北京市2017年高三物理一轮专题复习动量定理
高考物理一轮复习知识点总结-动量与动量守恒
精品基础教育教学资料,仅供参考,需要可下载使用!
动量与动量守恒
一、、动量与冲量的区别:
二、动量定理:物体所受的合外力的冲量等于物体的动量的变化。
I合=ΔP 或F合t = mv t—mv0(冲量方向与物体动量变化量方向一致)
公式一般用于冲击、碰撞中的单个物体,解题时要先确定正方向。
三、动量守恒定律:一个系统不受外力或受外力矢量和为零,这个系统的总动量保持不变。
P总= P总’或m1v1+m2v2 = m1v1'+m2v2'
公式一般用于冲击、碰撞、爆炸中的多个物体组成的系统,解题时要先确定正方向。
系统在某方向上外力矢量和为零时,某方向上动量守恒。
四、完全弹性碰撞:在弹性力作用下,动量守恒,动能守恒。
非弹性碰撞:在非弹性力作用下,动量守恒,动能不守恒。
完全非弹性碰撞:在完全非弹性力作用下,碰撞后物体结合在一起运动,动
k
mE P 2=m P E k 22
=量守恒,动
能不守恒。
系统机械能损失最大。
五、动量与动能的关系:。
高考物理一轮复习 专题26 动量 动量定理 动量守恒定律(讲)(含解析)
专题26 动量动量定理动量守恒定律1.理解动量、动量变化量、动量定理的概念.2.知道动量守恒的条件.1、动量、动量定理(1)动量①定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示。
②表达式:p=mv。
③单位:kg·m/s。
④标矢性:动量是矢量,其方向和速度方向相同。
(2)冲量①定义:力和力的作用时间的乘积叫做力的冲量。
②表达式:I=Ft。
单位:N·s。
③标矢性:冲量是矢量,它的方向由力的方向决定。
(3)动量定理2、动量守恒定律(1)内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。
(2)表达式:m1v1+m2v2=m1v1′+m2v2′或p=p′。
(3)适用条件①理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒。
②近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒。
③分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒。
考点一 动量定理的理解与应用 1.应用动量定理时应注意(1)动量定理的研究对象是一个质点(或可视为一个物体的系统)。
(2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方向。
2.动量定理的应用 (1)用动量定理解释现象①物体的动量变化一定,此时力的作用时间越短,力就越大;时间越长,力就越小。
②作用力一定,此时力的作用时间越长,动量变化越大;力的作用时间越短,动量变化越小。
(2)应用I =Δp 求变力的冲量。
(3)应用Δp =F ·Δt 求恒力作用下的曲线运动中物体动量的变化量。
★重点归纳★ 1、动量的性质①矢量性:方向与瞬时速度方向相同。
②瞬时性:动量是描述物体运动状态的量,是针对某一时刻而言的。
③相对性:大小与参考系的选取有关,通常情况是指相对地面的动量。
3.动量、动能、动量的变化量的关系 ①动量的变化量:Δp =p ′-p 。
动量定理高三物理第一轮复习PPT课件动量北京海淀
(3)合力对小球做的功为多少?
(4)合力对小球的冲量为多少?
4. 质量为m=1.0kg的小球从高h1=20m处下 落到软垫上 ,反弹后上升的最大高度为 h2=5.0m,小球与软垫的接触时间为t=1.0s, (1)求小球接触和离开软垫时的速度v、 v’. (2)小球接触软垫过程中动量变化的大小 和方向. 【 C】 A.10kg∙m/s,向下 B.20kg∙m/s,向下 C.30kg∙m/s,向上 D.40kg∙m/s,向上
(6)设其他条件不变 ,小球和软垫的 作用时间为 t=0.1s 、 0.01s, 软垫对小 球的平均作用力分别是多大?
mv 'mv F mg t越短, F越大. t
(7)以小球静止释放开始到小球返回到最 高点为过程,求软垫对小球的平均作用力.
Ft mg(t1 t t2 ) 0
P F / S 2V n0 m 3.428Pa
2
V0 300
V V02 V y2 10 3m / s
应用4、求解流体问题 例某种气体分子束由质量5.4X10-26kg 速度V=460m/s的分子组成,各分子都 向同一方向运动,垂直地打在某平面 上后又以原速率反向弹回,如分子束 中每立方米的体积内有n0=1.5X1020个 分子,求被分子束撞击的平面所受到 的压强.
应用2.求解平均力问题
例 质量是60kg的建筑工人,不慎从高 空跌下,由于弹性安全带的保护作用, 最后使人悬挂在空中.已知弹性安全 带缓冲时间为1.2s,安全带伸直后长 5m,求安全带所受的平均冲力.
m V0 F mg 1100N t
应用3、求解曲线运动问题
例 如图所示,以Vo =10m/s的初 速度、与水平方向成300角抛出一个 质量m=2kg的小球.忽略空气阻力 的作用,g取10m/s2.求抛出后第 2s末小球速度的大小.
物理高三一轮复习动量知识点
物理高三一轮复习动量知识点在经典力学中,动量(是指国际单位制中的单位为kgm/s ,量纲MLT)表示为物体的质量和速度的乘积,以下是动量知识点,请考生学习。
1.动量和冲量(1)动量:运动物体的质量和速度的乘积叫做动量,即p=mv。
是矢量,偏向与v的偏向相同。
两个动量相同必须是巨细相等,偏向一致。
(2)冲量:力和力的作用时间的乘积叫做该力的冲量,即I=Ft。
冲量也是矢量,它的偏向由力的偏向决定。
2.★★动量定理:物体所受合外力的冲量即是它的动量的变化。
表达式:Ft=p-p或Ft=mv-mv(1)上述公式是一矢量式,运用它剖析标题时要特殊注意冲量、动量及动量变化量的偏向。
(2)公式中的F是研究工具所受的包括重力在内的所有外力的合力。
(3)动量定理的研究工具可以是单个物体,也可以是物体系统。
对物体系统,只需剖析系统受的外力,不必思虑系统内力。
系统内力的作用不改变整个系统的总动量。
(4)动量定理不仅适用于恒定的力,也适用于随时间变化的力。
敷衍变力,动量定理中的力F应当理解为变力在作用时间内的均匀值。
3.★★★动量守恒定律:一个系统不受外力或者所受外力之和为零,这个系统的总动量保持不变。
表达式:m1v1+m2v2=m1v1+m2v2(1)动量守恒定律成立的条件①系统不受外力或系统所受外力的合力为零。
②系统所受的外力的合力虽不为零,但系统外力比内力小得多,如碰撞标题中的摩擦力,爆炸历程中的重力等外力比起相互作用的内力来小得多,可以忽略不计。
③系统所受外力的合力虽不为零,但在某个偏向上的分量为零,则在该偏向上系统的总动量的分量保持不变。
(2)动量守恒的速度具有四性:①矢量性;②瞬时性;③相对性;④普适性。
4.★★★★动能定理:外力对物体所做的总功即是物体动能的变化。
表达式:(1)动能定理的表达式是在物体受恒力作用且做直线运动的环境下得出的。
但它也适用于变力及物体作曲线运动的环境。
(2)功和动能都是标量,不能利用矢量准则分化,故动能定理无分量式。
高三物理第一轮复习 动量 冲量和动量定理
判断2:质量为50kg 的工人,身上系着长为5m的弹性安全带在高空作业,不慎掉下,若从弹性绳开始伸直到工人落到最低点弹性绳伸长了2m,求弹性绳对工人的平均作用力。(g = 10m/s2)
能力·思维·方法
缓拉纸带时,摩擦力虽小些,但作用时间可以很长,故重物获得的冲量,即动量的改变量可以很大,所以能把重物带动;快拉时,摩擦力虽大些,但作用时间很短,故冲量小,所以重物动量的改变量小.因此答案C、D正确.
