山东省聊城市阳谷县2020-2021学年七年级上学期期末数学试题及参考答案

合集下载

聊城市人教版(七年级)初一上册数学期末测试题及答案

聊城市人教版(七年级)初一上册数学期末测试题及答案

聊城市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 2.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,33.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π4.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )A .22B .22﹣1C .22+1D .1 5.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() mA .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯6.若x=﹣13,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7B .﹣1C .9D .77.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 28.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 9.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣310.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠411.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-412.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )A .两点确定一条直线B .两点之间线段最短C .垂线段最短D .连接两点的线段叫做两点的距离二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.把53°30′用度表示为_____.15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.16.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期交易明细 10.16 乘坐公交¥ 4.00- 10.17转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19零食¥82.00- 10.20 餐费¥100.00-17.若3750'A ∠=︒,则A ∠的补角的度数为__________. 18.当a=_____时,分式13a a --的值为0. 19.已知23,9n mn aa -==,则m a =___________.20.4是_____的算术平方根.21.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______22.单项式()26a bc -的系数为______,次数为______.23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、解答题25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马. (1)当良马追上驽马时,驽马行了 里(用x 的代数式表示). (2)求x 的值.(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里? 26.先化简, 再求值. 已知222213,222A x xy yB x y =-+=- ()1求2A B - ()2当3,1x y时,求2A B -的值27.数学课上老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”。

