人教版数学八级下册压轴题含答案

合集下载

2021—2022学年人教版八年级下册数学期末动点最值压轴题

2021—2022学年人教版八年级下册数学期末动点最值压轴题

人教版八年级下册数学期末动点最值压轴题(答案)一、单选题1.如图,点A ,B 分别为x 轴、y 轴上的动点,2AB =,点M 是AB 的中点,点()0,3C ,()8,0D ,过C 作CE x ∥轴.点P 为直线CE 上一动点,则PD PM +的最小值为( )A 85B .9C 89D .325 2.如图,在平面直角坐标系中,O 为原点,点A ,C ,E 的坐标分别为(0,4),(8,0),(8,2),点P ,Q 是OC 边上的两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐标为( )A .(2,0)B .(3,0)C .(4,0)D .(5,0) 3.如图,直线122y x =-+与x 轴、y 轴交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点发以每秒1个单位的速度沿x 轴向左移动.当动到△COM 与△AOB 全等时,移的时间t 是( )A .2B .4C .2或4D .2或6 4.如图,在矩形ABCD 中,AB =4,△CAB =60°,点E 是对角线AC 上的一个动点,连接DE ,以DE 为斜边作Rt △DEF ,使得△DEF =60°,且点F 和点A 位于DE 的两侧,当点E 从点A 运动到点C 时,动点F 的运动路径长是( )A .4B .3C .8D .35.如图是甲、乙两个动点在某时段速度随时间变化的图象,下列结论错误的是( )A .乙点前4秒是匀速运动,4秒后速度不断增加B .甲点比乙点早4秒将速度提升到32cm/sC .在4至8秒内甲的速度都大于乙的速度D .甲、乙两点到第3秒时运动的路程相等6.如图,直线y =x +8分别与x 轴、y 轴交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,当PC +PD 值最小时,点P 的坐标为( )A .(-4,0)B .(-3,0)C .(-2,0)D .(-1,0) 7.如图,点A ,B 在直线MN 的同侧,A 到MN 的距离8AC =,B 到MN 的距离5BD =,已知4CD =,P 是直线MN 上的一个动点,记PA PB +的最小值为a ,PA PB -的最大值为b ,则22a b -的值为( )A .160B .150C .140D .130 8.如图,在正方形ABCD 中,3AB =,E 是AD 上的一点,且1AE =,F ,G 是AB ,CD 上的动点,且BE FG =,BE FG ⊥,连接EF ,FG ,BG ,当EF FG BG ++的值最小时,CG 的长为( )A .32B 10C .125D .65二、填空题9.如图,AB △CD ,AC 平分△BAD ,BD 平分△ADC ,AC 和BD 交于点E ,F ,G 分别是线段AB 和线段AC 上的动点,且AF =CG ,若DE =1,AB =2,则DF +DG 的最小值为______.10.如图,等腰BAC 中,120BAC ∠=︒,6BC =,P 为射线BA 上的动点,M 为BC 上一动点,则PM CP +的最小值为________.11.如图△,在△ABC中,△ACB=90°,△A=30°,点C沿BE折叠与AB上的点D重合,连接DE,请你探究:BCAB=______;请在这一结论的基础上继续思考:如图△,在△OPM中,△OPM=90°△M=30°,若OM=2,点G是OM边上的动点,则12PG MG+的最小值为______.12.如图,在Rt△ABC中,△C=90°,AC=6,△B=30°,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是_____.13.如图,F为正方形ABCD的边CD上一动点,AB=2,连接BF,过A作AH△BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为_____.14.如图1,动点P从长方形ABCD的顶点A出发,沿A→C→D以1cm/s的速度运动到点D停止.设点P的运动时间为x(s),△P AB的面积为y(cm2).表示y与x的函数关系的图象如图2所示,则长方形ABCD的面积为_____cm2.15.如图,Rt ABC中,2BC AC=D是斜边AB上一个动点,把ACD△沿直线CD 折叠,点A落在同一平面内的'A处,当'A D平行于Rt ABC的直角边时,AD的长为______.16.如图,在等腰三角形ABC中,AB=AC=13,BC=10,D是BC边上的中点,AD =12,M,N分别是AD和AB上的动点,则BM+MN的最小值是_______.三、解答题17.如图1,在平面直角坐标系中,点A的坐标为(5,0),点B在第一象限内,且AB =4,OB=3.(1)试判断△AOB的形状,并说明理由.(2)点P是线段OA上一点,且PB-P A=1,求点P的坐标;(3)如图2,点C、点D分别为线段OB、BA上的动点,且OC=BD,求AC+OD的最小值.18.如图,在矩形ABCD中,AB=9,点E在边AB上,且AE=5.动点P从点A出发,以每秒1个单位长度,沿折线AD—DC运动,到达点C后停止运动.连接PE,作点A 关于直线PE的对称点F,设点P的运动时间为t秒(t>0).(1)如图1,在点P 的运动过程中,当F 与点C 重合时,求BC 的长;(2)如图2,如果BC=4,当点F 落在矩形ABCD 的边上时,求t 的值.19.已知:如图,△ABC 中,△C =90°,BC >AC ,点D 是AB 的中点,点P 是直线BC 上的一个动点,连接DP ,过点D 作DQ △DP 交直线AC 于点Q .(1)如图△,当点P 、Q 分别在线段BC 、AC 上时(点Q 与点A 、C 不重合),过点B 作AC 的平行线交QD 的延长线于点G ,连接PG 、PQ .△求证:PG =PQ ;△若BC =12,AC =9,设BP =x ,CQ =y ,求y 关于x 的函数表达式;(2)当点P 在线段CB 的延长线上时,依据题意补全图△,请写出线段BP 、PQ 、AQ 之间的数量关系,并说明理由.20.如图,直线24y x =-+与x 轴交于点A ,与y 轴交于点B ,点C 的坐标是()0,1-,P 为直线AB 上的动点,连接PO ,PC ,AC .(1)求A ,B 两点的坐标.(2)求证:ABC 为直角三角形.(3)当PBC 与POA 面积相等时,求点P 的坐标.21.如图,P 为正方形ABCD 的边BC 上的一动点(P 不与B 、C 重合),连接AP ,过点B 作BQ △AP 交CD 于点Q ,将BCQ △沿着BQ 所在直线翻折得到BQE △,延长QE 交BA 的延长线于点M .(1)探求AP 与BQ 的数量关系;(2)若3AB =,2BP PC =,求QM 的长.22.如图,在平面直角坐标系xOy 中,直线AP 交x 轴于点P (p ,0),与y 轴交于点A (0,a ),且a 、p 3a +(p ﹣1)2=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP 的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边的等腰直角三角形,直角顶点为Q,若存在,请求出点Q坐标;若不存在,请说明理由.参考答案:1.B解:如图,作D 关于CE 的对称点D ,连接D O ',交CE 于点P ,连接OM ,OM D M OD '+≥',PM PD PM PD D M ''+=+≥,∴当,,,O M P D '共线时,PM 最短则PD PM +的最小值为OD 'OM -BOA △是直角三角形,点M 是AB 的中点,2AB =112OM AB ∴== 点()0,3C ,()8,0D ,(8,6)D '∴228610OD '∴+∴OD 'OM -1019=-=即PD PM +的最小值为9故选B2.C解: 四边形APQE 的周长,AP PQ EQ AEPQ =2,0,4,8,2,A EAE PQ 是定值,所以四边形APQE 的周长最小,则AP EQ +最小, 如图,把AP 沿x 轴正方向平移2个单位长度得,A Q 则2,4,A 则,A Q AP作E 关于x 轴的对称点,H 则8,2,H连接A H '交x 轴于,K 则,A K EK A H所以当,Q K 重合时,A Q QE 最小,即AP QE +最小, 设A H '的解析式为:,y kx b =+24,82k b k b 解得:1,6k b 所以A H '的解析式为:6,y x =-+令0,y = 则6,x = 则6,0,K 即6,0,Q()4,0.P ∴故选C3.D 解: 直线122y x =-+与x 轴、y 轴交于A 、B 两点, 令0,x = 则2,y = 令0y =,则120,2x -+= 4,x ∴=如图,当1,M M 关于y 轴对称时,此时1,CM O ABO ≌此时112,246,OM OM AM6,t ∴=故选:D4.B解:当E 与A 点重合时,点F 位于点F '处,当E 与C 点重合时,点F 位于点F 处,如图,△F 的运动路径是线段FF '的长;△AB =4,△CAB =60°,△△DAC =△ACB =30°,△AC =2AB =8,AD =BC 22AC AB -3当E 与A 点重合时,在Rt △ADF '中,AD 3△DAF '=60°,△ADF '=30°,AF '=12AD 3△AF 'D =90°, 当E 与C 重合时,△DCF =60°,△CDF =30°,CD =AB =4,△△FDF '=90°,△DF 'F =30°,CF =12CD =2, △△FDF '=△AF 'D =90°,DF 22CD CF -3△DF △AF ',DF =AF '=3△四边形FDAF '是平行四边形,△FF '= AD 3故选:B .5.D【详解】A .根据图象可得,乙前4秒的速度不变,为12米/秒,故A 正确,不合题意;B .从图象可知,甲8秒时速度是32厘米/秒,乙12秒时速度是32厘米/秒,故B 正确,不符合题意;C .在4至8秒内甲的速度图象一直在乙的上方,所以甲的速度都大于乙的速度,故C 正确,不合题意.D .甲每秒增加的速度为:3284÷=(米/秒),3412⨯=(米/秒),甲前3秒的运动路程为481224++=(米),乙前4秒的速度不变,为12米/秒,则行驶的路程为12336⨯=米,所以甲、乙两点到第3秒时运动的路程不相等,故D 错误,符合题意;故选:D .6.C解:作点D 关于x 轴的对称点D ′,连接CD ′交x 轴于点P ,此时PC +PD 值最小,最小值为CD ′,如图.令y =x +8中x =0,则y =8,△点B 的坐标为(0,8);令y =x +8中y =0,则x +8=0,解得:x =-8,△点A 的坐标为(-8,0).△点C 、D 分别为线段AB 、OB 的中点,△点C (-4,4),点D (0,4).△点D ′和点D 关于x 轴对称,△点D ′的坐标为(0,-4).设直线CD ′的解析式为y =kx +b ,△直线CD ′过点C (-4,4),D ′(0,-4),△444k b b -+⎧⎨-⎩==,解得:24k b -⎧⎨-⎩==, △直线CD ′的解析式为y =-2x -4.令y =0,则0=-2x -4,解得:x =-2,△点P 的坐标为(-2,0).故选:C .7.A解:如图所示,作点A 关于直线MN 的对称点A ',连接A B '交直线MN 于点P ,则点P 即为所求点,过点A '作直线AE BD ⊥,△8AC =,5BD =,4CD =,△8A C '=,8+5=13BE =,==4A E CD ',在Rt A EB '中,根据勾股定理得, △22=+13+4=185A B BE A E ''即P A +PB 的最小值是185a如图所示,延长AB 交MN 于点P ',△P A P B AB ''-=,AB PA PB >-,△当点P 运动到P '点时,PA PB -最大,过点B 作BE AC ⊥,则4BE CD ==,△853AE AC BD =-=-=,在Rt AEB 中,根据勾股定理得,2222345AB AE BE ++=, △5PA PB -=,即5b =, △2222(185)5160a b -=-=,故选A .8.A如图,过点G 作GT △AB 于T ,设BE 交FG 于R .△四边形ABCD 是正方形,△AB =BC ,△A =△ABC =△C =90°,△GT △AB ,△△GTB =90°,△四边形BCGT 是矩形,△BC =GT ,△AB =GT ,△GF △BE ,△△BRF =90°,△△ABE +△BFR =90°,△TGF +△BFR =90°,△△ABE =△TGF ,在△BAE 和△GTF 中,A GTF AB GTABE TGF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△BAE △△GTF (ASA ),△AE =FT =1,△AB =3,AE =1,△BE 22AB AE +2231+10△GF =BE 10在Rt △FGT 中,FG 221310+△EF +FG 的值最小时,EF +FG +BG 的值最小,设CG =BT =x ,则EF +BG 22221(31)3x x +--+22221(2)3x x +-+ 22221(2)3x x +-+x 轴上寻找一点P (x ,0),使得点P 到M (0,3),N (2,1)的距离和最小.如图,作点M 关于x 轴的对称点M ′(0,-3),连接NM ′交x 轴于P ,连接PM ,此时PM +PN 的值最小.△N(2,1),M′(0,-3),△直线M′N的解析式为y=2x-3,△P(32,0),△x=3222221(2)3x x+-+故选:A.9.2解:连接BC,△AC平分△BAD,BD平分△ADC,AB△CD,△△DAC=△BAC,△ADB=△CDB,△AED=180°-180°÷2=90°,△AB△CD,△△DCA=△BAC,△△DCA=△DAC,△DA=DC,同理:DA=BA,△DC=AB,△AB△CD,△四边形ABCD是平行四边形,△DA=DC,△四边形ABCD是菱形.如图.在AC上取点B',使AB'=AB,连接FB',作点D关于AB的对称点D',连接D'F、DD'.作B'H △CD 于点H ,作B'M △DD '于点M .△DF =D 'F ,△AF =CG ,△B 'AF =△DCG ,AB '=AB =CD ,△△B 'AF △DCG (SAS ),△B 'F =DG ,△DF +DG =D 'F +B 'F ,△当B '、F 、D '三点在同一直线上时,DF +DG =D 'F +B 'F 取最小值为B 'D '. △DE =1,AD =AB =2,△△DAE =30°,△ADE =60°,△AC 33CB'32,△B'H =12B'C 31,CH 3=33△DH =DC -CH =2-(333,△四边形DHB′M 是矩形△DM =B'H 31,MB′=DH 31,△D 'M =DD '-DM 3-DM 331)3,△D 'B 2222(31)(31)22MB MD ''+-++=即DF +DG 的最小值为2 故答案为:2210.33解:作点C 关于BA 的对称点D ,连接BD ,点M 1是BC 上一点,连接DM 1,交AB 于点P ,连接CP ,作DM △BC 于M ,由对称可知,DP =CP ,△1PM CP PM DP DM +=+=当DM △BC 时,PM CP +最短,最小值为DM 长,△等腰BAC 中,120BAC ∠=︒,6BC =,△30ABC ACB ∠=∠=︒,由对称得,30ABD ∠=︒,6BC BD ==,△60CBD ∠=︒,30MDB ∠=︒, △132BM BD ==, 2233DM BD MB -= 故答案为:3311. 12 32解:△∵30A ∠=︒,∴60ABC ∠=︒,∵点C 沿BE 折叠与AB 上的点D 重合,∴BCE BDE ,∴BC BD =,30CBE DBE ∠=∠=°,90C BDE ∠=∠=︒,∴A DBE ∠=∠,∴AE BE =,AD BD =,∴12BD AB =, ∴12BC AB =, 即12BC AB =; △如图所示:作射线MB ,使得30OMB ∠=︒,过点G 作GB MB ⊥,过点P 作PC MB ⊥交于点C ,连接PB ,在Rt POM 中,30PMO ∠=︒,2MO =, ∴112OP OM ==,223PM OM OP =- ∵30OMB ∠=︒,90GBM ∠=︒, ∴12GB GM =, ∴12PG GM PG GB PB PC +=+≥≥, 即当P 、G 、B 三点共线时,12PG GM +取得最小值, 在Rt PCM 中,∵30PMO ∠=︒,30OMB ∠=︒,90PCM ∠=︒,∴30CPM ∠=︒, ∴132CM PM ==2232PC PM CM =-, ∴12PG GM +的最小值为32; 故答案为:△12;△32. 12.32解:如图,延长FP 交AB 于M ,当FP △AB 时,点P 到AB 的距离最小.△AC=6,CF=2,△AF=AC-CF=4,△△B=30°,△ACB=90°△△A=60°△△AMF=90°,△△AFM=30°,△AM=1AF=2,2△FM22-3,AF FM△FP=FC=2,△PM=MF-PF32,△点P到边AB距离的最小值是32.故答案为:32.13.35解:如图,取AB的中点O,连接OG,OC.四边形ABCD是正方形,∴∠ABC=90°,AB=2,∴OB=OA=1,2222125OC OB BC ∴++AH △BF ,∴∠AGB =90°,AO =OB ,∴OG =12AB =1,CD OC OG ≥-,当O 、G 、C 共线时,CG 的值最小,最小值51,此时如图,OB =OG =1,∴∠OBG =∠OGB ,AB //CD ,∴∠OBG =∠CFG ,∠OGB =∠CGF ,∴∠CGF =∠CFG ,∴CF =CG 51,∠ABH =∠BCF =∠AGB =90°,∴△BAH +△ABG =90°,△ABG +△CBF =90°,∴△BAH =△CBF ,AB =BC ,∴△ABH ≌△BCF (ASA ) ,∴BH =CF 51,∴CH =BC -BH =2-51)=35 故答案为:3514.60解:由图象,结合题意可得AC=13cm,CD=25-13=12(cm),△AD2222AC CD--(cm),1312△长方形ABCD的面积为:12×5=60(cm2).故答案为:60.15.222解:Rt△ABC中,BC=AC2△AB=2,△B=△A′CB=45°,△如图1,当A′D△BC,设AD=x,△把△ACD沿直线CD折叠,点A落在同一平面内的A′处,△△A′=△A=△A′CB=45°,A′D=AD=x,△△B=45°,△A′C△AB,△BH2=1,DH2A′D2x,△x2+1=2,△x=22△AD=22△如图2,当A′D△AC,△把△ACD沿直线CD折叠,点A落在同一平面内的A′处,△AD=A′D,AC=A′C,△ACD=△A′CD,△△A′DC=△ACD,△△A′DC=△A′CD,△A′D=A′C,△AD=AC2综上所述:AD的长为:22216.120 13解:如图,作BH△AC,垂足为H,交AD于M′点,过M′点作M′N′△AB,垂足为N′,则BM′+M′N′为所求的最小值.△AB=AC,D是BC边上的中点,△AD是△BAC的平分线,△M′H=M′N′,△BM′+M′N′=BH,△BH是点B到直线AC的最短距离(垂线段最短),△AB =AC =13,BC =10,D 是BC 边上的中点,△AD △BC ,BD =12BC =5,在Rt △ABD 中,AB 2=AD 2+BD 2,△AD 22AB BD -22135-,△S △ABC =12AC •BH =12BC •AD ,△13•BH =10×12,解得:BH =12013, 故答案为:12013. 17.解:△AOB 是以B 为直角顶点的直角三角形,理由如下:△A (5,0),△OA =5,△AB 2+OB 2=42+32=25=52=OA 2,△△AOB 是以OA 为斜边的直角三角形;(2)解:如图,作BE △OA 于E ,设P A =x ,则BP =x +1,△S △AOB =12BO •AB =12OA •BE , △125OB AB BE OA ⋅==, △OE 2295OB BE -=, △PE =5-95-x =165-x , 在Rt △BEP 中,(x +1)2=(165-x )2+(125)2, 解得x =2514△OP =5-2514=4514, △P (4514,0); (3) 解:如图,过点O 作以OB 为腰,△BOH =90°的等腰直角三角形,△HO =BO ,△HOC =△OBD =90°,又△OC =DB ,在△HOC 和△OBD 中HO BO HOC OBD OC DB =⎧⎪∠=∠⎨⎪=⎩,△△HOC △△OBD (SAS ),△OD =HC ,△AC +OD =AC +HC ,△要使AC +OD 最小,则AC +CH 最小,△当A 、C 、H 三点共线时,AC +CH 最小,即AC +OD 有最小值为AH 的长, 分别过点B ,H 作BE △x 轴于E ,HF △x 轴于F ,则OB =OH =3,△S △AOB =12BO •AB =12OA •BE , △125OB AB BE OA ⋅==, △2295OE OB BE =+=, △△HFO =△HDB =△OEB =90°,△△HOF +△OHF =90°,△HOF +△BOE =90°,△△OHF =△BOE ,在△OHF 与△BOE 中,OFH BEO OHF BOE OH BO ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△OHF △△BOE (AAS ),△OF =BE =125,HF =OE =95, △H 在第二象限,△H (-125,95); △22129(5)()5855AH --+ 即AC +OD 5818.解:连接EC 、AP ,△F 与点C 重合,点A 与点F 关于直线PE 对称,连接EC 、AP ,△PE 是线段AC 的垂直平分线,△EC =AE =5,BE =AB -AE =4,△BC22EC BE-=3,△BC的长为3;(2)解:当点P在线段AD上,点F落在CD边上时,连接EF,过点F作FG△AB于点G,△矩形ABCD中,FG△AB,△四边形AGFD为矩形,△FG=AD=BC=4,△点A与点F关于直线PE对称,△PE是线段AC的垂直平分线,△EF=AE=5,△GE223EF FG-,△DF=AG=AE-GE=2,△t的值为4261+=(秒);当点P在线段CD上,点F落在CD边上时,连接EF,过点F作FH△AB于点H,同理求得EH=3,BH=BE-EH=1=CF,△t的值为491121+-=(秒);当点P在线段CD上,点F落在BC边上时,连接EF,同理求得FB =3,CF =BC -BF =1,△t 的值为491141++=(秒); 综上,t 的值为6秒或12秒或14秒.19.解:△证明:由题意知AD BD =△AC BG ∥△BGD AQD ∠=∠在BGD △和AQD 中BGD AQD BDG ADQ BD AD ∠=∠⎧⎪∠=⎨⎪=⎩△()BGD AQD AAS ≌△GD QD =△PD DQ ⊥△DP 垂直平分GQ△PG PQ =;△△PG PQ =△22PG PQ =;△由勾股定理知222222BG BP CQ C PG PQ P +===+ △ ()()2222912y x y x -+-+= △4732y x =- △y 关于x 的函数表达式为4732y x =-.(2)解:AQ 2+BP 2=PQ 2.补全图形,如图△:证明:作BG AC ∥,交QD 的延长线于点G ,连接PQ PG , 同(1)可证()BGD AQD AAS ≌△GD QD =△PD DQ ⊥△DP 垂直平分GQ△PG PQ =△22PG PQ =△由勾股定理知222222AQ PG PQ BG BP BP +=+== △222BP AQ PQ +=;补全图形,如图△:证明:作BG AC ∥,交QD 的延长线于点G ,连接PQ PG , 同(1)可证()BGD AQD AAS ≌△GD QD =△PD DQ ⊥△DP 垂直平分GQ△PG PQ =△22PG PQ =△由勾股定理知222222AQ PG PQ BG BP BP +=+== △222BP AQ PQ +=;综上所述,222BP AQ PQ +=.20.(1)△直线24y x =-+与x 轴交于点A ,与y 轴交于点B , △令0y =,则240x -+=,解得2x =, △()2,0A ,令0x =,则4y =,△()0,4B .(2)△()0,4B ,()0,1C -,△5BC =,△在Rt ABO 中,222224220AB OB OA =+=+=, 在Rt AOC △中,22222125AC OC OA =+=+=, △2220525AB AC +=+=,又△22525BC ==,△222AB AC BC +=,由勾股定理逆定理知,ABC 为直角三角形(3)设(),24P a a -+,△PBC 与POA 面积相等, 则5224a a ⨯=⨯-+,△()5224a a =-+或()5224a a =--+,△89a =或8a =-, △820,99P ⎛⎫ ⎪⎝⎭或()8,20P -. 21.(1)△四边形ABCD 是正方形,△AB =BC ,△90ABQ CBQ ∠+∠=︒,△BQ △AP△90PAB QBA ∠+∠=︒,△PAB CBQ ∠=∠,在PBA △和BCQ △中,{PAB CBQAB BC ABP BCQ∠=∠=∠=,△()PBA QCB ASA ≌,△AP BQ =.(2)过点Q 作QH AB ⊥于H ,如图△四边形ABCD 是正方形,△QH =BC =AB =3,△BP =2PC ,△BP =2,PC =1, △22223213BQ AP AB PB =++△221392BH BQ QH =--,△四边形ABCD 是正方形,△DC //AB△CQB QBA ∠=∠,由折叠知识得EQB CQB ∠=∠,△QBA EQB ∠=∠,△MQ =MB ,设QM =x ,则有MB =x ,MH =x -2,在t R MHQ 中,根据勾股定理可得222(2)3x x =-+,解得x =134, △QM 的长为134. 22.(1)解:3a +(p ﹣1)2=0.△a +3=0,p -1=0,解得a=-3,p =1,△P (1,0),A (0,-3),设直线AP 的解析式为y=kx+b ,△03k b b +=⎧⎨=-⎩,解得33k b =⎧⎨=-⎩, △直线AP 的解析式为y =3x -3;(2)解:过M 作MD AP ∥交x 轴于D ,连接AD ,△MD AP ∥,△MAP 的面积等于6,△△DAP 的面积等于6, △162A DP y ⋅⋅=,即1362DP ⋅⨯=, △DP =4,△D (-3,0)设直线DM 的解析式为y =3x+c ,则()330c ⨯-+=,△c=9,△直线DM 的解析式为y=3x +9,令x =-2,得y=3,△M (-2,3);(3)解:存在设B (t ,3t -3),△当点Q 在x 轴负半轴时,过B 作BE △x 轴于E ,如图,△OE=t ,BE =3-3t ,△△BCQ是以BC为底边的等腰直角三角形,△BQ=CQ,△BQC=90°,△△BQE=90°-△NQC=△QCN,又△△BEQ=△QN C,△△BEQ△△QNC(AAS),△QN=BE=3-3t,QE=CN=4,△OQ=QE-OE=ON+QN,即4-t=2+3-3t,△t=12,△OQ=72,△Q(-72,0);△当Q在y轴正半轴上时,过C作CF△y轴于F,过B作BG△y轴于G,如图,△BG=t,OG=3t-3,△△BCQ是以BC为底边的等腰直角三角形,△BQ=CQ,△BCQ=90°,△△CQF=90°-△BQG=△GBQ,又△△CFQ=△BGQ=90°,△△CQF△△QBG(AAS),△CF=QG=2,QF=BG=t,△O Q=OG-QG=OF-QF,即3t-3-2=4-t,△t=94,△OQ=4-t=74,△Q(0,74);△当Q在y轴正半轴上时,过点C作CF△y轴于F,过B作BT△y轴于T,如图,△BT=t,OT=3t-3,同△可证△CFQ△△QTB(AAS),△CF=BT=t,QF=CF=2,△O Q=OT+QT=OF+QF,即3t-3+2=4+t,△t=52,△OQ=4+t=132,△Q(0,132);综上,Q的坐标为(-72,0)或(0,74)或(0,132).。

人教版八年级下册数学期末压轴题专题训练(含答案)

人教版八年级下册数学期末压轴题专题训练(含答案)

