 .
二、选择题
1.设随机变量
X
的概率密度函数为
f
(
x
)=
⎧⎪0.1e−0.1x ⎨
x>0
,则 E(2X+1)=【
】
⎪⎩ 0
概率论与数理统计练习题第四章答案
概率论与数理统计练习题________ 系 _______ 专业 _______ 班 姓名 __________________ 学号 _________ 第四章 随机变量的数字特征(一)、选择题:1 •设随 机变量 X ,且E(X)存在 , 则E(X)是[B ](A ) X 的函数(B )确定常数(C ) 随机变量(D ) x的函数1x9x2 •设 X 的 概率密度 为f(x)e 9 0 , 则E(9X〈)x 0[C ](A )1 9 x e 9dx(B )1xx e 9dx(C ) 1(D ) 1993 •设是 随 机变量E()存 在,若2 则E( )3,[D ](A ) E()(B ) E()(C ) E( )2(D ) E()23334 •设随机变量 X 和Y 独立且在(0,)上服从均匀分布,则E{min( X,Y)}(考研题2011 )14.设随机变量 X 的密度函数为f (x) e |x| ( x ),则E(X) 02*5 •设随机变量 X j (i, j 1,2,L ,n)独立且同分布,E(X j ) 2,则行列式(A ) — (B )2、填空题:(C)—3(D)—41 •设随机变量 X 的可能取值为0, 1 , 2,相应的概率分布为 060.3,0.1,贝U E(X)2 .设X 为正态分布的随机变量,概率密度为f(x) 1 2「2 e(X 1)2~8~ ,则2 E(2X3 •设随机变量 116/15,贝V E(X1)93X 2) X 的概率分布二、计算题:1 .袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以X表示取出的3个球中最大编号,求E(X).叫切"詁斋+5詁.52•设随机变量X〜N( , 2),求E(| X I).(1) £(I;) = J e^x e~x dx = -o 3xe~x dx = 2 + e~'⑶上口)=(“幺+ [XnX21MX nlX12X22MX n2XmX2nMX nn的数学期望E(Y) 0 (考研题1999 )三、1.X34516p101010xe x3 •设随机变量X的密度函数为f (x)0 x0,试求下列随机变量的数学期望。
概率论与数理统计第四章自测题
《概率论与数理统计》第四单元自测题时间:120分钟,卷面分值:100分一、填空题:(每空2分,共12分)得分1.设随机变量X与Y,方差D(X)=4,D(Y)=9,相关系数ρXY=0.6,则D(3X-2Y)= 。
2.已知随机变量X~N(0, σ2)(σ>0),Y在区间]上服从均匀分布,如果D(X-Y)=σ2,则X与Y的相关系数ρXY= 。
3.二维随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=D(Y)=1,X与Y的相关系数ρXY=-1/2,则当a= 时,随机变量aX+Y与Y相互独立。
4.设随机变量X~N(0, 4),Y服从指数分布,其概率密度函数为1210 ()200xe xf xx-⎧>⎪=⎨⎪≤⎩,,,,如果Cov(X, Y)=-1,Z=X-aY,Cov(X, Z)=Cov(Y, Z),则a= ,此时X与Z的相关系数为ρXZ= 。
5.设随机变量X在区间(-1, 2)上服从均匀分布,随机变量-100010XY XX>⎧⎪==⎨⎪<⎩,,,,,,则方差D(Y)= 。