【例10】某消防队员质量60Kg从一平台上跳下,下落2m后双脚触地,接着他用双腿弯曲的方法缓冲,使自身重心又下降了0.5s.在着地过程中,对他双脚的平均作用力估计为
例4如图所示,质量为2kg的物体沿倾角为30°高为h=5m的光滑斜面由静止从顶端下滑到底端的过程中,求: (1)重力的冲量; (2)支持力的冲量; (3)合外力的冲量.(g=10m/s2)
【解析】求某个力的冲量时,只有恒力才能用公式I=F·t,而对于变力一般用动量定理求解,此题物体下滑过程中各力均为恒力,所以只要求出力作用时间便可用I=Ft求解. 由牛顿第二定律F=ma得 下滑的加速度a=g·sin=5m/s2.
能力·思维·方法
【解析】本题问题情景清晰,是一道应用动量定量解释物理现象的好题.为了使得从高处跳下时减少地面对双腿的冲击力,应减少h—跳下前的高度;增大△h—双脚弯曲时重心下移的距离.即不宜笔直跳下,应先蹲下后再跳,着地时应尽可能向下弯曲身体,增大重心下降的距离.实际操作中,还有很多方法可以缓冲地面的作用力.如先使前脚掌触地等.也可同样运用动量定理解释.对本题分析如下:下落2m双脚刚着地时的速度为v= .触地后,速度从v减为0的时间可以认为等于双腿弯曲又使重心下移 △h=0.5m所需时间.在估算过程中,可把地面对他双脚的力简化为一个恒力,故重心下降过程可视为匀减速过程.从而有:
高三物理一轮复习资料【动量定理】
高三物理一轮复习资料【动量定理】[考点分析]1.命题特点:单独考查动量定理时以选择题为主,难度较小,命题点以对动量、冲量概念的理解及动量定理的简单应用为主,但也呈现出与其他知识综合的趋势.2.思想方法:守恒思想、微元法、模型法等.[知能必备]1.动量定理(1)表达式:F Δt =m v ′-m v .I =p ′-p .(2)力的表达式:F =Δp Δt. 2.动量定理的理解和应用(1)公式p ′-p =Ft 是矢量式,右边是物体受到所有力的总冲量,而不是某一个力的冲量.其中的F 是研究对象所受的包括重力在内所有外力的合力,它可以是恒力,也可以是变力,如果合外力是变力,则F 是合外力在t 时间内的平均值.(2)动量定理反映的是合外力的冲量I 合和动量的变化量Δp 的关系,不仅I 合与Δp 大小相等,而且Δp 的方向与I 合的方向相同.(3)公式p ′-p =Ft 说明了两边的因果关系,即合力的冲量是动量变化的原因.[真题再练]1.行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体.若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是( )A .增加了司机单位面积的受力大小B .减少了碰撞前后司机动量的变化量C .将司机的动能全部转换成汽车的动能D .延长了司机的受力时间并增大了司机的受力面积解析:D 因安全气囊充气后,受力面积增大,故减小了司机单位面积的受力大小,故A 错误;有无安全气囊司机初动量和末动量均相同,所以动量的改变量也相同,故B 错误;因有安全气囊的存在,司机和安全气囊接触后会有一部分动能转化为气体的内能,不能全部转化成汽车的动能,故C 错误;因为安全气囊充气后面积增大,司机的受力面积也增大,在司机挤压气囊作用过程中由于气囊的缓冲故增加了作用时间,故D 正确.2.最近,我国为“长征九号”研制的大推力新型火箭发动机联试成功,这标志着我国重型运载火箭的研发取得突破性进展.若某次实验中该发动机向后喷射的气体速度约为 3km/s,产生的推力约为4.8×106 N,则它在1 s时间内喷射的气体质量约为() A.1.6×102 kg B.1.6×103 kgC.1.6×105 kg D.1.6×106 kg解析:B设1 s内喷出气体的质量为m,喷出的气体与该发动机的相互作用力为F,由动量定理Ft=m v知,m=Ft v=4.8×106×1kg=1.6×103 kg,选项B正确.3×1031.用动量定理解题的基本思路(1)确定研究对象:一般为单个物体.(2)进行受力分析:求每个力的冲量,再求合冲量或先求合力,再求其冲量.(3)分析过程找初、末状态:选取正方向,确定初、末状态的动量和各冲量的正负.(4)列方程:根据动量定理列方程求解.2.对过程较复杂的运动,可分段用动量定理,也可整个过程用动量定理.[精选模拟]视角1:动量定理的基本应用1.中国传统文化博大精深,简单的现象揭示了深刻的道理,如水滴石穿.假设从屋檐滴下的水滴质量为0.5 g,屋檐到下方石板的距离为4 m,水滴落到石板上在0.2 s内沿石板平面散开,忽略空气阻力,g取10 m/s2,则石板受到水滴的冲击力约为() A.0.22 N B.0.27 NC.0.022 N D.0.027 N解析:D由题知,水滴质量为m=0.5 g,重力加速度为g=10 m/s2,屋檐高度为h=4 m,设水滴刚落到石板上时速度为v.水滴从屋檐开始下落到石板上,忽略空气阻力,水滴的机械能守恒,有mgh=12.水滴从接触石板到速度为零的过程中,取向下为正方向,对2m v水滴由动量定理得(mg-F)t=0-m v,解得F≈0.027 N,由牛顿第三定律可知,D正确.2.(多选)将一小球从地面以速度v0竖直向上抛出,小球上升到某一高度后又落回到地面.若该过程中空气阻力不能忽略,且大小近似不变,下列说法正确的是() A.重力在上升过程与下降过程中做的功大小相等B.重力在上升过程与下降过程中的冲量相同C.整个过程中空气阻力所做的功等于小球机械能的变化量D.整个过程中空气阻力的冲量等于小球动量的变化量解析:AC根据W=Gh可知,重力在上升过程与下降过程中做的功大小相等,选项A 正确;上升过程中的加速度a 上=g +f m 大于下降过程中的加速度a 下=g -f m ,则上升的时间小于下降的时间,即t 上< t 下,根据I =Gt 可知,重力在上升过程中的冲量小于下降过程中的冲量,选项B 错误;根据功能关系,整个过程中空气阻力所做的功等于小球机械能的变化量,选项C 正确;整个过程中空气阻力的冲量和重力的冲量之和等于小球动量的变化量,选项D 错误.