人教版八年级下册数学期末压轴题专题训练1.如图,已知长方形的边AD =8,AB =4,动点M 从点A 出发,以每秒2个单位长度的速度沿A →D →A 的路径匀速运动,同时,动点N 从点C 出发,沿C →B 方向以每秒1个单位长度的速度匀速运动,当其中一个动点到达终点时,另一点也随之停止运动,设运动时间为t 秒.(1)如(图一),当运动时间为1秒时,求MN 的长度;(2)当0≤t ≤4时,直接写出AMN 为直角三角形时的运动时间t 的值; (3)如(图二),当4<t <8时,判断AMN 的形状,并说明理由.2.(1)感知:如图①,在正方形ABCD 中,E 为边AB 上一点(点E 不与点AB 重合),连接DE ,过点A 作AF DE ⊥,交BC 于点F ,证明:DE AF =.(2)探究:如图②,在正方形ABCD 中,E ,F 分别为边AB ,CD 上的点(点E ,F 不与正方形的顶点重合),连接EF ,作EF 的垂线分别交边AD ,BC 于点G ,H ,垂足为O .若E 为AB 中点,1DF =,4AB =,求GH 的长.(3)应用:如图③,在正方形ABCD 中,点E ,F 分别在BC ,CD 上,BE CF =,BF ,AE 相交于点G .若3AB =,图中阴影部分的面积与正方形ABCD 的面积之比为2:3,则ABG 的面积为______,ABG 的周长为______.3.如图.菱形ABCD的对角线AC,BD交于点O.尺规作图:过点A作直线BC的垂线(不写作法和证明,保留作图痕迹).该垂线与BC交于点E,F为AD边上一点,DF=AE,连接OF,若OD=2AO,请猜想CE与OF的数量关系,并证明你的猜想.4.图1、图2分别是65的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各画一个图形,分别满足以下要求:(1)在图1中画一个以线段AB为一边的菱形(非正方形),所画菱形各顶点必须在小正方形的顶点上.(2)在图2中画一个以线段AB为一边的等腰三角形,所画等腰三角形各顶点必须在小正方形的顶点上,且所画等腰三角形的面积为52.5.如图,在▱ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.⊥,垂6.如图,在ABCD中,E,F分别为AD,BC的中点,AG BD⊥,CH BD足分别为G,H,连接EG,EH,FG,FH.(1)求证:四边形GEHF是平行四边形;BC=,当BD=______时,GEHF是矩形.(2)若2AB=,37.如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于E.(1)发现:如图1,连接CE,则△BCE的形状是_______________,∠CDB=____________°;(2)探索:如图2,点P为线段AC上一个动点,当点P在CD之间运动时,连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ,即△BPQ是等边三角形;思路:在线段BD上截取点H,使DH=DP,得等边△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易证△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等边三角形.试判断线段DQ、DP、AD之间的关系,并说明理由;(3)类比:如图3,当点P在AD之间运动时连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ.①试判断△BPQ的形状,并说明理由;②若AD=2,设AP=x,DQ=y,请直接写出y与x之间的函数关系式.8.下面是小东设计的“作平行四边形ABCD,使∠B=45°,AB=2cm,BC=3cm”的作图过程.作法:如图,①画∠B=45°;②在∠B的两边上分别截取BA=2cm,BC=3cm.③以点A为圆心,BC长为半径画弧,以点C为圆心,AB长为半径画弧,两弧相交于点D;则四边形ABCD为所求的平行四边形.根据小东设计的作图过程:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴四边形ABCD为所求的平行四边形()(填推理的依据).9.如图,已知菱形ABCD中,分别以C、D为圆心,大于1CD的长为半径作弧,两弧2分别相交于M、N两点,直线MN交CD于点F,交对角线AC于点E,连接BE、DE.(1)求证:BE=CE;(2)若∠ABC=72°,求∠ABE的度数.10.如图,四边形ABCD是一个正方形,E、F分别在AD、DC边上,且DE=CF,AF、BE交于O点,请说出线段AF和BE的关系,并证明你的结论.11.如图,在由边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)在网格中画出平行四边形ABCD;(2)线段AC的长为,CD的长为,AD的长为,△ACD为三角形,平行四边形ABCD的面积为.12.两个不全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图(1),△DEF 沿线段AB 向右平移(D 点在线段AB 内移动),连接DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积;(2)如图(2),当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.13.如图,长方形ABCD 中,E 是AD 的中点,将ABE △沿BE 折叠后得到GBE ,且G 点在长方形ABCD 内部,延长BG 交DC 于点F .(1)求证:GE DE =;(2)若9DC =,DF 2CF =,求AD 的长;(3)若DC n DF =⋅,求22AD AB 的值.14.在正方形ABCD 中,点E 是CD 边上任意一点.连接AE ,过点B 作BF ⊥AE 于F .交AD 于H .(1)如图1,过点D 作DG ⊥AE 于G ,求证:△AFB ≌△DGA ;(2)如图2,点E 为CD 的中点,连接DF ,求证:FH +FE ;(3)如图3,AB =1,连接EH ,点P 为EH 的中点,在点E 从点D 运动到点C 的过程中,点P 随之运动,请直接写出点P 运动的路径长.15.已知如图,四边形ABCD 是平行四边形.(1)尺规作图:作∠ABC 的角平分线交CD 的延长线于E ,交AD 于F (不写作法和证明,但要保留作图痕迹).(2)请在(1)的情况下,求证:DE =DF .16.如图,在Rt ABC ∆中,90ACB ∠=︒,CD 是斜边AB 上的中线,1AC CD ==,求直角边BC 的长.17.如图:正方形ABCD 中,点E 、F 分别在边BC 、CD 上,BE =CF ,连接AE ,BF 交于点O ,点M 为AB 中点,连接OM ,求证:12OM AB =.18.如图,在四边形ABCD 中,90ABD ACD ∠=∠=︒,E ,F 分别是BC 、AD 的中点.(1)若10AD =,求BF 的长; (2)求证:EF BC ⊥.19.如图,四边形ABDE 和四边形ACFG 都是正方形,CE 与BG 交于点M ,点M 在△ABC 的外部.(1)求证:BG =CE ; (2)求证:CE ⊥BG ; (3)求:∠AME 的度数.20.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE//AB交DF 的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,AC ,求AB的长.21.如图,△ABC中,∠C=90°.(1)尺规作图:作边BC的垂直平分线,与边BC,AB分别交于点D和点E;(保留作图痕迹,不要求写作法)(2)若点E是边AB的中点,AC=BE,求证:△ACE是等边三角形.22.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC 的平行线交BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.23.如图,四边形ABCD 是平行四边形.(1)尺规作图(不写作法,保留作图痕迹);作出ABC ∠的角平分线BE ,交AD 于点E ;在线段BC 上截取BF BA =,连接EF ;(2)在(1)所作图中,请判断四边形ABFE 的形状,并说明理由.24.如图,矩形ABCD 中,E 、F 分别为边AD 和BC 上的点,BE =DF ,求证:DE =BF .25.已知:在ABC 中,90BAC ∠=︒,AB AC =,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .(1)如图①,当点D 在线段BC 上时, ①求证:ABD △≌ACF ; ②ACF ∠的大小=______°;③若8BC =,2CD =,则CF 的长=______;(2)如图②,当点D 在线段BC 的延长线上时,其它条件不变,则CF 、BC 、CD 三条线段之间的关系是:CF =______;其它条件不变:①CF、BC、CD三条线段之间的关系是:CF ______;△的形状,并说明②若连接正方形的对角线AE、DF,交点为O,连接OC,探究AOC理由.26.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.参考答案:1.解:过点N作NR⊥AD于R.∵四边形ABCD是矩形,∴∠C=∠D=∠DRN=90°,∴四边形CDRN是矩形,∴RN=CD=4,CN=DR=1,∵AM=2,AD=8,∴RM=AD-AM-DR=8-2-1=5,∵∠MRN=90°,∴MN=(2)解:当0≤t≤4时,如果AM=BN,则△AMN是直角三角形,∴2t=8-t,∴t=83,当t=4时,点M与D重合,点N位于BC的中点,此时△AMN是等腰直角三角形,综上所述,当△AMN是直角三角形时,t的值为83或4.(3)解:∵当t=4时,△AMN是等腰直角三角形,∵点M的运动速度大于点N的运动速度,且M,N同时到达终点,即点M在点N的右侧,∴当4<t<8时,△AMN是锐角三角形.2.证明:∵四边形ABCD是正方形,∴AD AB =,90DAE ABF ∠=∠=︒,∵AF DE ⊥,∴90DAF BAF ∠+∠=︒,90DAF ADE ∠+∠=︒, ∴ADE BAF ∠=∠,在DAE △和ABF 中,ADE BAF AD AB DAE ABF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴DAE △≌ABF (ASA ),∴DE AF =.探究:解:分别过点A 、D 作AN GH ∥,DM EF ∥,分别交BC 、AB 于点N 、M ,如图②所示:∵四边形ABCD 是正方形,∴AB CD ∥,AB CD =,90DAB B ∠=∠=︒,∴四边形DMEF 是平行四边形,∴1ME DF ==,DM EF =, ∵AN GH ∥,GH EF ⊥,∴DM GH ⊥,同理,四边形AGHN 是平行四边形,∴GH AN =,∵DM EF ∥,GH EF ⊥,∴AN DM ⊥,∴90DAN ADM ∠+∠=︒,∵90DAN BAN ∠+∠=︒,∴ADM BAN ∠=∠,在ADM △和BAN 中,90ADM BAN AD AB DAM ABN ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∴ADM △≌BAN (ASA ),∴DM AN =,∴EF GH DM AN ===,∵E 为AB 中点,∴122AE AB ==, ∴211AM AE ME =-=-=,∴DM ==∴GH =应用:解:∵AB =3,∴S 正方形ABCD =3×3=9,∵阴影部分的面积与正方形ABCD 的面积之比为2:3,∴阴影部分的面积为:23×9=6, ∴空白部分的面积为:9﹣6=3,在△ABE 和△BCF 中,90BECF ABE BCF AB BC ,∴△ABE ≌△BCF (SAS ),∴∠BEA =∠BFC ,S △ABG =S 四边形CEGF ,∴S △ABG =12×3=32,∠FBC +∠BEA =90°, ∴∠BGE =90°,∴∠AGB =90°,设AG =a ,BG =b , 则12ab =32, ∴2ab =6,∵a 2+b 2=AB 2=32,∴a 2+2ab +b 2=32+6=15,即(a +b )2=15,而0,a b +>∴a +bBG +AG∴△ABG, 故答案为:323. 3.解:所作图形如图所示:结论:CE =OF .理由:∵四边形ABCD 是菱形,∴AC ⊥BD ,OA =OC ,AD ∥BC ,∵AE ⊥BC ,OF ⊥AD ,∴AE ⊥AD ,∴∠AEC =∠DAE =∠AOD =∠DFO =90°,∴∠EAC +∠DAO =90°,∠FDO +∠DAO =90°,∴∠CAE =∠ODF ,∵OD =2AO ,AC =2AO ,∴AC =OD ,在△AEC 和△DFO 中,AEC DFO CAE ODF AC DO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEC ≌△DFO (AAS ),∴CE =OF .4.解:所画菱形如图所示;(答案不唯一)(2)解根据勾股定理,AB = 所画等腰三角形的面积为52, ∴作以线段AB 为直角边的等腰直角三角形即可,所画三角形如图所示.5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB CD ∥,OB =OD ,OA =OC ,∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴12BE OB =,12DF OD =, ∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF(SAS).(2)解:当AC =2AB 时,可使四边形EGCF 为矩形;理由如下:∵△ABE ≌△CDF ,∴∠AEB =∠CFD ,∴∠AEO =∠CFO ,∴AE CF ∥,∵EA =EG ,OA =OC ,∴EO 是△AGC 的中位线,∴EO GC ∥,∴四边形EGCF 是平行四边形,∵AC =2AB ,AC =2AO ,∴AB =AO ,∵E 是OB 的中点,∴AE ⊥OB ,∴∠OEG =90°,∴平行四边形EGCF 是矩形.6.解:∵AG BD ⊥于G ,∴90AGD ∠=︒.∵在Rt AGD 中,E 为AD 的中点, ∴12EG ED AD ==,同理12HF BF BC ==. ∵在ABCD 中,AD BC =,∴EG FH =.∵在EGD 中,EG ED =,∴EDG EGD ∠=∠,同理在BFH △中,HBF FHB ∠=∠.∵在ABCD 中,AD BC ∥,∴EDG HBF ∠=∠.∴EGD FHB ∠=∠.∴EG FH ∥.又∵EG FH =,∴四边形GEHF 是平行四边形.(2)连接EF ,则EF =AB =CD =2,若四边形GEHF 是矩形,则EF =GH =2,在RtAGD 和Rt ΔCHB 中,41AGD CHB AD CB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ΔAGD ≅ΔCHB (AAS ),∴DG =BH ;∴DG -GH =BH -GH ,即BG =DH ,设BG =DH =x ,在Rt △ABG 中,AG 2=AB 2-BG 2=4-x 2,在Rt △AGD 中,AG 2=AD 2-DG 2=9-DG 2=9-(2+x )2,∴4-x 2=9-(2+x )2,解得x =14, ∴BD =BG +GH +HD =14+2+1452= . 7.解:如图1,∵在Rt △ABC 中,∠ACB =90°,∠A =30°,∴∠ABC =60°,∵BD 是△ABC 的角平分线,∴∠ABD =∠CBD =12∠ABC =30°,∴∠ABD =∠A ,∠CDB =90°-∠CBD =60°,∴AD =BD ,又DE ⊥AB ,∴AE =BE =12AB ,又∠ACB =90°,∴CE =12AB =BE ,又∠ABC =60°,∴△BCE 是等边三角形,故答案为:等边三角形,60;(2)解:AD =DQ +DP ,理由为:在线段BD 上截取点H ,使DH =DP ,如图2,∵∠CDB =60°,∴△DPH 为等边三角形,∴DP =PH ,∠DPH =∠DHP =60°,又∠BPQ =60°,∴∠DPQ +∠QPH =∠HPB +∠QPH =60°,∠BHP =120°,∴∠DPQ =∠HPB ,∵∠A =30°,DE ⊥AB ,∴∠QDP =∠A +∠AED =30°+90°=120°,∴∠QDP =∠BHP ,在△PDQ ≌△PHB 中, DPQ HPB PD PHQDP BHP ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△PDQ ≌△PHB (ASA ),∴DQ =BH ,PQ =PB ,∵AD =BD ,∠BPQ =60°,∴△BPQ 为等边三角形,AD =BD =BH +DH =DQ +DP ,即AD =DQ +DP ;(3)解:①△BPQ 为等边三角形,理由为:延长BD 至F ,使DF =DP ,连接PF ,设DQ 和BP 相交于O ,如图3, ∵∠PDF =∠CDB =60°,∴△PDF 为等边三角形,∴PF =DP ,∠F =∠PDF =∠DPF =60°,∵∠A =30°,DE ⊥AB ,∴∠PDQ =90°-∠A =60°,∴∠F =∠PDQ =60°,∵∠DPF +∠DPB =∠BPQ +∠DPB ,又∠BPQ =60°,∴∠BPF =∠QPD ,在△PBF 和△PQD 中,F PDQ PF DPBPF QPD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△PBF ≌△PQD (ASA ),∴PB =PQ ,BF =DQ ,又∠BPQ =60°,∴△BPQ 为等边三角形;②∵ DF =DP ,BF =DQ ,AD =BD ,∴DQ =BF =BD +DF =AD +DP ,∵AD =2, AP =x ,DQ =y ,∴y =2+2-x ,即y =-x +4.8.(1)补全图形如下,.(2)∵AB =CD ,CB =AD∴四边形ABCD 为所求的平行四边形(两组对边分别相等的四边形是平行四边形). 故答案为:CD ,AD ,两组对边分别相等的四边形是平行四边形.9.证明:∵四边形ABCD 是菱形,∴CB =CD ,∠ACB =∠ACD ,在△ECB 和△ECD 中,CE CE ECB ECD CB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ECB ≌△ECD (SAS ),∴BE =DE ,由作图可知,MN 垂直平分线段CD ,∴EC =ED ,∴BE =CE .(2)解:∵BA =BC ,∠ABC =72°,∴∠BAC =∠BCA =12(180°﹣72°)=54°,∵EB =EC ,∴∠EBC =∠ECB =54°,∴∠ABE =∠ABC ﹣∠EBC =18°.10.解:AF⊥BE,AF=BE,证明如下:证明:∵正方形ABCD∴AB=AD=DC,∠D=∠BAD=90°∵CF=DE∴AE=AD-DE,DF=DC-CF∴AE=DF在△AEB和△AFD中AB=AD, ∠D=∠BAD, AE=DF∴△ABE≌△DAF(SAS)∴∠ABE=∠F AD,AF=BE∵∠BAD=90°∴∠ABE+∠AEB=90°∴∠F AD +∠AEB=90°∴∠AOE=90°,AF⊥BE.∴AF=BE,AF⊥BE.11.解:如图所示:平行四边形ABCD即为所求;(2)解:AC,CD =,5=AD ,∴222AC CD AD += ,∴△ACD 是直角三角形,∴平行四边形ABCD 的面积为122102ACD S=⨯ . 12.解:过点C 作CG AE ⊥,垂足是点G .由题可知,//CF AE ,CF AD BE ==,则四边形CDBF 是梯形.在直角ABC ∆中,90ACB ∠=︒,60A ∠=︒,1AC =,22AB AC ∴==, 在直角ACG ∆中,90CGA ∠=︒,60A ∠=︒,1AC =,30ACG ∴∠=︒,1111222AG AC ==⨯=,CG ∴=.()()111122222CDBF S CE DB CG AD DB CG AB CG ∴=+⋅=+⋅=⋅=⨯=梯形; (2)证明:四边形CDBF 是菱形. 理由如下:在直角ABC ∆中,D 是AB 的中点,AD DB CD ∴==,由(1)CF AD =,CF DB CD ∴==,又//CF AE ,∴四边形CDBF 是平行四边形.CD BD =,∴四边形CDBF 是菱形.13.证明∵GBE 是由ABE △折叠而成,∴△ABE ≌△GBE ,∴AE GE =,∵E 是AD 的中点,∴AE DE =,∴GE DE =;(2)解:连接EF ,∵DF 2CF =, ∴229633DF DC ==⨯=, ∴963CF DC DF =-=-=.∵四边形ABCD 是长方形,∴AD BC =,9AB DC ==,90A C D ∠=∠=∠=︒.∵△ABE ≌△GBE ,∴9BG AB ==,90A BGE FGE ∠=∠=∠=︒.在Rt EGF 和Rt EDF 中,∵GE DE =,EF EF =∴Rt △EGF ≌Rt △EDF (HL ),∴6GF DF ==.∴9615BF BG GF =+=+=,在Rt BCF 中,∵15BF =,3CF =,∴BC =.∴AD BC ==(3)解:设DF a =,则AB DC n DF na ==⋅=,∴()1CF DC DF na a n a =-=-=-,又∵BG AB na ==,GF DF a ==,∴()1BF BG GF na a n a =+=+=+,在Rt BCF 中,∵()1BF n a =+,()1CF n a =-,∴ ()()22222222114BC BF CF n a n a na =-=+--=,∴ 2224AD BC na ==, ∴2222244AD na AB n a n==. 14.证明:∵四边形ABCD 是正方形,∴AB =AD ,∠BAD =90°∵DG ⊥AE ,BF ⊥AE∴∠AFB =∠DGA =90°∵∠F AB +∠DAG =90°,∠DAG +∠ADG =90°∴∠BAF =∠ADG在△AFB 和△DGA 中∵AFB DGABAF ADG AB AD∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFB≌△DGA(AAS).(2)证明:如图2,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J由题意知∠BAH=∠ADE=90°,AB=AD=CD∵BF⊥AE∴∠AFB=90°∵∠DAE+∠EAB=90°,∠EAB+∠ABH=90°∴∠DAE=∠ABH在△ABH和△DAE中∵BAH ADE AB ADABH DAE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABH≌△DAE(ASA)∴AH=DE∵点E为CD的中点∴DE=EC=12CD∴AH=DH∴DE=DH∵DJ⊥BJ,DK⊥AE∴∠J=∠DKE=∠KFJ=90°∴四边形DKFJ是矩形∴∠JDK =∠ADC =90°∴∠JDH =∠KDE在△DJH 和△DKE 中∵J DKE JDH KDE DH DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DJH ≌△DKE (AAS )∴DJ =DK ,JH =EK∴四边形DKFJ 是正方形∴FK =FJ =DK =DJ∴DFFJ2FJ =∴FH +FE =FJ ﹣HJ +FK +KE =2FJDF .(3)解:如图3,取AD 的中点Q ,连接PQ ,延长QP 交CD 于R ,过点P 作PT ⊥CD 于T ,PK ⊥AD 于K ,设PT =b由(2)得△ABH ≌△DAE (ASA )∴AH =DE∵∠EDH =90°,点P 为EH 的中点∴PD =12EH =PH =PE∵PK ⊥DH ,PT ⊥DE∴∠PKD=∠KDT=∠PTD=90°∴四边形PTDK是矩形∴PT=DK=b,PK=DT∵PH=PD=PE,PK⊥DH,PT⊥DE ∴PT是△DEH的中位线∴DH=2DK=2b,DE=2DT∴AH=DE=1﹣2b∴PK=12DE=12﹣b,QK=DQ﹣DK=12﹣b∴PK=QK∵∠PKQ=90°∴△PKQ是等腰直角三角形∴∠KQP=45°∴点P在线段QR上运动,△DQR是等腰直角三角形∴QR DQ∴点P.15.解:(1)尺规作图如下:(2)四边形ABCD是平行四边形,,AB CE AD BC∴,,ABE E CBE DFE∴∠=∠∠=∠,BE平分ABC∠,ABE CBE∴∠=∠,E DFE ∴∠=∠,DE DF ∴=.16.解:在Rt △ABC 中,CD 是斜边AB 上的中线, ∴AB =2CD =2,由勾股定理得,BC . 17.证明:∵四边形ABCD 是正方形,∴AB =BC ,∠ABE =∠BCF =90°,又BE =CF ,∴△ABE ≌△BCF (SAS ).∴∠BAE =∠CBF .∵∠ABO +∠CBF =90°,∴∠ABO +∠BAO =90°,即∠AOB =90°. 在Rt △ABO 中,M 点是斜边AB 中点, ∴12OM AB =. 18.(1) 解: 90ABD ∠=︒, F 为AD 的中点,10,AD = 1 5.2BFAD (2) 证明:如图,连接,CF90ABD ACD ∠=∠=︒, F 是AD 的中点,11,,22CF AD BF AD ,CF BF ∴=E 是BC 的中点,.EF BC19.解:证明:在正方形ABDE 和ACFG 中,AB AE =,AC AG =,90BAE CAG ∠=∠=︒, BAE BAC CAG BAC ∴∠+∠=∠+∠,即CAE BAG ∠=∠,在ABG ∆和AEC ∆中,{AB AECAE BAG AC AG=∠=∠=,()ABG AEC SAS ∴∆≅∆,BG CE ∴=;(2)解:证明:设BG 、CE 相交于点N ,ABG AEC ∆≅∆,ACE AGB ∴∠=∠,9090180NCF NGF ACF AGF ∠+∠=∠+∠=︒+︒=︒,360()360(18090)90CNG NCF NGF F ∴∠=︒-∠+∠+∠=︒-︒+︒=︒, BG CE ∴⊥;(3)解:过A 作BG,CE 的垂线段交于点P ,Q ,ABG AEC ∆≅∆,,ABP AEQ AB AE ∴∠=∠=,90APB AQE ∠=∠=︒,()ΔΔABP AEQ AAS ∴≅,∴=AP AQ ,AM ∴是角平分线,45AMC ∴∠=︒,135AME .20.证明:∵AB //CE ,∴∠CAD =∠ACE ,∠ADE =∠CED .∵F 是AC 中点,∴AF =CF .在△AFD 与△CFE 中,CAD ACE ADE CED AF CF ∠∠⎧⎪∠∠⎨⎪⎩=== , ∴△AFD ≌△CFE (AAS ),∴DF =EF ,∴四边形ADCE 是平行四边形;(2)解:过点C 作CG ⊥AB 于点G ,∵∠CAB =45°,∴AG CG =,在△ACG 中,∠AGC =90°,∴222AG CG AC +=,∵AC=∴CG=AG=1,∵∠B=30°,∴12CG BC=,∴2BC=,在Rt△BCG中,BG==,∴1AB AG BG=+=.21.解:如图所示,直线DE即为所求;,(2)证明:∵∠ACB=90°,点E是边AB的中点,∴AE=BE=CE=12 AB,∵AC=BE,∴AC=AE=CE,∴△ACE是等边三角形.22.证明:E是AD的中点,AE DE∴=,//AF BC∴,FAE BDE∴∠=∠,AFE DBE∠=∠.在AFE∆和DBE∆中,FAE BDEAFE DBE AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,()AFE DBE AAS ∴∆≅∆,AF BD ∴=.AF DC =,BD DC ∴=.即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:AF DC =,//AF DC ,∴四边形ADCF 是平行四边形,AB AC =,BD DC =,AD BC ∴⊥即90ADC ∠=︒,∴平行四边形ADCF 是矩形.23.(1)如图所示,BE 就是所求的ABC ∠的角平分线.BF BA =,(2)四边形ABFE 为菱形.理由如下:∵BE 是ABC ∠的平分线,∴∠ABE =∠FBE∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠AEB =∠EBF ,∴∠ABE =∠AEB∴AB =AE∵BF BA =∴AE =BF∴四边形ABFE 为平行四边形,∵BF BA =,∴四边形ABFE 为菱形.24.证明:∵四边形ABCD 是矩形,∴AB =CD ,AD =BC ,∠A =∠D =90°,在Rt △ABE 和Rt △CDF 中,BE CF AB CD =⎧⎨=⎩, ∴Rt △ABE ≌Rt △CDF (HL ),∴AE =CF ,∴DE =BF .25.(1)①证明:∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∵90BAC ∠=︒,∴BAD CAF ∠=∠,在ABD △和ACF 中,{AB ACBAD CAF AD AF=∠=∠=,∴ABD △≌ACF (SAS ).②∵ABD △≌ACF ,∴ABD ACF ∠=∠,∵90BAC ∠=︒,AB AC =,∴45ABD ACB ∠=∠=︒,∴45ACF ∠=︒.故答案为:45.③∵ABD △≌ACF ,∴=CF BD ,∵826BD BC CD =-=-=.∴CF =6,故答案为:6.(2)(2)CF BC CD =+,由(1)同理可证ABD △≌ACF 得:CF BD BC CD ==+. 故答案为:BC CD +.(3)(3)①由(1)同理可证ABD △≌ACF 得:CF BD CD BC ==-. 故答案为:CD BC -.②AOC △为等腰三角形,理由如下:∵90BAC ∠=︒,AB AC =,∴18045135ABD ∠=︒-︒=︒,∵四边形ADEF 是正方形,∴AD AF =,90DAF ∠=︒,∴BAD CAF ∠=∠,同理可证BAD ≌CAF ,∴135ACF ABD ∠=∠=︒,∴90FCD ACF ACB ∠=∠-∠=︒,∴FCD 为直角三角形,∵正方形ADEF 中,O 为DF 的中点, ∴12OC DF =,12OA AE =,AE DF =, ∴OC OA =,∴AOC △是等腰三角形.26.证明:∵四边形ABCD 是平行四边形,∴AD=BC,AD//BC,∴∠DAE=∠E,∵CE=BC,∴CE=AD,又∵∠AOD=∠COE,∴△AOD≌△EOC(AAS),∴CO=DO;(2)解:当CO=EO,∠COE=90°时,四边形AOCF是正方形;理由如下:∵CO=DO,∴CO=1CD,2又∵F是AB的中点,∴AF=1AB,2∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴AF=CO,AF//CO,∴四边形AFCO是平行四边形,∵△AOD≌△EOC,∴AO=EO,∵CO=EO,∴AO=CO,∴平行四边形AFCO是菱形,∵∠COE=90°,∴菱形AFCO是正方形.。

最新2019-2020年人教版八年级数学下册期末压轴题练习卷(有答案)

最新2019-2020年人教版八年级数学下册期末压轴题练习卷(有答案)

人教版八年级数学下册期末压轴题练习卷(有答案)1.如图1,在△ABC和△EDC中,AC=CE=CB=CD;∠ACB=∠DCE=90°,AB与CE交于F,ED与AB,BC,分别交于M,H.(1)求证:CF=CH;(2)如图2,△ABC不动,将△EDC绕点C旋转到∠BCE=45°时,试判断四边形ACDM是什么四边形?并证明你的结论.解:(1)证明:∵AC=CE=CB=CD,∠ACB=∠ECD=90°,∴∠A=∠B=∠D=∠E=45°.在△BCF和△ECH中,,∴△BCF≌△ECH(ASA),∴CF=CH(全等三角形的对应边相等);(2)解:四边形ACDM是菱形.证明:∵∠ACB=∠DCE=90°,∠BCE=45°,∴∠1=∠2=45°.∵∠E=45°,∴∠1=∠E∴AC∥DE,∴∠AMH=180°﹣∠A=135°=∠ACD,又∵∠A=∠D=45°,∴四边形ACDM是平行四边形(两组对角相等的四边形是平行四边形),∵AC=CD,∴四边形ACDM是菱形.2.如图,四边形ABCD是正方形,点G是BC上一点,DE⊥AG于点E,BF∥DE且交AG于点F.(1)求证:AE=BF;(2)当∠BAG=30°,且AB=2时,求EF-FG的值.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠BAF+∠DAE=∠BAD=90°.又∵DE⊥AG,BF∥DE,∴∠AED=∠BFA=90°.∵∠BAF+∠ABF=90°,∴∠ABF=∠DAE,在△ABF 和△DAE 中, ∠ABF=∠DAE ∠BFA=∠AED AB=DA ,∴△ABF ≌△DAE ,∴AE=BF.(2)解:∵∠BAG=30°,AB=2,∠BFA=90°,∴BF=21AB=1,AF=22BF AB -=2212-=3, ∴EF=AF-AE=AF-BF=3-1, ∵BF ⊥AG ,∠ABG=90°,∠BAG=30°,∴∠FBC=30°,∴BG=2FG.由BG 2=FG 2+BF 2, ∴4FG 2=FG 2+1,∴FG 2=31,∴FG=33,∴EF-FG=3-1-33=332-1. 3.如图1,四边形ABCD 是正方形,M 是BC 边上的一点,E 是CD 边的中点,AE 平分∠DAM . 【探究展示】(1)证明:AM=AD+MC ;(2)AM=DE+BM 是否成立?若成立,请给出证明;若不成立,请说明理由. 【拓展延伸】(3)若四边形ABCD 是长与宽不相等的矩形,其他条件不变,如图2,探究展示(1)、(2)中的结论是否成立?请分别作出判断,不需要证明.答案:(1)证明:延长AE 、BC 交于点N ,如图1(1), ∵四边形ABCD 是正方形, ∴AD ∥BC .∴∠DAE=∠ENC . ∵AE 平分∠DAM , ∴∠DAE=∠MAE . ∴∠ENC=∠MAE .∴MA=MN.在△ADE和△NCE中,∠DAE=∠CNE∠AED=∠NEC DE=CE∴△ADE≌△NCE(AAS).AD=NC.∴MA=MN=NC+MC=AD+MC.(2)AM=DE+BM成立.证明:过点A作AF⊥AE,交CB的延长线于点F,如图1(2)所示.∵四边形ABCD是正方形,∴∠BAD=∠D=∠ABC=90°,AB=AD,AB∥DC.∵AF⊥AE,∴∠FAE=90°.∴∠FAB=90°-∠BAE=∠DAE.在△ABF和△ADE中,∠FAB=∠EAD AB=AD ∠ABF=∠D=90°∴△ABF≌△ADE(ASA).∴BF=DE,∠F=∠AED.∵AB∥DC,∴∠AED=∠BAE.∵∠FAB=∠EAD=∠EAM,∴∠AED=∠BAE=∠BAM+∠EAM=∠BAM+∠FAB=∠FAM.∴∠F=∠FAM.∴AM=FM.∴AM=FB+BM=DE+BM.(3)①如图2(1),结论AM=AD+MC仍然成立.②如图2(2),结论AM=DE+BM不成立.4.如图,在四边形纸片ABCD中,∠B=∠D=90°,点E,F分别在边BC,CD上,将AB,AD分别沿AE,AF折叠,点B,D恰好都和点G重合,∠EAF=45°.(1)求证:四边形ABCD是正方形;(2)求证:三角形ECF的周长是四边形ABCD周长的一半;(3)若EC=FC=1,求AB的长度.答案:(1)证明:由题意得,∠BAE=∠EAG,∠DAF=∠FAG,∴∠BAD=2∠EAF=90°,∴四边形ABCD 是矩形, ∵AB=AG ,AD=AG ,∴AB=AD ,∴四边形ABCD 是正方形;(2)证明;∵EG=BE ,FG=DF ,∴EF=BE+DF ,∴△ECF 的周长=EF+CE+CF=BE+DF+CE+CF=BC+CD , ∴三角形ECF 的周长是四边形ABCD 周长的一半; (3)解:∵EC=FC=1,∴BE=DF ,∴EF=2,∵EF=BE+DF ,∴BE=DF=EF=22,∴AB=BC=BE+EC=22+1. 5.某数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD 中,AB =6,将三角板放在正方形ABCD 上,使三角板的直角顶点与D 点重合,三角板的一边交AB 于点P ,另一边交BC 的延长线于点Q.(1)求证:DP =DQ ;(2)如图②,小明在图①的基础上作∠PDQ 的平分线DE 交BC 于点E ,连接PE ,他发现PE 和QE 存在一定的数量关系,请猜测他的结论并予以证明;(3)如图③,固定三角板直角顶点在D 点不动,转动三角板,使三角板的一边交AB 的延长线于点P ,另一边交BC 的延长线于点Q ,仍作∠PDQ 的平分线DE 交BC 的延长线于点E ,连接PE ,若AB∶AP=3∶4,请帮小明算出△DEP 的面积.解:(1)证明:∵四边形ABCD 是正方形,∴∠ADC =∠DCQ=90°,AD =DC.∵∠PDQ=90°=∠ADC,∴∠ADP =∠CDQ,∴△ADP ≌△CDQ ,∴DP =DQ.(2)猜测:PE =QE.证明:由(1)可知DP =DQ ,又∵∠PDE=∠QDE=45°,DE =DE ,∴△DEP ≌△DEQ ,∴ PE =QE. (3)∵AB∶AP=3∶4,AB =6,∴AP =8,BP =2,同(1)可证△ADP≌△CDQ,∴CQ =AP =8.同(2)可证△DEP≌△DEQ,∴PE =QE.设QE =PE =x ,则BE =BC +CQ -QE =14-x.在Rt △BPE 中,由勾股定理得BP 2+BE 2=PE 2,即22+(14-x)2=x 2,解得x =507,即QE =507,∴S △DEQ =12QE·CD=1507.∵△DEP ≌△DEQ ,∴S △DEP =S △DEQ =1507.6.已知:如图,四边形ABCD 中,AD ∥BC, AD =CD, E 是对角线BD 上一点,且EA =E C .(1)求证:四边形ABCD 是菱形;(2)如果BE =BC ,且∠CBE∶∠BCE=2∶3,求证:四边形ABCD 是正方形.证明:(1)∵在△ADE 与△CDE 中,⎩⎨⎧AD =CD ,DE =DE ,EA =EC ,∴△ADE ≌△CDE ,∴∠ADE =∠CDE.∵AD∥BC,∴∠ADE =∠CBD,∴∠CDE =∠CBD,∴BC =CD.∵AD=CD ,∴BC =AD ,∴四边形ABCD 为平行四边形.∵AD=CD ,∴四边形ABCD 是菱形. (2)∵BE=BC ,∴∠BCE =∠BEC.∵∠CBE∶∠BCE=2∶3,∴∠CBE =180°×22+3+3=45°.∵四边形ABCD 是菱形,∴∠ABE =45°,∴∠ABC =90°,∴四边形ABCD 是正方形.7.. 如图,在平面直角坐标系中,直线 经过点 ,,动点 是 轴正半轴上的动点,过点 作轴,交直线于点 ,以,为边构造平行四边形.设点 的横坐标为 .(1)直接写出直线AB 的函数解析式;(2)若四边形恰是菱形,请求出 的值;(备用图)解: (1) 由题意得 解得 .(2) 由勾股定理得 ,要使四边形是菱形,则只要满足.如图.当 在线段 上时,...当在点右边时,.,..所以当或时,四边形是菱形.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.答案:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.。

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练—2023-2024学年八年级数学下学期(人教版)(解析版)