聊城XX中学2020—2021学年七年级上期末数学试卷含答案解析

聊城XX中学2020—2021学年七年级上期末数学试卷含答案解析

聊城XX中学2020—2021学年七年级上期末数学试卷含答案解析一、选择题:每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.﹣2021的倒数的绝对值为()A.﹣2021 B. C.2021 D.2.如图所示的正方体沿某些棱展开后,能得到的平面图形是()A.B.C.D.3.表示“a与b的两数和的平方”的代数式是()A.a2+b2 B.a+b2C.a2+b D.(a+b)24.下列各组单项式中,为同类项的是()A.﹣4x2y与yx2B.2x与2x2C.2x2y与﹣xy2D.x3y4与﹣x3z45.下列四个生活、生产现象:①用两个钉子就能够把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来说明的现象有()A.①② B.①③ C.②④ D.③④6.以下等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n7.下列各数互为相反数的是()A.32与﹣23B.32与(﹣3)2C.32与﹣32D.﹣32与﹣(﹣3)28.多项式1+xy﹣xy2的次数及最高次项的系数分别是()A.2,1 B.2,﹣1 C.3,﹣1 D.5,﹣19.为了估量一片牧场里老鼠的数量,从牧场中捕捉60只老鼠,做上记号,然后放回牧场,几天后再捕捉第二批老鼠100只,发觉其中带有标记的老鼠5只,估量这片牧场中约有老鼠的只数为()A.1000 B.1200 C.1500 D.80010.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1 B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6 D.2(2x+1)﹣(10x+1)=111.某校为了了解七年级800名学生期中数学考试情形,从中抽取了100名学生的数学成绩进行了统计.下面5个判定中正确的有()①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④100名学生是总体的一个样本;⑤100名学生是样本容量.A.①② B.①②④C.①③ D.①③④⑤12.如图是一个运算程序的示意图,若开始输入的x值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2021次输出的结果为()A.3 B.27 C.9 D.1二、填空题:每小题4分,共20分.13.运算﹣2的结果是.14.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为.15.AB=4cm,BC=3cm,假如O是线段AC的中点.线段OB的长度为.16.上海磁悬浮列车的设计载客量每列为1000人,每小时单向可运行12列,若双向运行x(时),最大载客量为y(人),那么y与x之间的关系式能够写为.17.用你发觉的规律解答下列问题. =1﹣, =﹣, =﹣…探究+++…+= .(用含有n的式子表示)三、解答题:共64分.解承诺写出不要的文字说明、推理过程或演算步骤.18.运算:(1)﹣12020+24÷(﹣2)3﹣32×()2(2)[﹣42﹣(﹣1)3×(﹣2)3]÷2×(﹣)2.19.解方程:(1)4(x﹣1)+5=3(x+2);(2)﹣=1﹣.20.如图所示,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.21.化简求值:(1)(3a2﹣a﹣1)﹣2(3﹣a+2a2),其中a2﹣a=2.(2)x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.22.如图,学校的草坪上有两纵一横三条小路.用代数式表示除小路外的草坪的面积,并运算当x=2米,a=50米,b=20米时草坪的面积.23.(10分)广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锤炼一小时.某校依照实际,决定要紧开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)样本中最喜爱B项目的人数百分比是,其所在扇形图中的圆心角的度数是;(2)请把统计图补充完整;(3)已知该校有1200人,请依照样本估量全校最喜爱乒乓球的人数是多少?24.某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,通过市场调研,估量下一季度这种商品每件售价会降低4%,销售量将提高10%,问:(1)下一季度每件产品的销售价和销售量各是多少?(2)要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?2020-2021学年山东省聊城XX中学七年级(上)期末数学试卷参考答案与试题解析一、选择题:每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.﹣2021的倒数的绝对值为()A.﹣2021 B. C.2021 D.【考点】倒数;绝对值.【分析】依照乘积为1的两个数互为倒数,可得一个数的倒数,依照负数的绝对值是它的相反数,可得答案.【解答】解:﹣2021的倒数为﹣,﹣的绝对值为.故选;D.【点评】本题考查了倒数、绝对值的性质,把握倒数的定义和绝对值的性质是解题的关键.2.如图所示的正方体沿某些棱展开后,能得到的平面图形是()A.B.C.D.【考点】几何体的展开图.【分析】依照正方体展开图的特点及正方形上的三种图形相邻求解即可.【解答】解:由正方体展开图的特点及正方形上的三种图形相邻,可得正方体沿某些棱展开后,能得到的平面图形是B.故选:B.【点评】本题要紧考查了几何体的展开图,要紧是培养学生的观看能力和空间想象能力.3.表示“a与b的两数和的平方”的代数式是()A.a2+b2 B.a+b2C.a2+b D.(a+b)2【考点】代数式.【分析】对题中条件进行分析,a与b的两数和的平方,所求的是两数和的平方,先将两数和求出,再进行平方即可.【解答】解:由分析可得:a与b的两数和的平方所求的是和的平方,可得结果为(a+b)2.故答案为:D.【点评】本题考查代数式的简单概念,将文字转换为代数式.4.下列各组单项式中,为同类项的是()A.﹣4x2y与yx2B.2x与2x2C.2x2y与﹣xy2D.x3y4与﹣x3z4【考点】同类项.【分析】依照同类项的定义,可判定同类项.【解答】解:∵﹣4x2y与yx2是同类项,故A正确,故选:A.【点评】本题考查了同类项,字母相同,且相同字母的指数相等,是判定同类项的关键.5.下列四个生活、生产现象:①用两个钉子就能够把木条固定在墙上;②植树时,只要定出两棵树的位置,就能确定同一行树所在的直线;③从A地到B地架设电线,总是尽可能沿着线段AB架设;④把弯曲的公路改直,就能缩短路程,其中可用公理“两点之间,线段最短”来说明的现象有()A.①② B.①③ C.②④ D.③④【考点】线段的性质:两点之间线段最短.【专题】应用题.【分析】由题意,认真分析题干,用数学知识说明生活中的现象.【解答】解:①②现象能够用两点能够确定一条直线来说明;③④现象能够用两点之间,线段最短来说明.故选D.【点评】本题要紧考查两点之间线段最短和两点确定一条直线的性质.6.以下等式变形不正确的是()A.由x=y,得到x+2=y+2 B.由2a﹣3=b﹣3,得到2a=bC.由m=n,得到2am=2an D.由am=an,得到m=n【考点】等式的性质.【分析】依照等式的性质等式的两边同时加上或减去同一个数或字母,等式仍成立;等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.【解答】解:A、两边都加2,故A正确;B、两边都加3,故B正确;C、两边都乘以2a,故C正确;D、当a=0时,无意义,故D错误;故选:D.【点评】本题要紧考查了等式的差不多性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.7.下列各数互为相反数的是()A.32与﹣23B.32与(﹣3)2C.32与﹣32D.﹣32与﹣(﹣3)2【考点】有理数的乘方;相反数.【分析】第一依照乘方的意义运算各个数,或依照乘方的性质,即可判定.【解答】解:A、32=9,﹣23=﹣8,不是相反数,故A选项错误;B、32=(﹣3)2,不是相反数,故B选项错误;C、32的相反数是﹣32,故C选项正确;D、﹣32=﹣(﹣3)2=﹣9,不是相反数,故D选项错误.故选:C.【点评】本题要紧考查了相反数的定义,关键是明白得乘方的意义以性质.8.多项式1+xy﹣xy2的次数及最高次项的系数分别是()A.2,1 B.2,﹣1 C.3,﹣1 D.5,﹣1【考点】多项式.【分析】依照多项式次数和单项式的系数的定义求解.多项式的次数是多项式中最高次项的次数,即﹣xy2的次数.【解答】解:多项式1+xy﹣xy2的次数及最高次项的系数分别是3,﹣1.故选C.【点评】解题的关键是弄清多项式次数是多项式中次数最高的项的次数.9.为了估量一片牧场里老鼠的数量,从牧场中捕捉60只老鼠,做上记号,然后放回牧场,几天后再捕捉第二批老鼠100只,发觉其中带有标记的老鼠5只,估量这片牧场中约有老鼠的只数为()A.1000 B.1200 C.1500 D.800【考点】用样本估量总体.【分析】设这片牧场中约有老鼠的只数为x,依照样本估量总体的思想列出算式,求出x的值即可.【解答】解:设这片牧场中约有老鼠的只数为x,依照题意得:60:5=x:100,解得:x=1200,答:这片牧场中约有老鼠的只数为1200只;故选B.【点评】本题考查的是用样本估量总体的知识,和实际生活结合比较紧密,生产中遇到的估算产量问题,通常采纳样本估量总体的方法.10.解方程时,去分母正确的是()A.2x+1﹣(10x+1)=1 B.4x+1﹣10x+1=6C.4x+2﹣10x﹣1=6 D.2(2x+1)﹣(10x+1)=1【考点】解一元一次方程.【专题】运算题;压轴题.【分析】去分母的方法是方程两边同时乘以各分母的最小公倍数6,在去分母的过程中注意分数线右括号的作用,以及去分母时不能漏乘没有分母的项.【解答】解:方程两边同时乘以6得:4x+2﹣(10x+1)=6,去括号得:4x+2﹣10x﹣1=6.故选C.【点评】在去分母的过程中注意分数线起到括号的作用,并注意不能漏乘没有分母的项.11.