6.设随机变量X服从参数为2的泊松分布,用切比雪夫不等式估计P{∣X-2∣≥4}≤。
二、单选题:(每题2分,共12分)得分1.随机变量X, Y和X+Y的方差满足D(X+Y)=D(X)+D(Y),该条件是X与Y( )。
(A)不相关的充分条件,但不是必要条件;(B)不相关的必要条件,但不是充分条件;(C)独立的必要条件,但不是充分条件;(D)独立的充分必要条件。
2.若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有( )。
(A) X与Y一定相互独立;(B) X与Y一定不相关;(C) D(XY)=D(X)D(Y);(D) D(X-Y)=D(X)-D(Y)。
3.设随机变量X与Y独立同分布,记随机变量U=X+Y,V=X-Y,且协方差Cov(U.V)存在,则U和V必然( )。
概率论与数理统计第四章测试题
第4章随机变量得数字特征一、选择题1.设两个相互独立得随机变量X与Y得方差分别为4与2,则随机变量3X-2Y得方差就是(A) 8 (B) 16 (C) 28 (D) 442.若随机变量与得协方差,则以下结论正确得就是( )(A) 与相互独立(B) D(X+Y)=DX+DY(C) D(X-Y)=DX-DY (D) D(XY)=DXDY3.设随机变量与相互独立,且,则( )(A) (B)(C) (D)4.设二维随机变量(X,Y)服从二维正态分布,则随机变量ξ=X+Y与η=X-Y不相关得充要条件为(A) EX=EY (B) E(X2)- (EX)2= E(Y2)- (EY)2(C) E(X2)= E(Y2) (D) E(X2)+(EX)2= E(Y2)+ (EY)25.设、就是两个相互独立得随机变量且都服从于,则得数学期望( ) (A) (B) 0 (C) (D)6.设、就是相互独立且在上服从于均匀分布得随机变量,则( )(A) (B) (C) (D)7.设随机变量与得方差存在且不等于0,则D(X+Y)=DX+DY就是X与Y( )(A) 不相关得充分条件,但不就是必要条件(B) 独立得充分条件,但不就是必要条件(C) 不相关得充分必要条件(D) 独立得充分必要条件8.若离散型随机变量得分布列为,则( )(A) 2 (B) 0 (C) ln2 (D) 不存在9.将一枚硬币重复掷n次,以X与Y分别表示正面向上与反面向上得次数,则X与Y得相关系数等于(A)-1 (B)0 (C) (D)110.设随机变量X与Y独立同分布,具有方差>0,则随机变量U=X+Y与V=X-Y(A)独立(B) 不独立(C) 相关(D) 不相关11.随机变量X得方差存在,且E(X)=μ,则对于任意常数C,必有。
(A)E(X-C)2=E(X2)-C2(B)E(X-C)2=E(X-μ)2(C)E(X-C)2< E(X-μ)2(D)E(X-C)2≥ E(X-μ)212.设X~U(a,b), E(X)=3, D(X)=, 则P(1<X<3) =( )(A)0 (B) (C) (D)二、填空题1.设表示10次独立重复射击命中目标得次数,每次命中目标得概率为0、4,则2.设一次试验成功得概率为,进行了100次独立重复试验,当时,成功得次数得标准差得值最大,其最大值为3.设随机变量X在区间[-1,2]上服从均匀分布,随机变量,则得方差DY=4.,,,则,5.设随机变量服从于参数为得泊松分布,且已知,则6.设(X,Y)得概率分布为:则=。
陈国华等主编概率论与数理统计第四章习题答案
( A) 1;
( B) −1 ;
(C )
( D) ρ XY < 1 .
) .