期末考试勾股定理与几何翻折压轴题专项训练【例题精讲】例1.(三角形翻折问题)如图,在Rt ABC △中,9086ABC AB BC ∠=︒==,,,分别在AB AC ,边上取点E F ,,将AEF △沿直线EF 翻折得到A EF '△,使得点A 的对应点A '恰好落在CB 延长线上,当60EA B '∠=︒时,AE 的长为 ,当A F AC '⊥时,AF 的长为 .【答案】 32− 407【分析】由折叠的性质可得AE A E '=,先求出30A EB '∠=︒,从而可得1122A B A E AE ''==,再由勾股定理可得BE AE =,最后由AE BE AB +=,进行计算即可;令A F '交AB 于G ,连接CG ,由折叠的性质可得:A EA F '∠=∠,AFE A FE '∠=∠,AEF A EF '∠=∠,AF A F '=,由A F AC '⊥得出90A FA A FC ''∠=∠=︒,45AFE A FE '∠=∠=︒,证明()ASA A FC AFG '≌得到CF FG =,设CF FG x ==,则10AF x =−,AG ,根据1122ACG S AC FG AG BC =⋅=⋅建立方程,解方程即可得出CF 的长,即可求解.【详解】解:由折叠的性质可得:AE A E '=,90ABC ∠=︒,18090A BE ABC '∴∠=︒−∠=︒,60EA B '∠=︒,9030A EB EA B ''∴∠=︒−∠=︒,1122A B A E AE ''∴==,BE AE∴==,AE BE AB+=,8AE AE∴=,32AE∴=−如图,令A F'交AB于G,连接CG,A F AC'⊥,90A FA A FC''∴∠=∠=︒,由折叠的性质可得:A EA F'∠=∠,AFE A FE'∠=∠,AEF A EF'∠=∠,AF A F'=,90AFE A FE'∠+∠=︒,45AFE A FE'∴∠=∠=︒,设A EA Fα'∠=∠=,则45FEB AFEα∠=∠=+︒,180135AEF FEB A EFα'∴∠=︒−∠=︒−=∠,()13545902A EB A EF BEFααα''∴∠=∠−∠=︒−−︒+=︒−,902EA B A EBα''∴∠=︒−∠=,FA C EA B EA F Aα'''∴∠=∠−∠==∠,在A FC'和AFG中,CA F AA F AFA FC AFG∠=∠⎧⎪=⎨⎪∠=∠''⎩',()ASAA FC AFG'∴≌,CF FG∴=,在Rt ABC△中,9086ABC AB BC∠=︒==,,,10AC∴,设CF FG x==,则10AF x=−,AG∴==1122ACGS AC FG AG BC=⋅=⋅,106x∴⋅=,整理得:271809000x x+−=,即29014400749x⎛⎫+=⎪⎝⎭,9012077x∴+=±,解得:307x=或30x=−(不符合题意,舍去),307CF∴=,30401077AF AC CF∴=−=−=,故答案为:32−407.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、勾股定理、三角形的面积公式、等腰直角三角形的判定与性质、三角形外角的定义及性质、三角形内角和定理等知识,熟练掌握以上知识点,添加适当的辅助线是解此题的关键.例2.(坐标系中折叠问题)如图,在平面直角坐标系中,长方形ABCO的边OC OA、分别在x轴、y轴上,6AB=,点E在边BC上,将长方形ABCO沿AE折叠,若点B的对应点F 恰好是边OC的三等分点,则点E的坐标是.【答案】⎛−⎝⎭或(−【分析】本题主要考查了勾股定理与折叠问题,坐标与图形,由折叠的性质可得6AF AB==,BE EF=,90AFE B∠=∠=︒,再分当点F靠近点C时,24CF OF==,,当点F靠近点O 时,则42CF OF==,,两种情况利用勾股定理先求出OA的长,进而得到BC的长,设出CE 的长,进而得到EF的长,在Rt EFC△中,由勾股定理建立方程求解即可.【详解】解:在长方形ABCO 中,6CO AB ==,90BCO B AOC ∠=∠=∠=︒, 由折叠的性质可得6AF AB ==,BE EF =,90AFE B ∠=∠=︒,F 恰好是边OC 的三等分点,∴当点F 靠近点C 时,24CF OF ==,,在Rt AFO V中,OA =,∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222EF CF CE =+,∴()2222xx =+,解得x =,∴点E的坐标是⎛− ⎝⎭; 当点F 靠近点O 时,则42CF OF ==,,在Rt AFO V中,OA ==∴BC OA ==设CE x =,则BE EF x ==,在Rt EFC △中,由勾股定理得到222CF CE =+,∴()2224x x =+,解得x =∴点E的坐标是(−;综上所述,点E的坐标是⎛− ⎝⎭或(−,故答案为:⎛− ⎝⎭或(−.例3.(四边形折叠问题)如图,已知矩形ABCD ,4AB =,5BC =,点P 是射线BC 上的动点,连接AP ,AQP △是由ABP 沿AP 翻折所得到的图形.(1)当点Q 落在边AD 上时,QC = ;(2)当直线PQ 经过点D 时,求BP 的长;(3)如图2,点M 是DC 的中点,连接MP 、MQ .①MQ 的最小值为 ;②当PMQ 是以PM 为腰的等腰三角形时,请直接写出BP 的长.【答案】(2)2BP =或8BP =(3) 2.9BP =或4BP =或10BP =【分析】(1)根据折叠的性质和勾股定理进行求解即可;(2)分点P 在线段BC 上,点P 在线段BC 的延长线上,两种情况,进行讨论求解;(3)①连接AM ,勾股定理求出AM 的长,折叠求出AQ 的长,根据MQ AM AQ ≥−,求出最小值即可;②分PM MQ =和PM PQ =两种情况,再分点P 在线段BC 上,点P 在线段BC 的延长线上,进行讨论求解即可.【详解】(1)解:当点Q 落在边AD 上时,如图所示,∵矩形ABCD ,4AB =,5BC =,∴4,5CD AB AD BC ====,90BAD B BCD ADC ∠=∠=∠=∠=︒,∵翻折,∴4,90AQ AB AQP B ==∠=∠=︒,∴1DQ AD AQ =−=,在Rt CDQ △中,CQ ==(2)当直线PQ 经过点D 时,分两种情况:当点P 在线段BC 上时,如图:∵翻折,∴4AQ AB ==,90AQP B ∠=∠=︒,BP PQ =,∴90AQD ∠=︒,∴3DQ ==,设BP PQ x ==,则:5PC BC BP x =−=−,3DP DQ PQ x =+=+,在Rt PCD △中,222DP CP CD=+,即:()()222345x x +=+−,∴2x =;∴2BP =;②当P 在线段BC 的延长线上时:∵翻折,∴4,90AQ AB Q B ==∠=∠=︒,BP PQ =,∴3DQ ==,设BP PQ x ==,则:5PC BP BC x =−=−,3DP PQ DQ x =−=−,在Rt PCD △中,222DP CP CD =+,即:()()222345x x −=+−,∴8x =;∴8BP =;综上:2BP =或8BP =;(3)①连接AM ,∵M 是CD 的中点, ∴122DM CM CD ===,∴AM =∵翻折,∴4AQ AB ==,∵MQ AM AQ ≥−,∴当,,A Q M 三点共线时,MQ 的值最小,即:4MQ AM AQ =−=4;②当PM PQ =时,如图:∵翻折,∴BP PQ PM ==,设BP x =,则:,5PM x CP BC BP x ==−=−,在Rt PCM 中,222PM CM PC =+,即:()22225x x =+−,解得: 2.9x =,即: 2.9BP =;当PM QM =,点P 在线段BC 上时,如图:∵,QM PM DM CM ==,90D C ∠=∠=︒,∴()HL MDQ MCP ≌,∴CP DQ =,点Q 在AD 上,由(1)知:1DQ =,∴1CP DQ ==,∴4BP BC CP =−=;当点P 在BC 的延长线上时:如图:此时点M 在AP 上,连接BM ,∵翻折,∴BM MQ PM ==,∵MC BP ⊥,∴210BP BC ==;综上: 2.9BP =或4BP =或10BP =.质,综合性强,难度大,属于压轴题.利用数形结合和分类讨论的思想进行求解,是解题的关键.【模拟训练】1.如图,在长方形ABCD 中,点E 是AD 的中点,将ABE 沿BE 翻折得到FBE ,EF 交BC 于点H ,延长BF DC 、相交于点G ,若8DG =,10BC =,则DC = .【答案】258【分析】本题考查了全等三角形的判定与性质,折叠的性质,勾股定理,连接EG ,根据点E 是AD 的中点得DE AE EF ==,根据四边形ABCD 是长方形得90D A ∠=∠=︒,根据将ABE 沿BE 翻折得到FBE 得90BFE D A ∠=∠=∠=︒,利用HL 证明Rt Rt EFG EDG △≌△,得8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG V △中,根据勾股定理得,222CG BC BG +=,进行计算即可得.【详解】解:如图所示,连接EG ,∵点E 是AD 的中点,∴DE AE EF ==,∵四边形ABCD 是长方形,∴90D A ∠=∠=︒,∵将ABE 沿BE 翻折得到FBE ,∴90BFE D A ∠=∠=∠=︒在Rt EFG △和Rt EDG △中,EF ED EG EG =⎧⎨=⎩,∴()Rt Rt HL EFG EDG V V ≌,∴8FG DG ==,设DC x =,则8CG DG DC x =−=−,8BG BF FG AB FG DC FG x =+=+=+=+,在Rt BCG 中,根据勾股定理得,222CG BC BG +=,∴222(8)10(8)x x −+=+,解得258x =,故答案为:258.2.如图,在Rt ABC △中,90ACB ∠=︒,254AB =,154=AC ,点D 是AB 边上的一个动点,连接CD ,将BCD △沿CD 折叠,得到CDE ,当DE 与ABC 的直角边垂直时,AD 的长是 .【答案】154或54【分析】本题考查了勾股定理,平行四边形的判定和性质,折叠的性质,全等三角形的判定和性质,分DE BC ⊥和DE AB ⊥两种情况进行求解即可得到答案,根据题意,正确画出图形是解题的关键.【详解】解:如图,当DE BC ⊥时,延长ED 交BC 于点F ,CE 与AB 相交于点M ,∵EF BC ⊥,∴90EFC EFB ∠=∠=︒,∴90E ECF ∠+∠=︒,由折叠得,B E ∠=∠,CE CB =,MCD FCD ∠=∠,∴90B ECF ∠+∠=︒,∴90CMB ∠=︒,即C M A B ⊥,∵90ACB ∠=︒,254AB =,154=AC ,∴5BC ==, ∵1122ABC S AC BC AB CM ==△,∴11512552424CM ⨯⨯=⨯⨯,解得3CM =,∴4BM =,∵90CFD CMD FCD MCD CD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴()AAS CFD CMD ≌,∴3CF CM ==,DF DM =,∴532BF BC CF =−=−=,设DF DM x ==,则4BD x =−,在Rt BFD 中,222DF BF BD +=,∴()22224x x +=−, 解得32x =, ∴35422BD =−=, ∴25515424AD AB BD =−=−=;当DE AB ⊥时,如图,设DE 与AC 相交于点M ,由折叠可得,BCD ECD ∠=∠,DE DB =,ED BD =,5EC BC ==,∵DE AB ⊥,90ACB ∠=︒,∴DE BC ∥,∴EDC BCD ∠=∠,∴EDC ECD ∠=∠,∴5ED EC ==,∴5BD ED ==, ∴255544AD AB BD =−=−=;综上,AD 的长是154或54, 故答案为:154或54.3.如图,等边三角形ABC 中,16AB BD AC =⊥,于点D ,点E F 、分别是BC DC 、上的动点,沿EF 所在直线折叠CEF △,使点C 落在BD 上的点C '处,当BEC '△是直角三角形时,BE 的值为 .【答案】24−或323【分析】本题考查了翻折变换,等边三角形的性质,折叠的性质,熟练运用折叠的性质是本题的关键.由等边三角形的性质可得30DBC ∠=︒,分9090BEC BC E ''∠=︒∠=︒,两种情况讨论,由直角三角形的性质即可求解.【详解】解:ABC 是等边三角形,BD AC ⊥,30,DBC ∴∠=︒ 由折叠的性质可得:,CE C E '=若90,BEC ∠'=︒且30,C BE ∠'=︒,2,BE E B E C C ∴='''=16,BE CE BC +==16,CE +=8,E E C C ∴'==24BE ∴=−若90,30,E C B E C B ∠'=︒='∠︒2,,BE E B C E C ∴'''=16,BE CE BC +==16,3CE E C =='∴ 32.3BE ∴=故答案为∶ 24−323.4.如图,在ABC 中,120ACB ∠=︒,8AC =,4BC =,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,使点A 落在CD 的延长线上的点A '处,两条折痕与斜边AB 分别交于点E 、F ,则线段FA '的长为 .【答案】【分析】本题考查了折叠的性质,勾股定理,直角三角形的性质,添加恰当辅助线构造直角三角形是本题的关键.过点A 作AH BC ⊥交BC 的延长线于H ,由直角三角形的性质可求142HC AC ==,AH =AB 的长,由面积法可求CE 的长,由折叠的性质可求90BEC DEC ∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,然后再求解即可.【详解】解:如图,过点A 作AH BC ⊥,交BC 的延长线于H ,120ACB ∠=︒,ACB H HAC ∠=∠+∠,30HAC ∴∠=︒,142HC AC ∴==,AH ==,448BH ∴=+=,AB ∴1122ACB S BC AH AB CE =⨯⨯=⨯⨯,4CE ∴=,CE ∴,将边BC 沿CE 翻折,使点B 落在AB 上的点D 处,再将边AC 沿CF 翻折,90BEC DEC ∴∠=∠=︒,BCE DCE ∠=∠,ACF DCF ∠=∠,1602ECF ACB ∴∠=∠=︒,30CFE ∴∠=︒,EF ∴,在Rt BCE中,BE ===,AF AB EF BE ∴=−−==FA AF '∴==故答案为:5.如图,点D 是ABC 的边AB 的中点,将BCD △沿直线CD 翻折能与ECD 重合,若4AB =,2CD =,1AE =,则点C 到直线AB 的距离为 .【答案】【分析】连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质及中点性质可得AEB △为直角三角形,且G 为BE 中点,从而CG BE ⊥,由勾股定理可得BE的长,再根据2ABC BDC S S =△△,即11222AB CH CD BG ⋅=⨯⋅,从而可求得CH 的长.【详解】解:连接BE ,延长CD 交BE 于点G ,作CH AB ⊥于点H ,如图所示,由折叠的性质可得:BD ED =,CB CE =,∴CG 为BE 的中垂线, ∴12BG BE =,∵点D 是AB 的中点,4AB =,2CD =,1AE =, ∴122BD AD AB ===,CBD CAD S S =,AD DE =,∴DBE DEB ∠=∠,DEA DAE ∠=∠,∵180EDA DEA DAE ∠+∠+∠=︒,即22180DEB DEA ∠+∠=︒,∴90DEB DEA ∠+∠=︒,即90BEA ∠=︒,∴BE∴12BG BE ==, ∵2ABC BDCS S =△△, ∴11222AB CH CD BG ⋅=⨯⋅,∴422CH =⨯,∴CH ,∴点C 到直线AB 的距离为.故答案为:.【点睛】本题考查翻折变换,线段中垂线的判定,等腰三角形的性质,点到直线的距离,直角三角形的判定,勾股定理,利用面积相等求相应线段的长,解题的关键是得出CG 为BE 的中垂线,2ABC BDC S S =△△.6.如图,在ABC 中,90,A AB AC ∠=︒==D 为AC 边上一动点,将C ∠沿过点D 的直线折叠,使点C 的对应点C '落在射线CA 上,连接BC ',当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为 .【答案】 或 【分析】由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==时,分别根据勾股定理求出AC '的长,再求出CC '的长即可 【详解】解:由翻折得,12CD CC '=,分三种情况:①当点C '在边AC 上,且12AC BC ''=(即2BC AC ''=)时,90,A AB AC ∠=︒==∴由勾股定理得,222BC AC AB ''−=,即222(2)AC AC ''−=,AC '∴=CC '∴CD ∴;②当点C '在CA 的延长线上,且12AC BC ''=(即2BC AC ''=)时,同理得AC 'CC '∴CD ∴;③当点C '在CA 的延长线上,且12AB BC '=(即2BC AB '==由勾股定理得,222AC BC AB ''=−,即22218AC '=−=,AC '∴=CC '∴CD ∴=,0>,CD AB ∴>,此时点D 不在边AC 上,不符合题意,舍去,综上,当Rt ABC '△的某一直角边等于斜边BC '长度的一半时,CD 的长度为或.故答案为:或.【点睛】本题主要考查图形的翻折变换(折叠问题),勾股定理,等腰直角三角形的性质等知识,灵活运用折叠的性质及勾股定理是解答本题的关键,同时要注意分类思想的运用.7.如图,在ABC 中,90ACB ∠=︒,3AC =,4BC =,P 为斜边AB 上的一动点(不包含A ,B 两端点),以CP 为对称轴将ACP △翻折得到A CP ',连结BA '.当A P AB '⊥时,BA '的长为 .【答案】【分析】当A P AB '⊥时,过点C 作CD AB ⊥于D ,可知125CD =,95AD =,得出PDC △为等腰直角三角形,得到PD CD =,求出PA '和BP 的长,利用勾股定理即可求出BA '的长.【详解】过点C 作CD AB ⊥于D ,在Rt ADC 中,90ACB ∠=︒,3AC =,4BC =,∴5AB = ∵1122AC BC AB CD ⨯=⨯,125CD ∴=,在Rt ADC 中,3AC =∴95AD ==,当A P AB '⊥时,如图由折叠性质可知12∠=∠,PA PA '=,又1290A PA '∠=∠+∠=︒145∠=∠2=︒∴,又2390∠+∠=︒,345∴∠=︒,23∴∠=∠,125PD CD ∴==,又PA PD AD =+,12921555PA ∴=+=,又PA PA '=,215PA '∴=,又BP AB PA =−,214555BP ∴=−=,在Rt BPA '△中,90BPA ∠='︒,222BP PA BA ∴='+,2224214575525BA ⎛⎫⎛⎫'∴=+= ⎪ ⎪⎝⎭⎝⎭,BA '∴=,故答案为:.【点睛】本题考查了勾股定理的应用,折叠问题,熟练掌握勾股定理是解题的关键.8.如图,在ABC 中,90ACB ∠=︒,AC BC =,D 为AB 上一点,连接DC ,将BDC 沿DC 翻折,得到EDC △,连接AE ,若AE CE =,4BC =,则D 到CE 的距离是 .【答案】2【分析】本题考查等腰直角三角形中的折叠问题,涉及等边三角形判定与性质,勾股定理应用、面积法等知识.设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,根据将BDC 沿DC 翻折,得到EDC △,AC BC =,AE CE =,可得ACE △是等边三角形,即知60ACE ∠=︒,而90ACB ∠=︒,故150BCE ∠=︒,30ECF ∠=︒,可得75BCD ECD ∠=∠=︒,122EF CE ==,CF =BE =15CBE ∠=︒,可得90BGC ∠=︒,即CG BE ⊥,从而12BG BE GE ===,由勾股定理得CG ,在Rt BDG △中,DG ,即得CD DG CG =+,由面积法可得D 到CE 的距离是2. 【详解】解:设BE 交CD 于G ,过E 作EF BC ⊥交BC 延长线于F ,如图:将BDC 沿DC 翻折,得到EDC △,4BC CE ∴==,BCD ECD ∠=∠,AC BC =,AE CE =,AC BC CE AE ∴===,ACE ∴是等边三角形,60ACE ∴∠=︒,90ACB ∠=︒,150BCE ∴∠=︒,30ECF ∠=︒,75BCD ECD ∴∠=∠=︒,122EF CE ==,CF =在Rt BEF △中,BE ==BCE 中,BC CE =,150BCE ∠=︒,15CBE ∴∠=︒,18090BGC BGC BCD ∴∠=︒−∠−∠=︒,即CG BE ⊥,12BG BE GE ∴==,CG ∴===,45ABC ∠=︒,15CBE ∠=︒,30DBG ∴∠=︒,在Rt BDG△中,DG =,CD DG CG ∴=+=,设D 到CE 的距离是h ,2DCE S CE h DC GE ∆=⋅=⋅,324DC GE h CE ⋅∴===,故答案为:2.9.在生活中、折纸是一种大家喜欢的活动、在数学中,我们可以通过折纸进行探究,探寻数学奥秘.【纸片规格】三角形纸片ABC ,120ACB ∠=︒,CA CB =,点D是底边AB 上一点.【换作探究】(1)如图1,若6AC =,AD =CD ,求CD 的长度;(2)如图2,若6AC =,连接CD ,将ACD 沿CD 所在直线翻折得到ECD ,点A 的对应点为点.E 若DE 所在的直线与ABC 的一边垂直,求AD 的长;(3)如图3,将ACD 沿CD 所在直线翻折得到ECD ,边CE 与边AB 交于点F ,且DE BC ∥,再将DFE △沿DF 所在直线翻折得到DFG ,点E 的对应点为点G ,DG 与CE 、BC 分别交于H ,K ,若1KH =,请直接写出AC 边的长.【答案】(1)(2)3或(3)3【分析】(1)作CE AB ⊥于E ,求得30A B ==︒∠∠,从而得出132CE AC ==,AE AC =进而得出DE AE AD =−=(2)当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,依次得出45DAE DEA ∠=∠=︒,304575CAE CAD DAE ∠=∠+∠=︒+︒=︒,75CEA CAE ∠=∠=︒,30ACE ∠=︒,15ACD DCE ∠=∠=︒,45CDG CAB DAC ∠=∠+∠=︒,从而DG CG =,进一步得出结果;当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,可推出90AVC ∠=︒,60ACE ∠=︒,从而30ACD DCE ∠=∠=︒,进一步得出结果;当DE BC ⊥时,可推出180ACB BCE ∠+∠=︒,从而90ACD DCE ∠=∠=︒,进一步得出结果;(3)可推出CKH 和CDH △及CHK 是直角三角形,且30HCK ∠=︒,30HDF ∠=︒,45DCH ∠=︒,进一步得出结果.【详解】(1)解:如图1,作CE AB ⊥于E ,90AEC ∴∠=︒,CA CB =,120ACB ∠=︒,30A B ∴∠=∠=︒,132CE AC ∴==,AE =,DE AE AD ∴=−==CD ∴=;(2)解:如图2,当DE AB ⊥时,连接AE ,作CG AB ⊥于G ,由翻折得:AD DE =,CAD CED =∠∠,AC CE =,45DAE DEA ∠∠∴==︒,304575CAE CAD DAE ∴∠=∠+∠=︒+︒=︒,75CEA CAE ∴∠=∠=︒,30ACE ∴∠=︒,15ACD DCE ∴∠=∠=︒,45CDG CAB DAC ∴∠=∠+∠=︒,DG CG ∴=,由(1)知:3CG =,AG =3AD AG DG ∴=−=;如图3,当ED AC ⊥时,设ED 交AC 于点W CE ,交AB 于V ,90E ACE ∴∠+∠=︒,E A ∠=∠,90A ACE ∴∠+∠=︒,90AVC ∴∠=︒,60ACE∴∠=︒,30ACD DCE∴∠=∠=︒,ACD A∴∠=∠,AD CD∴=,3CV =,CD∴=,AD CD∴==如图4,当DE BC⊥时,30E A∠=∠=︒,60BCE∴∠=︒,180ACB BCE∴∠+∠=︒,90ACD DCE∴∠=∠=︒,AD∴=,综上所述:3AD=或(3)解:如图5,∵DE BC ∥,30B C ∠=∠=︒,30BCF E ∴∠=∠=︒,30EDF B ∠=∠=︒,120ACB ∠=︒,90ACE ∴∠=︒,1452ECD ACD ACE ∴∠=∠=∠=︒,将DFE △沿DF 所在直线翻折得到DFG ,30GDF EDF ∴∠=∠=︒,60EDG ∴∠=︒,90CHK EHD ∴∠=∠=︒,DH CH ∴=1FH ∴==,1CF CH FH ∴=+,3AC ∴==.【点睛】本题考查了等腰三角形的判定和性质,直角三角形的性质等知识,解决问题的关键是正确分类,画出图形.10.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 为线段BC 延长线上一点,以AD 为腰作等腰直角DAF △,使90DAF ∠=︒,连接CF .(1)请判断CF 与BC 的位置关系,并说明理由;(2)若8BC =,4CD BC =,求线段AD 的长;(3)如图2,在(2)的条件下,将DAF △沿线段DF 翻折,使点A 与点E 重合,连接CE ,求线段CE 的长.【答案】(1)CF BC ⊥,理由见解析(2)(3)【分析】(1)证明()SAS ABD ACF △≌△,则ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,根据180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,可得90FAO DCO ∠=∠=︒,进而可得CF BC ⊥;(2)如图2,过A 作AH BC ⊥于H ,则142BH CH AH BC ====,6DH =,由勾股定理得,AD =(3)由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,证明()AAS ADM DEN ≌,则46DN AM EN DM ====,,6CN =,由勾股定理得,CE =计算求解即可.【详解】(1)解:CF BC ⊥,理由如下:∵等腰直角DAF △,90DAF ∠=︒,∴AD AF =,又∵90BAC ∠=︒,∴BAC CAD DAF CAD ∠+∠=∠+∠,即BAD CAF ∠=∠,∵AB AC =,BAD CAF ∠=∠,AD AF =,∴()SAS ABD ACF △≌△,∴ADB AFC ∠=∠,如图1,记AD CF 、的交点为O ,∵180FAO AFO AOF DCO CDO COD ∠+∠+∠=︒=∠+∠+∠,AOF COD ∠=∠,∴90FAO DCO ∠=∠=︒,∴CF BC ⊥;(2)解:∵8BC =,4CD BC =,∴2CD =,如图2,过A 作AH BC ⊥于H ,∵ABC 是等腰直角三角形, ∴142BH CH AH BC ====,∴6DH =,由勾股定理得,AD =∴线段AD 的长为(3)解:由翻折的性质可知,DE AD =,45EDF ADF ∠=∠=︒,∴90ADE ∠=︒,如图3,过A 作AM BC ⊥于M ,过E 作EN BC ⊥于N ,∴90AMD DNE ∠=︒=∠,同理(2)可知,4AM =,6MD =,∵90ADM EDN EDN DEN ∠+∠=︒=∠+∠,∴ADM DEN ∠=∠,∵90AMD DNE ∠=︒=∠,ADM DEN ∠=∠,AD DE =,∴()AAS ADM DEN ≌,∴46DN AM EN DM ====,,∴6CN =,由勾股定理得,CE =,∴线段CE 的长为【点睛】本题考查了全等三角形的判定与性质,三角形内角和定理,勾股定理,折叠的性质,等腰三角形的性质.熟练掌握全等三角形的判定与性质,折叠的性质是解题的关键.11.如图1,在Rt ABC △中,90C ∠=︒,5AC =,12BC =,点D 为BC 边上一动点,将ACD 沿直线AD 折叠,得到AFD △,请解决下列问题.(1)AB =______;当点F 恰好落在斜边AB 上时,CD =______;(2)连接CF ,当CBF V 是以CF 为底边的等腰三角形时,请在图2中画出相应的图形,并求出此时点F 到直线AC 的距离;(3)如图3,E 为边BC 上一点,且4,连接EF ,当DEF 为直角三角形时,CD = .(请写出所有满足条件的CD 长)【答案】(1)13,103(2)画图见解析,600169(3)52或或5或10【分析】(1)根据勾股定理可得AB 的长,再利用等积法求出CD 即可;(2)过点F 作FG AC ^,交CA 的延长线于G ,首先由等积法求出CH 的长,再根据勾股定理求出AH 的长,再次利用等积法可得FG 的长;(3)分90DEF ∠=︒或90EDF ∠=︒或90EFD ∠=︒分别画出图形,从而解决问题.【详解】(1)解:在Rt ABC △中,由勾股定理得,13AB ,当点F 落在AB 上时,由折叠知,CD DF =, ∴111222AC CD AB DF AC BC ⋅+⋅=⋅,51360CD CD ∴+=,103CD ∴=,故答案为:13,103;(2)过点F 作FG AC ^,交CA 的延长线于G ,BC BF =,AC AF =,AB ∴垂直平分CF , 由等积法得6013AC BC CH AB ⋅==,在Rt ACH 中,由勾股定理得,2513AH ===, 1122ACF S AC FG CF AH =⋅=⋅△,6025260013135169CF AH FG AC ⨯⨯⋅∴===;(3)当90DEF ∠=︒时,当点D 在CE 上时,作FH AC ⊥于H ,则4HF CE ==,5AF AC ==,3AH ∴=,2CH EF AC AH ∴==−=,设CD x =,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)2x x =−+, 解得52x =,52CD ∴=, 当点D 在EB 上时,同理可得538CH AC AH =+=+=,设CD DF x ==,则4DE x =−,在Rt EDF 中,由勾股定理得,222(4)8x x −+=,解得10x =,10CD ∴=,当90DFE ∠=︒时,由勾股定理得AE设CD DF x ==,则520x +=,x ∴,CD ∴=;当90FDE ∠=︒时,则45ADC ADF ∠=∠=︒,5CD AC ∴==,综上:52CD =或或5或10,故答案为:52或或5或10.【点睛】本题是三角形综合题,主要考查了翻折的性质,直角三角形的性质,勾股定理,等腰直角三角形的判定与性质等知识,利用等积法求垂线段的长是解题的关键.。

人教版八年级下册压轴题训练(含答案)

人教版八年级下册压轴题训练(含答案)

人教版八年级下册压轴题训练(含答案)压轴题训练01一.解答题(共3小题)1.如图①,已知抛物线y=ax2+bx+c的图象经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【分析】(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2﹣4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据|OM|=|PN|,列方程可得点P的坐标;同理可得其他图形中点P的坐标.【解答】解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x﹣1)(x﹣3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2﹣4x+3;(2)如图2,∵△AOE的面积是定值,所以当△OEP面积最大时,四边形AOPE面积最大,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG?AE,=+×3×(﹣m2+5m﹣3),=﹣+,=﹣(m﹣)2+,∵﹣<0,∴当m=时,S有最大值是;(3)分四种情况:①当P在对称轴的左边,且在x轴下方时,如图3,过P作MN⊥y 轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,如图3,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,③当P在对称轴的右边,且在x轴下方时,如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:x=或(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,同理得m2﹣4m+3=m﹣2,解得:m=或(舍)P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).【点评】本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.压轴题训练04一.解答题(共1小题)1.如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2 经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形P AFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.压轴题训练02参考答案与试题解析一.解答题(共1小题)1.如图,已知直线l的解析式为y=x﹣1,抛物线y=ax2+bx+2经过点A(m,0),B(2,0),D(1,)三点.(1)求抛物线的解析式及A点的坐标,并在图示坐标系中画出抛物线的大致图象;(2)已知点P(x,y)为抛物线在第二象限部分上的一个动点,过点P作PE垂直x轴于点E,延长PE与直线l交于点F,请你将四边形P AFB的面积S表示为点P的横坐标x的函数,并求出S的最大值及S最大时点P的坐标;(3)将(2)中S最大时的点P与点B相连,求证:直线l上的任意一点关于x轴的对称点一定在PB所在直线上.【分析】(1)根据待定系数法可求抛物线的解析式,再根据A (m,0)在抛物线上,得到0=﹣m2﹣m+2,解方程即可得到m的值,从而得到A点的坐标;(2)根据四边形P AFB的面积S=AB?PF,可得S=﹣(x+2)2+12,根据函数的最值可得S的最大值是12,进一步得到点P的坐标为;(3)根据待定系数法得到PB所在直线的解析式为y=﹣x+1,设Q(a,a﹣1)是y =x﹣1上的一点,则Q点关于x轴的对称点为(a,1﹣a),将(a,1﹣a)代入y =﹣x+1显然成立,依此即可求解.【解答】解:(1)∵抛物线y=ax2+bx+2经过点B(2,0),D(1,),∴,解得a=﹣,b=﹣,∴抛物线的解析式为y=﹣x2﹣x+2,∵A(m,0)在抛物线上,∴0=﹣m2﹣m+2,解得:m1=﹣4,m2=2(舍去),∴A点的坐标为(﹣4,0).如图所示:(2)∵直线l的解析式为y=x﹣1,∴S=AB?PF=×6?PF=3(﹣x2﹣x+2+1﹣x)=﹣x2﹣3x+9=﹣(x+2)2+12,其中﹣4<x<0,∴S的最大值是12,此时点P的坐标为(﹣2,2);(3)∵直线PB经过点P(﹣2,2),B(2,0),∴PB所在直线的解析式为y=﹣x+1,设Q(a,a﹣1)是y=x﹣1上的一点,则Q点关于x轴的对称点为(a,1﹣a),将(a,1﹣a)代入y=﹣x+1显然成立,∴直线l上的任意一点关于x轴的对称点一定在PB所在直线上.【点评】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求抛物线的解析式,待定系数法求直线的解析式,函数的最值问题,四边形的面积求法,以及关于x 轴的对称点的坐标特征.压轴题训练03姓名:班级;学号:一.解答题(共3小题)1.已知平面直角坐标系xOy(如图),双曲线y=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y =x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)若(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.2.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC 所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.3.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD 的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.解答题(共3小题)1.已知平面直角坐标系xOy(如图),双曲线y=(k≠0)与直线y=x+2都经过点A(2,m).(1)求k与m的值;(2)此双曲线又经过点B(n,2),过点B的直线BC与直线y =x+2平行交y轴于点C,联结AB、AC,求△ABC的面积;(3)若(2)的条件下,设直线y=x+2与y轴交于点D,在射线CB上有一点E,如果以点A、C、E所组成的三角形与△ACD相似,且相似比不为1,求点E的坐标.【解答】解:(1)∵直线y=x+2都经过点A(2,m),∴m=2+2=4,则A(2,4),∵双曲线y=(k≠0)经过点A,∴k=2×4=8;(2)∵双曲线经过点B(n,2),∴2n=8,解得n=4,∴B(4,2),由题意可设直线BC解析式为y=x+b,把B点坐标代入可得2=4+b,解得b=﹣2,∴直线BC解析式为y=x﹣2,∴C(0,﹣2),∴AC===2,BC===4,AB===2,∴BC2+AB2=AC2,∴△ABC是以AC为斜边的直角三角形,∴S△ABC=AB?BC=×2×4=8;(3)∵直线y=x+2与y轴交于点D,∴D(0,2),∴AD==2,且AC=2如图所示,∵AD∥CE,∴∠DAC=∠ACE,若∠ACD=∠EAC,则AE∥CD,四边形AECD为平行四边形,此时△ADC≌△CEA,不满足条件,∴∠ACD=∠AEC,∴△ACD∽△CAE,∴=,即=,解得CE=10,∵E点在直线BC上,∴可设E(x,x﹣2)(x>0),又∵C(0,﹣2),∴CE==x,∴x=10,解得x=10,∴E点坐标为(10,8).2.如图,在矩形OABC中,OA=3,OC=5,分别以OA、OC 所在直线为x轴、y轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y=(k >0)的图象经过点D且与边BA交于点E,连接DE.(1)连接OE,若△EOA的面积为2,则k=4;(2)连接CA、DE与CA是否平行?请说明理由;(3)是否存在点D,使得点B关于DE的对称点在OC上?若存在,求出点D的坐标;若不存在,请说明理由.【解答】解:(1)连接OE,如,图1,∵Rt△AOE的面积为2,∴k=2×2=4.(2)连接AC,如图1,设D(x,5),E(3,),则BD=3﹣x,BE=5﹣,=,∴,又∵∠B=∠B,∴△BDE∽△BCA,∴∠BED=∠BAC,∴DE∥AC.(3)假设存在点D满足条件.设D(x,5),E(3,),则CD =x,BD=3﹣x,BE=5﹣,AE=.作EF⊥OC,垂足为F,如图2,易证△B′CD∽△EFB′,∴,即=,∴B′F=,∴OB′=B′F+OF=B′F+AE=+=,∴CB′=OC﹣OB′=5﹣,在Rt△B′CD中,CB′=5﹣,CD=x,B′D=BD=3﹣x,由勾股定理得,CB′2+CD2=B′D2,(5﹣)2+x2=(3﹣x)2,解这个方程得,x1=1.5(舍去),x2=0.96,∴满足条件的点D存在,D的坐标为D(0.96,5).3.已知如图,二次函数图象经过点A(﹣6,0),B(0,6),对称轴为直线x=﹣2,顶点为点C,点B关于直线x=﹣2的对称点为点D.(1)求二次函数的解析式以及点C和点D的坐标;(2)联结AB、BC、CD、DA,点E在线段AB上,联结DE,若DE平分四边形ABCD 的面积,求线段AE的长;(3)在二次函数的图象上是否存在点P,能够使∠PCA=∠BAC?如果存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵二次函数经过A(﹣6,0),B(0,6),对称轴为直线x=2,∴二次函数图象经过(2,0),设二次函数解析式为y=a(x+6)(x﹣2),把B(0,6)代入得:6=﹣12a,即a=﹣,∴二次函数解析式为y=﹣(x+6)(x﹣2)=﹣x2﹣2x+6=﹣(x+2)2+8,则C(﹣2,8),D(﹣4,6);(2)如图1所示,由题意得:AB=6,BC=CD=2,BD=4,∵BD2=CD2+BC2,∴∠DCB=90°,∵直线AB的解析式为y=x+6,直线DC解析式为y=x+10,∴DC∥AB,∴四边形ABCD为直角梯形,若S梯形ABCD=2S△ADE,即×2×(2+6)=2××2×AE,解得:AE=4;(3)如图2,在二次函数的图象上存在点P,使∠PCA=∠BAC,直线CP与AB交于点G,可得GA=GC,∵A(﹣6,0),C(﹣2,8),直线AB解析式为y=x+6,设G (x,x+6),∴=,两边平方得:2x2+24x+72=2x2+8,移项合并得:24x=﹣64,解得:x=﹣,经检验是原方程的根且符合题意,∴G(﹣,),设直线CG解析式为y=kx+b,把C与G坐标代入得:,解得:,∴直线CG解析式为y=7x+22,联立得:,解得:或(经检验不合题意,舍去),∴P坐标为(﹣16,﹣90);由(2)得到四边形ABCD为直角梯形,AB∥CD,∴∠DCA=∠BAC,此时P与D重合,即P(﹣4,6),综上,满足题意P的坐标为(﹣16,﹣90)或(﹣4,6).。