视角2:动量定理的综合应用3.(多选)静止在粗糙水平面上的物体,在水平力F 的作用下,经过时间t 、通过位移l 后,动量为p 、动能为E k .以下说法正确的是( )A .若保持水平力F 不变,经过时间2t ,物体的动量等于2pB .若将水平力增加为原来的两倍,经过时间t ,物体的动量等于2pC .若保持水平力F 不变,通过位移2l ,物体的动能小于2E kD .若将水平力增加为原来的两倍,通过位移l ,物体的动能大于2E k解析:AD 根据动量定理I 合=(F -f )t =p ,保持水平力F 不变,经过时间2t ,(F -f )·2t =p ′,可知p ′=2p ,故A 正确;根据动量定理I 合=(F -f )t =p ,若水平力增加为原来的2倍,经过时间t ,则有(2F -f )·t =p ′,则p ′>2p ,故B 错误;根据动能定理(F -f )·l =E k ,保持水平力F 不变,通过位移2l ,有(F -f )·2l =E k ′,则有E k ′=2E k ,故C 错误;根据动能定理(F -f )·l =E k ,将水平力增加为原来的两倍,通过位移l ,有(2F -f )·l =E k ′,则有E k ′>2E k ,故D 正确.4.某游乐园入口旁有一喷泉,喷出的水柱将一质量为M 的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S 的喷口持续以速度v 0竖直向上喷出;玩具底部为平板(面积略大于S );水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g .求:(1)喷泉单位时间内喷出的水的质量;(2)玩具在空中悬停时,其底面相对于喷口的高度.解析:(1)设Δt 时间内,从喷口喷出的水的体积为ΔV ,质量为Δm ,则Δm =ρΔV ①ΔV =v 0S Δt ②由①②式得,单位时间内从喷口喷出的水的质量为ΔmΔt=ρv0S③(2)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具底面时的速度大小为v.对于Δt时间内喷出的水,由能量守恒得12(Δm)v2+(Δm)gh=12(Δm)v20④在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小为Δp=(Δm)v⑤设水对玩具的作用力的大小为F,对冲击玩具的一段水柱为Δm,根据动量定理有(F+Δmg)Δt=Δp由于Δt很小,Δmg也很小,可以忽略,即FΔt=Δp⑥由于玩具在空中悬停,由力的平衡条件得F=Mg⑦联立③④⑤⑥⑦式得h=v202g -M2g2ρ2v20S2⑧答案:(1)ρv0S(2)v202g-M2g2ρ2v20S2。
高三第一轮复习-动量 动量守恒定律
动量动量守恒定律1.理解动量、动量的变化量、动量定理的概念.2.知道动量守恒的条件.3.会利用动量守恒定律分析碰撞、反冲等相互作用问题.考点一动量、冲量、动量定理的理解与应用1.动量(1)定义:运动物体的质量和速度的乘积叫做物体的动量,通常用p来表示.(2)表达式:p=mv.(3)单位:kg·m/s.(4)标矢性:动量是矢量,其方向和速度方向相同.2.冲量(1)定义:力F 与力的作用时间t 的乘积. (2)定义式:I =Ft . (3)单位:N·_s.(4)方向:恒力作用时,与力的方向相同.(5)物理意义:是一个过程量,表示力在时间上积累的作用效果. 3.动量定理(1)内容:物体所受合外力的冲量等于物体的动量的变化量.(2)表达式:⎩⎪⎨⎪⎧Ft =p ′-pI =Δp[例题1] (2024•河南一模)质量相等的A 、B 两个小球处在空中同一高度,将A 球水平向右抛出,同时将B 球斜向上抛出,两小球抛出时的初速度大小相同,两小球在空中运动的轨迹如图,不计空气阻力。
则两小球在空中运动的过程中,下列说法正确的是( )A .相同时间内,速度变化量可能不同B .同一时刻,速度变化快慢可能不同C .抛出后下降到同一高度时,动能一定相同D .相同时间内,重力的冲量大小可能不同[例题2] (2024•开福区校级模拟)一质量为m =1kg 的物体,从距地面高度为0.8m 处以某一未知初速度水平抛出。
落地后不弹起。
假设地面为粗糙刚性水平接触面(与物体发生碰撞的时间极短,不计重力产生的冲量),物体与地面间的动摩擦因数μ=0.5,取重力加速度g =10m/s 2。
下列说法正确的是( )A .物体从抛出到最终停下的过程中,减少的机械能等于与粗糙水平面的摩擦生热B .若物体的初速度为1m/s ,则与地面碰撞的过程中,地面对其冲量的大小为4N •sC .若物体的初速度为3m/s ,则与地面碰撞的过程中,地面对其冲量的大小为2√5N •sD .若物体的初速度变为之前的2倍,物体落地后沿水平运动的距离可能是原来的4倍 [例题3] (2024•宁波二模)如图所示,在水平地面上用彼此平行、相邻间距为l 的水平小细杆构成一排固定的栅栏。
动量守恒定律专题高三物理第一轮复习PPT课件动量北京海淀
5.动量守恒定律的应用 第一类:“人船模型” 例1、一只小船静止在湖面上,一个人从小船 的一端走到另一端(不计水的阻力),以下说法 中正确的是: A.人在小船上行走,人对船作用的冲量比船 对人作用的冲量小,所以人向前运动得快,船 后退得慢; B.人在船上行走时,人的质量比船小,它们 所受冲量的大小是相等的,所以人向前运动得 快,船后退得慢;
练习:甲小孩乘一辆小车在光滑水平面上匀速驶, 速度为6m/s.甲车上有质量为m=1kg的小球若干个, 甲和他的车及所带小球的总质量为M=50kg,为了使 小车增加速度,小孩将小球抛出车外。
(1)小孩每次以2m/s的速度向同一方向水平抛出 一小球,共抛出三个小球后,小车的速度变为多少?
(2)小孩以2m/s的速度向同一方向同时水平抛出 三个小球,小车的速度变为多少?