某校为了了解七年级800名学生期中数学考试情形,从中抽取了100名学生的数学成绩进行了统计.下面5个判定中正确的有()①这种调查方式是抽样调查;②800名学生是总体;③每名学生的数学成绩是个体;④100名学生是总体的一个样本;⑤100名学生是样本容量.A.①② B.①②④C.①③ D.①③④⑤【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,第一找出考查的对象.从而找出总体、个体.再依照被收集数据的这一部分对象找出样本,最后再依照样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②800名学生期中数学考试情形是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④100名学生期中数学考试情形是总体的一个样本故④错误;⑤100是样本容量,故⑤错误;故选:C.【点评】本题考查了样本容量,样本容量是样本中包含的个体的数目,不能带单位.12.如图是一个运算程序的示意图,若开始输入的x值为81,我们看到第一次输出的结果为27,第二次输出的结果为9,…,第2021次输出的结果为()A.3 B.27 C.9 D.1【考点】代数式求值.【专题】图表型.【分析】依照如图的程序,分别求出前6次的输出结果各是多少,总结出规律,求出第2021次输出的结果为多少即可.【解答】解:第1次输出的结果为27,第2次输出的结果为9,第3次输出的结果为:×9=3,第4次输出的结果为:×3=1,第5次输出的结果为:1+2=3,第6次输出的结果为:×3=1,…,从第3次开始,输出的结果每2个数一个循环:3、1,∵(2021﹣2)÷2=2020÷2=1007∴第2021次输出的结果为1.故选:D.【点评】此题要紧考查了代数式求值问题,要熟练把握,注意观看总结出规律,并能利用总结出的规律解决实际问题.二、填空题:每小题4分,共20分.13.运算﹣2的结果是﹣.【考点】有理数的减法.【分析】依照有理数的减法运算法则进行运算即可得解.【解答】解:﹣2=﹣.故答案为:﹣.【点评】本题考查了有理数的减法运算,是基础题,熟记减去一个数等于加上那个数的相反数是解题的关键.14.世界文化遗产长城总长约为6700000m,将6700000用科学记数法表示应为 6.7×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:6 700 000=6.7×106,故答案为:6.7×106.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.AB=4cm,BC=3cm,假如O是线段AC的中点.线段OB的长度为0.5cm .【考点】两点间的距离.【分析】先依照O是线段AC的中点求出OC的长度,再依照OB=OC﹣BC即可得出结论.【解答】解:∵AB=4cm,BC=3cm,假如O是线段AC的中点,∴OC=(AB+BC)=×(4+3)=,∴OB=OC﹣BC=3﹣=0.5cm.故答案为:0.5cm.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.16.上海磁悬浮列车的设计载客量每列为1000人,每小时单向可运行12列,若双向运行x(时),最大载客量为y(人),那么y与x之间的关系式能够写为y=24000x .【考点】函数关系式.【分析】依照“最大载客量=每列载客量×每小时运行的列数×运行的时刻×2”列函数表达式即可.【解答】解:依照题意,可得:y=1000×12×2x=24000x,故答案为:y=24000x.【点评】本题要紧考查依照实际问题列函数解析式,明白得题意找到题目中包蕴的相等关系是关键.17.用你发觉的规律解答下列问题. =1﹣, =﹣, =﹣…探究+++…+= .(用含有n的式子表示)【考点】规律型:数字的变化类.【专题】规律型.【分析】依照数据排列的规律可知=﹣=.【解答】解:通过找规律可知,第n项为:﹣,那么究+++…+=1﹣=.【点评】要紧考查了学生的分析、总结、归纳能力,规律型的习题一样是从所给的数据和运算方法进行分析,从专门值的规律上总结出一样性的规律.三、解答题:共64分.解承诺写出不要的文字说明、推理过程或演算步骤.18.运算:(1)﹣12020+24÷(﹣2)3﹣32×()2(2)[﹣42﹣(﹣1)3×(﹣2)3]÷2×(﹣)2.【考点】有理数的混合运算.【专题】运算题.【分析】(1)原式先运算乘方运算,再运算乘除运算,最后算加减运算即可得到结果;(2)原式先运算乘方运算,再运算乘除运算,最后算加减运算即可得到结果.【解答】解:(1)原式=﹣1﹣3﹣1=﹣5;(2)原式=(﹣16﹣8)××=﹣.【点评】此题考查了有理数的混合运算,熟练把握运算法则是解本题的关键.19.解方程:(1)4(x﹣1)+5=3(x+2);(2)﹣=1﹣.【考点】解一元一次方程.【专题】运算题.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:4x﹣4+5=3x+6,移项合并得:x=5;(2)去分母得:4(5x﹣2)﹣3(x﹣3)=12﹣x﹣1,去括号得:20x﹣8﹣3x+9=12﹣x﹣1,移项合并得:9x=5,解得:x=.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.20.如图所示,已知BC=AB=CD,点E,F分别是AB,CD的中点,且EF=60厘米,求AB,CD的长.【考点】比较线段的长短.【专题】分类讨论.【分析】设出BC=x厘米,则有AB=3x,CD=4x,利用线段之间的和、差、倍、分转化线段之间的数量关系而求解.【解答】解:设BC=x厘米,由题意得:AB=3x,CD=4x∵E,F分别是AB,CD的中点∴BE=AB=x,CF=CD=2x∴EF=BE+CF﹣BC=x+2x﹣x即x+2x﹣x=60,解得x=24∴AB=3x=72(厘米),CD=4x=96(厘米).答:线段AB长为72厘米,线段CD长为96厘米.【点评】利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情形下灵活选用它的不同表示方法,有利于解题的简洁性.同时灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.21.化简求值:(1)(3a2﹣a﹣1)﹣2(3﹣a+2a2),其中a2﹣a=2.(2)x2+(2xy﹣3y2)﹣2(x2+yx﹣2y2),其中x=﹣1,y=2.【考点】整式的加减—化简求值.【专题】运算题;整式.【分析】(1)原式去括号合并得到最简结果,把已知等式代入运算即可求出值;(2)原式去括号合并得到最简结果,把x与y的值代入运算即可求出值.【解答】解:(1)原式=3a2﹣a﹣1﹣6+2a﹣4a2=﹣(a2﹣a)﹣7,当a2﹣a=2时,原式=﹣2﹣7=﹣9;(2)原式=x2+2xy﹣3y2﹣2x2﹣2xy+4y2=﹣x2+y2,当x=﹣1,y=2时,原式=﹣1+4=3.【点评】此题考查了整式的加减﹣化简求值,熟练把握运算法则是解本题的关键.22.如图,学校的草坪上有两纵一横三条小路.用代数式表示除小路外的草坪的面积,并运算当x=2米,a=50米,b=20米时草坪的面积.【考点】代数式求值;列代数式.【分析】依照矩形和正方形的面积公式列出代数式,代入数据运算即可.【解答】解:除小路外的草坪的面积为:ab﹣ax﹣2bx﹣bx+2x2+x2=ab﹣ax﹣3bx+3x2,当x=2,a=50,b=20时,原式=50×20﹣50×2﹣3×20×2+3×22=792(平方米),答:除小路外的草坪的面积为792平方米.【点评】本题考查的是列代数式和求代数式的值,依照题意列出代数式是解题的关键.23.广安市积极开展“阳光体育进校园”活动,各校学生坚持每天锤炼一小时.某校依照实际,决定要紧开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)样本中最喜爱B项目的人数百分比是20% ,其所在扇形图中的圆心角的度数是72°;(2)请把统计图补充完整;(3)已知该校有1200人,请依照样本估量全校最喜爱乒乓球的人数是多少?【考点】条形统计图;用样本估量总体;扇形统计图.【专题】数形结合.【分析】(1)分析统计图可知,样本中最喜爱B项目的人数百分比可用1减去其他项目所占的百分比求得,求出后再乘以360度即可求出度数;(2)依照(1)的运算结果补全图形;(3)用全校学生数×选乒乓球的学生所占百分比即可.【解答】解:(1)样本中最喜爱B项目的人数百分比是1﹣44%﹣8%﹣28%=20%,其所在扇形图中的圆心角的度数是360°×20%=72°.(2)B组人数44÷44%×20%=20人,画图如下:(3)1200×44%=528人,全校最喜爱乒乓球的人数大约是528人.故答案为:20%,72°.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读明白统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清晰地表示出每个项目的数据;扇形统计图直截了当反映部分占总体的百分比大小.24.某公司生产一种产品,每件成本价是400元,销售价为510元,本季度销售了5万件,为进一步扩大市场,企业决定降低生产成本,通过市场调研,估量下一季度这种商品每件售价会降低4%,销售量将提高10%,问:(1)下一季度每件产品的销售价和销售量各是多少?(2)要使销售利润(销售利润=销售价﹣成本价)保持不变,该商品每件的成本应降低多少元?【考点】一元一次方程的应用.【分析】(1)依照“商品每件售价会降低4%,销售量将提高10%”进行运算;(2)由题意可得等量关系:销售利润(销售利润=销售价﹣成本价)保持不变,设该产品每件的成本价应降低x元,则每件产品销售价为510(1﹣4%)元,销售了(1+10%)×50000件,新销售利润为[510(1﹣4%)﹣(400﹣x)]×(1+10%)×50000元,原销售利润为(510﹣400)×50000元,列方程即可解得.【解答】解:(1)下一季度每件产品销售价为:510(1﹣4%)=489.6(元).销售量为(1+10%)×50000=55000(件);(2)设该产品每件的成本价应降低x元,则依照题意得[489.6﹣(400﹣x)]×55000=(510﹣400)×50000,解那个方程得x=10.4.答:该产品每件的成本价应降低10.4元.【点评】此题要紧考查了一元一次方程的应用,关键是正确明白得题意,找出题目中的等量关系,设出未知数,列出方程.。