八年级下册数学压轴题(含答案)

八年级下册数学压轴题(含答案)

八年级下压轴题1.如图,四边形OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=15,OC=12,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.(1)求CE和OD的长;(2)求直线DE的表达式;(3)直线y=kx+b与AE所在的直线垂直,当它与矩形OABC有公共点时,求出b的取值范围.【答案】解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=15,AB=OC=12,BE=√AE2−AB2=√152−122=9,∴CE=15−9=6,在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD,∴(12−OD)2+62=OD2,∴OD=7.5.(2)∵CE=6,∴E(6,12).∵OD=7.5,∴D(0,7.5),设直线DE的解析式为y=mx+n,∴{n=7.56m+n=12,解得{m =34n =152, ∴直线DE 的解析式为y =34x +152.(3)∵直线y =kx +b 与AE 所在的直线垂直,DE ⊥AE ,∴直线y =kx +b 与DE 平行,∴直线为y =34x +b ,∴当直线经过A 点时,0=34×15+b ,则b =−454,当直线经过C 点时,则b =12,∴当直线y =kx +b 与矩形OABC 有公共点时,−454≤b ≤12. 2. 如图,在平面直角坐标系中,直线l 1:y =34x 与直线l 2:y =kx +b(k ≠0)相交于点A(a,3),直线l 2与y 轴交于点B(0,−5).(1)求直线l 2的函数解析式;(2)将△OAB 沿直线l 2翻折得到△CAB ,使点O 与点C 重合,AC 与x 轴交于点D.求证:四边形AOBC 是菱形;(3)在直线BC 下方是否存在点P ,使△BCP 为等腰直角三角形?若存在,直接写出点P 坐标;若不存在,请说明理由.【答案】解:(1)∵直线l₁:y =34x 与直线l₂:y =kx +b 相交于点A(a,3),∴A(4,3),∵直线交l₂交y 轴于点B(0,−5),∴y =kx −5,把A(4,3)代入得,3=4k −5,∴k =2,∴直线l 2的解析式为y =2x −5;(2)∵OA =√32+42=5,∴OA =OB ,∵将△OAB 沿直线l₂翻折得到△CAB ,∴OB =OC ,OA =AC ,∴OA=OB=BC=AC,∴四边形AOBC是菱形;(3)如图,过C作CM⊥OB于M,则CM=OD=4,∵BC=OB=5,∴BM=3,∴OB=2,∴C(4,−2),过P1作P1N⊥y轴于N,∵△BCP是等腰直角三角形,∴∠CBP1=90°,∴∠MCB=∠NBP1,∵BC=BP1,∴△BCM≌△P1BN(AAS),∴BN=CM=4,∴P1(3,−9);同理可得,P2(7,−6),P3(72,−112).综上所述,点P的坐标是(3,−9)或(7,−6)或P(72,−112).3.如图,在Rt△ABC中,∠C=90°,∠A=45°,AC=10cm,点D从点A出发沿AC方向以1cm/s的速度向点C匀速运动,同时点E从点B出发沿BA方向以√2cm/s的速度向点A匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点D,E运动的时间是t(0<t≤10)s.过点E作EF⊥BC于点F,连接DE,DF.(1)用含t的式子填空;BE=______cm,CD=______cm.(2)试说明,无论t为何值,四边形ADEF都是平行四边形;(3)当t为何值时,△DEF为直角三角形?请说明理由.【答案】√2t t【解析】解:(1)由题意:BE=√2t(cm),AD=t(cm),故答案为√2t,t.(2)如图2中,∵CA=CB,∠C=90°,∴∠A=∠B=45°,∵EF⊥BC,∴∠EFB=90°,∴∠FEB=∠B=45°,∴EF=BF,∵BE=√2t,∴EF=BF=t,∴AD=EF,∵∠EFB=∠C=90°,∴AD//EF,∴四边形ADFE是平行四边形.(3)①如图3−1中,当∠DEF=90°时,易证四边形EFCD是正方形,此时AD=DE= CD,t=5.②如图3−2中,当∠EDF=90时,∵DF//AC,∴∠AED=∠EDF=90°,∵∠A=45°,∴AD=√2AE,∴t=√2(10√2−√2t),,解得t=203③当∠EFD=90°,△DFE不存在.s.综上所述,满足条件的t的值为5s或2034.如图,在矩形ABCO中,点C在x轴上,点A在y轴上,点B的坐标是(−9,12).矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,且直线BD与OA、x轴分别交于点D、F.(1)求线段BO的长;(2)求△OBD的面积;(3)在x轴上是否存在点M,使得以A、B、F、M为顶点的四边形是平行四边形?若存在,请求出满足条件的M点的坐标;若不存在,请说明理由.【答案】解:(1)∵四边形AB CO是矩形,∴∠BCO=90°.在Rt△BCO中,∵BO2=BC2+OC2,∴BO=√122+92=15.(2)设OD=x,∵四边形ABCO是矩形,∴∠BAD=90°.∵矩形ABCO沿直线BD折叠,使得点A落在对角线OB上的点E处,∴△BAD≌△BED,∴BE=BA=9,AD=ED=12−x,∠BED=∠BAD=90°,∴∠OED=90°,EO=BO−BE=15−9=6.在Rt△DEO中,OD2=OE2+DE2,∴x2=62+(12−x)2,解得x=152,即OD=152,∴S△OBD=12OD⋅AB=1354;(3)由(2)知,OD=152得D(0,152),设直线BD的解析式为y=kx+b,∵B(−9,12),D(0,152),∴{−9k+b=12 b=152,解得{k =−12b =152, ∴直线BD 的解析式为y =−12x +152.当y =0时,x =15,∴OF =15.又∵AB =9,∴FM =9, ∴在x 轴上存在点M ,使得以A 、B 、F 、M 为顶点的四边形是平行四边形.满足条件的点M 的坐标为(6,0)或(24,0).5. 如图,在平面直角坐标系中,O 为坐标原点,矩形OABC 的顶点A(12,0)、C(0,9),将矩形OABC 的一个角沿直线BD 折叠,使得点A 落在对角线OB 上的点E 处,折痕与x 轴交于点D .(1)线段OB 的长度为______;(2)求直线BD 所对应的函数表达式;(3)若点Q 在线段BD 上,在线段BC 上是否存在点P ,使以D ,E ,P ,Q 为顶点的四边形是平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】解:(1)15;(2)如图,设AD =x ,则OD =OA −AD =12−x ,根据折叠的性质,DE =AD =x ,BE =AB =9,又OB =15,∴OE =OB −BE =15−9=6,在Rt △OED 中,OE 2+DE 2=OD 2,即62+x 2=(12−x)2,解得 x =92, ∴OD =12−92=152,∴点D(152,0),设直线BD 所对应的函数表达式为:y =kx +b(k ≠0),B(12,9), 则{12k +b =9152k +b =0,解得{k =2b =−15, ∴直线BD 所对应的函数表达式为:y =2x −15.(3)过点E 作EP//BD 交BC 于点P ,过点P 作PQ//DE 交BD 于点Q ,则四边形DEPQ 是平行四边形,再过点E 作EF ⊥OD 于点F ,由12⋅OE ⋅DE =12⋅DO ⋅EF ,得EF =6×92152=185,即点E 的纵坐标为185, 又点E 在直线OB :y =34x 上,∴185=34x,解得x=245,∴E(245,185),由于PE//BD,所以可设直线PE:y=2x+n,∵E(245,185)在直线EP上,∴185=2×245+n,解得n=−6,∴直线EP:y=2x−6,令y=9,则9=2x−6,解得x=152,∴P(152,9).6.如图,直线y=−12x+3与x轴、y轴分别相交于A,B两点,P是线段AB上的一个动点(不与AB两点重合),点M的坐标为(4,0),设P点的横坐标为x,设△OPM 的面积为S.(1)求点A,B的坐标;(2)求S关于x的函数解析式,并写出自变量x的取值范围;(3)当S=12S△AOB时,求点P的坐标;(4)画出函数S的图象.【答案】解:(1)针对于直线y=−12x+3,令x=0,∴y=3,∴B(0,3),令y=0,∴−12x+3=0,∴x=6,∴A(6,0);(2)∵点P在直线y=−12x+3上,且P点的横坐标为x,∴P(x,−12x+3),∵M(4,0),∴OM=4,∴S=S△OPM=12OM×|y P|=2y P=2(−12x+3)=−x+6(0<x<6);(3)由(1)知,A(6,0),B(0,3),∴S△AOB=12OA×OB=9,由(2)知,S=−x+6(0<x<6);当S=12S△AOB时,∴−x+6=92,∴x=32,∴y=−12x+3=94,∴P(32,94 );(4)由(2)知,S=−x+6(0<x<6),∴函数S的图象如图所示:7.如图,直线l1:y=kx+245与x轴、y轴分别相交于A、B两点,直线l2:y=−2x+b 与x轴、y轴、直线l1分别相交于点C、D、P.已知点A的坐标为(6,0),点D的坐标为(0,6),点M 是x 轴上的动点. (1)求k ,b 的值及点P 的坐标;(2)当△POM 为等腰三角形时,求点M 的坐标;(3)是否存在以点M 、O 、D 为顶点的三角形与△AOB 全等?若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】解:(1)∵直线l 1:y =kx +245与x 轴相交于A(6,0),∴6k +245=0,∴k =−45,∴直线l 1:y =−45x +245①∵直线l 2:y =−2x +b 与y 轴相交于点D(0,6), ∴b =6,∴直线l 2:y =−2x +6②, 联立①②解得,{x =1y =4,∴P(1,4);(2)∵点M 是x 轴上的动点, ∴设M(m,0), ∵P(1,4),∴OP =√17,OM =|m|,MP =√(m −1)2+16, ∵△POM 为等腰三角形, ∴当OM =OP 时, ∴√17=|m|, ∴m =±√17, ∴M(−√17,0)或(√17,0)当OM=MP时,∴|m|=√(m−1)2+16,∴m=172,∴M(172,0),当OP=MP时,∴√17=√(m−1)2+16,∴m=0(舍)或m=2,∴M(2,0),即:点M的坐标为(−√17,0)或(√17,0)或(172,0)或(2,0);(3)∵点A的坐标为(6,0),点D的坐标为(0,6),∴OA=OD=6,∵点M在x轴上,∴∠AOB=∠DOM=90°,∵以点M、O、D为顶点的三角形与△AOB全等,∴△AOB≌△DOM,∴OM=OB,∵直线l1:y=−45x+245与y轴相交于B,∴B(0,245),∴OB=245,∴OM=245,∴M(245,0)或(−245,0).8.在平面直角坐标系中,一次函数的图象与x轴交于点A,与y轴交于点B,且与正比例函数的图象交于点C(3,4).(1)求、的值;(2)若D点是线段OC上的动点,过D作DE∥y轴交AC于点E.①设D点的横坐标为,线段DE的长为,则与的函数关系式为_______;②连接AD,若△AOD为等腰三角形,请求出点D的坐标;(3)在平面内是否存在点Q,使以O、A、C、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.【详解】(1)∵正比例函数的图象过点C(3,4),∴,解得:,∴正比例函数为,∵一次函数的图象过点C(3,4),∴,解得:,∴一次函数解析式为:;(2)①∵D在正比例函数上,∴ D点的纵坐标为:,∵E点在一次函数上,∴ E点的纵坐标为:,∴ DE =;②∵点A是一次函数与x轴的交点,∴ A(-3,2),即OA=3,而D的坐标为(,),∵∠AOD是钝角,一定是等腰三角形的顶角,∴OD=OA,∴OD=,解得:,则,∴点D的坐标为(,);(3)根据图象分析:①当OA作为平行四边形的边时,则CQ∥OA,CQ=OA,此时Q(0,4),(6,4),②当OA作为平行四边形的对角线时,则OQ∥AC,OQ=AC,此时Q(-6,-4),综上所述,存在,点Q的坐标为(0,4),(6,4),(-6,-4).9.如图1,在平面直角坐标系xOy中,直线l1:y1=kx+b与l2: y2=kx+3相交于点C(1,2),直线l1与x轴交于点A (-1,0)、直线l2与x轴交于B点.(1) 求直线l1的解析式(表达式) ;(2)判断△ABC的形状并说明理由; (3)在x轴上是否存在点P,使△ACP为等腰三角形?若存在,请直接写出P 点的坐标;若不存在,请说明理由;(4) 如图2,设直线l2与y轴交于点D,点为线段BD上的一个动点,过点M 作ME⊥y轴于点E,作MF⊥x轴于点F,连接EF,问是否存在点M,使EF的值最小?若存在,求出此时EF 的值.10.如图,直线y=kx -3与x 轴、y 轴分别交于B ⎪⎭⎫ ⎝⎛0,23、C 两点,(1)求k 值;(2)若点A(x ,y)是直线y=kx -3上在第一象限内的一个动点,当点A 在运动过程中,试写出△AOB 的面积S 与x 的函数关系式;(不要求写出自变量的取值范围) (3)探究:①当A 点运动到什么位置时,△AOB 的面积为49,并说明理由; ②在①成立的情况下,x 轴上是否存在一点P ,使△AOP 是等腰三角形?若存在,请直接写出满足条件的所有P 点坐标;若不存在,请说明理由.答案解析(1)把B 的坐标代入y=kx -3,得:k -3=0,解得:k=2; (2)OB=,则S=×(2x -3)=x -;(3)①根据题意得:x -=,解得:x=3,则A 的坐标是(3,3);②OA==3,当O是△AOP的顶角顶点时,P的坐标是(-3,0)或(3,0);当A是△AOP的顶角顶点时,P与过A的与x轴垂直的直线对称,则P的坐标是(6,0);当P是△AOP的顶角顶点时,P在OA的中垂线上,OA的中点是(,),与OA垂直的直线的斜率是:-1,设直线的解析式是:y=-x+b,把(,)代入得:=-+b,解得:b=,则直线的解析式是:y=-x+,令y=0,解得:x=,则P的坐标是(,0).故P的坐标是:(-3,0)或(3,0)或(6,0)或(,0).。

人教版八年级数学下册经典压轴题考点及例题解析

人教版八年级数学下册经典压轴题考点及例题解析

人教版八年级数学下册经典压轴题考点及例题解析例题1古希腊数学家把数 1 , 3 , 6 , 10 ,15 , 21 ,...... 叫做三角形数,它有一定的规律性。

若把第一个三角形数记为 a1 ,第二个三角形数记为 a2 ,......,第 n 个三角形数记为 an ,则 an + a(n+1) = ?答案:(n + 1)^2 。

例题2在平面直角坐标系中,对于平面内任意一点 P(a , b)若规定以下三种变换:① f(a , b)= (-a , b),如 f(2 , 5)= (-2 , 5);② g(a , b) = (b , a), 如 g(2 , 5)= (5 , 2);③ h(a , b)= (-a , -b),如 h(2 , 5)= (-2 , -5)。

根据以上变换,那么 f(h(5 , -3))等于多少?答案:(5,3)。

例题3如图,已知等腰直角△ABC 的直角边长为 1 ,以 Rt△ABC 的斜边 AC 为直角边,画第二个等腰 Rt△ACD ,在以 Rt△ACD 的斜边 AD 为直角边,画第三个等腰 Rt△ADE , ... ,依次类推到第五个等腰 Rt△AFG ,则由这五个等腰直角三角形所构成的图形的面积是多少?答案:31/2 。

例题4如图所示,直线 OP 经过点 P(4,4√3),过 x 轴上的点 1、3、5、7、9、11 ......分别作 x 轴的垂线,与直线 OP 相交得到一组梯形,其阴影部分梯形的面积从左至右依次记为 S1 , S2 , S3 , ... , Sn , 则 Sn 关于 n 的函数关系式是?答案:Sn = 4√3 (2n - 1)。

例题5现将 1、√2、√3、√6 四个数按下列方式排列。

若规定(m , n)表示第 m 排从左到右第 n 个数,则(5 , 4)与(15 , 7)表示的两数之积是多少?答案:2√3 。

例题6现将一块直角三角形的花圃进行改造,已知两直角边长分别为 6 m 、8 m 。

最新人教版数学八年级下册压轴题含答案名师优秀教案

最新人教版数学八年级下册压轴题含答案名师优秀教案

人教版数学八年级下册压轴题含答案1、如图11,已知正比例函数和反比例函数的图像都经过点M(,2,),且P(,,2)-1-1为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B((1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得?OBQ与?OAP面积相等,如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图12,当点在第一象限中的双曲线上运动时,作以为邻边的平行四边形QOP、OQOPCQ,求平行四边形OPCQ周长的最小值(2yhx = ,,x y2fx = ,,xQBQB AOAOxxMMCPP 图图112 ykx,,2,1解:(1)设正比例函数解析式为,将点M(,)坐标代入得,所以正k=11 21比例函数解析式为 yx=22同样可得,反比例函数解析式为 y=x(2)当点Q在直线DO上运动时,1设点Q的坐标为, Qmm(),211112于是, SOBBQmmm=?创=?OBQ22241而, S=-?=(1)(2)1?OAP212所以有,,解得m,,2 m=14所以点Q的坐标为和 Q(21)--,Q(21),12(3)因为四边形OPCQ是平行四边形,所以OP,CQ,OQ,PC,,1,2而点P(,)是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值(2因为点Q在第一象限中双曲线上,所以可设点Q的坐标为, Qn(),n42222由勾股定理可得, OQnn=+=-+()42nn2222所以当即时,有最小值4, OQ()0n-=n-=0nn2又因为OQ为正值,所以OQ与同时取得最小值, OQ所以OQ有最小值2(,所以平行四边形OPCQ周长的最小值是由勾股定理得OP,5( 2()2(52)254OPOQ+=+=+k2.已知:如图,正比例函数y,ax的图象与反比例函数的图象交于点A(3,2)( y,x(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值;(3)M(m,n)是反比例函数图象上的一动点,其中0,m,3,过点M作直线MB?x 轴,交y轴于点B;过点A作直线AC?y轴交y轴于点C,交直线MB于点D(当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由(解答:解:(1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2 ?k=6,a=(2分)?反比例函数的表达式为:y=(3分)正比例函数的表达式为y=x(4分)(2)观察图象,得在第一象限内,当0,x,3时,反比例函数的值大于正比例函数的值((6分)(3)BM=DM(7分)理由:?MN?x轴,AC?y轴,?四边形OCDB是平行四边形,?x轴?y轴,??OCDB是矩形(?S=S=×|k|=3,又S=6, ??四边形OMBOACOADM?S=S+S+S=3+3+6=12,矩形四边形??OBDCOADMOMBOAC即OC•OB=12?OC=3?OB=4(8分)即n=4?m=?MB=,MD=3,=?MB=MD(9分)(23.如图,直线y=x+b(b?0)交坐标轴于A、B两点,交双曲线y=于点D,过D x作两坐标轴的垂线DC、DE,连接OD((1)求证:AD平分?CDE;(2)对任意的实数b(b?0),求证BE?OE为定值;(3)是否存在直线AB,使得四边形OBCD为平行四边形,若存在,求出直线的解析式;若不存在,请说明理由(y D Ex A O CB14.如图(1),直线交轴、轴于A、B两点,C为直线AB上第二象限内一yx,,,2yx2k点,且S=8,双曲线y,经过点C ?AOCx(1)求的值 k(2)如图(2),过点C作CM?y轴于M,反向延长CM于H,使CM=CH,过k H作HN?x轴于N,交双曲线y=于D,求四边形OCHD的面积 x(3)如图(3),点G和点A关于y轴对称,P为第二象限内双曲线上一个动点,过P作PQ?x轴于Q,分别交线段BG于E,交射线BC于F,试判断线段QE+QF是否为定值,若为定值,证明并求出定值;若不是定值,请说明理由yyyPCCCHMF BBDBE xxOONQGAAxOA图(3) 图(1) 图(2)。

人教版数学八年级下册压轴题含答案

人教版数学八年级下册压轴题含答案

1、如图11,已知正比例函数与反比例函数的图像都经过点M (-2,),且P (,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .(1)写出正比例函数与反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?假如存在,恳求出点的坐标,假如不存在,请说明理由;(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形OPCQ ,求平行四边形OPCQ周长的最小值.y kx =12,所以正比例函数解析式为12x 同样可得,反比例函数解析式为2y x)当点Q 在直线设点Q 的坐标为1()2Q m m ,,于是211112224OBQ S OB BQ m m m △, 而1(1)(2)12OAPS △, 所以有,2114m ,解得2m =±所以点Q 的坐标为1(21)Q ,与2(21)Q ,(3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ图B A OP=PC ,而点P (1-,2-)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标为2()Q n n,,由勾股定理可得222242()4OQ n nn n,所以当22()0nn即20nn时,2OQ 有最小值4,又因为OQ 为正值,所以OQ 与2OQ 同时获得最小值, 所以OQ 有最小值2. 由勾股定理得OP,所以平行四边形OPCQ 周长的最小值是2.已知:如图,正比例函数y =ax 的图象与反比例函数xk y=的图象交于点A (3,2).(1)试确定上述正比例函数与反比例函数的表达式;(2)依据图象答复,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值;(3)M (m ,n )是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交y 轴于点B ;过点A 作直线AC ∥y 轴交y 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请推断线段BM 与DM 的大小关系,并说明理由.解答:解:(1)将A(3,2)分别代入y=,y=ax中,得:2=,3a=2∴k=6,a=(2分)∴反比例函数的表达式为:y=(3分)正比例函数的表达式为y=x(4分)(2)视察图象,得在第一象限内,当0<x<3时,反比例函数的值大于正比例函数的值.(6分)(3)BM=DM(7分)理由:∵MN∥x轴,AC∥y轴,∴四边形OCDB是平行四边形,∵x轴⊥y轴,∴▱OCDB是矩形.∵S△OMB=S△OAC=×|k|=3,又S四边形OADM=6,∴S矩形OBDC=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC•OB=12∵OC=3∴OB=4(8分)即n=4∴m=∴MB=,MD=3﹣=∴MB=MD(9分).3.如图,直线y=x+b(b≠0)交坐标轴于A、B两点,交双曲线y=x2于点D ,过D作两坐标轴的垂线DC 、DE ,连接OD . (1)求证:AD 平分∠CDE ; (2)对随意的实数b (b ≠0),求证BE ·OE 为定值;(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;若不存在,请说明理由.4.如图(1),直线122y x =-+交x 轴、y 轴于A 、B线AB 上第二象限内一点,且S △AOC =8,双曲线y=C(1)求k 的值 (2)如图(2),过点C 作CM ⊥y 轴于M,反向延长CM 于H ,使CM=CH ,过H 作HN ⊥x 轴于N ,交双曲线y=xk于D ,求四边形OCHD 的面积(3)如图(3),点G 与点A 关于y 轴对称,P 为第二象限内双曲线上一个动点,过P 作PQ ⊥x 轴于Q ,分别交线段BG 于E,交射线BC 于F ,试推断线段QE+QF 是否为定值,若为定值,证明并求出定值;若不是定值,请说明 理由。

八年级下册数学压轴题(含答案)

八年级下册数学压轴题(含答案)

八年级下册数学压轴题(含答案)四边形AOBC的对角线互相平分,且相等,故为菱形;又因为OC经过翻折后落在AB上,且AC与x轴垂直,故OC垂直于AB,故AO=OC=OB=BC,故AOBC是一个菱形;3)设点P的坐标为(x,y),则BPC为直角三角形,且BP=PC,又因为BP在y轴下方,故y<0,且BP与BC垂直,故BP的斜率为-2;设BP的解析式为y=-2x+b,且B点坐标为(0,-5),则有b=-5;又因为BP=PC,故PC的解析式为y=2x+b,且C点坐标为(a,0),代入得a=5;又因为XXX在BC下方,故y<0,代入得y=-2x-5;代入BP的解析式得x=5/3,代入得y=-25/3;故存在点P(5/3,-25/3),使△BCP为等腰直角三角形。

题目:在平面直角坐标系中,已知点A(0,0),B(5,0),C(0,5√2),D从A出发沿AC方向以1m/s的速度向C匀速运动,同时点E从B出发沿BA方向以√2m/s的速度向A匀速运动。

当其中一个点到达终点时,另一个点也随之停止运动。

设点D,E运动的时间是t(0<t≤10)秒。

过点E作EF⊥BC于点F,连接DE,DF。

1)求BE和CD的长度。

2)试说明,无论t为何值,四边形ADEF都是平行四边形。

3)当t为何值时,△DEF为直角三角形?请说明理由。

解法:1)由题意可知,BE=√2t,CD=t,故BE=√2t,CD=t。

2)如图所示,由题意可得,∠C=90°,∠A=45°,故∠B=45°。

又因为EF⊥BC,所以∠EFB=90°,∠FEB=45°,所以BE=EF。

又因为AE=√2t,DE=CD,所以DE=√2t。

因此,四边形ADEF的对角线相等,且相互平分,所以ADEF是平行四边形。

3)如图所示,当EF⊥BC时,由勾股定理可知,DE²=DF²+EF²,即(√2t)²=(t+BE)²+(5√2-BF)²。

(二)——2023-2024学年八年级数学下学期压轴题模拟训练(人教版)(解析版)

(二)——2023-2024学年八年级数学下学期压轴题模拟训练(人教版)(解析版)

期末考试压轴题模拟训练(二)一、单选题1.已知a b <,且0ab ≠)A.−B.−C.D. 【详解】解:a b <0,a b ∴<是( )A .k 的值为2或-2B .y 的值随x 的增大而减小C .k 的值为1或-1D .在22x −≤≤的范围内,y 的最大值为3 【答案】A【分析】本题考查了一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.【详解】解:当2x =时,当2x =−时,21y k =−+当0k >时,y 随x 的增大而增大则由题意可得:21(21)8k k +−−+=2k ∴= 此时在22x −≤≤的范围内,y 的最大值为215k +=当0k <时,y 随x 的增大而减小则由题意可得:21(21)8k k −+−+=2k ∴=−此时在22x −≤≤的范围内,y 的最大值为215k −+=故选:A .21y k =+3.如图,已知ABC 中,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,点M N ,为垂足,32BD =,2DE =,52EC =,则AC =( )A B C D∵2DE =,52EC =,∴592DC =+=, 且满足3ABP ABO S S =,则a 的值为( )A .2B .2C .2D .2−∵点20A (-,),点()02B −,,点∴2,2,2,OA OB PD PC ===∵3ABP ABO SS =, ∴3AOP BOP AOB AOB SS S S ++=, 的速度匀速前行乙比甲晚05h .出发,并且在中途停留1h 后,按原来速度的一半继续前进.此过程中,甲、乙两人离A 地的路程s (km )与甲出发的时间t (h )之间的关系如图.下列说法:①A ,B 两地相距24km ;②甲比乙晚到B 地1h ;③乙从A 地刚出发时的速度为72km/h ;④乙出发17h 14与甲第三次相遇.其中正确的有( )A.1个B.2个C.3个D.4个乙比甲晚乙的第二个拐点时间为边向右作等边DEF,则AF DF+的最小值为()A.4B.C.D.ABC和DEF都是等边三角形,2=AE BD∴=AH22(SAS∴≌CEF HDE+LF BF∴+AF BF=AB AC∴=AC LCA−,7.如图,在平面直角坐标系xOy中,直线AB与x轴负半轴,轴正半轴分别交于点1,0B ,在x 轴上取点()3,0C ,点D 是直线AB 上的一个动点,以CD 为边,在CD 的右侧作等边三角形CDF ,使得点F 落在第一象限,连接OF .若60BAO ∠=︒,则OF CF +的最小值为( )A .6B C .8 D ,证明(SAS ACD MCF ≌∵()1,0A −,()3,0C ,∴134AC =−−=,∵60CAB ∠=︒,∴ACM △为等边三角形,∴4AM CM AC ===,ACM ∠∵MG AC ⊥,∵CDF 为等边三角形,CF CD =∴(SAS ACD MCF ≌同的ABC 有( )种.A .2B .3C .4D .5 【答案】C【分析】分ABC 是直角三角形、锐角三角形、钝角三角形,根据等腰三角形的判定与性质【详解】解:由题意知,符合条件形状不同的ABC 有4当ABC 是直角三角形,由直角三角形斜边上的中线等于斜边的一半可知,将ABC 分成两个等腰三角形;如图 当ABC 是顶角为当ABC 是底角为将ABC 分成了两个等腰三角形,3;当ABC 中∠形,如图4.若6AC BC +=,空白部分面积为10.5,则AB 的长为( )ABCD证明(ASA FAM ABN ≌FAM ABN SS =,进而得到ABC S S =ABC S ,即:10.5ABC S =与ABN 中,90NAB =︒∴(ASA FAM ABN ≌FAM ABN SS =, ABC S =在ABC 中,22AC BC =+10.5ABC S =10.如图,矩形纸片ABCD中,4AB=,8BC=,点E,F分别在AD,BC上,将纸片沿直线EF折叠,点C落在AD上的点H处,点D落在点G处,有以下四个结论:①四边形CFHE是菱形;②EC平分DCH∠;③线段BF的取值范围为34≤≤;④当点H与点ABF重合时,EF=)A.1个B.2个C.3个D.4个Rt ABF 中2AB BF =+11.若2021a a −=,则22021a −的值为 .【答案】2022【分析】根据二次根式的被开方数的非负性,得a -2022≥0,进而化简绝对值,求解即可.12.如图,在平面直角坐标系中,直线1:与直线2:交于点,直线1与x 轴交于点B ,直线2l :2y x b =−+过点()0,1,点C 是横轴上任意一点,满足:ABC 是等腰三角形的点C 坐标是 .两点的坐标,再根据ABC 是ABC 是等腰三角形,则13.如图,直线43y x =−+交x 轴、y 轴于点A 、B ,点P 在第一象限内,且纵坐标为4.若点P 关于直线AB 的对称点P '恰好落在x 轴的正半轴上,则点P '的横坐标为 .【详解】点点BP x 轴,=∠BPQ AP 又'=PQ P Q (BPQ AP Q ASA ∴'≌在直角OBP '中,2(6)m m −=上的动点,且BE FG =,BE FG ⊥,连接EF BG ,,当EF FG BG ++的值最小时,CG 的长为 .【答案】3【分析】本题考查了轴对称最短问题,全等三角形的判定和性质,勾股定理,待定系数法求一次函数解析式,正方形的性质,过点G 作GT AB ⊥于T ,证明()ASA ABE TGF ≌,推出2AE FT ==,设CG BT x ==,则4AF AB FT BT x =−−=−,可得∵四边形ABCD 是正方形,∴AB BC =,A ABC ∠=∠∵CT AB ⊥,∴90GHB ∠=︒,∴(ASA ABE TGF ≌设直线M N '的解析式为y kx b =+,∵()4,2N ,()0,6M '−,246k b b=+⎧⎨−=⎩, 解得26k b =⎧⎨=−⎩, ∴直线M N '的解析式为26y x =−,∴()3,0P ,∴3x =时,EF BG +的值最小,∵BE FG ==定值,∴当3CG =时,EF FG BG ++的值最小.故答案为:3.15.在等边三角形ABC 中,6AB =,BD AC ⊥于点D ,点E ,F 分别是BC ,CD 上的动点,CEF 沿EF 所在直线折叠后点C 落在BD 上的点'C 处,若'BEC 是等腰三角形,则'BC = .【详解】解:在等边三角形CEF 沿CF C F '∴=∴'是等腰直角三角形,DC F2='CF C F三、解答题16.已知甲、乙两地相距10千米,小诚从乙地出发,匀速骑行至甲地,在甲地休息一段时间后,便以原速度的45匀速返回乙地.小诚从乙地出发10分钟后,小勤从甲地出发至乙地,小勤先匀速步行至两地中点,再从中点匀速慢跑至乙地,最后两人同时到达乙地.在运动过程中,小诚和小勤距甲地的距离y(千米)与小勤出发的时间x(小时)的关系如图所示,请结合图象信息解答下列问题:(1)小勤出发时,小诚骑行路程为______千米,小勤出发______小时后步行至甲、乙中点,小诚从乙地到甲地的骑行速度为______千米/小时,小勤的步行速度为______千米/小时;(2)写出小勤距甲地的距离y(千米)和x(小时)的关系式;(3)小勤出发多少小时后,两人在小勤未到达甲、乙中点前相距500米.17.在平面直角坐标系中,直线与y 轴交于点 B ,与x 轴交于点 C ,线段(),OB OC OB OC >的长是一元二次方程 29180x x −+=的两个根,直线 y x =交BC 于点A .(1)求点A 的坐标;(2)在平面直角坐标系中有一点6,P m (),求AOP 的面积S 与m 的函数关系式;(3)M 为直线BC 上的动点,过点M 作y 轴的平行线,交直线OA 于点N ,点Q 在y 轴上,是否存在点M ,使MNQ △为等腰直角三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.(12PEO PEA S S S −=当点P 在点E 上方时,即(12PEO PEA S S S −=综上所述:AOP 的面积(3)解:令直线AB 为1l (,26)M t t −+,则(,)N t t ,2636MN t t t ∴=−+−=−①如图1,若90MQN ∠=②如图2,图3,若QMN ∠则M MN x t ==,36t t ∴−=,32t ∴=或3t =,(1)如图1,在平面直角坐标系中,O 为坐标原点,四边形ABOC 为正方形,直线l 经过点A ,BE l ⊥于点E ,CF l ⊥于点F ,若点A 的坐标为(,3CF =,求EF 的长;【问题解决】(2)如图2,在平面直角坐标系中,O 为坐标原点,四边形ABOC 为菱形,直线l AC ⊥于点A 交OB 于点P ,BE AB ⊥交l 于点E ,点F 在AP 上,且ACF BAE ∠=∠,若AB =2EF =,求点E ,F 的坐标;【思维拓展】(3)如图3,在平面直角坐标系中,O 为坐标原点,四边形ABOC 为矩形,直线l 分BAC ∠为1:2两部分,BE l ⊥于点E ,CF l ⊥于点F ,若点F 的坐标为()1−−,直接写出点E 的坐标. ()AAS ACF BAE ≌,证明(ASA ACF BAE ≌BAE S =)四边形CF ∠BE ∴()AAS ACF BAE ≌)解:四边形l ∠∴(ASA ACF BAE ≌12BAE S =)解:四边形直线则33,1HF OH ==,BE l ⊥,CF l ⊥,BAE CAF CAF ∴∠+∠=∠+∠30BAE ACF ∴∠=∠=︒,OCF ∠=CFH ∴∠12ABE S =2CF HC =2AF CF +AG AE =同理可得:1,2CF AC AE ==33HF =,63CF ∴=,19.【发现问题】爱好数学的小强在做作业时碰到这样的一道题目:如图①,在ABC 中,8AB =,6AC =,E 为BC 中点,求AE 的取值范围.(1)小强经过多次的尝试与探索,终于得到解题思路:在图①中,作AB 边上的中点F ,连接EF ,构造出ABC 的中位线EF ,请你完成余下的求解过程.(2)如图②,在四边形ABCD 中,8AB =,6CD =,E 、F 分别为BC 、AD 中点,求EF 的取值范围.(3)变式:把图②中的A 、D 、C 变成在一直线上时,如图③,其它条件不变,则EF 的取值范围为_________.(4)如图④,在ABC 中,60A ∠=︒,8AB =,E 为BC 边的中点,F 是AC 边上一点且EF 正好平分ABC 的周长,则EF =______. 平分ABC 的周长推得的直角三角形特征即可得到E 为BC8AB =,1又E 、F 分别为BC 、AD 12FG AB ∴=,12EG DC =8AB =,6CD =,4FG ∴=,又E 、F 分别为BC 、AD 中点,12FH AB ∴=,12EH DC =,8AB =,6CD =,4FH ∴=在HEF 中,17EF <<FM AF=∴∥,NE MC,FNFN AB∴∠=∠,∠FNM ABM∠=︒,A60EF正好平分ABC的周长,AB AF BE FM MC∴+=+⊥又NP EF∴∠=∠NFE20.已知长方形ABCO,O为坐标原点,B的坐标为8,6,点A,C分别在坐标轴上,P是=.线段BC上的动点,设PC m(1)已知点D 在第一象限且是直线26y x =+上的一点,设D 点横坐标为n ,则D 点纵坐标可用含n 的代数式表示为_________;(2)在(1)的条件下,此时若APD △是等腰直角三角形,求点D 的坐标;(3)直线2y x b =+过点()3,0,请问在该直线上,是否存在第一象限的点D 使APD △是等腰直角三角形?若存在,请直接写出这些点的坐标,若不存在,请说明理由. ,可证()AAS EDA FAP ≌,使APD 是等腰直角三角形,理由为:由直线APD 是等腰直角三角形,⊥轴,DE y∴∠=DEA在EDA和FAP中,∠=∠DEA AFP()∴≌EDA FAPAAS 四边形AFP∠=∴点DE y⊥轴,∴∠+∠EDA在EDA和△(AAS ∴≌EDA FPD∴四边形四边形在ABP和PFD中,∠=∠ABP PFD(AAS ABP PFD∴≌∴==−8,BP FD x AB∴B的坐标为四边形PFA∠=∴四边形在APF和DAE中,∠=∠APF DAE(AASAPF DAE∴≌=PC m6∴=AF是他从课本出发开展了如下探究:【课本再现】我们知道,如果一个四边形是平行四边形,那么它的任意一组对边平行且相等.反过来,一组对边平行且相等的四边形是平行四边形吗?小宁对此展开了探究.如图①,在四边形ABCD 中,已知AB CD ∥,AB CD =,求证:四边形ABCD 是平行四边形.小宁的思路如下:连接AC ,通过证明ABC ADC △≌△,得到BC DA =,最后可证得四边形ABCD 是平行四边形.请你根据小宁的思路将证明过程补充完整;【变式探究】如图②,在平行四边形ABCD 中,4AB BC ==,对角线AC =四边形ABCD 是正方形;【拓展应用】在图②的条件下,点E 是对角线AC 上一点,连接BE ,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G ,14AE AC =,2BG GF =,求CG 的长.在ABC 中,利用勾股定理的逆定理得到ABC 是直角三角形,且定定理、正方形的判定定理求证即可得到四边形ABCDAB在ABC和△=AB AB()∴≌SASABC ADC变式探究:证明:在ABC中,232AC=,即∴是直角三角形,且ABC□在ABCDABAC为对角线,∴平分AC⊥EN BC∴=EM ENEMC=∠∴四边形∠+∠FEI在BHE和△AC是正方形∴∠=BAHAEBGCI。