4.若随机变量 X 和 Y 的协方差等于 0,则以下结论正确的是(
( A) X 和 Y 相互独立;
(C ) D( X − Y ) = D( X ) − D(Y ) ;
( B) D( X + Y ) = D( X ) + D(Y ) ;
则Z = ⎨
⎧1000 X + 500(Y − X ), X ≤ Y 1 , f ( x) = f ( y ) = ,10 ≤ X , Y ≤ 20 Y≤X 10 ⎩ 1000Y ,
E (Z ) =
20
10≤ x , y ≤ 20
20
∫∫
Z
20 x 20 y 1 dxdy = ∫ ∫ 10 ydydx + ∫ ∫ 5( x + y ) dydy 0 0 0 0 100
答案: fY ( y ) =
试求 E ( X | Y = y )
∫
1
0
f ( x, y )dx =
1 f ( x, y ) 2( x + y ) + y (0 < y < 1), f X |Y ( x | y ) = = 2 1+ 2 y fY ( y )
1 0
E ( X | Y = y) = ∫
+∞
的单位数(1 单位等于 1000 千克) ,它在[200,400]上服从均匀分布,又设每卖出一个单位, 而因卖不出去油失效每单位将损失 1000 元, 问工厂在每年开工前 工厂可获得 3000 元利润, 应决定生产多少单位的润滑油,才能使期望利润最大? 答案:解:设 X 表示该厂一年内卖出润滑油的单位数,Y 表示利润,且工厂在每年开工前 应决定生产 a 单位的润滑油,才能使期望利润最大.则
概率论与数理统计 第四章 随堂测验_详细答案
第四章 随堂测验答案1.(,),2.4, 1.44,____,_____.X b n p EX DX n p ==== 则答:n =6, p =0.4因为(,)X b n p ,所以EX =np =2.4, DX =npq =np (1-p )=1.44.所以() 1.440.6,2.(1)41DX p p E n p np X -====-从而 2.40.4, 6.0.4EX p n p ==== 2.(),[(1)(2)]1____.,X P E X X λλ-=-= 则答:1,λ=解法同习题课例题1.23.1,()______.X X E X e -+=设服从参数为的指数分布则答:4/3.根据期望的性质可知,22()(),X X E X e EX E e --+=+其中因为X 服从参数为1的指数分布(1λ=),所以,(,)000x x x e f x ->⎧=⎨≤⎩且EX =1,DX =1.另外,根据随机变量函数的期望的定义,可知2223300011().(3)3X x x x x x f x dx e d E e e e e dx e x +∞+∞+∞+∞-------∞====-=⎰⎰⎰ 故221()()1.334X X E X e EX E e --+=+=+=224.,0.5,0,2,X Y EX EY E EY X ====已知的相关系数为2[()]_____.E X Y +=则 答:6.因为2220,,EX EY EX EY ====所以DX=DY=2.又22222[()]22()E X Y E X XY Y EX E XY EY ⎡⎤+=++=++⎣⎦,其中已知222E E Y X ==,而()Cov(,)XY E XY X Y EX E Y EY XE ρ=+=0.5001=⨯=, 于是2[()]21.226E X Y ⨯++=+=2125.,,...,,(),(),n i i X X X E X a D X b ==设随机变量是相互独立的且1,2,...,,i n =1,()_____,()____1_.ni i X X X E D X n ====∑记则 答:a, b 2/n.11222211111;11())1(.n n i i i i n n i i i i X na a n n n b D X nb n n E E X n EX D n X DX ====⎛⎫=== ⎪⎝⎭⨯==⨯⎛⎫=== ⎪⎝⎭∑∑∑∑6.,,,1,1,X Y Z EX EY EZ ===-已知三个随机变量中1,DX DY DZ === 0,0.5,0.5,XY XZ YZ ρρρ===-()_____,()_____.E X Y Z D X Y Z ++=++=则 答:1, 3.()1111E X Y Z E X E Y E Z ++=++=+-=[][][]()()()2Cov(,)2Cov(,)2Cov(X,Z)Cov(Y,Z)2Cov(X,Y)+2Cov(X,Z)+2Cov(Y,Z)111201120.5112(0.5)12321.XZ YZ D X Y Z D X Y Z D X Y DZ X Y Z DX DY X Y DZ DX DY DZ DX DY DZ ρρρ++=++=++++=+++++=+++=+=+++⨯⨯⨯+⨯⨯⨯+⨯-⨯⨯=++7.(),[,,,]E XY EXEY C G H I =选择题:若则(可多选)(A)(),(B)()(C)(),(D),(E),,(F),(G),(H)0,(I)Cov(,)0.XY D XY DXDY D X Y DX DY D X Y DX DY X Y X Y X Y X Y X Y ρ=-=-+=+==独立不独立相关,不相关,。