【例题目的】进一步加深对动量守恒条件 的理解:选择不同的系统,从受力分析入 手,分清内、外力判断系统动量是否守恒。 总结动量守恒条件与机械能守恒条件的区 别。
6、对守恒动量守恒定律的理解 矢量性 例1.光滑水平面,A、B两小球,质量分别为m1、m2, 给出不同运动情景下,动量守恒表达式的不同形式。 ① 0= mlv1’+m2v2’ mlv1’=-m2v2’适用于原静止的 两物体,作用后动量等值反向,你动我动,你快我快, 你慢我慢,你停我停,你我速率和质量成反比。 ② m1v1+m2v2 =(ml+m2)v’作用后结合在一起。 ③ m1v1 =(ml+m2)v’一运动物体与原静止物体作用 后结合在一起。
例2.如图5—7所示的装置中,木块B与水 平桌面间的接触是光滑的,子弹A沿水平 方向射入木块后留在木块内,将弹簧压缩 到最短, ①分析子弹开始射入木块到弹簧压缩至最 短的整个过程中,可以分为几个阶段;
高考物理一轮复习专题之《动量守恒》核心知识点汇总
高考物理一轮复习专题之《动量守恒》核心知识点汇总【基本概念、规律】一、动量动量定理1.冲量(1)定义:力和力的作用时间的乘积.(2)公式:I=Ft,适用于求恒力的冲量.(3)方向:与力F的方向相同.2.动量(1)定义:物体的质量与速度的乘积.(2)公式:p=mv.(3)单位:千克·米/秒,符号:kg·m/s.(4)意义:动量是描述物体运动状态的物理量,是矢量,其方向与速度的方向相同.3.动量定理(1)内容:物体所受合力的冲量等于物体动量的增量.(2)表达式:F·Δt=Δp=p′-p.(3)矢量性:动量变化量方向与合力的方向相同,可以在某一方向上用动量定理.4.动量、动能、动量的变化量的关系(1)动量的变化量:Δp=p′-p.二、动量守恒定律1.守恒条件(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.2.动量守恒定律的表达式:m1v1+m2v2=m1v′1+m2v′2或Δp1=-Δp2.三、碰撞1.碰撞物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.3.分类【重要考点归纳】考点一动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F应理解为变力在作用时间内的平均值.2.动量定理的表达式F·Δt=Δp是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小4.应用动量定理解题的一般步骤(1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段.(2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力.(3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二动量守恒定律与碰撞1.动量守恒定律的不同表达形式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m11=-m22得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.考点五实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P 就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等.。
动量定理练习高三物理第一轮复习PPT课件动量北京海淀
3、A、B两物体的质量分别为mA、mB。它 们沿同一水平面向同一方向滑行,分别受到 恒定阻力作用后最后停下来。
〔1〕两物体初始动能一样,所受阻力大小 也一样;
〔2〕两物体初始动量一样,物体与水平面 间动摩擦因数也一样。
求:两物体在水平面上滑行时间和滑行距离 的比
4、一物块从倾角为θ的斜面上A点由静止开 场滑下,最后停在水平面上C点。斜面与水 平面的材料质地完全一样,物块在斜面和水 平面上滑行的时间之比 , t1 k
t2
且经过斜面最低点B时能量没有损失。求物 块与接触面间的动摩擦因数μ
理练习高三物理第一轮复习PPT课件动量北京海淀
1、质量为m=0.1kg的小钢球从h1=5m高处 自由下落,与地板碰撞后上升h2=1.8m,设 碰撞时间t=0.2s,求钢球对地板的平均冲力。
2、质量为m的小球从泥塘上方某一高处由 静止开场落下,经时间t1落在泥塘上,小球 在泥塘中继续下沉了一段时间t2后停顿。不 计下落中空气阻力作用,求小球在泥塘中 运动时所受平均阻力多大?
高考物理一轮复习专题精讲—动量定理及其应用
高考物理一轮复习专题精讲—动量定理及其应用一、动量、动量变化、冲量1.动量(1)定义:物体的质量与速度的乘积。
(2)表达式:p=mv。
(3)方向:动量的方向与速度的方向相同。
2.动量的变化(1)因为动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同。
(2)动量的变化量Δp,一般用末动量p′减去初动量p进行矢量运算,也称为动量的增量,即Δp=p′-p。
3.冲量(1)定义:力与力的作用时间的乘积叫做力的冲量。
(2)公式:I=FΔt。
(3)单位:N·s。
(4)方向:冲量是矢量,其方向与力的方向相同。
【自测1】(多选)(2020·安徽六安市省示范高中教学质检)关于下列描述的运动中,在任意相等的时间内物体动量的改变量始终相同的是()A.物体在恒力作用下沿水平方向做匀加速直线运动B.将物体水平抛出(不计空气阻力)C.物体在竖直面内做匀速圆周运动D.人造卫星绕地球的运动答案AB解析根据动量定理Ft=Δp知,若物体在任意相等的时间内动量的改变量始终相同,则物体必受恒力作用。
物体在恒力作用下沿水平方向做匀加速直线运动,将物体水平抛出(不计空气阻力),物体受力均恒定不变,选项A、B正确;物体在竖直面内做匀速圆周运动,人造卫星绕地球的运动,物体和卫星受到的力都是变力,选项C、D错误。
二、动量定理1.内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量。
2.公式:F(t′-t)=mv′-mv或I=p′-p。
3.动量定理的理解(1)动量定理反映了力的冲量与动量变化量之间的因果关系,即合力的冲量是原因,物体的动量变化量是结果。
(2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和。
(3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义。
【自测2】(2018·全国卷Ⅱ,15)高空坠物极易对行人造成伤害。
高考物理一轮复习讲义:专题23 动量定理及其应用
高三一轮同步复习专题23 动量定理及应用知识点一、动量和冲量的概念理解1、关于冲量和动量,下列说法中正确的是()A.冲量是反映力对位移的积累效应的物理量C.冲量是物体动量变化的原因B.动量是描述物体运动过程的物理量D.冲量方向与动量方向一致2、如图所示,两个质量相等的小球从同一高度沿倾角不同的两个光滑固定斜面由静止自由滑下,下滑到达斜面底端的过程中()A.两物体所受重力冲量相同B.两物体所受合外力冲量不相同C.两物体到达斜面底端时时间相同D.两物体到达斜面底端时动量相同3、关于物体的动量,下列说法正确的是()A.动量越大的物体,其质量也越大B.动量越大的物体,它的速度一定越大C.如果物体的动量改变,物体的动能一定改变D.如果物体的动能改变,物体的动量一定改变4、关于动量的变化,下列说法中正确的是()∆的方向与运动方向相同A.做直线运动的物体速度增大时,动量的增量p∆的方向与运动方向相反B.做直线运动的物体速度减小时,动量的增量p∆一定为零C.物体的速度大小不变时,动量的增量pD.物体做平抛运动时,动量的增量一定不为零5、一质点静止在光滑水平面上,现对其施加水平外力F,F随时间t按正弦规律变化,如图所示,下列说法正确的是()A.第2s末,质点的动量为0B.第2s末,质点距离出发点最远C.在0~2s内,F的功率一直增大D.在0~4s内,F的冲量为0知识点二、动量定理的理解和应用6、行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。
若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D .延长了司机的受力时间并增大了司机的受力面积7、高空作业须系安全带。
如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动)。
动量动量定理详细分析高三物理第一轮复习PPT课件动量北京海淀
t2
• 一粒钢珠从静止状态开始自由下落,然后陷入泥 潭中,若把在空中自由下落的过程称为1,进入泥 潭直到停住的过程称为2,则: • A.过程1中钢珠动量的改变量等于重力的冲量 • B.过程2中阻力的冲量的大小等于过程1中重力 的冲量大小 • C.过程2中阻力的冲量的大小等于过程1与过程2 中重力的冲量大小 v1=0 • D.过程2中钢珠的动量改变量等于阻力 • 的冲量 G 1
第一部分 动 量
1.理解动量概念
• 动量是描述物体(质点)运动状态的物理量,量度物体运 动的强弱。 • (1)定义:p = mv • (2)描述物体运动的状态量 • (3)动量是矢量,方向和速度的方向相同。 • (4)动量的变化,遵循矢量运算法则。计算Δp要建立坐 标系。
• 例1:质量为0.40kg的小球,沿光滑水平面 以5.0m/s的速度冲向墙壁,又以4.0m/s的 速度被反向弹回,求小球动量的增量。
v1 v2
(5)Βιβλιοθήκη 动量与动能的区别和联系:p2 瞬时数量关系:p= 2mEk 或 Ek= 2m 动量是矢量,动能是标量
同一物体 p 变 Ek 不一定变化,Ek 变则 p 一定要变;或 Δp≠ 2mEk
思考:质量为m的物体以速率v做匀速圆周运 动,求经过半个周期物体动能的变化量和动 量变化量。1/4周期呢?