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2020-2021学年人教版数学八年级下册期末压轴题专项复习卷(含答案)

2021年人教版数学八年级下册期末《压轴题专项》复习卷1.如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过点A作直线AE⊥BD,垂足为E,交OC于点F.(1)求直线BD的函数表达式;(2)求线段OF的长;(3)连接BF,OE,试判断线段BF和OE的数量关系,并说明理由.2.阅读下面材料:我们知道一次函数y=kx+b(k≠0,k、b是常数)的图象是一条直线,到高中学习时,直线通常写成Ax+By+C=0(A≠0,A、B、C是常数)的形式,点P(x0,y0)到直线Ax+By+C=0的距离可用公式d=计算.例如:求点P(3,4)到直线y=﹣2x+5的距离.根据以上材料解答下列问题:(1)求点Q(﹣2,2)到直线3x﹣y+7=0的距离;(2)如图,直线y=﹣x沿y轴向上平移2个单位得到另一条直线,求这两条平行直线之间的距离.3.已知正方形ABCD,AB=8,点E、F分别从点A、D同时出发,以每秒1m的速度分别沿着线段AB、DC向点B、C方向的运动,设运动时间为t.(1)求证:OE=OF.(2)在点E、F的运动过程中,连结AF.设线段AE、OE、OF、AF所形成的图形面积为S.探究:①S的大小是否会随着运动时间为t的变化而变化?若会变化,试求出S与t的函数关系式;若不会变化,请说明理由.②连结EF,当运动时间为t为何值时,△OEF的面积恰好等于的S.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(-3,0),与y轴交于点B,且与正比例函数的图象交点为C(m,4).求:(1)一次函数y=kx+b的解析式;(2)若点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,则点D的坐标为;(3)在x轴上求一点P使△POC为等腰三角形,请求出所有符合条件的点P的坐标.5.将正方形ABCD放在如图所示的直角坐标系中,A点的坐标为(4,0),N点的坐标为(3,0),MN平行于y轴,E是BC的中点,现将纸片折叠,使点C落在MN上,折痕为直线EF.(1)求点G的坐标;(2)求直线EF的解析式;(3)设点P为直线EF上一点,是否存在这样的点P,使以P, F, G的三角形是等腰三角形?若存在,直接写出P点的坐标;若不存在,请说明理由.6.如图,已知直线y=kx+1经过点A(3,-2)、点B(a,2),交y轴于点M.(1)求a的值及AM的长(2)在x轴的负半轴上确定点P,使得△AMP成等腰三角形,请你直接写出点P的坐标.(3)将直线AB绕点A逆时针旋转45°得到直线AC,点D(-3,b)在AC上,连接BD,设BE是△ABD 的高,过点E的射线EF将△ABD的面积分成2:3两部分,交△ABD的另一边于点F,求点F的坐标.7.阅读理解:运用“同一图形的面积相等”可以证明一些含有线段的等式成立,这种解决问题的方法我们称之为面积法.如图1,在等腰△ABC中,AB=AC,AC边上的高为h,点M为底边BC 上的任意一点,点M到腰AB、AC的距离分别为h1、h2,连接AM,利用S△ABC=S△ABM+S△ACM,可以得出结论:h=h1+h2.类比探究:在图1中,当点M在BC的延长线上时,猜想h、h1、h2之间的数量关系并证明你的结论.拓展应用:如图2,在平面直角坐标系中,有两条直线l1:y=0.75x+3,l2:y=﹣3x+3,若l2上一点M到l1的距离是1,试运用“阅读理解”和“类比探究”中获得的结论,求出点M 的坐标.8.如图,在平面直角坐标系xOy中,矩形ABCD的AB边在x轴上,AB=3,AD=2,经过点C的直线y=x ﹣2与x轴、y轴分别交于点E、F.(1)求:①点D的坐标;②经过点D,且与直线FC平行的直线的函数表达式;(2)直线y=x﹣2上是否存在点P,使得△PDC为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M,使得以点M、D、C、E为顶点的四边形是平行四边形,请直接写出点M的坐标.9.如图,在平面直角坐标系中,△AOB的顶点O为坐标原点,点A的坐标为(4,0),点B的坐标为(0,1),点C为边AB的中点,正方形OBDE的顶点E在x轴的正半轴上,连接CO,CD,CE.(1)线段OC的长为;(2)求证:△CBD≌△COE;(3)将正方形OBDE沿x轴正方向平移得到正方形O1B1D1E1,其中点O,B,D,E的对应点分别为点O1,B1,D1,E1,连接CD,CE,设点E的坐标为(a,0),其中a≠2,△CD1E1的面积为S.①当1<a<2时,请直接写出S与a之间的函数表达式;②在平移过程中,当S=时,请直接写出a的值.10.如图,直线y=2x+m(m>0)与x轴交于点A(-2,0)直线y=-x+n(n>0)与x轴、y轴分别交于B、C 两点,并与直线y=2x+m(m>0)相交于点D,若AB=4.(1)求点D的坐标;(2)求出四边形AOCD的面积;(3)若E为x轴上一点,且△ACE为等腰三角形,直接写出点E的坐标.11.如图,直线l:交x、y轴分别为A、B两点,C点与A点关于y轴对称.动点P、Q分别在线段AC、AB上(点P不与点A、C重合),满足∠BPQ=∠BAO.(1)点A坐标是, BC= .(2)当点P在什么位置时,△APQ≌△CBP,说明理由。

(一)——2023-2024学年八年级数学下学期压轴题模拟训练(人教版)(解析版)

(一)——2023-2024学年八年级数学下学期压轴题模拟训练(人教版)(解析版)

期末考试压轴题模拟训练(一)一、单选题1.化简二次根式)ABCD【详解】2aaa+−A.10B.C D.【点睛】此题考查勾股定理的运用,在直角三角形中,已知两条边长时,可利用勾股定理求第三条边的长度.DC=:2,O点是BD的中点,连接AO并3.如图,在ABC中,D在AC边上,AD:1延长交BC于点E,则BE:EC=()A.1:2B.1:3C.1:4D.2:3点∥OG BC∴:AG GC:AOBBOES SAO =2BOEAOBSS S S ==,,又点42ABD AODSS SS ==,,AD :DC 28BDCABDS SS ∴==,7BDCBOESSS −=93AECAODABEAOBBOECDOE SS SS SS S S =+==+=四边形,,ABE AECSS=为( )A .2.8B .C .2.4D .3.5【答案】B【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE -BG=2,HE=CH -CE=2,∠HEG=90°,从而由勾股定理可得GH 的长. 【详解】解:如图,延长BG 交CH 于点E ,∵四边形ABCD 是正方形, ∴∠ABC=90°,AB=CD=10, ∵AG=8,BG=6, ∴AG 2+BG 2=AB 2,5.如图,在平面直角坐标系中,点1,5,4,1,,,3,4A B C m m D m m −−−+,当四边形 ABCD 的周长最小时,则 m 的值为( ).A B .32C .2D .3线BD 于点G ,连接AG ,若BE DF =,CEF α∠=,则AGB ∠=( )A .αB .32αC .15α+︒D .135α︒−()SAS ABE ADF ≌明(ASA GHE GDF ≌∵四边形ABCD 为正方形,∴ABE ADC ADF ∠=∠=∠在ABE 和ADF △中,90BE DF ABE ADF AB AD =⎧⎪∠=∠=︒⎨⎪=⎩, ∴(SAS ABE ADF ≌∴GHE GDF ∠=∠,GEH GFD ∠=∠, ∵四边形ABCD 为正方形, ∴45HBE ∠=︒,∴HBE 是等腰直角三角形,∴EH BE DF ==, 在GHE △和GDF 中,GHE GDF HE DFGEH GFD ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA GHEGDF ≌, ∴GE GF =, ∴AG EF ⊥, ∴90AGE ∠=︒, ∴90AGB BGE ∠=︒−∠,∵45BGE FEC DBE a ∠=∠−∠=−︒, ∴()9045135AGB a a ∠=︒−−︒=︒−, 故选:D .7.如图,在平面直角坐标系xOy 中,平行四边形ABCO 的一边CO 在x 轴上,A ,B 在第二象限,C 在A 左侧,60AOC ∠=︒,5AC =,AO =ED 的解析式为5y x =−+,现将平行四边形沿x ED 恰好平分平行四边形ABCO 的面积时,此时的平移距离为( )A .112B .4+C .8D .5+【答案】A【分析】作AM OC ⊥于M ,解直角三角形求得A、C的坐标,即可求得AC 中点的坐标,根据题意当直线ED 恰好平分平行四边形ABCO 的面积时,则ED 必经过AC 的中点,把中点的纵坐标答题直线5y x =−+求得横坐标,即可求得平移的距离.∠=AOC1(72−−−2D−在直线l:y=kx+8 8.如图,正方形ABCD的顶点A,B分别在x轴,y轴上,点6,2上.直线l分别交x轴,y轴于点E,F.将正方形ABCD沿x轴向左平移m个单位长度后,点B恰好落在直线l上.则m的值为()A.2B.4C.6D.8将点B 向左平移m 个单位后坐标为(-m ,4) 将(-m ,4)代入8y x =+,得:4=-m +8,解得:m =4. 故选:B .【点睛】本题考查了正方形的性质、全等三角形的判定与性质、点的平移以及点坐标与直线图像的关系等知识点,构造全等三角形求得求点B 坐标是解题的关键. 二、填空题9.如图,在平行四边形OABC 中,()7,0A 、()3,4C ,若1OD =,直线l 经过D 点并且把平行四边形OABC 的面积分成相等的两部分,则直线l 的解析式是 .10.如图,在平行四边形ABCD 中,5AD =,AB =D ∠是锐角,CE AD ⊥于点E ,F 是CD 的中点,连接BF ,EF .若90EFB ∠=︒,则CE 的长为___________.(AAS BCF QDF ≌四边形DF FC =(AAS BCF QDF ∴≌EFB ∠=EF QB ∴⊥CE AD ⊥CE BC ∴⊥2CE DC =()2上,∠EDF=60°,若BF=3,CF=5,则AC边的长为.=BF CF3,∴=BC BFBDH∴是等边三角形∴∠=BDH点是ABC的中位线又BDF ∠+∠BDF ∴∠=∠()HDE BDF ASA ∴≅Rt ACD 中,【点睛】本题考查了直角三角形的性质、与性质、三角形的中位线定理等知识点,题关键.为边作等边三角形1ABA ,过点1A 作11A B x ∥轴,交直线l 于点1B ,以11A B 为边作等边三角形112A B A ,过点2A 作22A B x ∥轴,交直线l 于点2B ,以22A B 为边作等边三角形223A B A 以此类推,连接1AB ,与1A B 交于点1C ,连接12A B ,与21A B 交于点2C 则点2023C 的纵坐标是 .1sin A A AB ∠A 垂线为y 轴建立直角坐标系,D E ,分别为线段AO 和线段AC 上一动点,且AD CE =.当BD BE +的值最小时,点E 的坐标为 .,可证明()SAS ABD CFE ≌AO BC ⊥CF AO ∴∥AB AC =CAO ∴∠=AB CF =()SAS ABD CFE ∴≌AB AC =14.如图,直线AB :2y x b =−+与坐标轴交于A 、B 两点,点C 为第一象限内一点,连接BC 且BC x ∥轴,交直线3x =于点E ,连接AC ,AE ,将ABC 沿着直线AB 翻折,得到ABD △,点D 正好落在直线3x =上,若26BDEACESS==,那么点C 的坐标为 .BDES =6ACES =将ABC 沿着直线BD BC t ==BDES=26BDEACESS==,即3ACES=15.如图,在平面直角坐标系中,直线AB 交y 轴于点()0,2B ,现将直线AB 绕点()1,1A −按逆时针方向旋转45︒交x 轴于点C ,则点C 的坐标是 .,再通过角度的和差,证明(AAS ABF BDE ≌ ∴(AAS ABF BDE ≌上,且12AE AB <,连接PE ,以PE 为边向右作等边PEF !,过点E 作EM AP ∥交FA 的延长线于点M ,点N 为MF 的中点,则四边形AEPN 的面积为 .12APEAPNSSAE +=∵ABC 是边长为AB BC ==∴ABP 是等边三角形,点P 在AC 在GPE 和APF 中,∴()SAS GPE APF ≌在MEF 和△∴()ASA MEF AEP ≌12APEAPNSSAE +=17.某体育用品商店计划一共购进600套乒乓球拍和羽毛球拍进行销售,其中购进乒乓球拍的套数不超过250套,它们的进价和售价如下表:设购进乒乓球拍x (套),售完这批体育用品获利y (元). (1)求y 与x 的函数关系式,并写出x 的取值范围;(2)该商店实际采购时,恰逢“双11”购物节,乒乓球拍的进价每套降低了()1015c c <<元,羽毛球拍的进价不变,若商店的售价不变,这批体育用品能够全部售完,请你利用函数的性质进行分析:如何购货才能获利最大?最大利润是多少(用含有c 的代数式表示)?(2)解:由题意,得:()()()()10075120806001524000y c x x c x =−++−−=−+, ∵1015c <<, ∴150c −<,∴y 随x 的增大而减小,∴当200x =时,此时600400x −=,y 取得最大值,最大值为:()152002400020021000c c −⨯+=+;答:购进乒乓球拍200套,羽毛球拍400套时,利润最大,为()20021000c +元.【点睛】本题考查一次函数的实际应用.根据题意,正确的列出函数关系式,是解题的关键. 18.如图,在四边形ABCD 中,90BC CD BAD BCD AB AD >∠=∠=︒=,,.(1)在图(1)中连接AC ,并证明CA 平分BCD ∠;(2)如图(2),连接对角线AC BD ,,若AC =BCD △的面积为3,求BD 的长; (3)如图(3),点E 在CB 的延长线上,且满足BE CD =,点F 是线段BC 的中点,连接AF DE ,,探究AF 与DE 的关系并说明理由. Rt Rt ABF DAE ≌,得AF 的面积为3,可得BC CD ⋅90BAD BCD ∠=∠=︒,180ABC ADC ∴∠+∠=︒,180ABC ABE ∠+∠=︒, ABE ADC ∴∠=∠, AE AC ⊥EAC ∴∠=EAC ∠=EAB ∴∠=AB AD =ABE ∴△≌△42AC =Q ,45ACE ∠=︒,4AE CE ∴==,BF CE AE ==,AD AB =,Rt Rt ABF DAE ∴△≌△,BCD的面积为1=DE CE∴⋅BC CD∠=∠=︒∠BAD DCB ABC90,∴∠=∠,ADC ABE==,AB AD DC BE,∴△≌△,ABE ADC∴是等腰直角三角形,AECM为CE中点,故AM⊥【点睛】此题考查了全等三角形的判定和性质,等腰三角形的性质,是四边形综合题,利用数形结合思想是解题关键.19.如图:直线3y kx =+与x 轴、y 轴分别交于A 、B 两点,43OA OB =,点(,)C x y 是直线3y kx =+上与A 、B 不重合的动点.(1)求直线AB 的解析式;(2)作直线OC ,当点C 运动到什么位置时,AOB 的面积被直线OC 分成1:2的两部分; (3)过点C 的另一直线CD 与y 轴相交于D 点,是否存在点C 使BCD △与AOB 全等?若存在,求出点C 的坐标;若不存在,说明理由. 的位置时,AOB 的面积被直线若AOB CDB ≌时,分别求解即可.3kx +中,令0x =得43OA OB =)解:3OB =,AOB ∴的面积 此时123AOC AOB S S D D ==, ∴122C OA y ⋅=,即142C y ⨯⨯= 此时243AOC AOB S S ∆∆==, ∴142C OA y ⋅=,即142C y ⨯⨯=的位置时,AOB 的面积被直线与AOB 全等,,5BD AB ∴==,3BC OB ==,(0,2)D ∴−,2AC AB BC =−=,设3,34C t t ⎛⎫−+ ⎪⎝⎭,则OH t =,AH 而222AH CH AC +=,223(4)344t t ⎛⎫∴−+−+= ⎪,若AOB CDB ≌时,如图: 3BD OB ∴==,90CDB AOB ∠=∠=︒,(0,6)D ∴,在334y x =−+中,令6y =得4x =−,(4,6)C ∴−,点(),4A m ,与x 轴交于点()4,0B −,直线AC 与x 轴交于点C .(1)填空:b = ___________,m = ___________,k = ___________;(2)如图2,点D 为线段BC 上一动点,将ACD 沿直线AD 翻折得到AED △,线段AE 交x 轴于点F .①当点E 落在y 轴上时,求点E 的坐标; ②若DEF 为直角三角形,求点D 的坐标.4①直线∴22222+===CG A8A GE AC当90EDF ∠=︒时,由翻折得:∴135ADO ADE EDF ∠=∠−∠=4AG =,∴4DG AG ==,当90DFE ∠=︒时,AE AC ==设DF x =,则DE DC FC ==在Rt DEF △中,由勾股定理得:解得:252x =−,【点睛】本题考查了一次函数,勾股定理,翻折的性质,直角三角形的判定于性质,解题的关键是作辅助线.21.在平面直角坐标系中,直线AB 与x 轴交于点A ,与y 轴交于点B ,且30OAB ∠=︒,9OA =.(1)如图1,点C 为线段AB 上一点,若AOC S =△C 的坐标;(2)如图2,点D 在线段OA 上,2,OD DA E F =、是直线AB 上的两个动点且EF =G 是x 轴上任意一点,连接DE GF 、,求DE EF FG ++的最小值;(3)在(2)的条件下,当DE EF FG ++取最小值时,M 为直线FG 上一动点,N 是平面内任意一点,当A B M N 、、、四点构成的四边形是以AB 为边的菱形时,请直接写出点N 的坐标.解:如图1,作CX OA⊥于X,由1932OA CX⋅=得,183183239CXOA===,作点D关于AB的对称点V,将点AB于F,作VT OA⊥于T,交AB 则DE EF FG++最小,最小为:2OD DA=,9OA=,3AD∴=,WRV∠=DV AD=9OA =,30OAB ∠=︒,∴12OB AB =, 由勾股定理得63AB =,由(2)得:1322AT AD ==,2RV =339622OG ∴=−−=, A 、B 、(9,0)A ,决问题的关键是较强的计算能力.。

八年级下册数学期末压轴题(含答案)

八年级下册数学期末压轴题(含答案)

八年级数学下册期末压轴题练习(含答案)一、填空题:1.如图,在矩形ABCD中,AD=6,AE⊥BD,垂足为E,ED=3BE,点P、Q分别在BD,AD上,则AP+PQ 的最小值为 .2.如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.3.如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AE PQ的周长取最小值时,四边形AEPQ 的面积是.4.如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A.点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.现给出以下四个命题(1)∠APB=∠BPH;(2)当点P在边AD上移动时,△PDH的周长不发生变化; (3)∠PBH=450 ; (4)BP=BH.其中正确的命题是.5.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P、Q分别是AD和AE上的动点,则DQ+PQ的最小值是.二、综合题:6. (1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.7.如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.(1)试判断△PMN的形状,并证明你的结论;(2)若CD=5,AC=12,求△PMN的周长.8.已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)①当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积关系是:.②当E点旋转到CB的延长线上时(如图2),△ABE与△ADG的面积关系是:(2)当正方形AEFG旋转任意一个角度时(如图3),(1)中的结论是否仍然成立?若成立请证明,若不成立请说明理由.(3)已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图4),则图中阴影部分的面积和的最大值是 cm2.9.一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为,周长为;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为,周长为;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.10.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.参考答案1.答案为:3.3.答案为:4.5.2.答案为:7;解法一:如图1所示,过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△BOF 中,,∴△AOM≌△BOF(AAS),∴AM=OF,OM=FB,又∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形,∴AM=CF,AC=MF=5,∴OF=CF,∴△OCF为等腰直角三角形,∵OC=6,∴根据勾股定理得:CF2+OF2=OC2,解得:CF=OF=6,∴FB=OM=OF﹣FM=6﹣5=1,则BC=CF+BF=6+1=7.故答案为:7.解法二:如图2所示,过点O作OM⊥CA,交CA的延长线于点M;过点O作ON⊥BC于点N.易证△OMA≌△ONB,∴OM=ON,MA=NB.∴O点在∠ACB的平分线上,∴△OCM为等腰直角三角形.∵OC=6,∴CM=ON=6.∴MA=CM﹣AC=6﹣5=1,∴BC=CN+NB=6+1=7.故答案为:7.4.答案为:(1)(2)(3).5.答案为:2;解:作D 关于AE 的对称点D′,再过D′作D′P′⊥AD于P′,∵DD′⊥AE,∴∠AFD=∠AFD′,∵AF=AF,∠DAE=∠CAE,∴△DAF≌△D′AF,∴D′是D关于AE的对称点,AD′=AD=4,∴D′P′即为DQ+PQ的最小值,∵四边形ABCD是正方形,∴∠DAD′=45°,∴AP′=P′D′,∴在Rt△AP′D′中,P′D′2+AP′2=AD′2,AD′2=16,∵AP′=P′D',2P′D′2=AD′2,即2P′D′2=16,∴P′D′=2,即DQ+PQ的最小值为2,6. (1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…∴AB=12.∴S梯形ABCD=0.5(AD+BC)•AB=0.5×(6+12)×12=108.即梯形ABCD的面积为108.…7.解:(1)①∵正方形ABCD和正方形AEFG有公顶点A,将正方形AEFG绕点A旋转,E 点旋转到DA的延长线上,∴AE=AG,AB=AD,∠EAB=∠GAD,∴△ABE≌△ADG(SAS),∴△ABE的面积=△ADG的面积;②作GH⊥DA交DA的延长线于H,如图2,∴∠AHG=90°,∵E点旋转到CB的延长线上,∴∠ABE=90°,∠HAB=90°,∴∠GAH=∠EAB,在△AHG和△AEB中,∴△AHG≌△AEB,∴GH=BE,∵△ABE的面积=0.5EB•AB,△ADG的面积=0.5GH•AD,∴△ABE的面积=△ADG的面积;(2)结论仍然成立.理由如下:作GH⊥DA交DA的延长线于H,EP⊥BA交BA的延长线于P,如图3,∵∠PAD=90°,∠EAG=90°,∴∠PAE=∠GAH,在△AHG和△AEP中,∴△AHG≌△AEP(AAS),∴GH=BP,∵△ABP的面积=0.5EP•AB,△ADG的面积=0.5GH•AD,∴△ABP的面积=△ADG的面积;(3)∵AB=5cm,BC=3cm,∴AC==4cm,∴△ABC的面积=0.5×3×4=6(cm2);根据(2)中的结论得到阴影部分的面积和的最大值=△ABC的面积的3倍=18cm2.故答案为相等;相等;18.8.解:(1)∵AM=MC=AC=a,则∴重叠部分的面积是△ACB的面积的一半为0.25a2,周长为(1+)a.(2)∵重叠部分是正方形∴边长为0.5a,面积为0.25a2,周长为2a.(3)猜想:重叠部分的面积为0.25a2.理由如下:过点M分别作AC、BC的垂线MH、MG,垂足为H、G 设MN与AC的交点为E,MK与BC的交点为F∵M是△ABC斜边AB的中点,AC=BC=a∴MH=MG=0.5a又∵∠HME+∠HMF=∠GMF+∠HMF,∴∠HME=∠GMF,∴Rt△MHE≌Rt△MGF∴阴影部分的面积等于正方形CGMH的面积∵正方形CGMH的面积是MG•MH=0.5a×0.5a =0.25a2,∴阴影部分的面积是0.25a2.9.(1)证明:∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)证明:设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)解:EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2。

八年级下压轴 50题(含答案及解析)

八年级下压轴 50题(含答案及解析)
②当AB=AE=2,∠B=60°时,将四边形ABCE向右平移a(a>0)个单位后,恰有两个顶点落在反比例函数y= 的图象上,求k的值.
29.如图1,在平面直角坐标系中,直线y=﹣ x+3与x轴、y轴相交于A、B两点,点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上,过点D作DE⊥x轴于点E.
(1)求证:∠BFC=∠BEA;
(2)求证:AM=BG+GM.
9.如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.
(1)若OF=4,求FG的长;
(2)求证:BF=OG+CF.
10.(1)如图①,两个正方形的边长均为3,求三角形DBF的面积.
①当t=秒时,以A、P、E、D、为顶点可以构成平行四边形.
②在P点运动过程中,是否存在以B、C、E、D为顶点的四边形是平行四边形?若存在,请求出t的值;若不存在,请说明理由.
23.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣ x+b过点C.
13.如图,菱形ABCD中,点E、M在AD上,且CD=CM,点F为AB上的点,且∠ECF= ∠B.
(1)若菱形ABCD的周长为8,且∠D=67.5°,求△MCD的面积;
(2)求证:BF=EF﹣EM.
14.如图1,矩形OABC摆放在平面直角坐标系中,点A在x轴上,点C在y轴上,OA=3,OC=2,过点A的直线交矩形OABC的边BC于点P,且点P不与点B、C重合,过点P作∠CPD=∠APB,PD交x轴于点D,交y轴于点E.