《概率论与数理统计》习题及答案第四章
《概率论与数理统计》习题及答案第 四 章1.一个袋子中装有四个球,它们上面分别标有数字1,2,2,3,今从袋中任取一球后不放回,再从袋中任取一球,以,X Y 分别表示第一次,第二次取出的球上的标号,求(,)X Y 的分布列.解(,)X Y 的分布列为其中(1,1)(1)(1|1)0P X Y P X P Y X =======余者类推。
2.将一枚硬币连掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值,试写出(,)X Y 的分布列及边缘分布列。
解一枚硬币连掷三次相当于三重贝努里试验,故1~(3,).2X B 331()(),0,1,2,32k P X k C k ===,于是(,)X Y 的分布列和边缘分布为01013818i p ⋅其中(0,1)(0)(1|0)0P X Y P X P Y X =======,13313(1,1)(1)(1|1)()128P X Y P X P Y X C =======⨯=,余者类推。
3.设(,)X Y 的概率密度为又(1){(,)|1,3}D x y x y =<<;(2){(,)|3}D x y x y =+<。
求{(,)}P X Y D ∈ 解(1)1321{(,)}(6)8P x y D x y dxdxy ∈=--⎰=321(6)8x x y dxdy --- =)落在圆222()x y r r R +≤<内的概率. 解(1)22223201(R x y R CR dxdy C R C r drd ππθ+≤==-⎰⎰⎰⎰333233R R C R C πππ⎡⎤=-=⎢⎥⎣⎦, ∴33C R π=.(2)设222{(,)|}D x y x y r =+≤,所求概率为322323232133r r r Rr R R R πππ⎡⎤⎡⎤=-=-⎢⎥⎢⎥⎣⎦⎣⎦. 5.已知随机变量X 和Y 的联合概率密度为 求X 和Y 的联合分布函数.解1设(,)X Y 的分布函数为(,)F x y ,则解2由联合密度可见,,X Y 独立,边缘密度分别为 边缘分布函数分别为(),()X Y F x F y ,则 设(,)X Y 的分布函数为(,)F x y ,则6.设二维随机变量(,)X Y 在区域:0D x <<求边缘概率密度。
概率论与数理统计第四章习题
画出分布函数的图形。
的分布函数,并的概率分布列写出题随机变量第试根据习题ξξ13.1(图形略)。
其分布函数为解:概率分布列为⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<≤<=⎪⎪⎭⎫ ⎝⎛3132657.021216.010027.000)(343.0441.0189.0027.03210x x x x x x F的概率分布列。
试求,,,的分布函数是已知离散型随机变量ξξ⎪⎪⎪⎩⎪⎪⎪⎨⎧+∞<≤<≤<≤<<∞-=x x x x x F 111211052101010)(.2.1051041011210~1051051)01()1()1(104101105)021()21()21(1010101)00()0()0(⎪⎪⎪⎪⎭⎫⎝⎛∴=-=--===-=--===-=--==ξξξξF F P F F P F F P 解:的分布函数。
试求的分布函数为已知22,121,3210,2101,311,0)(.3ξηξ=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+∞<≤<≤<≤<≤--<<∞-=x x x x x x F.414132106100)(312161410~.316161312101~31321)02()2()2(612132)01()1()1(613121)00()0()0(31031)01()1()1(2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=∴⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛-∴=-=--===-=--===-=--===-=----=-=y y y y y F F F P F F P F F P F F P 的分布函数为,从而而解:ηηξηξξξξξ的值。