聊城市七年级上学期期末数学试题题及答案

聊城市七年级上学期期末数学试题题及答案

聊城市七年级上学期期末数学试题题及答案一、选择题1.如图,实数﹣3、x 、3、y 在数轴上的对应点分别为M 、N 、P 、Q ,这四个数中绝对值最小的数对应的点是( )A .点MB .点NC .点PD .点Q2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125°3.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b5.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取BC AB =,若点A 表示的数是a ,则点C 表示的数是( )A .2aB .3a -C .3aD .2a -6.如图是小明制作的一张数字卡片,在此卡片上可以用一个正方形圈出44⨯个位置的16个数(如1,2,3,4,8,9,10,11,15,16,17,18,22,23,24,25).若用这样的正方形圈出这张数字卡片上的16个数,则圈出的16个数的和不可能为下列数中的( )A .208B .480C .496D .5927.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠8.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( )A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 9.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )A .﹣4B .﹣5C .﹣6D .﹣710.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个11.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC=∠BOCB .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB12.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 13.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山 14.已知a ﹣b=﹣1,则3b ﹣3a ﹣(a ﹣b )3的值是( ) A .﹣4B .﹣2C .4D .215.下列图形中,哪一个是正方体的展开图( ) A .B .C .D .二、填空题16.单项式2x m y 3与﹣5y n x 是同类项,则m ﹣n 的值是_____.17.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 18.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.19.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.20.把53°24′用度表示为_____.21.如图,点B 在线段AC 上,且AB =5,BC =3,点D ,E 分别是AC ,AB 的中点,则线段ED 的长度为_____.22.计算:()222a-=____;()2323x x ⋅-=_____.23.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.24.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.25.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.26.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.27.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).28.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 29.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.30.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________. 三、压轴题31.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6a b x-1-2...(1)可求得x =______,第 2021 个格子中的数为______;(2)若前k 个格子中所填数之和为 2019,求k 的值;(3)如果m ,n为前三个格子中的任意两个数,那么所有的|m-n | 的和可以通过计算|6-a|+|6-b|+|a-b|+|a-6| +|b-6|+|b-a| 得到.若m ,n为前8个格子中的任意两个数,求所有的|m-n|的和.32.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a,b,c的值;(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.i)是否存在一个常数k,使得3BC-k•AB的值在一定时间范围内不随运动时间t的改变而改变?若存在,求出k的值;若不存在,请说明理由.ii)若点C以每秒3个单位长度的速度向右与点A,B同时运动,何时点C为线段AB的三等分点?请说明理由.33.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t>0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?34.对于数轴上的点P,Q,给出如下定义:若点P到点Q的距离为d(d≥0),则称d为点P到点Q的d追随值,记作d[PQ].例如,在数轴上点P表示的数是2,点Q表示的数是5,则点P到点Q的d追随值为d[PQ]=3.问题解决:(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.35.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)36.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).37.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值38.如图①,点O 为直线AB 上一点,过点O 作射线OC ,使∠AOC=120°,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方. (1)将图①中的三角板OMN 摆放成如图②所示的位置,使一边OM 在∠BOC 的内部,当OM 平分∠BOC 时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO 的延长线OP (如图③所示),试说明射线OP 是∠AOC 的平分线;(3)将图①中的三角板OMN 摆放成如图④所示的位置,请探究∠NOC 与∠AOM 之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】 【详解】∵实数-3,x ,3,y 在数轴上的对应点分别为M 、N 、P 、Q , ∴原点在点P 与N 之间,∴这四个数中绝对值最小的数对应的点是点N . 故选B .2.C解析:C 【解析】 【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数. 【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=. 故答案为:C. 【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x + 2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.4.D解析:D 【解析】 【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论. 【详解】解:∵由图可知a <0<b , ∴ab <0,即-ab >0 又∵|a |>|b |, ∴a <﹣b . 故选:D . 【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.5.B【解析】 【分析】根据题意和数轴可以用含a 的式子表示出点B 表示的数,从而得到点C 表示的数. 【详解】解:由点O 为原点,OA OB =,可知A 、B 表示的数互为相反数, 点A 表示的数是a ,所以B 表示的数为-a , 又因为BC AB =,所以点C 表示的数为3a -. 故选B. 【点睛】本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.6.C解析:C 【解析】 【分析】由题意设第一列第一行的数为x ,依次表示每个数,并相加进行分析得出选项. 【详解】解:设第一列第一行的数为x ,第一行四个数分别为,1,2,3x x x x +++, 第二行四个数分别为7,8,9,10x x x x ++++, 第三行四个数分别为14,15,16,17x x x x ++++, 第四行四个数分别为21,22,23,24x x x x ++++,16个数相加得到16192x +,当相加数为208时x 为1,当相加数为480时x 为18,相加数为496时x 为19,相加数为592时x 为25,由数字卡片可知,x 为19时,不满足条件. 故选C. 【点睛】本题考查列代数式求解问题,理解题意设未知数并列出方程进行分析即可.7.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A.本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.8.B解析:B【解析】【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可.【详解】设乙独做x天,由题意得方程:4 10+415x=1.故选B.【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.9.A解析:A【解析】【分析】由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.【详解】3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.故选:A【点睛】利用乘法分配律,将代数式变形.10.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.11.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.12.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 13.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.14.C解析:C【解析】【分析】由题意可知3b-3a-(a-b)3=3(b-a)-(a-b)3,因此可以将a-b=-1整体代入即可.【详解】3b-3a-(a-b)3=3(b-a)-(a-b)3=-3(a-b)-(a-b)3=3-(-1)=4;故选C.【点睛】代数式中的字母表示的数没有明确告知,而是隐含在题设中,利用“整体代入法”求代数式的值.15.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B、C、四个面连在了起不能折成正方体,故不是正方体的展开图;D、是“141"型,所以D是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.二、填空题16.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.17.-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、解析:-3【解析】【分析】根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、3,所以最小的整数是﹣3.故答案为:﹣3.【点睛】本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.18.伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与解析:伟【解析】【分析】根据在正方体的表面展开图中,相对的面之间一定相隔一个正方形即可解答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“伟”与“国”是相对面,“人”与“中”是相对面,“的”与“梦”是相对面.故答案为:伟.【点睛】本题主要考查了正方体与展开图的面的关系,掌握相对的面之间一定相隔一个正方形是解答本题的关键.19.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.20.4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度解析:4°.【解析】【分析】根据度分秒之间60进制的关系计算.【详解】解:53°24′用度表示为53.4°,故答案为:53.4°.【点睛】此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.21.5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3解析:5【解析】【分析】首先求出AC的长度是多少,根据点D是AC的中点,求出AD的长度是多少;然后求出AE的长度,即可求出线段ED的长度为多少.【详解】解:∵AB=5,BC=3,∴AC=5+3=8;∵点D是AC的中点,∴AD=8÷2=4;∵点E是AB的中点,∴AE =5÷2=2.5,∴ED =AD ﹣AE =4﹣2.5=1.5.故答案为:1.5.【点睛】此题主要考查了两点间的距离,以及线段的中点的含义和应用,要熟练掌握.22.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键23.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可. 【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=. 故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 24.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 25.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.26.【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的解析:24 2525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 27.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.28.1或-7【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可. 【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.29.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.30.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.三、压轴题31.(1)6,-1;(2)2019或2014;(3)234【解析】【分析】(1)根据三个相邻格子的整数的和相等列式求出a、x的值,再根据第9个数是-2可得b=-2,然后找出格子中的数每3个为一个循环组依次循环,在用2021除以3,根据余数的情况确定与第几个数相同即可得解.(2)可先计算出这三个数的和,再照规律计算.(3)由于是三个数重复出现,因此可用前三个数的重复多次计算出结果.【详解】(1)∵任意三个相邻格子中所填整数之和都相等,∴6+a+b=a+b+x,解得x=6,a+b+x=b+x-1,∴a=-1,所以数据从左到右依次为6、-1、b、6、-1、b,第9个数与第三个数相同,即b=-2,所以每3个数“6、-1、-2”为一个循环组依次循环.∵2021÷3=673…2,∴第2021个格子中的整数与第2个格子中的数相同,为-1.故答案为:6,-1.(2)∵6+(-1)+(-2)=3,∴2019÷3=673.∵前k个格子中所填数之和可能为2019,2019=673×3或2019=671×3+6,∴k的值为:673×3=2019或671×3+1=2014.故答案为:2019或2014.(3)由于是三个数重复出现,那么前8个格子中,这三个数中,6和-1都出现了3次,-2出现了2次.故代入式子可得:(|6+2|×2+|6+1|×3)×3+(|-1-6|×3+|-1+2|×2)×3+(|-2-6|×3+|-2+1|×3)×2=234.【点睛】本题考查了列一元一次方程解实际问题的运用,规律推导的运用,此类题的关键是找出是按什么规律变化的,然后再按规律找出字母所代表的数,再进行进一步的计算.32.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m,m=6这个不变化的值为26.ii)AC=13 AB,AB=5+t,AC=-5+3t-(1+2t)=t-6,t-6=13(5+t),解得t=11.5s.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.33.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.34.(1)1+a或1-a;(2)12或52;(3)1≤b≤7.【解析】【分析】(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②【详解】解:(1)点N在点M右侧时,点N表示的数是1+a;点N在点M左侧时,点N表示的数是1-a;(2)①b=4时,AB相距3个单位,当点A在点B左侧时,t=(3-2)÷(3-1)=12,。

聊城市初一上学期数学期末试卷带答案

聊城市初一上学期数学期末试卷带答案

聊城市初一上学期数学期末试卷带答案一、选择题1.下列判断正确的是()A.3a2bc与bca2不是同类项B.225m n的系数是2C.单项式﹣x3yz的次数是5 D.3x2﹣y+5xy5是二次三项式2.在220.23,3,2,7-四个数中,属于无理数的是()A.0.23B.3C.2-D.22 73.一张普通A4纸的厚度约为0.000104m,用科学计数法可表示为() mA.21.0410-⨯B.31.0410-⨯C.41.0410-⨯D.51.0410-⨯4.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.1125.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+56.互不相等的三个有理数a,b,c在数轴上对应的点分别为A,B,C。

若:||||||a b b c a c-+-=-,则点B()A.在点 A, C 右边B.在点 A, C 左边C.在点 A, C 之间D.以上都有可能7.方程3x+2=8的解是()A.3 B.103C.2 D.128.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 9.观察一行数:﹣1,5,﹣7,17,﹣31,65,则按此规律排列的第10个数是( ) A .513B .﹣511C .﹣1023D .102510.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯B .51510⨯C .70.1510⨯D .61.510⨯11.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( ) A .赚了10元 B .赔了10元 C .赚了50元 D .不赔不赚 12.若2m ab -与162n a b -是同类项,则m n +=( )A .3B .4C .5D .7二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.若212-my x 与5x 3y 2n 是同类项,则m +n =_____. 15.|-3|=_________;16.单项式22ab -的系数是________.17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.18.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 19.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.20.已知代数式235x -与233x -互为相反数,则x 的值是_______. 21.钟表显示10点30分时,时针与分针的夹角为________.22.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x 首,根据题意,可列方程为______.23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,122x x +,1233x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的最佳值.例如,对于数列2,-1,3,因为|2|=2,()212+-=12,()2133+-+=43,所以数列2,-1,3的最佳值为12. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为12;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为12.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.28.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.29.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m和数n的两点之间的距离等于∣m-n∣.直接应用:表示数a和2的两点之间的距离等于____,表示数a和-4的两点之间的距离等于____;灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____;(3)若∣a-2∣+∣a+4∣=10,则a =______;实际应用:已知数轴上有A、B、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A、C两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。