人教版八年级下册数学期末动点压轴题训练(带答案)

人教版八年级下册数学期末动点压轴题训练(带答案)

人教版八年级下册数学期末动点压轴题训练(带答案)1.如图,平面直角坐标系xOy 中,直线334y x =-+交x 轴于点A ,交y 轴于点B ,点P 是线段OA 上一动点(不与点A 重合),过点P 作PC AB ⊥于点C .(1)当点P 是OA 中点时,求APC △的面积;(2)连接BP ,若BP 平分ABO ∠,求此时点P 的坐标;(3)BP 平分ABO ∠,在x 轴上有一动点H ,H 横坐标为a ,过点H 作直线l x ⊥轴,l 与线段PC 有交点,求a 的取值范围;(4)BP 平分ABO ∠,M 为x 轴上动点,CPM △为等腰三角形,求M 坐标.2.如图,直线l 1:y =kx +b 与y 轴交于点B (0,3),直线l 2:y =﹣2x ﹣1交y 轴于点A ,交直线l 1于点P (﹣1,t ).(1)求k 、b 和t 的值; (2)求△ABP 的面积;(3)过动点D(a,0)作x轴的垂线与直线l1、l2,分别交于M、N两点,且MN<4.①求a的取值范围;①当△AMP的面积是△AMB的面积的1时,求MN的长度.23.在平面直角坐标系中,坐标轴上的三个点A(a,0),B(0,b),C(c,0)(a<0,b>0)满足|c﹣1|+(a+b)2=0,F为射线BC上的一个动点.(1)c的值为,①ABO的度数为.(2)如图(a),若AF①BC,且交OB于点E,求证:OE=OC.(3)如图(b),若点F运动到BC的延长线上,且①FBO=2①F AO,O在AF的垂直平分线上,求①ABF的面积.4.已知,长方形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A 的坐标为(10,0),点B的坐标为(10,8).(1)直接写出点C的坐标为:C(,);(2)已知Q(5,n)在直线AC;求n的值;(3)若动点P 从A 点出发,沿折线AO →OC 的路径以每秒2个单位长度的速度运动,到达C 处停止.求①OPQ 的面积S 与点P 的运动时间t (秒)的函数关系式.5.在①ABC 中,90ACB ∠=︒,60ABC ∠=︒,点D 是直线AB 上一动点,以CD 为边,在它右侧作等边①CDE .(1)如图1,当E 在边AC 上时,直接判断线段DE ,EA 的数量关系______; (2)如图2,在点D 运动的同时,过点A 作AF CE ∥,过点C 作CF AE ∥,两线交于点F ,判断四边形AECF 形状,并说明理由;(3)若BC =AECF 为正方形时,直接写出AD 的值.6.已知在平面直角坐标系中,点()0,2A ,动点P 在x 轴正半轴上,作矩形OABP ,点C 为PB 中点,①ABC 沿AC 折叠后得到①ADC ,直线CD 与矩形OABP 一边交于点E .(1)如图,当点E 与原点O 重合时, ①求证:OCP ADO ≌△△. ①求OP 长.(2)当5EC ED =,求点P 坐标.7.如图(1),在平面直角坐标系中点(),A x y ,()2,0B x 满足0x ,点C 为线段OB 上一个动点,以CA 为腰作等腰直角ACD △,且AC AD =.(1)求点A 、B 的坐标及AOB 的面积;(2)试判断CD 、OC 、BC 间的数量关系,并说明理由;(3)如图(2),若点C 为线段OB 延长线上一个动点,则(2)中的结论是否成立,并说明理由.8.如图,在平面直角坐标系中,直线4y x =+交y 轴于A 点,与直线BC 相交于点B (-2,m ),直线BC 与y 轴交于点C (0,-2),与x 轴交于点D ;(1)求①ABC 的面积;(2)过点A 作BC 的平行线交x 轴于点E ,求点E 的坐标;(3)在(2)的条件下,点P 是直线AB 上一动点且在x 轴的上方,Q 为直角坐标平面内一点,如果以点D 、E 、P 、Q 为顶点的平行四边形的面积等于①ABC 面积,请求出点P 的坐标,并直接写出点Q 的坐标.9.如图,已知①ABC中,①B = 90°,AB = 8cm,BC = 6cm,P、Q是①ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)从出发几秒钟后,①PQB第一次能形成等腰三角形?(3)当点Q运动到CA上时,求能使①BCQ是等腰三角形时点Q的运动时间.10.如图1,四边形形ABCD是一个边长为2的正方形,点E是AB边上的一个动点(点E与点A,B不重合),连接CE,过点B作BF①CE于点G,交AD于点F.(1)求证:①ABF①①BCE;(2)如图2,当点E运动到AB中点时,①求BG的长;①连接DG,求证:DC=DG.11.如图,在平面直角坐标系中,点O 为坐标原点,点A 、B 、C 的坐标分别为(0,6)、(-8,0)、(-3,0),10AB =,将ABC 沿着射线AC 翻折,点B 落到y 轴上点D 处.(1)求点D 的坐标;(2)动点P 以每秒1个单位长度的速度从点B 出发沿着线段BO 向终点O 运动,运动时间为t 秒,请用含有t 的式子表示PCA 的面积,并直接写出t 的取值范围; (3)在(2)的条件下,动点M 以每秒2个单位长度的速度从点A 出发沿着线段AO 向终点O 运动,动点N 以每秒a 个单位长度的速度从点O 出发沿着x 轴正方向运动,点P 、M 、N 同时出发,点M 停止时,点P 、N 也停止运动,当DOP MON △△≌时,求a 的值.12.如图,在平面直角坐标系中,一次函数21y x =--的图象分别交x 轴、y 轴于点A 和B ,已知点C 的坐标为(-3,0).若点P 是x 轴上的一个动点.(1)求直线BC 的函数解析式;(2)过点P 作y 轴的平行线交AB 于点M ,交BC 于点N ,当点P 恰好是MN 的中点时,求出P 点坐标.(3)若以点B 、P 、C 为顶点的①BPC 为等腰三角形时,请直接写出所有符合条件的P 点坐标.13.如图所示,菱形ABCD 的顶点A B ,在x 轴上,点A 在点B 的左侧,点D 在y 轴的正半轴上.点C 的坐标为(4.动点P 从点A 出发,以每秒1个单位长度的速度,按照A D C B A →→→→的顺序在菱形的边上匀速运动一周,设运动时间为t 秒.(1)①点B 的坐标 ; ①求菱形ABCD 的面积;(2)当3t =时,问线段AC 上是否存在点E ,使得PE DE +最小,如果存在,求出PE DE +最小值;如果不存在,请说明理由.14.如图,①ABC 中,①C =90°,AC =8cm ,BC =6cm ,若动点P 从点C 开始,按C →A →B →C 的路径运动,且速度为每秒1cm ,设运动的时间为t 秒.(1)当t = 秒时,CP 把①ABC 的面积分成相等的两部分,此时CP = cm ;(2)当t 为何值时,①ABP 为等腰三角形.(3)若点P 在线段AC 上运动,点Q 是线段AB 上的动点,求PB +PQ 的最小值.15.已知等边①ABC 中,AB =8,点D 为边BC 上一动点,以AD 为边作等边①ADE ,且点E 与点D 在直线AC 的两侧,过点E 作EF //BC ,EF 与AB 、AC 分别相交于点F 、G .(1)求证:四边形BCEF 是平行四边形;(2)设BD =x ,FG =y ,求y 关于x 的函数解析式,并写出定义域; (3)当AD 的长为7时,求线段FG 的长.16.如图,在平面直角坐标系中,点D 的横坐标为4,直线1l :2y x =+经过点D ,与x 轴、y 轴分别交于A 、B 两点,直线2l :y kx b =+经过点()1,0C 、点D 两点.(1)求直线2l 的函数表达式; (2)求ACD △的面积;(3)点P 为线段AD 上一动点,连接CP . ①求CP 的最小值;①当ACP△为等腰三角形时,直接写出点P的坐标.17.如图,在矩形ABCD中,E是BC上一动点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G,AB=3,AD=4.(1)如图1,当①DAG=30°时,求BE的长;(2)如图2,当点E是BC的中点时,求线段GC的长;(3)如图3,点E在运动过程中,当△CFE的周长最小时,直接写出BE的长.18.如图1,点A在y轴上,点B,点C在x轴上,点D在第一象限,且△ABC与△ADC均为等边三角形,点B坐标为(﹣3,0),点E为线段BC上一动点,点F为直线DC上一动点,且∠EAF=60°,连接EF.(1)填空:写出点A、点D的坐标,点A;点D;(2)试判断△AEF的形状,并给予证明;(3)直接写出EF长度的最小值以及此时点F的坐标;(4)将条件改为“点E为CB延长线上一点”,其他条件不变,△AEF的形状是否发生变化?在图2中画全图形(不必证明),直接写出当点E坐标为(﹣5,0)时,EF的长度以及此时点F的坐标.19.如图,在平面直角坐标系中,直线y=kx过点B(m,6),过点B分别作x轴和y轴的垂线,垂足分别为点A,C,①AOB=30°.动点P从点O出发,以每秒2个单位C运长度的速度向点B运动,动点Q从点B动.点P,Q同时开始运动,当点P到达点B时,点P,Q同时停止运动,设运动时间为t秒.(1)求m与k的值;(2)设①PQB的面积为S,求S与t的关系式;(3)若以点P,Q,B为顶点的三角形是等腰三角形,请求出t的值.(温擎提示:在直角三角形中,30°的角所对的直角边等于斜边的一半)20.如图,在平面直角坐标系中,OA=OB=6,OD=1,点C为线段AB的中点.(1)直接写出点C的坐标为;(2)点P是x轴上的动点,当PB+PC的值最小时,求此时点P的坐标;(3)在平面内是否存在点F,使得以A、C、D、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.参考答案:1.(1)解:如图,连接BP ,直线334y x =-+交x 轴于点A ,交y 轴于点B ,∴点()4,0A ,点()0,3B , 4AO ∴=,3OB =,5AB ∴,点P 是OA 中点,2AP OP ∴==,1122ABP S AP OB AB CP =⨯⨯=⨯⨯, 65CP ∴=,85AC ∴==, 124225APC S AC PC ∴=⨯⨯=; (2)如图,连接BP ,BP 平分ABO ∠,OBP CBP ∴∠=∠,又BP BP =,90BOP BCP ∠=∠=︒,BOP ∴①()BCP AAS ,3BO BC ∴==,OP CP =,532AC AB BC ∴=-=-=,222AP PC AC =+,22(4)4OP OP ∴-=+,32OP ∴=, 3,02P ⎛⎫∴ ⎪⎝⎭; (3)过点C 作⊥CH x 轴于点H .由()2得,OP CP ==32,2AC =, 4AP ∴=-32=52, ①65AC CP CH AP ⋅==,AH ∴85, OH OA AH ∴=-=125, a ∴的取值范围31225a ≤≤; (4)设点(),0M x ,过点C 作⊥CH x 轴于点H ,则22222126()()55MC HM CH x =+=-+,同理可得:2239()24CP ==,223()2MP x =-, 当MC CP =时,即221269()()554x -+=,解得3310x =或3(2舍去); 当MC MP =时,同理可得392x =; 当CP MP =时,同理可得0x =或3,故点M 的坐标为33,010⎛⎫ ⎪⎝⎭或39,02⎛⎫ ⎪⎝⎭或()0,0或()3,0. 2.解:①点P (﹣1,t )在直线直线l 2上,①t =﹣2×(﹣1)﹣1=1,即P (﹣1,1),把B 、P 的坐标代入可得13k b b -+=⎧⎨=⎩, 解得 23k b =⎧⎨=⎩, ①t =1,k =2,b =3;(2)解:①直线y =﹣2x ﹣1交y 轴于点A ,①A (0,﹣1),①P (﹣1,1),B (0,3), ①1114222PAB SAB =⨯=⨯=; (3)解:①①MN ①y 轴,①M、N的横坐标为a,设M、N的纵坐标分别为ym和yn,由(1)可知直线l1的函数表达式为y=2x+3,①ym=2a+3,yn=﹣2a﹣1,当MN在点P左侧时,此时a<﹣1,则有MN=yn﹣ym=﹣2a﹣1﹣(2a+3)=﹣4a﹣4,①MN<4,①﹣4a﹣4<4,解得a>﹣2,①此时﹣2<a<﹣1;当MN在点P的右侧时,此时a>﹣1,则有MN=ym﹣yn=2a+3﹣(﹣2a﹣1)=4a+4,①MN<4,①4a+4<4,解得a<0,①此时﹣1<a<0;当a=﹣1时,也符合题意,综上可知当﹣2<a<0时,MN<4;①由(2)可知S△APB=2,由题意可知点M只能在y轴的左侧,当点M在线段BP上时,过点M作MC①y轴于点C,如图1①S△APM=12S△AMB,①S△ABM=23S△APB=43,①12AB•MC=43,即2MC=43,解得MC=23,①点M的横坐标为﹣23,即a=﹣23,①MN=4a+4=﹣83+4=43;当点M在线段BP的延长线上时,过点M作MD①y轴于点D,如图2,①S△APM=12AMB S,①S△ABM=2S△APB=4,①12AB•MD=4,即2MD=4,解得MD=2,①点M的横坐标为﹣2,①MN=﹣4a﹣4=8﹣4=4(不合题意舍去),综上可知MN的长度为43.3.解:①|c﹣1|+(a+b)2=0,①c=1,a=﹣b,①OA=OB,①①ABO=45°,故答案为:1,45°.(2)证明:①AF ①BC ,①①AOE =①BFE =90°,①①AEO =①BEF ,①①OBC =①OAE ,在①AOE 和①BOC 中,===OAE OBC AOE BOC OA OB ∠∠⎧⎪∠∠⎨⎪⎩, ①①AOE ①①BOC (AAS ),①OE =OC ;(3)解:连结OF ,过点F 作FG ①x 轴,垂足为点G ,设①F AO =x ,则①FBO =2①F AO =2x ,①O 在AF 的垂直平分线上,①AO =OF ,①①OAF =①OF A =x ,①①GOF =①OAF +①OF A =2x ,①①FBO =2①F AO =2x ,OB =OA =OF ,①①OFC =①OBF =2x ,①①BCO =①COF +①OFB =4x ,①①OBC +①OCB =90°,①6x =90°,解得x =15°,①①OBC =①GOF =2x =30°,①C (1,0),①OC =1,①①BOC =90°,①OBC =30°,①BC =2OC =2,OB ,①OA =OF =OB,同理可得:FG = ,①=+AC AO OC ,①S △ABF =S △ACB +S △ACF =12×AC ×FG +12×AC ×OB =12=94 4.(1)①四边形ABCO 是矩形①AB =OC ,AO =BC①A (10,0),B (10,8)①OC =OB =8①点C 的坐标为(0,8)故答案为:0,8(2)设直线AC 的解析式为y kx b =+把点A (10,0),B (0,8)代入y kx b =+得,1008k b b +=⎧⎨=⎩ 解得,458k b ⎧=-⎪⎨⎪=⎩ ①直线AC 的解析式为485y x =-+ 把点Q (5,n )代入485y x =-+得, 45845n =-⨯+=; (3)①当05t ≤≤时,102OP OA AP t =-=-过点Q 作QD ①OA 于点D ,如图,①Q (5,4)①QD =4 ①1(102)42042S t t =-⨯=-; ①当59<≤t 时,OP = AP -AO =2t -10过点Q 作QE ①OC 于点E ,如图,①Q (5,4)①QE =5 ①1(210)55252S t t =-⨯=- 综上,204(05)=525(59)t t S t t -≤≤⎧⎨-<≤⎩5(1)①90ACB ∠=︒,60ABC ∠=︒①30A ∠=︒①CDE △为等边三角形①60DEC ∠=︒①DEC ∠是ADE 外角①DEC A ADE ∠=∠+∠①30ADE A ∠=︒=∠①DE EA =故答案为相等.(2)取AB 中点O ,连接OC 、OE①AF CE ∥, CF AE ∥①四边形AECF 是平行四边形①90ACB ∠=︒①OC OB OA ==①60ABC ∠=︒①①BCO 为等边三角形①①CDE 是等边三角形①60DCB OCE DCO ∠=∠=︒-∠①OC BC = CD CE =①BCD OCE ≌△△①60EOC B ∠=∠=︒①60EOA ∠=︒又①OE OE =,OA OC =①()OCE OAE SAS ≌△△①CE EA =①平行四边形AECF 是菱形(3)当点D 在AB 延长线上时,作CH AD ⊥于H ,当四边形AECF 为正方形时,45ACE BCE ∠=∠=︒,90AEC ∠=︒ ①60DCE ∠=︒①15DCB ∠=︒①60ABC ∠=︒①45CDH ∠=︒①BC =①AC ==①12CH AC =①AH ==①CDE △为等边三角形 ①CH DH ==①AD =当点D 在AB 上时作CH AB ⊥于H ,同理可得CDH △是等腰直角三角形,则AD AH DH =-=综上AD =6.解:①矩形OABP 中,()02A ,, AB OP ∴=,2BP OA ==,90AOP OAB ABC OPB ∠=∠=∠=∠=︒ . ABC 沿AC 折叠后得到ADC ,90ADC ABC ∴∠=∠=︒,AD AB =,AD OP ∴=,当点E 与原点O 重合时,18090ADO ADC ∠=︒-∠=︒,90AOD COP AOP ∠+∠=∠=︒,90AOD OAD ∴∠+∠=︒,COP OAD ∴∠=∠.在OCP △和AOD △中,90OPC ADO COP OAD OP AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()OCP AOD AAS ∴≌;①①点C 为PB 的中点,112CP BC PB ∴===, 由①知:OCP AOD ≌,2OC AO ∴==,在Rt COP 中,由勾股定理得OP ,即OP(2)解:当5EC DE =,则4CD DE =.ABC 沿AC 折叠后得到ADC ,1CD BC ∴==,90ADC ABC ∠=∠=︒,AD AB =,1144DE CD ∴==,90ADE ∠=︒,AD OP =, 554CE ED ∴==, 设OP p =,则AD AB OP p ===,若点E 在OP 上,连接AE ,如下图,在Rt CPE △中,1CP =,34EP ∴=, 34OE OP PE p ∴=-=-, 在Rt AOE 中,22222324AE OA OE p ⎛⎫=+=+- ⎪⎝⎭, 在Rt ADE △中, 222221=4AE DE AD p ⎛⎫=++ ⎪⎝⎭, 222213+244p p ⎛⎫⎛⎫∴=+- ⎪ ⎪⎝⎭⎝⎭, 即22139+416216p p p =+-+, 解得3p =,此时,点P 的坐标为()30,; 若点E 在OA 上,点D 在第一象限,过点E 作EF BC ⊥于F 点,如下图,则90EFP EFC ∠=∠=︒,90EOP OPF EFP ∴∠=∠=∠=︒,①四边形EFPO 是矩形,90CEF ECF ∠+∠=︒,EF OP ∴=,90OEF ∠=︒,AD EF ∴=,90CEF AED AEF ∠+∠=∠=︒,AED ECF ∴∠=∠.在AED 和ECF △中,AED ECF ADE EFC AD EF ∠=∠∠=∠=⎧⎪⎨⎪⎩,()AED ECF AAS ∴≌,54AE EC =∴=. 在Rt ADE △中,AD ==OP AD ∴== 此时,点P的坐标为0⎫⎪⎪⎝⎭.若点E 在OA 上,点D 在第二象限时,过点C 作CF OA ⊥于F 点,如下图, 则90AFC ∠=︒.①①F AB =①B =①AFC =90°,①四边形AFCB 是矩形,①AB =CF ,1AF BC ==ABC 沿AC 折叠后得到ADC ,①90ADC ABC ADE ∠=∠=∠=︒,AD AB OP CF ===,90ADE EFC ∴∠=∠=︒.在AED 和CEF △中,AED CEF ADE EFC AD CF ∠⎪∠⎧=∠∠=⎪⎨⎩=,()AED CEF AAS ∴≌,AE CE ∴=,DE EF =.5EC ED =,1AF AE EF BC =+==,15CE EF CE DE DE DE ∴+==+=+,16DE EF ∴==,556CE DE ==, 在Rt EFC 中,CF =即OP , ∴点P的坐标为⎫⎪⎪⎝⎭.综上所述,点P 坐标()30,或0⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭. 7.(1)①0x =,①(0x ≥0≥,①x y ==①A ,()B ,132AOB S =⨯=△. (2)结论:222CD OC BC =+.理由:连接,①OA AB ==OB =①222OA OB OB +=,①90OAB ∠=︒,45AOB ABO ∠=∠=︒,①OAB CAD ∠=∠,①OAC BAD ∠=∠,①AO AB ∠=,AC AD =,①OAC BAD △△≌,①OC BD =,45AOC ABD ∠=∠=︒,①90CBD ∠=︒,①222CD BC BD =+.①222CD OC BC =+.(3)(2)中的结论仍然成立理由:连接,①90OAB ∠=︒,45AOB ABO ∠=∠=︒,①OAB CAD ∠=∠,①OAC BAD ∠=∠,①AO AB =,AC AD =,①OAC BAD △△≌,①OC BD =,45AOC ABD ∠=∠=︒,①90OBD DBC ∠=∠=︒,①222CD BC BD =+,①222CD OC BC =+.8.(1)解:将点2()B m -,,代入4y x =+得24m ,解得2m =,①()22B -,, 当0x =时,4y =,①()0,4A , ①12662ABC S ∆=⨯⨯=. (2)解:设直线BC 的解析式为()20y kx k =-≠,将B 点坐标代入得222k --=,解得2k =-,①直线BC 的解析式为22y x =--,故设过点A 且平行于BC 的直线解析式为2y x b =-+,将A 点坐标代入得4b =,①过点A 且平行于BC 的直线解析式为24y x =-+,当0y =时,2x =,①()2,0E .(3)解:由(2)可得()1,0D -,以点D 、E 、P 、Q 为顶点的平行四边形分两种情况求解: ①当DE 是平行四边形的边长时,则点Q 在x 轴上方,设(),4P m m +,①62DEPQ ABC DEP SS S ===, ①()1432DEP S DE m =⨯+=, 解得2m =-,①()2,2P -,①PQ DE ∥,PQ DE =,①()5,2Q -;同理62DEQP ABC DEP S S S ===,①()2,2P -,①()1,2Q ;①当DE 是平行四边形的对角线时,则点Q 在x 轴下方,设(),4P m m +,同理62DQEP ABC DEP S S S ===,①()2,2P -,①D E 、的中点坐标为102,⎛⎫ ⎪⎝⎭, ①P Q 、的中点坐标为102,⎛⎫ ⎪⎝⎭, ①()3,2Q -;综上所述,P 点坐标为()2,2-,Q 的点坐标为()5,2- 或()1,2 或()3,2-.9.如图所示:BQ=2×2=4cm,BP=AB-AP=8- 2×1=6cm,①①B= 90°①PQ==;(2)当△PQB第一次形成等腰三角形时,BQ =BP,①BQ = 2t,BP= 8-t,①2t= 8-t,解得:t=83;(3)①①B = 90°,AB = 8cm,BC = 6cm,①AC10=cm,①当CQ= BQ时,如图则①C=①CBQ,①①ABC= 90°,①①CBQ +①ABQ = 90°,①①A+①C= 90°,①①A=①ABQ,①BQ= AQ,①CQ=AQ=5cm,①BC+ CQ = 11cm,①t= 11 ÷2= 5.5秒;①当CQ= BC时,如图2,则BC+CQ=12cm,①t= 12÷2= 6秒;①当BC = BQ时,如图3,过B点作BE①AC于点E,则BE=·6824105AB BCAC⨯==cm,①CE185=cm,①CQ= 2CE = 7.2cm,①BC+ CQ = 13.2cm,①t= 13.2÷2= 6.6秒;综上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.10.(1)证明:①BF ①CE ,①①CGB =90°,①①GCB +①CBG =90°,①四边形ABCD 是正方形, ①①CBE =90°=①A ,BC =AB , ①①FBA +①CBG =90°,①①GCB =①FBA ,在①ABF 和①BCE 中,A CBE AB BCABF BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ①①ABF ①①BCE (ASA );(2)解:①由题意可知AB =CD =BC =2, ①点E 是AB 的中点,①EA =EB =12AB =1,①CE在Rt①CEB 中,12BG •CE =12CB •EB , ①BG =CB EB CE⋅①证明:如图,过点D 作DH ①CE 于H ,由①可得CG = ①①DCE +①BCE =90°,①CBF +①BCE =90°,①①DCE =①CBF ,①CD =BC ,①CHD =①CGB =90°,①①CHD ①①BGC (AAS ),①CH =BG①GH =CG ﹣CH =CH , ①CH =GH ,DH ①CE ,①DC =DG ;11.(1)解:①AD 是由AB 折叠得到,①10AD AB ==,①()0,4D -;(2)BP t =,当05t ≤<时,①()8,0B -,()3,0C -,①8OB =,3OC =, ①1163922ACO S OA OC =⋅=⨯⨯=△,8OP OB BP t =-=-, ①()116824322APO S OA OP t t =⋅=⨯-=-△,①2439153PCA APO ACO S S S t t =-=--=-△△△,当58t <≤时,()9243315PCA ACO APO S S S t t =-=--=-△△△,综上所述,PCA 的面积是153S t =-,(05t ≤<),或315S t =-,(58t <≤).(3)①DOP MON △△≌,①OP ON =,OM OD =,由题意可知:BP t =,2AM t =,ON at =,4OD =①8OP OB BP t =-=-,62OM AO AM t =-=-,①624t -=,解得1t =,8t at -=,解得7a =,①a 的值是7.12.(1)解:①一次函数21y x =--的图象分别交x 轴,y 轴于点A 和B ,①点A (-12,0),点B (0,-1),设直线BC 的解析式y kx b =+代入B (0,-1),C (-3,0).解得13k =-,1b =- ①直线BC 的函数解析式113y x =--. (2)①设点P (m ,0),则点M (m ,21m --),点N (m ,113m --) 依题意可得PM =PN ①1210013m m ⎛⎫---=--- ⎪⎝⎭解得:67m =- ①点P (-67,0) (3)设(),0,P x 而0,1,3,0,B C22222223,1,3110,PC x PB x BC 当PC PB =时,2231,x x 解得:4,3x4,0.3P 当,PB BC2110,x解得:3,x =±当3x =-时,不合题意舍去,3,0.P当PC BC =时,2310,x 12310,310,x x 310,0P 或310,0.P综上:点P (3,03,0)或(3,0)或4,03⎛⎫- ⎪⎝⎭. 13.(1)①①(490C AOD ∠=︒,,①4DC AD DO ===,①2OA ==,①四边形ABCD 是菱形,①42AB AD OB AB OA ===-=,,①点B 的坐标(2)0,, 故答案为:(2)0,①①在菱形ABCD 中,4DC AB OD ===,①菱形ABCD 的面积•4AB OD ==⨯(2)如图所示:当3t =时,3AP =,在菱形ABCD 中,点P 关于AC 的对称点为3P AP ''=,,连接DP '交AC 于点E ,连接PE ,①PE DE P E ED P D ''+=+=.①2OA OD ==,①1OP '=,在Rt DOP '中,①222DO P O P D ''+=,①P D'①PE DE+14.(1)解:在直角三角形ACB中,由勾股定理得AB10,①CP把△ABC的面积分成相等的两部分,①P为AB的中点,CP=152AB=.①运动的路径长为AC+AP=8+5=13.运动的时间为13÷1=13(秒)所以t=13;CP=5.(2)解:①ABP为等腰三角形,点P只能在AC上且P A=PB,设CP=t,则AP=BP=8﹣t,在Rt①BCP中,BC2+CP2=BP2,即62+t2=(8﹣t)2,解得,t=74,①当t=74时,①ABP为等腰三角形;(3)作点B关于AC的对称点B′,过点B′作AB的垂线段,交AC于点P,交AB于点Q,连接AB′,则垂线段B′Q即为所求的PB+PQ的最小值,①S△ABB′=12×BB′×AC=12×12×8=48,S△ABB′=12×AB×B′Q,①B′Q=485,即PB+PQ最小值为485.15.(1)①①ABC 是等边三角形① AB =AC①60,BAC ABC ACB ∠=∠=∠=︒①①ADE 是等边三角形①AD =AE①60,DAE ∠=︒BAC DAC DAE DAC∠-∠=∠-∠ 即BAD CAE∠=∠ ①ABD ACE ∆≅∆ (SAS )① BD =EC①60ACE B ∠=∠=︒①120,BCE ACB ACE ∠=∠+∠=︒①180,B BCE ∠+∠=︒①AB //EC①EF //BC①四边形BCEF 是平行四边形(2)①EF //BC①60CGE ACB ∠=∠=︒①60CGE ACE ∠=∠=︒①GE =EC①GE =EC =BD =x①FG FE GE =-①8(08)y x x =-<<(3)作AH ①BC ,垂足为H在Rt AHB ∆中,90,AHD ∠=︒222AH BH AB +=①22248AH +=①AH =在Rt ADH ∆中,90,AHD ∠=︒①222AH DH AD +=即(222(4)7x +-=,解得5x =或3x =; ① 8FG x =-①FG 的长为3或516.(1)将4x =代入2y x =+得:6y =①点D 的坐标为()4,6.将()1,0C ,()4,6D 代入y kx b =+得046k b k b +=⎧⎨+=⎩解得22k b =⎧⎨=-⎩ ①直线2l 的表达式为22y x =-.(2)过点D 作DE x ⊥轴于点E ,①()4,6D ,①6DE =将0y =代入2y x =+得2x =①()2,0A -,①3AC = ①192ACD S AC DE =⋅=△. (3)①由题可知:当CP AB ⊥时,CP 的值最小, 由(2)可知6DE =,①点E 坐标为()4,0,①246AE AO OE =+=+=在Rt ADE △中,90AED ∠=︒.①AD ==①192ACD S AD CP =⋅=△①29CP AD ⨯=== ①①点P 在直线y =x +2上,①设点P (x ,x +2),①A (-2,0),C (1,0)①22[1(2)]9AC =--=,222(2)PA x =+,222(1)(2)PC x x =-++ (a )当AP AC =时,即22AP AC =,则:22(2)=9x +解得,x =当x =y =x =时,y =①点P (b )当AC PC =时,即22AC PC =,则:22(1)(2)9x x -++=解得,x =1或x =-2(舍去)当1x =时,3y =;①点P 的坐标为(13,)(c )当AP PC =时,即22AP PC =,则:22()2x +22(1)(2)x x =-++ 解得,12x =- ①32y = ①点P 的坐标为(12-,32)综上,点P 的坐标为:13,)或(12-,32) 17(1)解:①四边形ABCD 是矩形,①①BAD =90°,①①DAG =30°,①①BAG =60°由折叠知,①BAE =12①BAG =30°,在Rt △BAE 中,①BAE =30°,AB =3,①BE(2)解:如图4,连接GE ,①E 是BC 的中点,①BE =EC ,①①ABE 沿AE 折叠后得到△AFE ,①BE =EF ,①EF =EC ,①在矩形ABCD 中,①①C =90°,①①EFG =90°,①在Rt △GFE 和Rt △GCE 中,EG EG EF EC =⎧⎨=⎩①Rt △GFE ①Rt △GCE (HL ),①GF =GC ;设GC =x ,则AG =3+x ,DG =3﹣x ,在Rt △ADG 中,42+(3﹣x )2=(3+x )2,解得x =43. (3)解:如图1,由折叠知,①AFE =①B =90°,EF =BE , ①EF +CE =BE +CE =BC =AD =4,①当CF 最小时,△CEF 的周长最小,①CF≥AC-AF ,①当点A ,F ,C 在同一条直线上时,CF 最小, 由折叠知,AF =AB =3,在Rt △ABC 中,AB =3,BC =AD =4,①AC=5,①CF=AC﹣AF=2,在Rt△CEF中,EF2+CF2=CE2,①BE2+CF2=(4﹣BE)2,①BE2+22=(4﹣BE)2,①BE=32.18.解:(1)∵△ABC是等边三角形,AO⊥BC,∴OB=OC,∠BAO=∠CAO=30°,∵点B坐标为(﹣3,0),∴OB=OC=3,∴AB=6,∴OA∴A(0,,∵△ABC和△ADC都是等边三角形,∴AD=AC=AB=6,∠ACB=∠ACD=∠D=60°,∴∠D+∠BCD=180°,∴AD∥BC,∴D(6,,故答案为:(0,,(6,;(2)△AEF是等边三角形.证明:∵△ABC和△ADC都是等边三角形,∴AB=AC,∠B=∠ACD=∠BAC=60°,∵∠EAF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF(ASA),∴AE=AF,∴△AEF是等边三角形.(3)由(2)知AE=EF=AF,当AE⊥BC时,AE取得最小值,∴AE=OA=过点F作FM⊥x轴于点M,∵∠FOM=30°,OF=∴FM=∴OM92 =,∴F(92,即EF的最小值为F(92;(4)由(2)可知△ABE≌△ACF(ASA),∵E(﹣5,0),OB=3,∴BE=2,∴BE=CF=2,CE=8,∵∠ACD=∠ACB=60°,∴∠ECF=60°,过点F作FN⊥BC于点N,如图3,∴CN 12=CF =1,∴NF∴EF∵OC =3,∴ON =OC ﹣CN =3﹣1=2,∴F (2,.19.(1)解:BA OA ⊥,90BAO ∴∠=︒,30AOB ∠=︒,6(),B m ,OA m ∴=,6AB =,212OB AB ∴==,OA =m ∴=B 6),直线y kx =过点B 6),k ∴= (2)如图1,过点P 作PF BC ⊥于点F ,BQ ∴,2OP t =,则122PB t =-,30OBC ∠=︒,∴在Rt PFB ∆中,6PF t =-,()2162S t ∴=⨯-=+; (3)分三种情况:①当BQ BP =122t =-, 解得24t =-①当PQ PB =时,如图2,过点P 作PM BQ ⊥于点M ,BM ∴,2)t -, 解得4t =;①当OB QP =时,如图3,过点Q 作ON BP ⊥于点N ,则6BN t =-,6t ∴-=, 解得125t =;综上所述,当PQB ∆为等腰三角形时,t 的值为24-4或125. 20.(1)解:过点C 作CN OA ⊥于点N ,过点C 作CM OB ⊥于点N .①CN OA ⊥①//CN OB又①点C 为线段AB 的中点,OA = 6 ①132ON OA == 同理132OM OB == ①C (3,3)(2)作点B关于x轴的对称点B',连接CB'交x轴于点P,此时PB+PC的值最小,由已知得,点B的坐标为(0,6),①点B关于x轴的对称点B'(0,﹣6),由(1)知,C(3,3),可设直线CB'的解析式为y=kx+b,①633bk b-=⎧⎨=+⎩解得36kb=⎧⎨=-⎩① 直线CB'的解析式为y=3x﹣6,令y=0,则3x﹣6=0,解得:x=2,① P(2,0);(3)存在点F,使以A、C、D、F为顶点的四边形为平行四边形,设点F的坐标为(m,n).分三种情况考虑,如图所示:当AC为对角线时,①A(6,0),C(3,3),D(1,0),①1632200322mn++⎧=⎪⎪⎨++⎪=⎪⎩,解得:83mn=⎧⎨=⎩,①点F1的坐标为(8,3);①当AD为对角线时,①A(6,0),C(3,3),D(1,0),①3162230022mn++⎧=⎪⎪⎨++⎪=⎪⎩,解得:43 mn=⎧⎨=-⎩,①点F2的坐标为(4,-3);①当CD为对角线时,①A(6,0),C(3,3),D(1,0),①6312203022mn++⎧=⎪⎪⎨++⎪=⎪⎩,解得:23mn=-⎧⎨=⎩,①点F3的坐标为(-2,3).综上所述,点F的坐标是(8,3),(4,-3)或(-2,3).。