t1
v2
AC
t2 G
f
2 v3=0
• 质量为m=1.0kg的小球从高h1=20m处下落到软 垫上,反弹后上升的最大高度为h2=5.0m,小球 与软垫的接触时间为t=1.0s,则: • • • • • (1)小球接触软垫过程中动量变化为( C ) (3)小球接触软垫过程中受到合力冲量为( C ) (2)小球接触软垫过程中受到软垫冲量为( D ) A.10kg∙m/s,向上 B.30kg∙m/s,向下 C.30kg∙m/s,向上 D.40kg∙m/s,向上
高三物理一轮复习【动量和动量定理】
课前自主梳理
课堂互动探究
高考模拟演练
(2)取向右为正方向,碰后滑块速度 v′=-6 m/s 由动量定理得:FΔt=mv′-mv③ 解得 F=-130 N④ 其中“-”表示墙面对物块的平均力方向向左。 (3)对物块反向运动过程中应用动能定理得
-W=0-12mv′2⑤ 解得 W=9 J
答案 (1)0.32 (2)130 N (3)9 J
课前自主梳理Biblioteka 课堂互动探究高考模拟演练
根据动量定理,并设向左方向为正,则 I=m(-vB)-mvA =-m( 5Rg+ Rg)=-( 5+1)m Rg
答案 ( 5+1)m Rg 方向水平向右
课前自主梳理
课堂互动探究
高考模拟演练
1.[用动量定理解释生活现象]人从高处跳到低处时,为了安全, 一般都是让脚尖先着地,这是为了( ) A.减小地面对人的冲量 B.使人的动量变化减小 C.减小地面对人的冲力 D.增大人对地面的压强,起到安全保护作用
课前自主梳理
课堂互动探究
高考模拟演练
解析 人从高处跳下落地时的速度是一定的,与地面接触的过 程中,人的动量变化是定值,所受到的冲量也是一定的,但脚 尖先着地增加了缓冲时间,使得人所受冲力减小,起到安全保 护作用,这个过程中人对地面的压强也相应减小。选项C正确。 答案 C
课前自主梳理
课堂互动探究
高考模拟演练
课前自主梳理
课堂互动探究
高考模拟演练
2.动量定理 (1)内容:物体所受_合__外__力___的冲量等于物体__动__量__的变化。 (2)表达式:Ft=Δp=p′-p。 (3)矢量性:动量变化量的方向与__合__外__力___的方向相同,可 以在某一方向上用动量定理。
课前自主梳理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题动量定理知识梳理动量定理是解决物理问题重要的方法之一,力学、电磁学都能用的。
既可出现在近几年高考教学目标题型分类及方法点拨类型一基本应用方法点拨:这类题属于基础题型,解题关键是动量定理是矢量公式,一定要选取正方向(一般选末速度方向为正)。
例题1:质量是 60kg 的运动员,从 5.0m 高处自由下落在海绵垫上,经过 1.0s 停止。
取g=10m/s2。
求海绵垫对运动员的平均作用力的大小。
练习1.如图所示,一高空作业的工人体重600 N ,系一条长为l=5 m 的安全带,若工人不慎跌落时安全带的缓冲时t=1 s,则安全带所受的冲力是多大?(重力加速度g 取 10m /s2)。
练习2. 质量为 0.5 kg的弹性小球,从1.25 m 高处自由下落,与地板碰撞后回跳高度为0.8 m ,取10 m/s2.(1)若地板对小球的平均冲力大小为100 N,求小球与地板的碰撞时间;(2)若小球与地板碰撞无机械能损失,碰撞时间为 0.1 s ,求小球对地板的平均冲力.类型二流体问题方法点拨:这类主要是没有固定形状的物体(水,空气等),可以看做柱体来解题,即:m=ρV=ρSvΔt例题2:有一宇宙飞船以v=10 km/s在太空中飞行,突然进入一密度为ρ=10-7 kg/m3的微陨石尘区,假设微陨石与飞船碰撞后即附着在飞船上.欲使飞船保持原速度不变,试求飞船的助推器的助推力应增大为多少.(已知飞船的正横截面积S=2 m2).练习1:如图所示,用高压水枪喷出的强力水柱冲击煤层,设水柱直径为D,水流速度为v,水的密度为ρ,水柱垂直煤层表面,水柱冲击煤层后水的速度为零.(1)求高压水枪的功率;(2)求水柱对煤的平均冲力;(3)若将质量为m的高压水枪固定在质量为M的小车上,当高压水枪喷出速度为v(相对于地面),质量为△m的水流时,小车的速度是多大?水枪做功多大?不计小车与地面的摩擦力.练习2:如图1所示为某农庄灌溉工程的示意图,地面与水面的距离为H.用水泵从水池抽水(抽水过程中H保持不变),龙头离地面高h,水管横截面积为S,水的密度为ρ,重力加速度为g,不计空气阻力.(1)水从管口以不变的速度源源不断地沿水平方向喷出,水落地的位置到管口的水平距离为10h.设管口横截面上各处水的速度都相同.求:a.每秒内从管口流出的水的质量m0;b.不计额外功的损失,水泵输出的功率P.(2)在保证水管流量不变的前提下,在龙头后接一喷头,如图2所示.让水流竖直向下喷出,打在水平地面上不反弹,产生大小为F的冲击力.由于水与地面作用时间很短,可忽略重力的影响.求水流落地前瞬间的速度大小v.类型三动量在磁场中的应用方法点拨:这类题主要用微元法来解决磁场问题,即速度与时间的累积作用效果就是位移,对洛伦兹力用动量定理:ΣBqvΔt=Δp→BqΣvΔt=Δp→Bqx=Δp例题3如图所示,直角坐标系xOy位于竖直平面内,y轴正方向竖直向上,x轴正方向水平向右.空间中存在相互垂直的匀强电场和匀强磁场,匀强磁场垂直xOy平面向里,磁感应强度大小为B.匀强电场(图中未画出)方向平行于xOy平面,小球(可视为质点)的质量为m、带电量为+q,已知电场强度大小为E=,g为重力加速度.(1)若匀强电场方向水平向左,使小球在空间中做直线运动,求小球在空间中做直线运动的速度大小和方向;(2)若匀强电场在xOy平面内的任意方向,确定小球在xOy平面内做直线运动的速度大小的范围;(3)若匀强电场方向竖直向下,将小球从O点由静止释放,求小球运动过程中距x轴的最大距离.练习1:研究物理问题的方法是运用现有的知识对问题做深入的学习和研究,找到解决的思路与方法,例如:模型法、等效法、分析法、图象法.掌握并能运用这些方法在一定程度上比习得物理知识更加重要.(1)如图甲所示,空间有一水平向右的匀强电场,半径为r的绝缘光滑圆环固定在竖直平面内,O是圆心,AB是竖直方向的直径.一质量为m、电荷量为+q的小球套在圆环上,并静止在P点,且OP与竖直方向的夹角θ=37°.