再求常数,是常数,试先求概率其中以写出的分布列和分布函数可已知离散型随机变量u t s r c b a P P u t s r c b a x u x t x x s x r x x F c ba,,,,,,),5.0()2.1(,,,,,,3,32,21,2110,01,1,0)(6131325.110.4>=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+∞<≤<≤<≤<≤<≤--<<∞-=⎪⎪⎭⎫ ⎝⎛ξξξ .1323103106101613113131321)03()3()3(11)(33221)02()2()2(61616121)01()1()1(31)00()0()0(3100)01()1()1(032311)0(1)5.0(1)5.0(02121)02.1()2.1()2.1(========∴=++++==∴=-=--====∴=≥=∴-=--====∴=-=--====∴=-=--====∴=-=----=-===-==-=≤-=>=-=--==∑u t s r c b a b c b a p c F F P c u x F x t t F F P a s F F P a s s r s F F P r r r F F P P P P F F P ii ,,,,,,因此,,从而,而,时,又解:ξξξξξξξξξ.,00,)(.522B A x x Be A x F x 和求系数的分布函数是设连续型随机变量⎪⎩⎪⎨⎧<≥+=-ξ.1lim 0)(lim )(lim 1lim 1)(lim 2222-=∴+=+===∴=+=-→→→-+∞→+∞→++B B A Be A x F x F A A BeA x F x x x x x x x ,从而以的分布函数也连续,所又因为连续型随机变量,,得解:由-).(321211,01,1)(.62x F P A x x xA x f )分布函数(;)概率(;)系数试求:(的密度函数为设随机变量⎪⎭⎫ ⎝⎛<⎪⎩⎪⎨⎧≥<-=ξξ.1111arcsin 1211011111110)()3(3111)2121()21()2(1111)()1(1221212112⎪⎩⎪⎨⎧≥<≤-+-<=⎪⎪⎩⎪⎪⎨⎧≥<≤---<==-=<<-=<==-∴=⎰⎰⎰⎰---+∞∞-x x x x x x dx x x x F dx xP P A dx xA dx x f xπππξξπ解得,解:).(3);10(21,)(.7x F P A x Aex f x)分布函数()概率(;)系数试求:(密度函数为服从拉普拉斯分布,其设随机变量<<+∞<<∞-=-ξξ.021*******1021)()3(21212121)10()2(2111)()1(011010⎪⎩⎪⎨⎧+∞<≤-<<∞-=⎪⎩⎪⎨⎧+∞<≤<<∞-=-===<<==∴=--∞----+∞∞--+∞∞-⎰⎰⎰⎰⎰⎰x e x e x dx e x dx e x F e dx e dx e P A dx Aedx x f x x xxx xx xxξ解得,解:).(0,00,)()(.82222ξξξξσξσE P D E x x ex x f Rayleigh x >⎪⎩⎪⎨⎧≤>=-,,试求:分布,其密度函数为服从瑞利设随机变量.)2()()22()(2)(2)(4222222222222022222222πσπσσσσσπξξξσπξξξσσξσπσξ-∞+-∞+-∞+∞-∞+-∞+∞-==>=>-=-==⋅=⋅==⋅=⋅=⎰⎰⎰⎰⎰edx exP E P E E D dx exx dx x f x E dx exx dx x f x E x x x 解:次之间的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》第四单元自测题时间:120分钟,卷面分值:100分一、填空题:(每空2分,共12分)得分1.设随机变量X与Y,方差D(X)=4,D(Y)=9,相关系数ρXY=0.6,则D(3X-2Y)= 。
2.已知随机变量X~N(0, σ2)(σ>0),Y在区间]上服从均匀分布,如果D(X-Y)=σ2,则X与Y的相关系数ρXY= 。
3.二维随机变量(X, Y)服从正态分布,且E(X)=E(Y)=0,D(X)=D(Y)=1,X与Y的相关系数ρXY=-1/2,则当a= 时,随机变量aX+Y与Y相互独立。
4.设随机变量X~N(0, 4),Y服从指数分布,其概率密度函数为1210 ()200xe xf xx-⎧>⎪=⎨⎪≤⎩,,,,如果Cov(X, Y)=-1,Z=X-aY,Cov(X, Z)=Cov(Y, Z),则a= ,此时X与Z的相关系数为ρXZ= 。