人教版八年级下册数学压轴题及答案

人教版八年级下册数学压轴题及答案

人教版八年级下册数学压轴题及答案本页仅作为文档页封面,使用时可以删除八年级下数学压轴题1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)2.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.3.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.4.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.5.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P 在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x值,如果不可能,试说明理由.6.Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.(1)求证:四边形ABFC为平行四边形;(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP长度的大小关系,并证明你的猜想;(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形(不要求证明)7.如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC 的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.8.在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.9.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.10.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.11.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.12.已知一次函数的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x轴于点E.(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.13.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB 的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边A 1B1C1D1重叠部分的面积.16.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB 为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2018年06月17日梧桐听雨的初中数学组卷参考答案与试题解析一.解答题(共16小题)1.已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:AH=AB ;(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)【解答】解:(1)如图①AH=AB.(2)数量关系成立.如图②,延长CB至E,使BE=DN.∵ABCD是正方形,∴AB=AD,∠D=∠ABE=90°,在Rt△AEB和Rt△AND中,,∴Rt△AEB≌Rt△AND,∴AE=AN,∠EAB=∠NAD,∵∠DAN+∠BAN=45°,∴∠EAB+∠BAN=45°,∴∠EAN=45°,在△AEM和△ANM中,,∴△AEM≌△ANM.∴S△AEM =S△ANM,EM=MN,∵AB、AH是△AEM和△ANM对应边上的高,∴AB=AH.(3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,∴BM=2,DN=3,∠B=∠D=∠BAD=90°.分别延长BM和DN交于点C,得正方形ABCD,由(2)可知,AH=AB=BC=CD=AD.设AH=x,则MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,得MN2=MC2+NC2∴52=(x﹣2)2+(x﹣3)2(6分)解得x1=6,x2=﹣1.(不符合题意,舍去)∴AH=6.2.如图,△ABC是等边三角形,点D是边BC上的一点,以AD为边作等边△ADE,过点C作CF∥DE交AB于点F.(1)若点D是BC边的中点(如图①),求证:EF=CD;(2)在(1)的条件下直接写出△AEF和△ABC的面积比;(3)若点D是BC边上的任意一点(除B、C外如图②),那么(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【解答】(1)证明:∵△ABC是等边三角形,D是BC的中点,∴AD⊥BC,且∠BAD=∠BAC=30°,∵△AED是等边三角形,∴AD=AE,∠ADE=60°,∴∠EDB=90°﹣∠ADE=90°﹣60°=30°,∵ED∥CF,∴∠FCB=∠EDB=30°,∵∠ACB=60°,∴∠ACF=∠ACB﹣∠FCB=30°,∴∠ACF=∠BAD=30°,在△ABD和△CAF中,,∴△ABD≌△CAF(ASA),∴AD=CF,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=CD.(2)解:△AEF和△ABC的面积比为:1:4;(易知AF=BF,延长EF交AD于H,△AEF的面积=•EF•AH=•CB•AD=••BC•AD,由此即可证明)(3)解:成立.理由如下:∵ED∥FC,∴∠EDB=∠FCB,∵∠AFC=∠B+∠BCF=60°+∠BCF,∠BDA=∠ADE+∠EDB=60°+∠EDB∴∠AFC=∠BDA,在△ABD和△CAF中,∴△ABD≌△CAF(AAS),∴AD=FC,∵AD=ED,∴ED=CF,又∵ED∥CF,∴四边形EDCF是平行四边形,∴EF=DC.3.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.【解答】(1)证明:∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,∵∠ADC=90°,∴∠FDC=90°.∴∠B=∠FDC,∵BE=DF,∴△CBE≌△CDF(SAS).∴CE=CF.(2)证明:如图2,延长AD至F,使DF=BE,连接CF.由(1)知△CBE≌△CDF,∴∠BCE=∠DCF.∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∠GCE=45°,∴∠GCF=∠GCE=45°.∵CE=CF,GC=GC,∴△ECG≌△FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如图3,过C作CG⊥AD,交AD延长线于G.在直角梯形ABCD中,∵AD∥BC,∴∠A=∠B=90°,又∵∠CGA=90°,AB=BC,∴四边形ABCG为正方形.∴AG=BC.…(7分)∵∠DCE=45°,根据(1)(2)可知,ED=BE+DG.…(8分)∴10=4+DG,即DG=6.设AB=x,则AE=x﹣4,AD=x﹣6,在Rt△AED中,∵DE2=AD2+AE2,即102=(x﹣6)2+(x﹣4)2.解这个方程,得:x=12或x=﹣2(舍去).…(9分)∴AB=12.=(AD+BC)•AB=×(6+12)×12=108.∴S梯形ABCD即梯形ABCD的面积为108.…(10分)4.如图,正方形ABCD中,E为AB边上一点,过点D作DF⊥DE,与BC延长线交于点F.连接EF,与CD边交于点G,与对角线BD交于点H.(1)若BF=BD=,求BE的长;(2)若∠ADE=2∠BFE,求证:FH=HE+HD.【解答】(1)解:∵四边形ABCD正方形,∴∠BCD=90°,BC=CD,∴Rt△BCD中,BC2+CD2=BD2,即BC2=()2﹣(BC)2,∴BC=AB=1,∵DF⊥DE,∴∠ADE+∠EDC=90°=∠EDC+∠CDF,∴∠ADE=∠CDF,在△ADE和△CDF中,∵,∴△ADE≌△CDF(ASA),∴AE=CF=BF﹣BC=﹣1,∴BE=AB﹣AE=1﹣(﹣1)=2﹣;(2)证明:在FE上截取一段FI,使得FI=EH,∵△ADE≌△CDF,∴DE=DF,∴△DEF为等腰直角三角形,∴∠DEF=∠DFE=45°=∠DBC,∵∠DHE=∠BHF,∴∠EDH=∠BFH(三角形的内角和定理),在△DEH和△DFI中,∵,∴△DEH≌△DFI(SAS),∴DH=DI,又∵∠HDE=∠BFE,∠ADE=2∠BFE,∴∠HDE=∠BFE=∠ADE,∵∠HDE+∠ADE=45°,∴∠HDE=15°,∴∠DHI=∠DEH+∠HDE=60°,即△DHI为等边三角形,∴DH=HI,∴FH=FI+HI=HE+HD.5.如图,将一三角板放在边长为1的正方形ABCD上,并使它的直角顶点P 在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于Q.探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与PB之间有怎样的数量关系?试证明你的猜想;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数关系,并写出函数自变量x的取值范围;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置.并求出相应的x 值,如果不可能,试说明理由.【解答】解:(1)PQ=PB,(1分)过P点作MN∥BC分别交AB、DC于点M、N,在正方形ABCD中,AC为对角线,∴AM=PM,又∵AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠BPM+∠NPQ=90°;又∵∠MBP+∠BPM=90°,∴∠MBP=∠NPQ,在Rt△MBP≌Rt△NPQ中,∵∴Rt△MBP≌Rt△NPQ,(2分)∴PB=PQ.(2)∵S四边形PBCQ =S△PBC+S△PCQ,∵AP=x,∴AM=x,∴CQ=CD﹣2NQ=1﹣x,又∵S△PBC=BC•BM=•1•(1﹣x)=﹣x,S△PCQ=CQ•PN=(1﹣x)•(1﹣x),=﹣+,∴S=﹣x+1.(0≤x≤).(4分)四边形PBCQ(3)△PCQ可能成为等腰三角形.①当点P与点A重合时,点Q与点D重合,PQ=QC,此时,x=0.(5分)②当点Q在DC的延长线上,且CP=CQ时,(6分)有:QN=AM=PM=x,CP=﹣x,CN=CP=1﹣x,CQ=QN﹣CN=x﹣(1﹣x)=x﹣1,∴当﹣x=x﹣1时,x=1.(7分).6.Rt△ABC与Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起,CB与DE重合.(1)求证:四边形ABFC为平行四边形;(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△A′B′C′位置,直线B'C'与AB、CF分别相交于P、Q两点,猜想OQ、OP 长度的大小关系,并证明你的猜想;(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形(不要求证明)【解答】(1)证明:∵△ABC≌△FCB,∴AB=CF,AC=BF.∴四边形ABFC为平行四边形.(2)解:OP=OQ,理由如下:∵OC=OB,∠COQ=∠BOP,∠OCQ=∠PBO,∴△COQ≌△BOP.∴OQ=OP.(3)解:90°.理由:∵OP=OQ,OC=OB,∴四边形PCQB为平行四边形,∵BC⊥PQ,∴四边形PCQB为菱形.7.如图,在正方形ABCD中,点F在CD边上,射线AF交BD于点E,交BC 的延长线于点G.(1)求证:△ADE≌△CDE;(2)过点C作CH⊥CE,交FG于点H,求证:FH=GH;(3)设AD=1,DF=x,试问是否存在x的值,使△ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【解答】(1)证明:∵四边形ABCD是正方形,∴DA=DC,∠1=∠2=45°,DE=DE,∴△ADE≌△CDE.(2)证明:∵△ADE≌△CDE,∴∠3=∠4,∵CH⊥CE,∴∠4+∠5=90°,又∵∠6+∠5=90°,∴∠4=∠6=∠3,∵AD∥BG,∴∠G=∠3,∴∠G=∠6,∴CH=GH,又∵∠4+∠5=∠G+∠7=90°,∴∠5=∠7,∴CH=FH,∴FH=GH.(3)解:存在符合条件的x值此时,∵∠ECG>90°,要使△ECG为等腰三角形,必须CE=CG,∴∠G=∠8,又∵∠G=∠4,∴∠8=∠4,∴∠9=2∠4=2∠3,∴∠9+∠3=2∠3+∠3=90°,∴∠3=30°,∴x=DF=1×tan30°=.8.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.【解答】(1)证明:如图1,∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠F,∴∠CEF=∠F.∴CE=CF.(2)解:连接GC、BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF平分∠BAD,∴∠DAF=∠BAF=45°,∵∠DCB=90°,DF∥AB,∴∠DFA=45°,∠ECF=90°∴△ECF为等腰直角三角形,∵G为EF中点,∴EG=CG=FG,CG⊥EF,∵△ABE为等腰直角三角形,AB=DC,∴BE=DC,∵∠CEF=∠GCF=45°,∴∠BEG=∠DCG=135°在△BEG与△DCG中,∵,∴△BEG≌△DCG,∴BG=DG,∵CG⊥EF,∴∠DGC+∠DGA=90°,又∵∠DGC=∠BGA,∴∠BGA+∠DGA=90°,∴△DGB为等腰直角三角形,∴∠BDG=45°.(3)解:延长AB、FG交于H,连接HD.∵AD∥GF,AB∥DF,∴四边形AHFD为平行四边形∵∠ABC=120°,AF平分∠BAD∴∠DAF=30°,∠ADC=120°,∠DFA=30°∴△DAF为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ADH,△DHF为全等的等边三角形∴DH=DF,∠BHD=∠GFD=60°∵FG=CE,CE=CF,CF=BH,∴BH=GF在△BHD与△GFD中,∵,∴△BHD≌△GFD,∴∠BDH=∠GDF∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°9.如图,已知▱ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD.(1)求证:△ADG≌△FDM.(2)猜想AB与DG+CE之间有何数量关系,并证明你的猜想.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠BAF=∠DFA,∵AF平分∠BAD,∴∠DAF=∠DFA,∴AD=FD,∵DE⊥BC,DH⊥AB,∴∠ADG=∠FDM=90°,在△ADG和△FDM中,,∴△ADG≌△FDM(ASA).(2)AB=DG+EC.证明:延长GD至点N,使DN=CE,连接AN,∵DE⊥BC,AD∥BC,∴∠ADN=∠DEC=90°,在△ADN和△DEC中,,∴△ADN≌△DEC(SAS),∴∠NAD=∠CDE,AN=DC,∵∠NAG=∠NAD+∠DAG,∠NGA=∠CDE+∠DFA,∴∠NAG=∠NGA,∴AN=GN=DG+CE=DC,∵四边形ABCD是平行四边形,∴AB=CD,∴AB=DG+EC.10.如图,在正方形ABCD中,E、F分别为BC、AB上两点,且BE=BF,过点B作AE的垂线交AC于点G,过点G作CF的垂线交BC于点H延长线段AE、GH交于点M.(1)求证:∠BFC=∠BEA;(2)求证:AM=BG+GM.【解答】证明:(1)在正方形ABCD中,AB=BC,∠ABC=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠BFC=∠BEA;(2)连接DG,在△ABG和△ADG中,,∴△ABG≌△ADG(SAS),∴BG=DG,∠2=∠3,∵BG⊥AE,∴∠BAE+∠2=90°,∵∠BAD=∠BAE+∠4=90°,∴∠2=∠3=∠4,∵GM⊥CF,∴∠BCF+∠1=90°,又∠BCF+∠BFC=90°,∴∠1=∠BFC=∠2,∴∠1=∠3,在△ADG中,∠DGC=∠3+45°,∴∠DGC也是△CGH的外角,∴D、G、M三点共线,∵∠3=∠4(已证),∴AM=DM,∵DM=DG+GM=BG+GM,∴AM=BG+GM.11.如图所示,把矩形纸片OABC放入直角坐标系xOy中,使OA、OC分别落在x、y轴的正半轴上,连接AC,且AC=4,(1)求AC所在直线的解析式;(2)将纸片OABC折叠,使点A与点C重合(折痕为EF),求折叠后纸片重叠部分的面积.(3)求EF所在的直线的函数解析式.【解答】解:(1)∵=,∴可设OC=x,则OA=2x,在Rt△AOC中,由勾股定理可得OC2+OA2=AC2,∴x2+(2x)2=(4)2,解得x=4(x=﹣4舍去),∴OC=4,OA=8,∴A(8,0),C(0,4),设直线AC解析式为y=kx+b,∴,解得,∴直线AC解析式为y=﹣x+4;(2)由折叠的性质可知AE=CE,设AE=CE=y,则OE=8﹣y,在Rt△OCE中,由勾股定理可得OE2+OC2=CE2,∴(8﹣y)2+42=y2,解得y=5,∴AE=CE=5,∵∠AEF=∠CEF,∠CFE=∠AEF,∴∠CFE=∠CEF,∴CE=CF=5,∴S=CF•OC=×5×4=10,△CEF即重叠部分的面积为10;(3)由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),设直线EF的解析式为y=k′x+b′,∴,解得,∴直线EF的解析式为y=2x﹣6.12.已知一次函数的图象与坐标轴交于A、B点(如图),AE平分∠BAO,交x轴于点E.(1)求点B的坐标;(2)求直线AE的表达式;(3)过点B作BF⊥AE,垂足为F,连接OF,试判断△OFB的形状,并求△OFB的面积.(4)若将已知条件“AE平分∠BAO,交x轴于点E”改变为“点E是线段OB上的一个动点(点E不与点O、B重合)”,过点B作BF⊥AE,垂足为F.设OE=x,BF=y,试求y与x之间的函数关系式,并写出函数的定义域.【解答】解:(1)对于y=﹣x+6,当x=0时,y=6;当y=0时,x=8,∴OA=6,OB=8,在Rt△AOB中,根据勾股定理得:AB=10,则A(0,6),B(8,0);(2)过点E作EG⊥AB,垂足为G(如图1所示),∵AE平分∠BAO,EO⊥AO,EG⊥AG,∴EG=OE,在Rt△AOE和Rt△AGE中,,∴Rt△AOE≌Rt△AGE(HL),∴AG=AO,设OE=EG=x,则有BE=8﹣x,BG=AB﹣AG=10﹣6=4,在Rt△BEG中,EG=x,BG=4,BE=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3,∴E(3,0),设直线AE的表达式为y=kx+b(k≠0),将A(0,6),E(3,0)代入y=kx+b得:,解得:,则直线AE的表达式为y=﹣2x+6;(3)延长BF交y轴于点K(如图2所示),∵AE平分∠BAO,∴∠KAF=∠BAF,又BF⊥AE,∴∠AFK=∠AFB=90°,在△AFK和△AFB中,∵,∴△AFK≌△AFB,∴FK=FB,即F为KB的中点,又∵△BOK为直角三角形,∴OF=BK=BF,∴△OFB为等腰三角形,过点F作FH⊥OB,垂足为H(如图2所示),∵OF=BF,FH⊥OB,∴OH=BH=4,∴F点的横坐标为4,设F(4,y),将F(4,y)代入y=﹣2x+6,得:y=﹣2,∴FH=|﹣2|=2,=OB•FH=×8×2=8;则S△OBF(4)在Rt△AOE中,OE=x,OA=6,根据勾股定理得:AE==,=AE•BF=BE•AO(等积法),又BE=OB﹣OE=8﹣x,S△ABE∴BF==(0<x<8),又BF=y,则y=(0<x<8).13.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.【解答】解:(1)由y=﹣3x+3,令y=0,得﹣3x+3=0,∴x=1,∴D(1,0);(2)设直线l2的解析表达式为y=kx+b,由图象知:x=4,y=0;x=3,,代入表达式y=kx+b,∴,∴,∴直线l2的解析表达式为;(3)由,解得,∴C(2,﹣3),∵AD=3,∴S△ADC=×3×|﹣3|=;(4)△ADP与△ADC底边都是AD,面积相等所以高相等,△ADC高就是点C 到直线AD的距离,即C纵坐标的绝对值=|﹣3|=3,则P到AD距离=3,∴P纵坐标的绝对值=3,点P不是点C,∴点P纵坐标是3,∵y=﹣6,y=3,∴﹣6=3x=6,所以P(6,3).14.如图1,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC﹣CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)①求△OPD的面积S关于t的函数解析式;②如图②,把长方形沿着OP折叠,点B的对应点B′恰好落在AC边上,求点P的坐标.(3)点P在运动过程中是否存在使△BDP为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【解答】解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设此时直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得则此时直线DP解析式为y=x+2;(2)①当点P在线段AC上时,OD=2,高为6,S=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,S=×2×(16﹣2t)=﹣2t+16;②设P(m,10),则PB=PB′=m,如图2,∵OB′=OB=10,OA=6,∴AB′==8,∴B′C=10﹣8=2,∵PC=6﹣m,∴m2=22+(6﹣m)2,解得m=则此时点P的坐标是(,10);(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图3,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,即P1(6,10﹣2);②当BP2=DP2时,此时P2(6,6);③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,即P3(6,2+2),综上,满足题意的P坐标为(6,6)或(6,2+2)或(6,10﹣2).15.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣5,1),B(﹣2,4),C(5,4),点D 在第一象限.(1)写出D点的坐标;(2)求经过B、D两点的直线的解析式,并求线段BD的长;(3)将平行四边形ABCD先向右平移1个单位长度,再向下平移1个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形A1B1C1D1重叠部分的面积.【解答】解:(1)∵B(﹣2,4),C(5,4),∴BC=5﹣(﹣2)=5+2=7,∵A(﹣5,1),∴点D的横坐标为﹣5+7=2,∴点D的坐标为(2,1);(2)设直线BD的解析式为y=kx+b,将B(﹣2,4)、D(2,1)代入得:,解得,∴经过B、D两点的直线的解析式为y=﹣x+,过B点作AD的垂线,垂足为E,则BE=4﹣1=3,DE=2﹣(﹣2)=2+2=4,在Rt△BDE中,BD===5;(3)∵▱ABCD向右平移1个单位长度,再向下平移1个单位长度,∴A1(﹣4,0),B1(﹣1,3),C1(6,3)D1(3,0),∴重叠部分的底边长7﹣1=6,高为3﹣1=2,∴重叠部分的面积S=6×2=12.16.如图,一次函数的图象与x轴、y轴交于点A、B,以线段AB 为边在第一象限内作等边△ABC,(1)求△ABC的面积;(2)如果在第二象限内有一点P(a,);试用含有a的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值;(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【解答】解:(1)分别令y=0和x=0,得一次函数y=x+1的图象与x 轴.y轴的交点坐标分别是A(,0),B(0,1),即OA=,OB=1,∴AB==2∵△ABC为等边三角形,∴S△ABC=;(2)如图1,S△AOB =,S△AOP=,S△BOP=|a|•OB=﹣.∴S四边形ABPO =S△AOB+S△BOP=,而S△ABP =S四边形ABPO﹣S△APO,∴当S△ABP =S△ABC时,=,解得a=﹣;(3)如图2,满足条件的点M有4个:M1(﹣,0),M2(﹣2,0),M3(,0),M4(+2,0).。