2020-2021学年七年级上册期末数学试卷及答案

2020-2021学年七年级上册期末数学试卷及答案

2020-2021学年七年级上册期末数学试卷及答案一、选择题(每小题3分,共30分) 1、下列说法中,正确的是( )A .0是最小的有理数B .任何一个有理数的绝对值都是正数C .-a 是负数D .0的相反数是它本身 2、下列各组代数式,是同类项的是( ) A .2bc 与2abc B .3a 2b与-3ab 2 C .a与1 D.x 2y 与-x 2y233、从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为( )A .4,3B .3,3C .3,4D .4,4 4、由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体的形状图是( )5、下列说法中,正确的有( )①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个 6、某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图(如图),其中“其他”部分对应的圆心角是36°,则“步行”部分所占百分比是( )A .10%B .35%C .36%D .40% 7、下面四个图形中,经过折叠能围成如图所示的几何图形的是( )8、若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( ) A .x 2-5y 2+1 B .x 2-3y 2+1 C .5x 2-3y 2-1 D .5x 2-3y 2+19、已知a ,b 互为相反数,c ,d 互为倒数,m 是绝对值等于3的负数,则m 2+(cd +a +b)m +(cd)2021的值为( )A .-8B .0C .4D .710、按下面的程序计算,若开始输入的值x 为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )A .2个B .3个C .4个D .5个 二、填空题(每小题3分,共18分)11、如图,A ,B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A ,B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是______________.12、据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2 800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法可表示为_________人.13、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指塔每一层灯的数量都是其上一层的两倍).请你算出塔的顶层有_________盏灯. 14、某学校七年级有七个班共350名学生,为了了解学生英语口语测试成绩,随机从各班分别抽取10名学生的英语口语测试成绩加以分析.在这个问题中,样本是_________. 15、已知单项式3a m b 2与-a 4b n -1的和是单项式,那么2m -n =________.2316、如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第1个图形有1个十字星图案,第2个图形有2个十字星图案,第3个图形有5个十字星图案,第4个图形有10个十字星图案,…,则第101个图形有_________个十字星图案. …三、解答题(共72分)17、计算:(1)×(﹣8)﹣×[﹣﹣(﹣2)2];(2)(﹣1)×(﹣5)÷[(﹣3)2+2×(﹣5)];(3)(﹣4)2×(﹣)+30÷(﹣6);(4)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.18、解方程:(1)(x -3)+1=x -(x -2); 1213 (2)x +=6-. 2(x -3)3x -7619、化简:(1)(x 2-7x)-(3x 2-5-7x);(2)3(x -y)-2(x +y)-5(x -y)+4(x +y)+3(x -y).20、小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-[2(a -1)-]÷(a -b).1b(1)求(-2)※的值;12(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,可能出现什么情况?为什么?21、某学校准备开展“阳光体育活动”,决定开设以下活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题. (1)这次活动一共调查了_________名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在的扇形圆心角等于_________度.22、如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB ,CD 的中点E ,F 之间距1314离是10 cm ,求AB ,CD 的长度.23、张华在一次测验中计算一个多项式M 加上5xy -3yz +2xz 时,不小心看成减去5xy -3yz +2xz ,结果计算出错误答案为2xy +6yz -4xz. (1)求多项式M ;(2)试求出原题目的正确答案.24、已知点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC. (1)如图1.①若∠AOC =60°,则∠DOE 的度数为_________;②若∠AOC =α,则∠DOE 的度数为_________(用含α的式子表示);(2)将图1中的∠DOC 绕点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.25、某商店第一次购进相同铅笔1 000支,第二次又购进同种铅笔,购进数量是第一次的,12这次每支铅笔的进价比第一次进价高0.2元,第二次购进铅笔比第一次少花300元. (1)求第一次每支铅笔的进价是多少元?(2)第一次购进铅笔在第一次进价的基础上加价50%出售;第二次购进的铅笔以每支1.5元的价格出售,出售一部分后又在每支1.5元的基础上打八折出售;两次购进的铅笔全部销售完毕后总获利为560元,问第二次购进的铅笔出售多少支后打八折出售?参考答案一、选择题(每小题3分,共30分) 1、下列说法中,正确的是(D)A .0是最小的有理数B .任何一个有理数的绝对值都是正数C .-a 是负数D .0的相反数是它本身 2、下列各组代数式,是同类项的是(D)A .2bc 与2abcB .3a 2b 与-3ab 2C .a 与1 D.x 2y 与-x 2y233、从六边形的一个顶点出发,可以画出m 条对角线,它们将六边形分成n 个三角形,则m ,n 的值分别为(C)A .4,3B .3,3C .3,4D .4,4 4、由若干个大小形状完全相同的小立方块所搭几何体的俯视图如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看这个几何体的形状图是(A)5、下列说法中,正确的有(C)①若mx =my ,则mx -my =0;②若mx =my ,则x =y ;③若mx =my ,则mx +my =2my ;④若x =y ,则mx =my.A .1个B .2个C .3个D .4个 6、某校对学生上学方式进行一次抽样调查,并根据调查结果绘制了不完整的扇形统计图(如图),其中“其他”部分对应的圆心角是36°,则“步行”部分所占百分比是(D)A .10%B .35%C .36%D .40% 7、下面四个图形中,经过折叠能围成如图所示的几何图形的是(B)8、若A=3x2-4y2,B=-y2-2x2+1,则A-B等于(C)A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+19、已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)m +(cd)2 021的值为(D)A.-8 B.0 C.4 D.710、按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有(C)A.2个 B.3个 C.4个 D.5个二、填空题(每小题3分,共18分)11、如图,A,B是河l两侧的两个村庄.现要在河l上修建一个抽水站P,使它到两个村庄A,B的距离和最小,小丽认为在图中连接AB与l的交点就是抽水站P的位置,你认为这里用到的数学基本事实是两点之间,线段最短.12、据《中国易地扶贫搬迁政策》白皮书报道:2018年我国有2 800 000人进行了扶贫搬迁,成功脱贫.其中2 800 000人用科学记数法可表示为2.8×106人.13、在我国明代数学家吴敬所著的《九章算术比类大全》中,有一道数学名题叫“宝塔装灯”,内容为“远望巍巍塔七层,红灯点点倍加增;共灯三百八十一,请问顶层几盏灯?”(倍加增指塔每一层灯的数量都是其上一层的两倍).请你算出塔的顶层有3盏灯.14、某学校七年级有七个班共350名学生,为了了解学生英语口语测试成绩,随机从各班分别抽取10名学生的英语口语测试成绩加以分析.在这个问题中,样本是抽取的70名学生英语口语的测试成绩.15、已知单项式3a m b 2与-a 4b n -1的和是单项式,那么2m -n =5.2316、如图,下列图形都由同样大小的十字星图案按一定的规律组成,其中第1个图形有1个十字星图案,第2个图形有2个十字星图案,第3个图形有5个十字星图案,第4个图形有10个十字星图案,…,则第101个图形有10001个十字星图案. …三、解答题(共72分)17、计算:(1)×(﹣8)﹣×[﹣﹣(﹣2)2]; 解:原式=﹣12﹣×(﹣)=﹣12+=﹣.(2)(﹣1)×(﹣5)÷[(﹣3)2+2×(﹣5)]; 解:原式=5÷(9﹣10)=5÷(﹣1)=﹣5.(10分)(3)(﹣4)2×(﹣)+30÷(﹣6);解:原式=16×(﹣)﹣30÷6=﹣12﹣5=﹣17. (4)﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|. 解:原式=﹣1﹣××6=﹣1﹣1=﹣2. 18、解方程:(1)(x -3)+1=x -(x -2); 1213解:去分母,得3(x -3)+6=6x -2(x -2). 去括号,得3x -9+6=6x -2x +4. 移项、合并同类项,得-x =7. 方程两边同除以-1,得x =-7.(2)x +=6-. 2(x -3)3x -76解:去分母,得6x +4(x -3)=36-(x -7). 去括号,得6x +4x -12=36-x +7. 移项、合并同类项,得11x =55. 方程两边同除以11,得x =5. 19、化简:(1)(x 2-7x)-(3x 2-5-7x); 解:原式=-2x 2+5.(2)3(x -y)-2(x +y)-5(x -y)+4(x +y)+3(x -y). 解:原式=(x -y)+2(x +y) =x -y +2x +2y =3x +y.20、小力在电脑上设计了一个有理数运算程序:输入a ,加※键,再输入b ,得到运算a ※b =a 2-b 2-[2(a -1)-]÷(a -b).1b(1)求(-2)※的值;12(2)小华在运用此程序计算时,屏幕显示“该程序无法操作”,你猜小华在输入数据时,可能出现什么情况?为什么?解:(1)原式=. 1120(2)可能出现的情况是b =0或a =b ,因为b 及a -b 均是除数,除数为0时,无意义,就使该程序无法操作.21、某学校准备开展“阳光体育活动”,决定开设以下活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项.为了了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过调查获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图回答问题.(1)这次活动一共调查了250名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在的扇形圆心角等于108度. 解:250-80-40-55=75(人),补图如图.22、如图,已知线段AB 和CD 的公共部分BD =AB =CD ,线段AB ,CD 的中点E ,F 之间距1314离是10 cm ,求AB ,CD 的长度.解:设BD =x cm ,则AB =3x cm ,CD =4x cm ,AC =6x cm. 因为点E ,F 分别为AB ,CD 的中点, 所以AE =AB =1.5x cm ,CF =CD =2x cm.1212所以EF =AC -AE -CF =6x -1.5x -2x =2.5x cm. 因为EF =10 cm ,所以2.5x =10,解得x =4. 所以AB =12 cm ,CD =16 cm.23、张华在一次测验中计算一个多项式M 加上5xy -3yz +2xz 时,不小心看成减去5xy -3yz +2xz ,结果计算出错误答案为2xy +6yz -4xz. (1)求多项式M ;(2)试求出原题目的正确答案.解:(1)依题意,得M -(5xy -3yz +2xz)=2xy +6yz -4xz , 所以M =2xy +6yz -4xz +(5xy -3yz +2xz)=7xy +3yz -2xz , 即多项式M 为7xy +3yz -2xz.(2)M +(5xy -3yz +2xz)=(7xy +3yz -2xz)+(5xy -3yz +2xz)=12xy , 所以原题目的正确答案为12xy.24、已知点O 是直线AB 上的一点,∠COD 是直角,OE 平分∠BOC.(1)如图1.①若∠AOC =60°,则∠DOE 的度数为30°;②若∠AOC =α,则∠DOE 的度数为α(用含α的式子表示); 12(2)将图1中的∠DOC 绕点O 顺时针旋转至图2的位置,试探究∠DOE 和∠AOC 的度数之间的关系,写出你的结论,并说明理由.解:∠DOE =∠AOC.理由如下: 12因为∠BOC =180°-∠AOC ,OE 平分∠BOC ,所以∠COE =∠BOC 12=(180°-∠AOC) 12=90°-∠AOC. 12所以∠DOE =∠COD -∠COE=90°-(90°-∠AOC) 12=∠AOC. 1225、某商店第一次购进相同铅笔1 000支,第二次又购进同种铅笔,购进数量是第一次的,12这次每支铅笔的进价比第一次进价高0.2元,第二次购进铅笔比第一次少花300元.(1)求第一次每支铅笔的进价是多少元?(2)第一次购进铅笔在第一次进价的基础上加价50%出售;第二次购进的铅笔以每支1.5元的价格出售,出售一部分后又在每支1.5元的基础上打八折出售;两次购进的铅笔全部销售完毕后总获利为560元,问第二次购进的铅笔出售多少支后打八折出售?解:(1)设第一次每支铅笔的进价是x 元,根据题意,得1 000x =1 000×(x +0.2)+300. 12解得x =0.8.答:第一次每支铅笔的进价是0.8元.(2)设第二次购进的铅笔出售y 支后打八折出售.1 000××(0.8+0.2)=500(元). 12由题意,得1 000×0.8×50%+1.5y +×1.5(1 000×-y)-500=560. 81012解得y =200.答:第二次购进的铅笔出售200支后打八折出售.。