不计空气阻力.已知重力加速度为g,sin37°=0.6,cos37°=0.8.a.求电场强度E的大小;b.若要使小球从P点出发能做完整的圆周运动,求小球初速度应满足的条件.(2)如图乙所示,空间有一个范围足够大的匀强磁场,磁感应强度为B,一个质量为m、电荷量为+q的带电小圆环套在一根固定的绝缘竖直细杆上,杆足够长,环与杆的动摩擦因数为μ.现使圆环以初速度v0向上运动,经时间t圆环回到出发位置.不计空气阻力.已知重力加速度为g.求当圆环回到出发位置时速度v的大小.练习2:如图所示,竖直平面MN与纸面垂直,MN右侧的空间存在着垂直纸面向内的匀强磁场和水平向左的匀强电场,MN左侧的水平面光滑,右侧的水平面粗糙.质量为m的物体A 静止在MN左侧的水平面上,已知该物体带负电,电荷量的大小为为q.一质量为的不带电的物体B以速度v0冲向物体A并发生弹性碰撞,碰撞前后物体A的电荷量保持不变.求:(1)碰撞后物体A的速度大小v A;(2)若A与水平面的动摩擦因数为μ,重力加速度的大小为g,磁感应强度的大小为,电场强度的大小为.已知物体A从MN开始向右移动的距离为l时,速度增加到最大值.求:a .此过程中物体A 克服摩擦力所做的功W ;b .此过程所经历的时间t .类型四 电磁感应中与电量结合方法点拨:这类题主要用求电量的两种方式来解决电磁感应问题:(一)公式法:q=It=n ΔΦR 总;(二)动量定理法(微元的思想):ΣBIL Δt=Δp →BL ΣI Δt=Δp→BLq=Δp例题4如图所示,一对平行光滑轨道放置在水平面上,两轨道相距L=1m ,两轨道之间用电阻R=2Ω连接,有一质量为m=0.5kg 的导体杆静止地放在轨道上与两轨道垂直,杆及轨道的电阻皆可忽略不计,整个装置处于磁感应强度B=2T 的匀强磁场中,磁场方向垂直轨道平面向上.现用水平拉力沿轨道方向拉导体杆,使导体杆从静止开始做匀加速运动.经过位移s=0.5m 后,撤去拉力,导体杆又滑行了相同的位移s 后停下.求: (1)全过程中通过电阻R 的电荷量. (2)拉力的冲量. (3)匀加速运动的加速度.(4)画出拉力随时间变化的F ﹣t 图象.练习1: 如图光滑水平面上有竖直向下的有界匀强磁场,磁场宽度为2l 、磁感应强度为B 。
正方形线框的电阻为R ,边长为l ,线框以与垂直的速度3v 进入磁场,线框穿出磁场时的速度为v ,整个过程中ab 、cd 两边始终保持与磁场边界平行。
设线框进入磁场区域过程中产生的焦耳热为Q 1,穿出磁场区域过程中产生的焦耳热为Q 2。
则Q 1:Q 2等于A .1:1B .2:1C .3:2D .5:3练习2:如图所示,在质量为M=0.99kg 的小车上,固定着一个质量为m=0.01kg 、电阻R=1Ω的矩形单匝线圈MNPQ ,其中MN 边水平,NP 边竖直,MN 边长为L=0.1m ,NP 边长为l=0.05m .小车载着线圈在光滑水平面上一起以v 0=10m/s 的速度做匀速运动,随后进入一水平有界匀强磁场(磁场宽度大于小车长度).磁场方向与线圈平面垂直并指向纸内、磁感应强度大小B=1.0T .已知线圈与小车之间绝缘,小车长度与线圈MN 边长度相同.求:(1)小车刚进入磁场时线圈中感应电流I 的大小和方向; (2)小车进入磁场的过程中流过线圈横截面的电量q ;(3)如果磁感应强度大小未知,已知完全穿出磁场时小车速度v 1=2m/s ,求小车进入磁场过程中线圈电阻的发热量Q .类型五 电磁感应的双规双杆应用方法点拨:双轨双杆模型问题主要有两类题:(一)系统合外力为0,一般用动量守恒来求速度;(二)系统合外力不为0,一般用动量定理来求速度。
例题5在如图所示的水平导轨(摩擦、电阻忽略不计)处于竖直向下的匀强磁场中,磁场的磁感强度B ,导轨左端的间距为L 1=4l 0,右端间距为L 2=l 0,两段导轨均足够长.今在导轨上放置AC 、DE 两根导体棒,质量分别为m 1=2m 0,m 2=m 0.电阻分别为R 1=4R 0,R 2=R 0.若AC 棒以初速度v 0向右运动,求:(1)定性描述全过程中AC 棒的运动情况× × × × × × × × × ×× × × × × × × × × ×(2)两棒在达到稳定状态前加速度之比是多少?(3)运动过程中DE棒产生的总焦耳热Q DE.练习1:如图所示,光滑、足够长、不计电阻、轨道间距为l的平行金属导轨MN、PQ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B1;右半部分为Ⅱ匀强磁场区,磁感应强度为B2,且B1=2B2.在Ι匀强磁场区的左边界垂直于导轨放置一质量为m、电阻为R1的金属棒a,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m、电阻为R2的金属棒b.开始时b静止,给a一个向右冲量I后a、b开始运动.设运动过程中,两金属棒总是与导轨垂直.(1)求金属棒a受到冲量后的瞬间通过金属导轨的感应电流;(2)设金属棒b在运动到Ι匀强磁场区的右边界前已经达到最大速度,求金属棒b在Ι匀强磁场区中的最大速度值;(3)金属棒b进入Ⅱ匀强磁场区后,金属棒b再次达到匀速运动状态,设这时金属棒a仍然在Ι匀强磁场区中.求金属棒b进入Ⅱ匀强磁场区后的运动过程中金属棒a、b中产生的总焦耳热.练习2:如图所示,两根金属平行导轨MN和PQ放在水平面上,左端向上弯曲且光滑,导轨间距为L,电阻不计.水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B,方向竖直向下.质量均为m、电阻均为R的金属棒a和b垂直导轨放置在其上,金属棒b置于磁场Ⅱ的右边界CD处.现将金属棒a从弯曲导轨上某一高处由静止释放,使其沿导轨运动.设两金属棒运动过程中始终与导轨垂直且接触良好.(1)若水平段导轨粗糙,两金属棒与水平段导轨间的最大摩擦力均为mg,将金属棒a从距水平面高度h处由静止释放.求: 金属棒a刚进入磁场Ⅰ时,通过金属棒b的电流大小; 若金属棒a在磁场Ⅰ内运动过程中,金属棒b能在导轨上保持静止,通过计算分析金属棒a释放时的高度h应满足的条件;(2)若水平段导轨是光滑的,将金属棒a仍从高度h处由静止释放,使其进入磁场Ⅰ.设两磁场区域足够大,求金属棒a在磁场Ⅰ内运动过程中,金属棒b中可能产生焦耳热的最大值.巩固练习(一)1.