5.设随机变量X在区间(-1, 2)上服从均匀分布,随机变量-100010XY XX>⎧⎪==⎨⎪<⎩,,,,,,则方差D(Y)= 。
6.设随机变量X服从参数为2的泊松分布,用切比雪夫不等式估计P{∣X-2∣≥4}≤。
二、单选题:(每题2分,共12分)得分1.随机变量X, Y和X+Y的方差满足D(X+Y)=D(X)+D(Y),该条件是X与Y( )。
(A)不相关的充分条件,但不是必要条件;(B)不相关的必要条件,但不是充分条件;(C)独立的必要条件,但不是充分条件;(D)独立的充分必要条件。
2.若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有( )。
(A) X与Y一定相互独立;(B) X与Y一定不相关;(C) D(XY)=D(X)D(Y);(D) D(X-Y)=D(X)-D(Y)。
3.设随机变量X与Y独立同分布,记随机变量U=X+Y,V=X-Y,且协方差Cov(U.V)存在,则U和V必然( )。
(A) 不相关;(B) 相互独立;(C) 不独立;(D) 无法判断。
4.若随机变量X与Y不相关,则与之等价的条件是( )。
(A) D(XY)=D(X)D(Y);(B) D(X+Y)=D(X-Y);(C) D(XY)≠D(X)D(Y);(D) D(X+Y)≠D(X-Y)。
5.现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地抽取3张,则此人所得奖金的数学期望为( )。
(A) 6元; (B) 12元; (C) 7.8元; (D) 9元。
6. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为( )。
(A)1; (B)12; (C)12-; (D)1-。
三、判断题:(每题2分,共12分) 得分1.( )设随机变量X 和Y 相互独立,且有D(X)=2,D(Y)=3,则有D(5X-2Y)=4。
2.( )设随机变量X ,Y ,且E(X)=5, E(Y)=3, D(X)=2, D(Y)=3, E(XY)=0,则方差D(2X-3Y)=35。
3. ( )设随机变量X 和Y 的联合分布律为可知X 与Y 不相互独立,因此X 与Y 不相关。
4. ( )设随机变量X 的概率密度为1,0,2()1,0,2x x e x f x e x -⎧>⎪⎪=⎨⎪<⎪⎩ 则X 的数学期望为0011,0,22()11,0,22x x xe dx x E X xe dx x ∞--∞⎧=>⎪⎪=⎨⎪=-<⎪⎩⎰⎰ 5. ( )设二维随机变量X 与Y 的联合概率密度为sin sin ,0,,(,)20,x y x y f x y π⎧≤≤⎪=⎨⎪⎩其他,则数学期望0/2()sin sin sin E X x x ydx y π==⎰。
6. ( )若二维随机变量(X, Y)的概率密度函数为01, 01(,)0,x y x y f x y +<<<<⎧=⎨⎩,,其他, 则随机变量X 与Y 不是不相关,因而X 与Y 不相互独立。
四、计算题(共34分)1.(8分)设随机变量ξ, η是相互独立且服从同一分布,已知ξ的分布律为P{ξ=i}=1/3,i =1, 2, 3,又设X=max(ξ, η),Y=min(ξ, η),求(1)随机变量X 的数学期望E(X),(2) X 与Y 的相关系数ρXY 。
得分2.(10分)设二维随机变量(X, Y)的概率密度为201, 01(,)0x y x y f x y --≤≤≤≤⎧=⎨⎩,,,其他, (1)判别X 与Y 是否相互独立?是否相关?(2)求 D(X+Y)。
得分3.(8分)设二维随机变量(X, Y)的联合概率密度为1, 0<<1(,)0y x x f x y ⎧<=⎨⎩,,,其他,求E(X),E(Y),D(X),D(Y),ρXY 。
得分4. (8分)设随机变量X 1, X 2, …, X n 相互独立,且都服从数学期望为1的指数分布,求随机变量Z=min{ X 1, X 2, …, X n }的数学期望与方差。
得分五、应用题(共16分)1.(8分)某系某班共有n 名新生,班长从系里领来他们所有的学生证,随机地发给每一同学,求恰好拿到自己的学生证的人数X 的数学期望与方差。
得分2. (8分) 设某种商品每周需求量X 是服从区间(10, 30)上均匀分布的随机变量,而经销商店进货数量为区间[10, 30]中的某一整数,商店每销售一单位商品可获利500元,若供大于求则削价处理,每处理一单位商品亏损100元,若供不应求,则可从外部调剂供应,此时每单位商品仅获利300元,求最优进货量。