2020-2021学年七年级上学期期末考试数学试题(含答案)

2020-2021学年七年级上学期期末考试数学试题(含答案)
--- I
-,... -•-.已·忘---·---�.,...I.,·,·.
rIr' ·----勹,`I---

'L ,,, --
L __
---r, -,一一,,
'---卜I - -一I:
'
I
I _ _ _,,I
I
__ _,I
J"--
..I.. __一
I
.. 0己.I
.. __一 I..
|
--1
--- I I
I
I


L.--.... I`
' , I
l
I
I
'
__
J..-
-..I.___合I 一一-
`
I
视图
,. ·-·,. -- 气一 -•,---T ---,
t
I
I
I
I
I
I
I
I
I
l
I
LI __ - Il.-- JI二=二 :IJ;;:.gLI ··皇!l
I
I
I
I
'
'
Ii--�-.,..
__
1
4-
---1 ---今1 --一,
2¾+11f 1:
17.
18. (8分)如图是用 10 块完全相同的小正方体搭成的几何体
正面
广__ 勹 -一 '-- - "'I.--.,---,
1
I
I
I
I
I
}l --+I -· -1I-- -+I --1I ---!I
I
I
I

聊城市人教版七年级上册数学期末试卷及答案-百度文库

聊城市人教版七年级上册数学期末试卷及答案-百度文库

聊城市人教版七年级上册数学期末试卷及答案-百度文库一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.两点之间,线段最短D.经过两点,有且仅有一条直线2.如图,将线段AB延长至点C,使12BC AB=,D为线段AC的中点,若BD=2,则线段AB的长为()A.4 B.6 C.8 D.12 3.-2的倒数是()A.-2 B.12-C.12D.24.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.1125.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A.132°B.134°C.136°D.138°6.如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC;②∠ACB=2∠ADB;③∠ADC+∠ABD=90°;④∠BDC=∠BAC;其中正确的结论有()A .1个B .2个C .3个D .4个7.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm8.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 9.﹣3的相反数是( ) A .13-B .13C .3-D .310.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )A .棱柱B .圆锥C .圆柱D .棱锥11.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .15012.已知点A,B,P 在一条直线上,则下列等式中,能判断点P 是线段AB 中点个数有 ( )①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB .A .1个B .2个C .3个D .4个二、填空题13.已知单项式245225n m xy x y ++与是同类项,则m n =______.14.单项式22ab -的系数是________.15. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.16.如图甲所示,格边长为cm a 的正方形纸片中间挖去一个正方形的洞,成为一个边宽为5cm 的正方形方框.把3个这样的方框按如图乙所示平放在集面上(边框互相垂直或平行),则桌面被这些方框盖住部分的面积是___________.17.﹣30×(1223-+45)=_____. 18.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.19.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.20.计算:()222a -=____;()2323x x ⋅-=_____.21.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.22.有这样一个故事:一只驴子和一只骡子驮着不同袋数的货物一同走,它们驮着不同袋数的货物,每袋货物都是一样重的,驴子抱怨负担太重,骡子说:“你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍;如果我给你一袋,我们才恰好驮的一样多!”,那么驴子原来所驮货物有_____袋.23.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;24.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____.三、解答题25.计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|; (2)12°24′17″×4﹣30°27′8″;(3)421123x x -+-=. 26.解方程:(1)()()32324y y -=-; (2)13124x x +--=. 27.如图,已知数轴上点A 表示的数为﹣1,点B 表示的数为3,点P 为数轴上一动点. (1)点A 到原点O 的距离为 个单位长度;点B 到原点O 的距离为 个单位长度;线段AB 的长度为 个单位长度;(2)若点P 到点A 、点B 的距离相等,则点P 表示的数为 ;(3)数轴上是否存在点P ,使得PA +PB 的和为6个单位长度?若存在,请求出PA 的长;若不存在,请说明理由?(4)点P 从点A 出发,以每分钟1个单位长度的速度向左运动,同时点Q 从点B 出发,以每分钟2个单位长度的速度向左运动,请直接回答:几分钟后点P 与点Q 重合?28.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种 5 8 乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?29.甲队原有工人65人,乙队原有工人40人,现又有30名工人调入这两队,为了使乙队人数是甲队人数的12,应调往甲、乙两队各多少人? 30.用白色棋子摆出下列一组图形:(1)填写下表:图形编号(1)(2)(3)(4)(5)(6)...图形中的棋子(2)照这样的方式摆下去,写出摆第个图形棋子的枚数;(3)如果某一图形共有99枚棋子,你知道它是第几个图形吗?四、压轴题31.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.32.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)33.如图,12cmAB=,点C是线段AB上的一点,2BC AC=.动点P从点A出发,以3cm/s的速度向右运动,到达点B后立即返回,以3cm/s的速度向左运动;动点Q从点C出发,以1cm/s的速度向右运动. 设它们同时出发,运动时间为s t. 当点P与点Q第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB 的长小于点A 绕点C 到B 的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短, 故选C . 【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB 的长小于点A 绕点C 到B 的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.C解析:C 【解析】 【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可. 【详解】解:根据题意可得: 设BC x =,则可列出:()223x x +⨯= 解得:4x =,12BC AB =, 28AB x ∴==. 故答案为:C. 【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.3.B解析:B 【解析】 【分析】根据倒数的定义求解. 【详解】 -2的倒数是-12故选B 【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握4.B解析:B 【解析】 【分析】观察图形,正确数出个数,再进一步得出规律即可. 【详解】摆成第一个“H”字需要2×3+1=7个棋子, 第二个“H”字需要棋子2×5+2=12个; 第三个“H”字需要2×7+3=17个棋子; 第n 个图中,有2×(2n+1)+n=5n+2(个).∴摆成 第 20 个“H”字需要棋子的个数=5×20+2=102个. 故B. 【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n .5.B解析:B 【解析】过E 作EF ∥AB ,求出AB ∥CD ∥EF ,根据平行线的性质得出∠C=∠FEC ,∠BAE=∠FEA ,求出∠BAE ,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.6.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.7.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC+-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.8.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.10.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.11.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.12.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.二、填空题13.9【解析】【分析】根据同类项的定义进行解题,则,解出m、n的值代入求值即可.【详解】解:和是同类项且,【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出 解析:9【解析】【分析】根据同类项的定义进行解题,则25,24n m +=+=,解出m 、n 的值代入求值即可.【详解】解:242n x y +和525m x y +是同类项∴25n +=且24m +=∴3n =,2m =∴239m n ==【点睛】本题考查同类型的定义,解题关键是针对x 、y 的次方都相等联立等式解出m 、n 的值即可.14.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键. 