(完整)八年级下数学压轴题及答案.docx

(完整)八年级下数学压轴题及答案.docx

.八年级下数学压轴题1.已知,正方形ABCD中,∠ MAN=45°,∠ MAN 绕点 A 顺时针旋转,它的两边分别交CB、 DC(或它们的延长线)于点M、 N, AH⊥ MN 于点 H.( 1)如图①,当∠MAN 绕点 A 旋转到 BM=DN 时,请你直接写出AH 与 AB 的数量关系:;(2)如图②,当∠ MAN 绕点 A 旋转到 BM≠ DN 时,( 1)中发现的 AH 与 AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45°, AH⊥ MN 于点 H,且 MH=2 , NH=3,求 AH 的长.(可利用( 2)得到的结论).2.如图,△ ABC 是等边三角形,点 D 是边 BC上的一点,以AD 为边作等边△ADE,过点C 作 CF∥ DE交 AB 于点 F.(1)若点 D 是 BC边的中点(如图①),求证: EF=CD;(2)在( 1)的条件下直接写出△ AEF和△ ABC的面积比;(3)若点 D 是 BC 边上的任意一点(除 B、 C 外如图②),那么( 1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由..3.( 1)如图 1,在正方形ABCD中, E 是 AB 上一点, F 是 AD 延长线上一点,且DF=BE.求证: CE=CF;(2)如图 2,在正方形 ABCD中, E 是 AB 上一点, G 是 AD 上一点,如果∠ GCE=45°,请你利用( 1)的结论证明: GE=BE+GD.(3)运用( 1)( 2)解答中所积累的经验和知识,完成下题:如图 3,在直角梯形ABCD中, AD∥ BC( BC> AD),∠ B=90°,AB=BC,E 是 AB 上一点,且∠ DCE=45°, BE=4, DE=10,求直角梯形ABCD的面积..4.如图,正方形ABCD中, E 为 AB 边上一点,过点 D 作 DF⊥ DE,与 BC 延长线交于点F.连接 EF,与 CD边交于点 G,与对角线 BD 交于点 H.(1)若 BF=BD= ,求 BE 的长;(2)若∠ ADE=2∠ BFE,求证: FH=HE+HD..5.如图,将一三角板放在边长为 1 的正方形ABCD上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC 相交于 Q.探究:设A、 P 两点间的距离为x.(1)当点 Q 在边 CD上时,线段 PQ 与 PB 之间有怎样的数量关系?试证明你的猜想;(2)当点 Q 在边 CD上时,设四边形 PBCQ的面积为 y,求 y 与 x 之间的函数关系,并写出函数自变量x 的取值范围;( 3)当点 P 在线段 AC 上滑动时,△ PCQ是否可能成为等腰三角形?如果可能,指出所有能使△ PCQ成为等腰三角形的点Q 的位置.并求出相应的x 值,如果不可能,试说明理由..6.Rt△ ABC与 Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起, CB 与 DE 重合.( 1)求证:四边形ABFC为平行四边形;( 2)取 BC 中点 O,将△ ABC 绕点 O 顺时钟方向旋转到如图(二)中△A′B′位C置′,直线 B'C'与 AB、 CF分别相交于 P、 Q 两点,猜想 OQ、 OP 长度的大小关系,并证明你的猜想;( 3)在( 2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明).7.如图,在正方形ABCD中,点 F 在 CD边上,射线AF 交 BD 于点 E,交 BC的延长线于点 G.(1)求证:△ ADE≌△ CDE;(2)过点 C 作 CH⊥ CE,交 FG于点 H,求证: FH=GH;(3)设 AD=1,DF=x,试问是否存在 x 的值,使△ ECG为等腰三角形?若存在,请求出x 的值;若不存在,请说明理由..8.在平行四边形ABCD中,∠ BAD 的平分线交直线BC于点 E,交直线 DC 于点 F.(1)在图 1 中证明 CE=CF;( 2)若∠ ABC=90°, G 是 EF的中点(如图2),直接写出∠ BDG 的度数;( 3)若∠ ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图 3),求∠ BDG的度数..9.如图,已知 ?ABCD中, DE⊥ BC 于点 E,DH⊥ AB 于点 H,AF 平分∠ BAD,分别交 DC、DE、 DH 于点 F、 G、 M,且 DE=AD.(1)求证:△ ADG≌△ FDM.(2)猜想 AB 与 DG+CE之间有何数量关系,并证明你的猜想..10.如图,在正方形 ABCD 中, E、 F 分别为 BC、 AB 上两点,且 BE=BF,过点 B 作 AE 的垂线交 AC 于点 G,过点 G 作 CF的垂线交 BC于点 H 延长线段 AE、GH 交于点 M.(1)求证:∠ BFC=∠ BEA;(2)求证: AM=BG+GM..11.如图所示,把矩形纸片OABC 放入直角坐标系xOy 中,使OA、OC 分别落在x、 y 轴的正半轴上,连接AC,且 AC=4,(1)求 AC 所在直线的解析式;(2)将纸片 OABC折叠,使点 A 与点 C重合(折痕为 EF),求折叠后纸片重叠部分的面积.(3)求 EF所在的直线的函数解析式..12.已知一次函数的图象与坐标轴交于A、B 点(如图),AE 平分∠ BAO,交x 轴于点 E.(1)求点 B 的坐标;(2)求直线 AE 的表达式;(3)过点 B 作 BF⊥ AE,垂足为 F,连接 OF,试判断△ OFB的形状,并求△ OFB的面积.(4)若将已知条件“AE平分∠ BAO,交 x 轴于点 E”改变为“点 E 是线段 OB上的一个动点(点 E 不与点 O、 B 重合)”,过点 B 作 BF⊥ AE,垂足为 F.设 OE=x, BF=y,试求 y 与 x 之间的函数关系式,并写出函数的定义域..13.如图,直线l1的解析表达式为:y=﹣ 3x+3,且 l1与 x 轴交于点D,直线 l2经过点 A,B,直线 l1, l2交于点 C.(1)求点 D 的坐标;(2)求直线 l 2的解析表达式;(3)求△ ADC的面积;( 4)在直线l 2上存在异于点 C 的另一点P,使得△ ADP 与△ ADC 的面积相等,请直接写出点 P 的坐标..14.如图 1,在平面直角坐标系中,O 是坐标原点,长方形OACB的顶点 A、B 分别在 x 轴与 y 轴上,已知OA=6, OB=10.点 D 为 y 轴上一点,其坐标为(0, 2),点 P 从点 A 出发以每秒 2 个单位的速度沿线段 AC﹣ CB的方向运动,当点 P 与点 B 重合时停止运动,运动时间为 t 秒.(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)①求△ OPD的面积 S关于 t 的函数解析式;②如图②,把长方形沿着OP 折叠,点 B 的对应点B′恰好落在A C 边上,求点P的坐标.( 3)点 P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由..15.如图,在平面直角坐标系中,已知O 为原点,四边形ABCD为平行四边形,A、 B、C 的坐标分别是A(﹣ 5, 1), B(﹣ 2, 4), C( 5, 4),点D 在第一象限.( 1)写出 D 点的坐标;( 2)求经过 B、 D 两点的直线的解析式,并求线段BD 的长;( 3)将平行四边形 ABCD先向右平移 1 个单位长度,再向下平移 1 个单位长度所得的四边形 A1 1 1 1四个顶点的坐标是多少?并求出平行四边形ABCD与四边B C DA1B1C1D1重叠部分的面积..16.如图,一次函数的图象与x 轴、 y 轴交于点A、B,以线段 AB 为边在第一象限内作等边△ABC,( 1)求△ ABC 的面积;( 2)如果在第二象限内有一点P( a,);试用含有a 的代数式表示四边形ABPO的面积,并求出当△ABP 的面积与△ ABC的面积相等时 a 的值;( 3)在 x 轴上,是否存在点M,使△ MAB 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由...2018 年 06 月 17 日梧桐听雨的初中数学组卷参考答案与试题解析一.解答题(共16 小题)1.已知,正方形ABCD中,∠ MAN=45°,∠ MAN 绕点 A 顺时针旋转,它的两边分别交CB、 DC(或它们的延长线)于点M 、N,AH⊥ MN 于点 H.( 1)如图①,当∠ MAN 绕点 A 旋转到 BM=DN 时,请你直接写出AH 与 AB 的数量关系:AH=AB;(2)如图②,当∠ MAN 绕点 A 旋转到 BM≠ DN 时,( 1)中发现的 AH 与 AB 的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;(3)如图③,已知∠ MAN=45°, AH⊥ MN 于点 H,且 MH=2 , NH=3,求 AH 的长.(可利用( 2)得到的结论)【解答】解:( 1)如图① AH=AB.( 2)数量关系成立.如图②,延长CB至 E,使 BE=DN.∵ ABCD是正方形,∴AB=AD,∠ D=∠ ABE=90°,在 Rt△ AEB和 Rt△ AND 中,,∴Rt△ AEB≌ Rt△AND,∴AE=AN,∠ EAB=∠NAD,∵∠ DAN+∠ BAN=45°,∴∠ EAB+∠ BAN=45°,∴∠ EAN=45°,∴∠ EAM=∠ NAM=45°,在△ AEM 和△ ANM 中,,.∵ AB、 AH 是△ AEM 和△ ANM 对应边上的高,∴AB=AH.( 3)如图③分别沿AM 、AN 翻折△ AMH 和△ ANH,得到△ ABM 和△ AND,∴BM=2, DN=3,∠ B=∠ D=∠BAD=90°.分别延长 BM 和 DN 交于点 C,得正方形 ABCD,由(2)可知,AH=AB=BC=CD=AD.设AH=x,则MC=x﹣ 2, NC=x﹣ 3,在 Rt△ MCN 中,由勾股定理,得MN 2=MC2+NC2∴52=( x﹣ 2)2 +(x﹣ 3)2( 6 分)解得 x1=6, x2 =﹣ 1.(不符合题意,舍去)∴AH=6.2.如图,△ ABC 是等边三角形,点 D 是边 BC上的一点,以AD 为边作等边△ADE,过点C作 CF∥ DE 交 AB 于点 F.( 1)若点 D 是 BC边的中点(如图①),求证: EF=CD;( 2)在( 1)的条件下直接写出△ AEF和△ ABC的面积比;(3)若点 D 是 BC 边上的任意一点(除 B、 C 外如图②),那么( 1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由...【解答】(1)证明:∵△ ABC是等边三角形, D 是 BC的中点,∴ AD⊥ BC,且∠ BAD= ∠ BAC=30°,∵△ AED是等边三角形,∴AD=AE,∠ ADE=60°,∴∠ EDB=90°﹣∠ ADE=90°﹣ 60°=30°,∵ED∥CF,∴∠ FCB=∠ EDB=30°,∵∠ ACB=60°,∴∠ ACF=∠ ACB﹣∠ FCB=30°,∴∠ ACF=∠ BAD=30°,在△ ABD 和△ CAF中,,∴△ ABD≌△ CAF(ASA),∴AD=CF,∵ AD=ED,∴ED=CF,又∵ ED∥ CF,∴四边形 EDCF是平行四边形,∴EF=CD.( 2)解:△ AEF和△ ABC的面积比为:1: 4;(易知AF=BF ,延长EF交AD于H,△AEF的面积..=?EF?AH= ? CB ?AD= ? ?BC?AD,由此即可证明)(3)解:成立.理由如下:∵ ED∥ FC,∴∠ EDB=∠FCB,∵∠ AFC=∠ B+∠ BCF=60°+∠ BCF,∠ BDA=∠ ADE+∠EDB=60°+∠ EDB ∴∠ AFC=∠ BDA,在△ ABD 和△ CAF中,∴△ ABD≌△ CAF(AAS),∴AD=FC,∵ AD=ED,∴ED=CF,又∵ ED∥ CF,∴四边形 EDCF是平行四边形,∴EF=DC.3.(1)如图 1,在正方形 ABCD中,E 是 AB 上一点, F 是 AD 延长线上一点,且 DF=BE.求证: CE=CF;(2)如图 2,在正方形 ABCD中, E 是 AB 上一点, G 是 AD 上一点,如果∠ GCE=45°,请你利用( 1)的结论证明: GE=BE+GD.(3)运用( 1)( 2)解答中所积累的经验和知识,完成下题:如图 3,在直角梯形ABCD中, AD∥ BC( BC>AD),∠ B=90°, AB=BC,E 是 AB 上一点,且∠ DCE=45°, BE=4, DE=10,求直角梯形ABCD的面积...【解答】( 1)明:∵四形ABCD是正方形,∴BC=CD,∠ B=∠CDF=90°,∵∠ ADC=90°,∴∠FDC=90°.∴∠B=∠ FDC,∵BE=DF,∴△ CBE≌△ CDF( SAS).∴CE=CF.(2)明:如 2 ,延 AD 至 F,使 DF=BE,接 CF.由( 1)知△CBE≌△ CDF,∴∠ BCE=∠ DCF.∴∠ BCE+∠ ECD=∠DCF+∠ ECD,即∠ ECF=∠ BCD=90°,又∠ GCE=45°,∴∠ GCF=∠ GCE=45°.∵CE=CF,GC=GC,∴△ ECG≌△ FCG.∴GE=GF,∴GE=GF=DF+GD=BE+GD.(3)解:如 3, C作 CG⊥ AD,交 AD 延于 G.在直角梯形ABCD中,∵ AD∥ BC,∴∠A=∠B=90°,又∵∠ CGA=90°, AB=BC,∴四形 ABCG正方形.∴AG=BC.⋯( 7 分)∵∠ DCE=45°,根据( 1)( 2)可知, ED=BE+DG.⋯( 8 分)∴10=4+DG,即 DG=6.AB=x, AE=x 4, AD=x 6,在Rt△ AED中,..∵DE2=AD2+AE2,即 102 =( x 6)2+(x 4)2.解个方程,得: x=12 或 x= 2(舍去).⋯(9 分)∴ AB=12.∴ S 梯形ABCD= ( AD+BC) ?AB= ×( 6+12)× 12=108.即梯形 ABCD的面108.⋯( 10 分)4.如,正方形 ABCD中, E AB 上一点,点 D 作 DF⊥ DE,与 BC 延交于点F.接 EF,与 CD 交于点 G,与角 BD 交于点 H.(1)若 BF=BD= ,求 BE 的;(2)若∠ ADE=2∠ BFE,求: FH=HE+HD.【解答】( 1)解:∵四形ABCD正方形,∴∠ BCD=90°,BC=CD,∴Rt△ BCD中, BC2+CD2=BD2,即 BC2=()2( BC)2,∴BC=AB=1,∵DF⊥ DE,∴∠ ADE+∠ EDC=90°=∠EDC+∠ CDF,∴∠ ADE=∠ CDF,在△ ADE 和△ CDF中,∵,∴△ ADE≌△ CDF( ASA),..∴ AE=CF=BF﹣ BC=﹣1,∴ BE=AB﹣ AE=1﹣(﹣1)=2﹣;(2)证明:在 FE 上截取一段 FI,使得 FI=EH,∵△ADE≌△CDF,∴ DE=DF,∴△ DEF为等腰直角三角形,∴∠ DEF=∠ DFE=45°=∠DBC,∵∠ DHE=∠ BHF,∴∠ EDH=∠ BFH(三角形的内角和定理),在△ DEH和△ DFI中,∵,∴△ DEH≌△ DFI( SAS),∴DH=DI,又∵∠ HDE=∠BFE,∠ ADE=2∠BFE,∴∠ HDE=∠ BFE= ∠ ADE,∵∠ HDE+∠ ADE=45°,∴∠ HDE=15°,∴∠ DHI=∠ DEH+∠ HDE=60°,即△ DHI 为等边三角形,∴DH=HI,∴FH=FI+HI=HE+HD.5.如图,将一三角板放在边长为 1 的正方形ABCD上,并使它的直角顶点P 在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC 相交于 Q.探究:设 A、 P 两点间的距离为x.(1)当点 Q 在边 CD上时,线段 PQ 与 PB 之间有怎样的数量关系?试证明你的猜想;(2)当点 Q 在边 CD上时,设四边形 PBCQ的面积为 y,求 y 与 x 之间的函数关系,并..写出函数自变量x 的取值范围;( 3)当点 P 在线段 AC 上滑动时,△ PCQ是否可能成为等腰三角形?如果可能,指出所有能使△ PCQ成为等腰三角形的点Q 的位置.并求出相应的x 值,如果不可能,试说明理由.【解答】解:( 1) PQ=PB,(1 分)过P 点作 MN ∥ BC分别交 AB、 DC于点 M、 N,在正方形 ABCD中, AC 为对角线,∴ AM=PM ,又∵ AB=MN,∴MB=PN,∵∠BPQ=90°,∴∠ BPM+∠ NPQ=90°;又∵∠ MBP+∠BPM=90°,∴∠ MBP=∠ NPQ,在Rt△ MBP≌Rt△ NPQ 中,∵∴Rt△ MBP≌Rt△ NPQ,( 2 分)∴PB=PQ.(2)∵ S 四边形PBCQ=S△PBC+S△PCQ,∵AP=x,∴AM=x,∴CQ=CD﹣ 2NQ=1﹣ x,又∵ S△PBC= BC?BM= ?1?( 1﹣x) =﹣x,S△PCQ= CQ?PN=(1﹣x) ?( 1﹣x),..=﹣+,∴ S 四边形PBCQ=﹣x+1 .( 0≤ x≤).(4分)( 3)△ PCQ可能成为等腰三角形.①当点 P 与点 A 重合时,点Q 与点 D 重合,PQ=QC,此时, x=0.( 5 分)②当点 Q 在 DC的延长线上,且CP=CQ时,(6 分)有:QN=AM=PM=x,CP=﹣x,CN=CP=1﹣x,CQ=QN﹣ CN=x﹣( 1﹣x)=x﹣ 1,∴当﹣ x=x﹣ 1 时, x=1.( 7 分).6.Rt△ ABC 与 Rt△FED是两块全等的含30°、60°角的三角板,按如图(一)所示拼在一起, CB与 DE 重合.( 1)求证:四边形ABFC为平行四边形;( 2)取 BC 中点 O,将△ ABC 绕点 O 顺时钟方向旋转到如图(二)中△A′B′位C置′,直线B'C'与 AB、 CF分别相交于 P、Q 两点,猜想 OQ、OP 长度的大小关系,并证明你的猜想;( 3)在( 2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形?(不要求证明)..【解答】( 1)证明:∵△ABC≌△ FCB,∴AB=CF, AC=BF.∴四边形ABFC为平行四边形.(2)解: OP=OQ,理由如下:∵OC=OB,∠ COQ=∠BOP,∠ OCQ=∠ PBO,∴△ COQ≌△ BOP.∴OQ=OP.( 3)解: 90°.理由:∵ OP=OQ,OC=OB,∴四边形PCQB为平行四边形,∵BC⊥ PQ,∴四边形PCQB为菱形.7.如图,在正方形 ABCD中,点 F 在 CD 边上,射线 AF 交 BD 于点 E,交 BC 的延长线于点G.(1)求证:△ ADE≌△ CDE;(2)过点 C作 CH⊥ CE,交 FG 于点 H,求证: FH=GH;(3)设 AD=1,DF=x,试问是否存在 x 的值,使△ ECG为等腰三角形?若存在,请求出x的值;若不存在,请说明理由.【解答】( 1)证明:∵四边形ABCD是正方形,∴DA=DC,∠ 1=∠ 2=45°,DE=DE,∴△ ADE≌△ CDE...(2)证明:∵△ADE≌△CDE,∴∠ 3=∠4,∵ CH⊥ CE,∴∠ 4+∠5=90°,又∵∠ 6+∠ 5=90°,∴∠ 4=∠6=∠ 3,∵AD∥ BG,∴∠ G=∠3,∴∠ G=∠6,∴ CH=GH,又∵∠ 4+∠ 5=∠ G+∠7=90°,∴∠ 5=∠7,∴ CH=FH,∴ FH=GH.( 3)解:存在符合条件的x 值此时,∵∠ ECG> 90°,要使△ ECG为等腰三角形,必须CE=CG,∴∠ G=∠8,又∵∠ G=∠ 4,∴∠ 8=∠4,∴∠ 9=2∠4=2∠ 3,∴∠ 9+∠3=2∠ 3+∠ 3=90°,∴∠ 3=30°,∴ x=DF=1× tan30 °=.8.在 ?ABCD中,∠ BAD 的平分线交直线BC于点 E,交直线DC于点 F.(1)在图 1 中证明 CE=CF;(2)若∠ ABC=90°,G 是 EF 的中点(如图 2),直接写出∠ BDG的度数;(3)若∠ ABC=120°, FG∥ CE, FG=CE,分别连接 DB、 DG(如图 3),求∠ BDG 的度数...【解答】( 1)证明:如图1,∵AF 平分∠ BAD,∴∠ BAF=∠ DAF,∵四边形 ABCD是平行四边形,∴ AD∥ BC,AB∥ CD,∴∠ DAF=∠ CEF,∠ BAF=∠F,∴∠ CEF=∠ F.∴CE=CF.( 2)解:连接GC、 BG,∵四边形ABCD为平行四边形,∠ABC=90°,∴四边形ABCD为矩形,∵AF 平分∠ BAD,∴∠DAF=∠ BAF=45°,∵∠DCB=90°,DF∥ AB,∴∠DFA=45°,∠ ECF=90°∴△ ECF为等腰直角三角形,∵G 为 EF中点,∴EG=CG=FG, CG⊥ EF,∵△ ABE 为等腰直角三角形,AB=DC,∴BE=DC,∵∠ CEF=∠ GCF=45°,∴∠ BEG=∠DCG=135°在△ BEG与△ DCG中,∵,∴△ BEG≌△ DCG,∴BG=DG,..∵CG⊥ EF,∴∠ DGC+∠ DGA=90°,又∵∠ DGC=∠ BGA,∴∠ BGA+∠ DGA=90°,∴△ DGB为等腰直角三角形,∴∠ BDG=45°.(3)解:延长 AB、 FG交于 H,连接 HD.∵ AD∥ GF, AB∥ DF,∴四边形 AHFD 为平行四边形∵∠ABC=120°, AF 平分∠ BAD∴∠ DAF=30°,∠ ADC=120°,∠ DFA=30°∴△ DAF 为等腰三角形∴AD=DF,∴CE=CF,∴平行四边形AHFD为菱形∴△ ADH,△ DHF 为全等的等边三角形∴DH=DF,∠ BHD=∠ GFD=60°∵FG=CE, CE=CF,CF=BH,∴ BH=GF在△ BHD 与△ GFD中,∵,∴△ BHD≌△ GFD,∴∠ BDH=∠GDF∴∠ BDG=∠ BDH+∠HDG=∠GDF+∠ HDG=60°..9.如图,已知 ?ABCD中, DE⊥ BC于点 E,DH⊥ AB 于点 H,AF 平分∠ BAD,分别交 DC、DE、 DH 于点 F、G、 M,且 DE=AD.(1)求证:△ ADG≌△ FDM.(2)猜想 AB 与 DG+CE之间有何数量关系,并证明你的猜想.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB∥ CD,AD∥ BC,∴∠ BAF=∠ DFA,∵ AF 平分∠ BAD,∴∠ DAF=∠ DFA,∴AD=FD,∵DE⊥ BC, DH⊥ AB,∴∠ ADG=∠ FDM=90°,在△ ADG 和△ FDM 中,,∴△ ADG≌△ FDM( ASA).(2) AB=DG+EC.证明:延长GD 至点 N,使 DN=CE,连接 AN,∵DE⊥ BC, AD∥ BC,∴∠ ADN=∠DEC=90°,..在△ ADN 和△ DEC中,,∴△ ADN≌△ DEC( SAS),∴∠ NAD=∠CDE, AN=DC,∵∠ NAG=∠NAD+∠ DAG,∠ NGA=∠ CDE+∠ DFA,∴∠ NAG=∠NGA,∴AN=GN=DG+CE=DC,∵四边形 ABCD是平行四边形,∴AB=CD,∴AB=DG+EC.10.如图,在正方形ABCD 中, E、 F 分别为 BC、 AB 上两点,且BE=BF,过点B 作 AE 的垂线交 AC 于点 G,过点 G 作 CF的垂线交BC于点 H 延长线段AE、 GH 交于点 M.( 1)求证:∠ BFC=∠ BEA;( 2)求证: AM=BG+GM.【解答】证明:( 1)在正方形 ABCD中, AB=BC,∠ ABC=90°,在△ ABE和△ CBF中,,..∴△ ABE≌△ CBF( SAS),∴∠ BFC=∠BEA;(2)连接 DG,在△ ABG 和△ ADG 中,,∴△ ABG≌△ ADG( SAS),∴BG=DG,∠2=∠3,∵ BG⊥AE,∴∠ BAE+∠ 2=90°,∵∠ BAD=∠ BAE+∠4=90°,∴∠ 2=∠3=∠ 4,∵ GM⊥ CF,∴∠ BCF+∠ 1=90°,又∠ BCF+∠ BFC=90°,∴∠ 1=∠BFC=∠ 2,∴∠ 1=∠3,在△ ADG 中,∠ DGC=∠3+45°,∴∠ DGC 也是△ CGH 的外角,∴D、G、 M 三点共线,∵∠ 3=∠4(已证),∴AM=DM ,∵DM=DG+GM=BG+GM,∴ AM=BG+GM.11.如图所示,把矩形纸片OABC 放入直角坐标系xOy 中,使OA、OC 分别落在x、 y 轴的正半轴上,连接AC,且 AC=4,..(1)求 AC所在直线的解析式;(2)将纸片 OABC折叠,使点 A 与点 C 重合(折痕为 EF),求折叠后纸片重叠部分的面积.(3)求 EF所在的直线的函数解析式.【解答】解:( 1)∵=,∴可设 OC=x,则 OA=2x,在Rt△ AOC中,由勾股定理可得 OC2+OA2=AC2,∴ x2+( 2x)2=(4 )2,解得 x=4( x=﹣ 4 舍去),∴ OC=4, OA=8,∴A( 8, 0), C(0, 4),设直线 AC 解析式为 y=kx+b ,∴,解得,∴直线 AC 解析式为y=﹣x+4;( 2)由折叠的性质可知AE=CE,设AE=CE=y,则 OE=8﹣ y,在Rt△ OCE中,由勾股定理可得 OE2+OC2=CE2,∴( 8﹣ y)2+42=y2,解得 y=5,∴AE=CE=5,∵∠ AEF=∠CEF,∠ CFE=∠ AEF,∴∠ CFE=∠ CEF,∴CE=CF=5,∴S△CEF= CF?OC= × 5× 4=10,..即重叠部分的面积为10;(3)由( 2)可知 OE=3, CF=5,∴ E(3 ,0), F( 5,4 ),设直线 EF的解析式为 y=k′x+b′,∴,解得,∴直线 EF的解析式为y=2x﹣ 6.12.已知一次函数的图象与坐标轴交于A、B 点(如图),AE 平分∠ BAO,交x 轴于点 E.(1)求点 B 的坐标;(2)求直线 AE 的表达式;(3)过点 B 作 BF⊥ AE,垂足为 F,连接 OF,试判断△ OFB的形状,并求△ OFB的面积.(4)若将已知条件“AE平分∠ BAO,交 x 轴于点 E”改变为“点 E 是线段 OB上的一个动点(点 E 不与点 O、B 重合)”,过点 B 作 BF⊥AE,垂足为 F.设 OE=x,BF=y,试求 y 与 x 之间的函数关系式,并写出函数的定义域...【解答】解:( 1)对于 y=﹣x+6,当x=0 时, y=6;当 y=0 时, x=8,∴ OA=6, OB=8,在 Rt△ AOB中,根据勾股定理得: AB=10,则 A( 0, 6), B(8,0);( 2)过点 E 作 EG⊥ AB,垂足为 G(如图 1 所示),∵ AE 平分∠ BAO, EO⊥AO,EG⊥ AG,∴ EG=OE,在 Rt△ AOE和 Rt△ AGE中,,∴Rt△ AOE≌Rt△ AGE(HL),∴AG=AO,设OE=EG=x,则有 BE=8﹣ x, BG=AB﹣ AG=10﹣ 6=4,在Rt△ BEG中, EG=x, BG=4, BE=8﹣ x,根据勾股定理得: x2+4 2=( 8﹣ x)2,解得: x=3,∴E(3 ,0),设直线 AE 的表达式为 y=kx+b( k≠ 0),将A( 0, 6), E( 3,0)代入 y=kx+b 得:,解得:,则直线 AE 的表达式为y=﹣ 2x+6;( 3)延长 BF 交 y 轴于点 K(如图 2 所示),..∵AE 平分∠ BAO,∴∠ KAF=∠ BAF,又BF⊥AE,∴∠ AFK=∠ AFB=90°,在△ AFK和△ AFB 中,∵,∴△ AFK≌△ AFB,∴FK=FB,即F 为KB 的中点,又∵△ BOK为直角三角形,∴OF= BK=BF,∴△ OFB 为等腰三角形,过点 F 作 FH⊥ OB,垂足为H(如图 2 所示),∵OF=BF, FH⊥ OB,∴OH=BH=4,∴F 点的横坐标为 4,设F( 4, y),将 F( 4, y)代入 y=﹣ 2x+6 ,得: y=﹣ 2,∴ FH=| ﹣2| =2,则 S△OBF= OB?FH= × 8× 2=8;(4)在 Rt△ AOE中, OE=x, OA=6,根据勾股定理得:AE==,又BE=OB﹣ OE=8﹣ x, S△ABE= AE?BF= BE?AO(等积法),∴ BF==(0<x<8),又BF=y,则 y=(0<x<8).13.如图,直线l1的解析表达式为:y=﹣ 3x+3,且 l1与 x 轴交于点D,直线 l2经过点 A,B,直线 l 1, l2交于点 C.(1)求点 D 的坐标;(2)求直线 l2的解析表达式;..(3)求△ ADC的面积;(4)在直线 l 2上存在异于点 C 的另一点 P,使得△ ADP 与△ ADC 的面积相等,请直接写出点 P 的坐标.【解答】解:( 1)由 y=﹣ 3x+3,令 y=0,得﹣ 3x+3=0,∴x=1,∴D( 1,0);( 2)设直线l 2的解析表达式为y=kx+b,由图象知: x=4,y=0; x=3,,代入表达式y=kx+b,∴,∴,∴直线 l2的解析表达式为;( 3)由,解得,∴ C(2,﹣ 3),∵ AD=3,∴ S△ADC=× 3× |﹣3| =;( 4)△ ADP 与△ ADC 底边都是AD,面积相等所以高相等,△ADC 高就是点 C 到直线AD 的距离,即 C 纵坐标的绝对值=| ﹣ 3| =3,则 P 到 AD 距离 =3,∴ P 纵坐标的绝对值=3,点 P 不是点 C,∴点 P 纵坐标是3,∵ y=1.5x﹣6 ,y=3,..∴1.5x﹣ 6=3x=6,所以 P( 6,3).14.如图 1,在平面直角坐标系中,O 是坐标原点,长方形OACB的顶点 A、B 分别在 x轴与 y 轴上,已知OA=6, OB=10.点 D 为 y 轴上一点,其坐标为(0, 2),点 P 从点 A出发以每秒 2 个单位的速度沿线段AC﹣CB 的方向运动,当点 P 与点 B 重合时停止运动,运动时间为t 秒.(1)当点 P 经过点 C 时,求直线 DP 的函数解析式;(2)①求△ OPD 的面积 S关于 t 的函数解析式;②如图②,把长方形沿着 OP 折叠,点 B 的对应点 B′恰好落在 AC 边上,求点 P 的坐标.( 3)点P 在运动过程中是否存在使△BDP 为等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.【解答】解:( 1)∵ OA=6, OB=10,四边形OACB为长方形,∴C( 6, 10).设此时直线DP 解析式为y=kx+b,把( 0,2 ), C(6, 10)分别代入,得,解得则此时直线DP 解析式为y=x+2;( 2)①当点P 在线段 AC 上时, OD=2,高为 6, S=6;当点 P 在线段 BC 上时, OD=2,高为 6+10﹣2t=16 ﹣2t ,S=× 2×(16﹣2t)=﹣2t+16;②设 P( m, 10),则 PB=PB′=m,如图 2,∵OB′=OB=10, OA=6,∴ AB′==8,..∴B′C=10﹣ 8=2,∵ PC=6﹣ m,∴m2=22+( 6﹣ m)2,解得 m=则此时点 P 的坐标是(,10);( 3)存在,理由为:若△ BDP为等腰三角形,分三种情况考虑:如图3,①当 BD=BP1=OB﹣ OD=10﹣ 2=8,在Rt△ BCP1中, BP1=8, BC=6,根据勾股定理得: CP1==2 ,∴AP1=10﹣ 2 ,即 P1(6, 10﹣ 2 );②当BP2 =DP2时,此时 P2( 6,6);③当DB=DP3=8 时,在 Rt△ DEP 中, DE=6,3根据勾股定理得:P3E==2,∴ AP3=AE+EP3=2+2,即 P3( 6, 2+2),综上,满足题意的P 坐标为( 6, 6)或( 6, 2+2)或( 6, 10﹣ 2)...15.如图,在平面直角坐标系中,已知O 为原点,四边形ABCD为平行四边形,A、 B、C 的坐标分别是A(﹣ 5,1), B(﹣ 2, 4),C( 5, 4),点 D 在第一象限.( 1)写出 D 点的坐标;( 2)求经过B、D 两点的直线的解析式,并求线段BD 的长;( 3)将平行四边形ABCD 先向右平移 1 个单位长度,再向下平移 1 个单位长度所得的四边形 A1B1C1 D1四个顶点的坐标是多少?并求出平行四边形ABCD与四边形 A1 B1 C1D1重叠部分的面积.【解答】解:( 1)∵ B(﹣ 2, 4), C( 5, 4),∴BC=5﹣(﹣ 2) =5+2=7,∵ A(﹣ 5,1),∴点 D 的横坐标为﹣ 5+7=2,∴点D 的坐标为( 2, 1);( 2)设直线 BD 的解析式为 y=kx+b,将 B(﹣ 2, 4)、D( 2, 1)代入得:,解得,∴经过 B、 D 两点的直线的解析式为y=﹣x+,过 B 点作 AD 的垂线,垂足为E,则 BE=4﹣ 1=3,DE=2﹣(﹣ 2)=2+2=4,..在 Rt△ BDE中, BD===5;( 3)∵ ?ABCD向右平移1 个单位长度,再向下平移 1 个单位长度,∴A1(﹣ 4, 0),B1(﹣ 1, 3), C1( 6,3) D1( 3,0 ),∴重叠部分的底边长 7﹣ 1=6,高为 3﹣1=2,∴重叠部分的面积S=6× 2=12.16.如图,一次函数的图象与x 轴、 y 轴交于点A、B,以线段AB 为边在第一象限内作等边△ABC,( 1)求△ ABC的面积;( 2)如果在第二象限内有一点P( a,);试用含有a 的代数式表示四边形ABPO的面积,并求出当△ABP的面积与△ ABC的面积相等时 a 的值;(3)在 x 轴上,是否存在点 M,使△ MAB 为等腰三角形?若存在,请直接写出点 M 的坐标;若不存在,请说明理由.【解答】解:( 1)分别令 y=0 和 x=0,得一次函数y=x+1 的图象与x 轴.y 轴的交点坐标分别是A(,0),B(0,1),即OA=,OB=1,∴ AB==2∵△ ABC为等边三角形,∴ S△ABC=;( 2)如图 1, S△AOB=,S△AOP=,S△BOP=| a| ?OB=﹣.∴ S 四边形ABPO=S△AOB+S△BOP=,而 S△ABP=S 四边形ABPO﹣S△APO,..∴当 S△ABP=S△ABC时,=,解得 a=﹣;( 3)如图 2,满足条件的点M 有 4 个:M 1(﹣,0),M 2(﹣ 2,0),M3(,0),M 4(+2,0)..。

新人教版八年级下压轴题

新人教版八年级下压轴题

初二期末复习题1.△ABC 、△ADE 都是正三角形,CD=BF. (1)、求证:△ACD ≌△CBF(2)、当D 运动至BC 边上的何处时,四边形CDEF 为平行四边形,且∠DEF=30°,并证明你的结论.分析 ⑴.证明△ACD ≌△CBF 已经有了CD=BF ,而△ABC 、△ADE 都是正三角形又可以给我们提供,CA CB ACD CBF 60=∠=∠=条件,根据“SAS ”判定方法可以证得△ACD ≌△CBF.⑵.根据⑴问的△ACD ≌△CBF 得出AD CF =,又△ADE 是正三角形的DE CF =,所以CF DE =;要使四边形CDEF 为平行四边形可以证CF DE .若四边形CDEF 为平行四边形,则FCD DEF 30∠=∠=;当EDB 30∠=时,就有FCD EDB ∠=∠,此时就能证得CF DE .由正△ADE 可以得出ADE 60∠=,则ADB 603090∠=+=,AD BC ⊥;由于等腰三角形具有“三线合一”的特征,所以当D 运动至BC 边上中点时,四边形CDEF 为平行四边形.2.D 为□ABCD 外一点,∠APC=∠BPD=90°.求证: □ABCD 为矩形分析:判定矩形的方法主要有三种.但在已知了四边形ABCD 是平行 四边形的情况下,要判定ABCD 是矩形的途径有两条:其一、找一内角是直角;其二、找出对角线相等,即找出AC BD =.由于本题的另一主要条件是∠APC=∠BPD=90°,要根据题中条件和图形位置转换成四边形的内角为90°比较困难,所以本题我们先想办法找出对角线相等,即找出AC BD =.我们发现本题在APC Rt 和BPD Rt 的两斜边的交点O 恰好是平行四边形对角线的交点,根据平行四边形对角线互相平分可知:O 同时是AC BD 、的中点;所以自然联想到连结PO 这条两直角三角形公共的中线(见图).根据以上条件,在APC Rt 和BPD Rt 中就有:AC 2PO = BD 2PO =,故AC BD =,由对角线相等的平行四边形是矩形,可判定ABCD 是矩形.3. △ABC 中,∠BAC=90°,BD 平分∠ABC ,AH ⊥BC 于H 交BD 于E,DF ⊥BC 于F,求证:四边形AEFD 是菱形分析:判定菱形方法主要有三种,三种方法都可以使本题获得解决.下面我们选择“四边都相等的四边形是菱形”这一途径来分析. 可以先根据角平分线的性质得出AD FD =,进而容易证明 ABD ≌AFD ,所以BA BF =;再证明ABE ≌AFE 可以得到EA EF =(也可以利用等腰三角形的“三线合一”);利用等角的余角相等可以推出 ADE AED ∠=∠,所以EA DA =,于是AE EF FD DA ===,故四边形AEFD 是菱形.4、 如图所示,在菱形ABCD 中,,AB 4BAD 120=∠=,AEF为正三角形,点E F 、分别在菱形的边BC CD 、上滑动,且E F 、不与B C D 、、重合. ⑴.证明不论E F 、在BC CD 、D 上如何滑动,总有BE CF =? ⑵.当点E F 、在BC CD 、上滑动时,探讨四边形AECF 的面积是否发生变化?如果不变,求出这个定值. 分析: FA B CABH D EF OBPA 321EH AB F⑴.先求证AB AC =,进而求证ABC ACD 、为等边三角形,得=BAC 60AC AB ∠=,进而求证ABE≌ACF ,即可求得BE CF = ⑵.根据ABE ≌ACF 可得ABE ACF SS =;根据S 四边形AECF =AEC S +ACF S=AEC S+BAE S=ABC S即可解得.⑴.证明:连接AC ,如下图所示.∵四边形ABCD 为菱形,BAD 120∠=∴,1EAC 602EAC 60∠+∠=∠+∠= ∴12∠=∠∵BAD 120∠=∴ABC 60∠=∴ABC 和ACD 都为等边三角形 ∴=460AC AB ∠=, ∴在ABE 和ACF 中,12AB AC ABC 3∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABE ≌ACF ()ASA ∴BE CF =⑵.解:四边形AECF 的面积不变.理由:由⑴得ABE ≌ACF ,则ABE ACF S S =.故S 四边形AECF =AEC S +ACF S =AEC S +BAE S =ABC S 是定值.作AH BC ⊥于H 点,则BH 2=S四边形ABCD =SABC =11BC AH 22⋅=5、(1)在图25-1中,已知∠MAN =120°,AC 平分∠MAN . ∠ABC =∠ADC =90°,则能得如下两个结论: ① DC = BC; ②AD+AB=AC.请你证明结论②;(2)在图25-2中,把(1)中的条件“∠ABC =∠ADC =90°”改为∠ABC +∠ADC =180°,其他条件不变,则(1)中的结论是否仍然成立?若成立, 请给出证明;若不成立,请说明理由.5、(1)证明:∵∠MAN =120°,AC 平分∠MAN . ∴∠DAC = ∠BAC =60 ∵∠ABC =∠ADC =90°,∴∠DCA =∠BCA =30°,在Rt △ACD 中,∠DCA =30°,Rt △ACB 中, ∠BCA =30°∴AC=2AD , AC = 2AB , ∴2AD=2AB∴AD=AB∴AD+AB=AC.(2)解:(1)中的结论① DC = BC; ②AD+AB=AC 都成立理由如下:如图24-2,在AN 上截取AE=AC ,连结CE , ∵∠BAC =60°,∴△CAE 为等边三角形, ∴AC=CE ,∠AEC =60°, ∵∠DAC =60°, ∴∠DAC =∠AEC , ∵∠ABC +∠ADC =180°∠ABCCNMD BAN M DC+∠EBC =180°,∴∠ADC =∠EBC , ∴ADC △≌△EBC ∴DC = BC ,DA = BE , ∴AD+AB=AB+BE=AE , ∴AD+AB=AC .6如图所示,直线l :y=-221与x 轴、y 轴分别交于A 、B 两点,在y 轴上有一点C (0,4),动点M 从A 点以每秒1个单位的速度沿x 轴向左移动.(1)求A 、B 两点的坐标;(2)求△COM 的面积S 与M 的移动时间 t 之间的函数关系式;(3)当t 为何值时△COM ≌△AOB ,并求 此时M 点的坐标.A 、B 两点的坐标分别为A (4,0)、B (0,2);(2)∵C(0,4),A (4,0)∴OC=OA=4,当0≤t≤4时,OM=OA-AM=4-t ,S △OCM = 1 2×4×(4-t )=8-2t ;当t >4时,OM=AM-OA=t-4,S △OCM = 1 2×4×(t-4)=2t-8;(3)分为两种情况:①当M 在OA 上时,OB=OM=2,△COM≌△AOB.∴AM=OA -OM=4-2=2∴动点M 从A 点以每秒1个单位的速度沿x 轴向左移动2个单位,所需要的时间是2秒钟; M (2,0),②当M 在AO 的延长线上时,OM=OB=2,则M (-2,0),即M 点的坐标是(2,0)或(-2,0). 7、如图,直线y=kx+6分别与x 轴、y 轴相交于点E 和点F ,点E 的坐标为 (-8,0),点A 的坐标为(0,6)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图11,已知正比例函数和反比例函数的图像都经过点M (-2,1),且P (1,-2)为双曲线上的一点,Q 为坐标平面上一动点,PA 垂直于x 轴,QB 垂直于y 轴,垂足分别是A 、B .
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图12,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ 为邻边的平行四边形
OPCQ ,求平行四边形OPCQ 周长的最小值.
解:(1)设正比例函数解析式为y kx =,将点M (2-,1-)坐标代入得1
2
k ,所以正
比例函数解析式为1
2
y
x 同样可得,反比例函数解析式为2y
x
(2)当点Q 在直线DO 上运动时, 设点Q 的坐标为1()2
Q m m ,, 于是2
1
11
12224
OBQ S OB BQ m m m △, 而1
(1)(2)12
OAP S △,
所以有,
2114
m ,解得2m =±
所以点Q 的坐标为1(21)Q ,
和2(21)Q , (3)因为四边形OPCQ 是平行四边形,所以OP =CQ ,OQ =PC ,
而点P (1-,2-)是定点,所以OP 的长也是定长,所以要求平行四边形OPCQ 周长的最小值就只需求OQ 的最小值.
因为点Q 在第一象限中双曲线上,所以可设点Q 的坐标为2()Q n n
,, 由勾股定理可得2
2
22
42()4OQ
n n
n n


所以当22()0n
n
即20n
n
时,2OQ 有最小值4,
又因为OQ 为正值,所以OQ 与2
OQ 同时取得最小值, 所以OQ 有最小值2.
由勾股定理得OP =5,所以平行四边形OPCQ 周长的最小值是
2()2(52)254OP OQ .
2.已知:如图,正比例函数y =ax 的图象与反比例函数x
k
y
的图象交于点A (3,2). (1)试确定上述正比例函数和反比例函数的表达式;
(2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值; (3)M (m ,n )是反比例函数图象上的一动点,其中0<m <3,过点M 作直线MB ∥x 轴,交
y 轴于点B ;过点A 作直线AC ∥y 轴交y 轴于点C ,交直线MB 于点D .当四边形OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.
解答:解:(1)将A (3,2)分别代入y=,y=ax 中,得:2=,3a=2 ∴k=6,a=(2分)
∴反比例函数的表达式为:y=(3分) 正比例函数的表达式为y=x (4分)
(2)观察图象,得在第一象限内,当0<x <3时,反比例函数的值大于正比例函数的值.(6分)
(3)BM=DM (7分)
理由:∵MN ∥x 轴,AC ∥y 轴, ∴四边形OCDB 是平行四边形, ∵x 轴⊥y 轴,
∴▱OCDB 是矩形.
∵S △OMB =S △OAC =×|k|=3,又S 四边形OADM =6, ∴S 矩形OBDC =S 四边形OADM +S △OMB +S △OAC =3+3+6=12, 即OC •OB=12 ∵OC=3
∴OB=4(8分) 即n=4 ∴m=
∴MB=,MD=3﹣= ∴MB=MD (9分).
3.如图,直线y=x+b (b ≠0)交坐标轴于A 、B 两点,交双曲线y=
x
2
于点D ,过D 作两坐标轴的垂线DC 、DE ,连接OD . (1)求证:AD 平分∠CDE ; (2)对任意的实数b (b ≠0),求证BE ·OE 为定值;
(3)是否存在直线AB ,使得四边形OBCD 为平行四边形?若存在,求出直线的解析式;
若不存在,请说明理由.
A B
C E O D
x
y
4.如图(1),直线1
22
y x =-
+交x 轴、y 轴于A 、B 两点,C 为直线AB 上第二象限内一点,且S △AOC =8,双曲线k
y x
=经过点C
(1)求k 的值
(2)如图(2),过点C 作CM ⊥y 轴于M,反向延长CM 于H ,使CM=CH ,过 H 作HN ⊥x 轴于N ,交双曲线y=
x
k
于D ,求四边形OCHD 的面积 (3)如图(3),点G 和点A 关于y 轴对称,P 为第二象限内双曲线上一个动点, 过P 作PQ ⊥x 轴于Q ,分别交线段BG 于E,交射线BC 于F ,试判断线段 QE+QF 是否为定值,若为定值,证明并求出定值;若不是定值,请说明 理由
x
y
O
C
A
B M H
D N
图(2)
图(3)
y O
C A
B G P
F
E
Q
x
y
O
C
A
B 图(1)。

相关文档
最新文档