高空作业须系安全带.如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h(可视为自由落体运动).此后经历时间t安全带达到最大伸长,若在此过程中该作用力始终竖直向上,求:(1)整个过程中重力的冲量;(2)该段时间安全带对人的平均作用力大小.2.质量为70kg的人不慎从高空支架上跌落,由于弹性安全带的保护,使他悬挂在空中.已知人先自由下落3.2 m,安全带伸直到原长,接着拉伸安全带缓冲到最低点,缓冲时间为1s,取g=10m/s2.求缓冲过程人受到安全带的平均拉力的大小.3.一垒球手水平挥动棒球,迎面打击一以速度5m/s水平飞来的垒球,垒球随后在离打击点水平距离为30m的垒球场上落地,设垒球质量为0.18kg,打击点离地面高度为2.2m,球棒与垒球的作用时间为0.010s,重力加速度为9.9m/s2,求球棒对垒球的平均作用力的大小.4.质量m=0.1kg的小球从高h1=20m处自由下落到软垫上,反弹后上升的最大高度h2=5.0mm,小球与软垫接触的时间t=1.0s,不计空气阻力,g=10m/s2,以竖直向下为正方向,求:(1)小球与软垫接触前后的动量改变量;(2)接触过程中软垫对小球的平均作用力.5.2007年6月15日,325国道广东佛山段九江大桥由于一艘3000t的运沙船撞上非通航孔桥墩而瞬间垮塌,桥上行驶着的汽车落入江中造成多人遇难.设运沙船撞击前的速度为3.6km/h,撞击后的速度为0,钢铁建造的运沙船与钢筋水泥大桥的碰撞时间为0.2s.九江大桥160m通航孔按过江油轮设计,即桥墩按横向船舶撞击力120t(此为航船业专业术语,相对应的撞击力为1.2×106N)进行防撞设计,非通航孔桥墩按横向船舶撞击力40t进行防撞设计.请运用所学物理知识,计算运沙船撞击大桥的冲击力是否超过设计标准.6.如图所示,从距离地面h=1.25m处以初速度v o=5.0m/s水平抛出一个小钢球(可视为质点),落在坚硬的水平地面上.已知小球质量m=0.20kg,不计空气阻力,取重力加速度g=10m/s2.(1)求钢球落地前瞬间速度v的大小和方向.(2)小球落到地面,如果其速度与竖直方向的夹角是θ,则其与地面碰撞后.其速度与竖直方向的夹角也是θ,且碰撞前后速度的大小不变.在运用动量定理处理二维问题时,可以在相互垂直的两个方向上分别研究.a.求碰撞前后小球动量的变化量△P的大小和方向;b.已知小球与地面碰撞的时间△t=0.04s.求小球对地面平均作用力的大小和方向.7.光子具有能量,也具有动量.光照射到物体表面时,会对物体产生压强,这就是“光压”.光压的产生机理如同气体压强:大量气体分子与器壁的频繁碰撞产生了持续均匀的压力,器壁在单位面积上受到的压力就是气体的压强.设太阳光每个光子的平均能量为E,太阳光垂直照射地球表面时,在单位面积上的辐射功率为P0.已知光速为c,则光子的动量为.求:(1)若太阳光垂直照射在地球表面,则时间t内照射到地球表面上半径为r的圆形区域内太阳光的总能量及光子个数分别是多少?(2)若太阳光垂直照射到地球表面,在半径为r的某圆形区域内被完全反射(即所有光子均被反射,且被反射前后的能量变化可忽略不计),则太阳光在该区域表面产生的光压(用I表示光压)是多少?(3)有科学家建议利用光压对太阳帆的作用作为未来星际旅行的动力来源.一般情况下,太阳光照射到物体表面时,一部分会被反射,还有一部分被吸收.若物体表面的反射系数为ρ,则在物体表面产生的光压是全反射时产生光压的倍.设太阳帆的反射系数ρ=0.8,太阳帆为圆盘形,其半径r=15m,飞船的总质量m=100kg,太阳光垂直照射在太阳帆表面单位面积上的辐射功率P0=1.4kW,已知光速c=3.0×108m/s.利用上述数据并结合第(2)问中的结论,求太阳帆飞船仅在上述光压的作用下,能产生的加速度大小是多少?不考虑光子被反射前后的能量变化.(保留2位有效数字)8.下雨是常见的自然现象,如果雨滴下落为自由落体运动,则雨滴落到地面时,对地表动植物危害十分巨大,实际上,动植物都没有被雨滴砸伤,因为雨滴下落时不仅受重力,还受空气的浮力和阻力,才使得雨滴落地时不会因速度太大而将动植物砸伤.某次下暴雨,质量m=2.5×10﹣5kg的雨滴,从高h=2000m的云层下落(g取10m/s)(1)如果不考虑空气浮力和阻力,雨滴做自由落体运动,落到地面经△t1=1.0×10﹣5s速度变为零,因为雨滴和地面作用时间极短,可认为在△t1内地面对雨滴的作用力不变且不考虑雨滴的重力,求雨滴对地面的作用力大小;(2)考虑到雨滴同时还受到空气浮力和阻力的作用,设雨滴落到地面的实际速度为8m/s,落到地面上经时间△t2=3.0×10﹣4s速速变为零,在△t2内地面对雨滴的作用力不变且不考虑雨滴的重力,求雨滴对地面的作用力大小以及该雨滴下落过程中克服空气浮力和阻力所做功的和.9.根据量子理论:光子不但有动能还有动量,其计算公式为p=.既然光子有动量,那么照射到物体表面,光子被物体反射或吸收时光就会对物体产生压强,称为“光压”.(1)一台CO2气体激光器发出的激光的功率为P0,射出的光束的横截面积为S,光速为c,当它垂直射到某一较大的物体表面时光子全部被垂直反射,则激光对该物体产生的光压是多大?(2)既然光照射物体会对物体产生光压,有人设想在遥远的宇宙探测用光压为动力推动航天器加速.假设一探测器处在地球绕日轨道上,给该探测器安上面积极大,反射率极高的薄膜,并让它正对太阳.已知在地球绕日轨道上,每平方米面积上得到太阳光的功率为1.35kW,探测器的质量为M=50kg,薄膜面积为4×104m2,求由于光压的作用探测器得到的加速度为多大?10. “离子发动机”是一种新型的宇宙飞船用的发动机,其原理是设法使探测器内携带的惰性气体氙(Xe)的中性原子变为一价离子,然后用电场加速这些氙离子使其从探测器尾部高速喷出,利用反冲使探测器得到推动力.由于单位时间内喷出的气体离子质量很小,飞船得到的加速度很小,但经过很长时间的加速,同样可以得到很大的速度.美国1998年发射的“探空一号”探测器使用了“离子发动机”技术.已知“探空一号”离子发动机向外喷射氙离子的等效电流大小为I=0.64A,氙离子的比荷(电荷量与质量之比)k=7.2×105C/kg,气体离子被喷出时的速度为v=3.0×104m/s,求:(1)“探空一号”离子发动机的功率为多大?