解析:12- 【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】 解:单项式22ab -的系数是12-, 故答案为:12-. 【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.15.2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C 在线段AB 上,点C 在线段AB 的延长线上,根据线段的和差,可得答案.【详解】解:当点C 在线段AB 上时,由线段的和差,得AC=AB-BC=8-6=2cm ;当点C 在线段AB 的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm ;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.16.【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:,桌面被这些方框盖住部分的面积则为:故填:.【点睛】本题结合求解析:60200a -【解析】【分析】根据题意列出含a 的代数式表示桌面被这些方框盖住部分的面积即可.【详解】解:算出一个正方形方框的面积为:22(10)a a --,桌面被这些方框盖住部分的面积则为:2223(10)4560200.a a a ⎡⎤--+⨯=-⎣⎦故填:60200a -.【点睛】本题结合求阴影部分面积列代数式,理解题意并会表示阴影部分面积是解题关键.17.﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(+)=﹣30×+(﹣30)×()+(﹣30)×=﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛解析:﹣19.【解析】【分析】根据乘法分配律简便计算即可求解.【详解】解:﹣30×(1223-+45) =﹣30×12+(﹣30)×(23-)+(﹣30)×45 =﹣15+20﹣24=﹣19.故答案为:﹣19.【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键. 18.-22【解析】【分析】将m ﹣2n =2代入原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )计算可得.【详解】解:当m ﹣2n =2时,原式=2[﹣(m ﹣2n )]3﹣3(m ﹣2n )=2×(﹣2)3【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.19.5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-5解析:5【解析】【分析】根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.【详解】解:∵学生总人数=25÷50%=50(人),∴不合格的学生人数=50×(1-50%-40%)=5(人),故答案为:5.【点睛】本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.20.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a()2323x x ⋅-=56x - 【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键21.60 【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到.【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴解析:5【解析】【分析】要求驴子原来所托货物的袋数,就要先设出未知数,再通过理解题意可知本题的等量关系,即驴子减去一袋时的两倍减1(即骡子原来驮的袋数)再减1(我给你一袋,我们才恰好驮的一样多)=驴子原来所托货物的袋数加上1,根据这个等量关系列方程求解.【详解】解:设驴子原来驮x袋,根据题意,得:2(x﹣1)﹣1﹣1=x+1解得:x=5.故驴子原来所托货物的袋数是5.故答案为5.【点睛】解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.23.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.三、解答题25.(1)﹣2;(2)19°10′;(3)x=47.【解析】【分析】(1)根据有理数的混合运算法则及运算顺序依次计算即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答求解.【详解】解:(1)原式=﹣9+9﹣6+4,=﹣2;(2)原式=48°96′68″﹣30°27′8″,=18°69′60″,=19°10′;(3)3(4﹣x)﹣2(2x+1)=6,12﹣3x﹣4x﹣2=6,﹣7x=﹣4,x=47.【点睛】本题考查了有理数的混合运算、度分秒的计算及解一元一次方程,熟练运用有理数的混合运算法则及运算顺序、度分秒的计算以及一元一次方程的解法是解决问题的关键.26.(1)14y =;(2)1x =-. 【解析】【分析】(1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y -3)=2(y -4); 6928y y -=-.6298y y -=-.41y =.14y =. (2)13124x x +--=. 2(1)(3)4x x +--=.2234x x +-+=.-1x =.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.27.(1)1,3,4;(2)1;(3)存在,PA=1;(4)经过4分钟后点P 与点Q 重合.【解析】【分析】(1)根据数轴上两点间的距离公式进行计算即可;(2)设点P 表示的数为x ,根据题意列出方程可求解;(3)设点P 表示的数为y ,分1y <-,13y -≤≤和3y >三种情况讨论,即可求解; (4)设经过t 分钟后点P 与点Q 重合,由点Q 的路程﹣点P 的路程=4,列出方程可求解.【详解】解:(1)∵点A 表示的数为﹣1,点B 表示的数为3,∴()OA=011--=,OB=303-=,()AB=314--=故答案为:1,3,4;(2)设点P 表示的数为x ,∵点P 到点A 、点B 的距离相等,∴3(1)-=--x x∴x =1,∴点P 表示的数为1,故答案为1;(3)存在,设点P 表示的数为y ,当1y <-时,∵PA +PB =136--+-=y y ,∴y =﹣2,∴PA =1(2)1---=,当13y -≤≤时,∵PA +PB =(1)36--+-=y y ,∴无解,当y >3时,∵PA +PB =(1)36--+-=y y ,∴y =4,∴PA =5;综上所述:PA =1或5.(4)设经过t 分钟后点P 与点Q 重合,2t ﹣t =4,∴t =4答:经过4分钟后点P 与点Q 重合.【点睛】本题考查数轴上两点间的距离,以及数轴上的动点问题,熟练掌握数轴上两点间的距离公式,并运用方程思想是解题的关键.28.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x 千克,则乙种水果(140-x )千克,根据进价总数列出方程,求出x 的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65, ∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.29.应调往甲队25人,乙队5人【解析】【分析】由题意设调往甲队x 人,并根据题意建立一元一次方程与解出一元一次方程即可.【详解】解:设调往甲队x 人,依题意得1(65)40(30)2x x +=+- 解得 25x = ∴30255-=(人)答:应调往甲队25人,乙队5人. 【点睛】本题考查了一元一次方程的应用:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.列一元一次方程解应用题的五个步骤.解决本题的关键是表示出调入后甲乙两队的人数. 30.(1)见详解;(2)3(n+1);(3)99枚. 【解析】 【分析】解题注意根据图形发现规律,并用字母表示.然后根据条件代入计算. 【详解】 解:(1)(3)设图形有99枚棋子,它是第x 个图形. 根据题意得:3+3x=99 解得x=32所以它是第32个图形.故答案为(1)6,9,12,15,18,21. 【点睛】此题考査规律问题,观察图形,发现(1)中是6个棋子.后边多一个图形,多3个棋子.根据这一规律即可解决下列问题.四、压轴题31.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析. 【解析】 【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变. 【详解】解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2=()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2=()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.32.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】 【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可. 【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t . ∵PB =20-2t ≥0,∴t ≤10. ∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论: ①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键. 33.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】 【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可; (3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+, 即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==,P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,=【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.。

2020-2021学年第一学期七年级期末数学试卷及答案

2020-2021学年第一学期七年级期末数学试卷及答案

2020-2021学年第一学期七年级期末评价数 学 试 卷题 号 一 二 三 总 分得 分一、选择题:(本大题10个小题,每小题3分,共30分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中。