得分六、综合题(14分)设随机变量X 1, X 2, …, X n (n >2)为独立同分布,均服从N (0, 1),记n11X=X n i i =∑,Y i =X i -X ,i =1, 2, …, n , (1)求Y i 的方差D (Y i ),i =1, 2, …, n ;(2)求Y 1与Y n 的协方差Cov(Y 1, Y n );(3)求P {Y 1+Y n ≤0};(4)证明Y 1与Y n 的相关系数为111n Y Y n ρ=--。
得分《概率论与数理统计》第四单元自测题参考答案一、填空题:1.28.8;2. 1/4;3. 2;4. -1, 4;5. 8/9;6. 1/8。
二、选择题:1.C ;2. B ;3. A ;4. B ;5. C ;6. D 。
三、判断题:1.错;2. 错;3. 错;4. 错;5. 错;6. 对。
四、计算题1.【答】E(X)=22/9,ρXY =8/19。
【解】X 与Y 的联合分布律为:E(X)=22/9,E(Y)=14/9,E(X 2)=58/9,E(Y 2)=26/9,E(XY)=4。
2.【答】(1) 不独立,相关。
(2) D(X+Y)=5/36。
【解】 1X 03,01,()(,)(2)20,x x f x f x y dy x y dy +∞-∞⎧-<<⎪==--=⎨⎪⎩⎰⎰其他,, 同理 Y 3,01,()(,)20,y y f y f x y dx +∞-∞⎧-<<⎪==⎨⎪⎩⎰其他,在0<x <1, 0<y <1内,f (x , y )≠f X (x )⋅f Y (y ),所以X 与Y 不相互独立。
1035E(X)(,)()212xf x y dxdy x x dx +∞+∞-∞-∞==-=⎰⎰⎰,由x 与y 的对称性知E(Y)=512,11100021E(XY)(,)(2)()336x xyf x y dxdy xdx y x y dy x dx +∞+∞-∞-∞==--=-=⎰⎰⎰⎰⎰,12222X 031E(X )()()E(Y )24x f x dx x x dx +∞-∞==-==⎰⎰,D(X)=E(X 2)-(E(X))2=11/144=D(Y),Cov(X, Y)=E(XY)-E(X)E(Y)=-1/144,XY 1ρ011==-≠,故X 与Y 相关。
D(X+Y)=D(X)+D(Y)+2Cov(X, Y)=5/36。
3.【答】E(X)=2/3,E(Y)=0(由奇偶性及对称性),D(X)=1/18,D(Y)=1/6,ρXY =0。
方法同上例,略。
4.【答】E(Z)=1/n ,D(Z)=1/n 2。
【解】随机变量X 1, X 2, …, X n 的分布函数为 1,0,()0,0,z X e z F z z -⎧->=⎨≤⎩则1,0,()1(1())0,0,nz n Z X e z F z F z z -⎧->=--=⎨≤⎩即Z 服从参数为1/n 的指数分布,故E(Z)=1/n ,D(Z)=1/n 2。
五、应用题1.【答】E(X)=1,D(X)=1。
【解】设随机变量1,X 1, 2, , 0,i i i i n ⎧==⎨⎩ 若第名学生拿到自己的学生证,若第名学生没拿到自己的学生证,,1E(X )i n =,211D(X )i n n =-, 1, 2, , i n = ,又1X=X ++X n ,注意X 1, X 2, …, X n 不相互独立,1n 1n E(X)=E(X ++X )=E(X )++E(X )=1 ,又{}{}{}11P X X 1P X 1P X 1X 11i j i j i n n ======⨯-,于是 1E(X X )(1)i j n n =-,21(X ,X )E(X X )E(X )E(X )(1)i j i j i j Cov n n =-=-,)(j i ≠111D(X)=D(X ++X )=D(X )++D(X )2(X ,X )n n i j i j nCov ≤<≤+∑ 222111()21(1)n n C n n n n =-+=-。
2.【答】约23单位商品。
【解】(1)由题设,X 的概率密度为1,1030,()200,x f x ⎧<<⎪=⎨⎪⎩其他,设进货量为a ,则利润为500X (X)100,10X ,M (X)500(X )300,X 30,a a a g a a a--⨯≤≤⎧==⎨+-⨯<≤⎩600X 100,10X ,300X 200,X 30,a a a a -≤≤⎧=⎨+<≤⎩30101E(M )()20a g x dx =⋅⎰30101((600100)(300200))20a ax a dx x a dx =-++⎰⎰ = -7.5a 2+350a +5250,求最优进货量,即求使E(M a )达到最大值的a ,E(M a )= -7.5(a -(350/15))2+… ,从而 a =350/15=23.33,即进23单位该种商品为最佳。