(2)探测器得到的推动力F是多大?(3)探测器的目的地是博雷利彗星,计划飞行3年才能到达,试估算“探空一号”所需携带的氙的质量;(4)你认为为什么要选用氙?请说出一个理由.(二)1.高压采煤水枪出水口的横截面积为S,水的射速为v,水柱水平垂直地射到煤层后,速率变为0,若水的密度为ρ,假定水柱截面不变,则水对煤层的冲击力是多大?2.水力采煤时,用水枪在高压下喷出强力的水柱冲击煤层,设水柱直径为d=30cm,水速v=50m/s,假设水柱射在煤层的表面上,冲击煤层后水的速度变为零,求水柱对煤层的平均冲击力.(水的密度ρ=1.0×103kg/m3)3.某游乐园入口旁有一喷泉,喷出的水柱将一质量为M的卡通玩具稳定地悬停在空中.为计算方便起见,假设水柱从横截面积为S的喷口持续以速度v0竖直向上喷出;玩具底部为平板(面积略大于S);水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开.忽略空气阻力.已知水的密度为ρ,重力加速度大小为g.求玩具在空中悬停时,其底面相对于喷口的高度.4. 香港迪士尼游乐园入口旁有一喷泉,在水泵作用下会从鲸鱼模型背部喷出竖直向上的水柱,将站在冲浪板上的米老鼠模型托起,稳定地悬停在空中,伴随着音乐旋律,米老鼠模型能够上下运动,引人驻足,如图所示.这一景观可做如下简化,水柱从横截面积为S0的鲸鱼背部喷口持续以速度v0竖直向上喷出,设同一高度水柱横截面上各处水的速率都相同,冲浪板底部为平板且其面积大于水柱的横截面积,保证所有水都能喷到冲浪板的底部.水柱冲击冲浪板前其水平方向的速度可忽略不计,冲击冲浪板后,水在竖直方向的速度立即变为零,在水平方向朝四周均匀散开.已知米老鼠模型和冲浪板的总质量为M,水的密度为ρ,重力加速度大小为g,空气阻力及水的粘滞阻力均可忽略不计,喷水的功率定义为单位时间内喷口喷出的水的动能.(1)求喷泉喷水的功率P;(2)试计算米老鼠模型在空中悬停时离喷口的高度h;(3)实际上,当我们仔细观察时,发现喷出的水柱在空中上升阶段并不是粗细均匀的,而是在竖直方向上一头粗、一头细.请你说明上升阶段的水柱是上端较粗还是下端较粗,并说明水柱呈现该形态的原因.5.大风可能给人们的生产和生活带来一些危害,同时风能也是可以开发利用的清洁能源.(1)据北京市气象台监测显示,2012年3月23日北京刮起了今年以来最大的风,其短时风力达到近十级.在海淀区某公路旁停放的一辆小轿车被大风吹倒的数字信息亭砸中,如图甲所示.已知该信息亭形状为长方体,其高度为h,底面是边长为l的正方形,信息亭所受的重力为G,重心位于其几何中心.①求大风吹倒信息亭的过程中,至少需要对信息亭做多少功;②若已知空气密度为ρ,大风的风速大小恒为v,方向垂直于正常直立的信息亭的竖直表面,大风中运动的空气与信息亭表面作用后速度变为零.求信息亭正常直立时,大风给它的对时间的平均作用力为多大.(2)风力发电是利用风能的一种方式,风力发电机可以将风能(气流的动能)转化为电能,其主要部件如图乙所示.已知某风力发电机风轮机旋转叶片正面迎风时的有效受风面积为S,运动的空气与受风面作用后速度变为零,风力发电机将风能转化为电能的效率和空气密度均保持不变.当风速为v且风向与风力发电机受风面垂直时,风力发电机输出的电功率为P.求在同样的风向条件下,风速为时这台风力发电机输出的电功率.利用风能发电时由于风速、风向不稳定,会造成风力发电输出的电压和功率不稳定.请你提出一条合理性建议,解决这一问题.6. 雨滴在空中下落时,由于空气阻力的影响,最终会以恒定的速度匀速下降,我们把这个速度叫做收尾速度.研究表明,在无风的天气条件下,空气对下落雨滴的阻力可由公式f=CρSv2来计算,其中C为空气对雨滴的阻力系数(可视为常量),ρ为空气的密度,S 为雨滴的有效横截面积(即垂直于速度v方向的横截面积).假设雨滴下落时可视为球形,且在到达地面前均已达到收尾速度.每个雨滴的质量均为m,半径均为R,雨滴下落空间范围内的空气密度为ρ0,空气对雨滴的阻力系数为C0,重力加速度为g.(1)求雨滴在无风的天气条件下沿竖直方向下落时收尾速度的大小;(2)若根据云层高度估测出雨滴在无风的天气条件下由静止开始竖直下落的高度为h,求每个雨滴在竖直下落过程中克服空气阻力所做的功;(3)大量而密集的雨滴接连不断地打在地面上,就会对地面产生持续的压力.设在无风的天气条件下雨滴以收尾速度匀速竖直下落的空间,单位体积内的雨滴个数为n(数量足够多),雨滴落在地面上不反弹,雨滴撞击地面时其所受重力可忽略不计,求水平地面单位面积上受到的由于雨滴对其撞击所产生的压力大小.7. 我们一般认为,飞船在远离星球的宇宙深处航行时,其它星体对飞船的万有引力作用很微弱,可忽略不计.此时飞船将不受外力作用而做匀速直线运动.设想有一质量为M的宇宙飞船,正以速度v0在宇宙中飞行.飞船可视为横截面积为S的圆柱体(如图1所示).某时刻飞船监测到前面有一片尘埃云.(1)已知在开始进入尘埃云的一段很短的时间△t内,飞船的速度减小了△v,求这段时间内飞船受到的阻力大小.(2)已知尘埃云分布均匀,密度为ρ.a.假设尘埃碰到飞船时,立即吸附在飞船表面.若不采取任何措施,飞船将不断减速.通过监测得到飞船速度的倒数“”与飞行距离“x”的关系如图2所示.求飞船的速度由v0减小1%的过程中发生的位移及所用的时间.b.假设尘埃与飞船发生的是弹性碰撞,且不考虑尘埃间的相互作用.为了保证飞船能以速度v0匀速穿过尘埃云,在刚进入尘埃云时,飞船立即开启内置的离子加速器.已知该离子加速器是利用电场加速带电粒子,形成向外发射的高速(远远大于飞船速度)粒子流,从而对飞行器产生推力的.若发射的是一价阳离子,每个阳离子的质量为m,加速电压为U,元电荷为e.在加速过程中飞行器质量的变化可忽略.求单位时间内射出的阳离子数.(四)1.如图所示,质量为m的跨接杆ab可以无摩擦地沿水平的导轨滑行,两轨间距为L,导轨与电阻R连接,放在竖直向下的匀强磁场中,磁感强度为B.杆从x轴原点O以大小为v0的水平初速度向右滑行,直到静止.已知杆在整个运动过程中速度v和位移x的函数关系是:v=v0﹣B2L2xmR.杆及导轨的电阻均不计.(1)试求杆所受的安培力F随其位移x变化的函数式.(2)求出杆开始运动到停止运动过程中通过R的电量.(3)求从开始到滑过的位移为全程一半时电路中产生的焦耳热.。