1.(-2)×3的结果是…………………………………………………………………………【 】A . - 6 B. – 5 C. - 1 D. l2.下列说法中①小于90°的角是锐角; ②等于90°的角是直角;③大于90°的角是钝角; ④平角等于180°;⑤周角等于360°,正确的有………………………………………………【 】A .5个B .4个C .3个D .2个3.用代数式表示“m 的3倍与n 的差的平方”,正确的是…………………………………【 】 A .(3m -n )2B .3(m -n )2C .3m -n 2D .(m -3n )24.如图,∠AOB =120°,OC 是∠AOB 内部任意一条射线,OD ,OE 分别是∠AOC ,∠BOC 的角平分线,下列叙述正确的是【 】A .∠DOE 的度数不能确定B .∠AOD =12∠EOCC .∠AOD +∠BOE =60°D .∠BOE =2∠COD5..有理数a ,b 在数轴的位置如图,则下面关系中正确的个数为……………………………【 】①a -b >0; ②ab <0; ③11ab; ④a 2>b 2. A .1B .2C .3D .46.一件商品按成本价提高30%后标价,再打8折(标价的80%)销售,售价为312元,设这件商品的成本价为x 元,根据得分 评卷人 …………………………………装………………………………订………………………………线……………………………学校_________________ 班级_____________ 姓名________________ 准考证号______________七年级 数学题意,下面所列的方程正确的是……………………………【 】A .x ·30%×80%=312B .x ·30%=312×80%C .312×30%×80%=xD .x (1+30%)×80%=312 7..下列等式变形正确的是…………………………………………………………………【 】 A .如果s= 2ab,那么b=2sa B .如果12x=6,那么x=3C .如果x-3 =y-3,那么x-y =0D .如果mx= my ,那么x=y8.下列方程中,以x =-1为解的方程是………………………………………………………【】 A .13222xx +=-B .7(x -1)=0C .4x -7=5x +7D .133x =-9.如图,边长为2m +3的正方形纸片剪出一个边长为m +3的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m ,则另一边长为…………………………………………………【 】 A .2m +6B .3m +6C .2m 2+9m +6D .2m 2+9m +910.下列图案是用长度相同的火柴按一定规律拼搭而成,第一个图案需8根火柴,第二个图案需15根火柴,…,按此规律,第n 个图案需几根火柴棒 ………………………………………………………………………………………【 】A .2+7nB .8+7nC .7n +1D .4+7n二、填空题:(本大题8个小题,每小题4分,共32分)在每小题中,请将答案直接填在题后的横线上。

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020-2021学年七年级上学期期末考试数学试题含参考答案

2020年秋学期期末测试七年级数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.﹣3的相反数是()A.1 3B.13-C.3 D.﹣3 2.下列几何体,都是由平面围成的是()A.圆柱B.三棱柱C.圆锥D.球3.下列各式中,正确的是()A.22a b ab+=B.224235x x x+=C.()3434x x--=--D.2222a b a b a b-+= 4.已知关于x的一元一次方程3240x a--=的解是2x=,则a的值为()A.﹣5 B.﹣1 C.1 D.55.如图,是一个正方体的表面展开图.若该正方体相对面上的两个数和为0,则a b c+-的值为()A.﹣6 B.﹣2 C.2 D.46.如图所示,是由8个完全相同的小正方体搭成的几何体.若小正方体的棱长为1,则该几何体的表面积是()A.16 B.30 C.32 D.34二、填空题(本大题共有10小题,每小题3分,共30分)7.2021的绝对值是.8.双十一购物狂欢节,源于淘宝商城(天猫)2009年11月11日举办的网络促销活动,2020年双十一购物狂欢节全网销售额高达267 400 000 000元,将267 400 000 000用科学记数法表示为_____________.9.若∠A=34°,则∠A的补角等于____________°.10.请写出一个系数是﹣3、次数是4的单项式:_______________.11.如图是某个几何体的三视图,则该几何体的名称是_______________.12.已知2320x y-+=,则22(3)5x y-+的值为_______________.13.若一个等腰三角形的两边长分别为4cm 和9cm,则这个等腰三角形的周长是_______cm.14.若多项式23352x kxy--与2123xy y-+的和中不含xy项,则k的值是_________.15.如图,在ΔABC中,BD平分∠ABC交AC于点D,EF∥BC交BD于点G,若∠BEG=130°,则∠DGF=________°.16.如图,是一个长、宽、高分别为a、b、c(a>b>c)长方体纸盒,将此长方体纸盒沿不同的棱剪(第5题图)(第6题图)(第11题图)(第15题图)(第16题图)开,展成的一个平面图形是各不相同的.则在这些不同的平面图形中,周长最大的值是_______________.(用含a 、b 、c 的代数式表示)三、解答题(本大题共有8小题,共102分.解答时应写出必要的步骤)17.(本题12分)计算: (1)213(4)33⎛⎫---+-+ ⎪⎝⎭; (2)()2020112(3)2---+-÷.18.(本题8分)解下列方程:(1)43211x x -=+; (2)21)1323(x x --=-.19.(本题8分)先化简,再求值:22222(5)2(2)a b ab a b a b ab +-+--,其中1a =-,3b =.20.(本题8分)若方程2(31)12x x +=+的解与关于x 的方程622(3)3kx -=+的解互为倒数,求k 的值.21.(本题10分)如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,△ABC 的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A 画BC 的垂线,并标出垂线所过格点P ;(2)过点A 画BC 的平行线,并标出平行线所过格点Q ; (3)画出△ABC 向右平移8个单位长度后△A ′B ′C ′的位置;(4)△A ′B ′C ′的面积为________.22.(本题10分)用“※”定义一种新运算:对于任意有理数a 和b ,规定a ※b =a (a +b ). 例如:1※2=1×(1+2)=1×3=3. (1)求(﹣3) ※5的值;(2)若(﹣2) ※(3x -2)=x +1,求x 的值.23.(本题10分)如图,已知直线AB,CD相交于点O,∠AOE与∠AOC互余.(1)若∠BOD=32°,求∠AOE的度数;(2)若∠AOD:∠AOC=5∶1,求∠BOE的度数.24.(本题10分)如图1,直线MN∥PQ、ΔABC按如图放置,∠ACB=90°,AC、BC分别与MN、PQ相交于点D、E,若∠CDM=40°.(1)求∠CEP的度数;(2)如图2,将△ABC绕点C逆时针旋转,使点B落在PQ上得△A'B'C,若∠CB'E=22°,求∠A'CB的度数.25.(本题12分)全球新冠疫情爆发后,口罩成了急需物资,中国企业积极采购机械生产口罩,为全球抗击疫情作出了贡献.某企业准备采购A、B两种机械共15台,用于生产医用口罩和N95医用防护口罩,A种机械每天每台可以生产医用口罩7万个,B种机械每天每台可以生产N95医用防护口罩2万个,根据疫情需要每天生产的医用口罩要求是N95医用防护口罩的4倍.(1)求该企业A、B两种机械各需要采购多少台?(2)设该企业每天生产数量相同的同一类型口罩,每天销售9万元,并提供优惠政策:购买不超过10天不优惠,超过10天不超过20天的部分打九折,超过20天不超过30天的部分打8折,超过30天的部分打7折.①某国内医疗机构购买了该企业2周的口罩产量,问应付多少钱?②某国外医疗机构一次性付款207万元,问医疗机构购买了多少天的口罩产量?26.(本题14分)两个完全相同的长方形ABCD 、EFGH ,如图所示放置在数轴上. (1)长方形ABCD 的面积是__________.(2)若点P 在线段AF 上,且PE +PF =10,求点P 在数轴上表示的数.(3)若长方形ABCD 、EFGH 分别以每秒1个单位长度、3个单位长度沿数轴正方向移动.设两个长方形重叠部分的面积为S ,移动时间为t .①整个运动过程中,S 的最大值是____________,持续时间是__________秒. ②当S 是长方形ABCD 面积一半时,求t 的值.附加题1.如图①,在长方形 A BCD 中, E 点在 A D 上,并且∠ABE = 28︒ ,分别以 B E 、CE 为折痕进行折叠并压平,如图②,若图②中∠A ED =n ︒,则∠D E C 2. 如上图,已知点A 是射线BE 上一点,过A 作AC ⊥BF ,垂足为C ,CD ⊥BE ,垂足为D ,给出下列结论:①∠1是∠ACD 的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF ;④与∠ADC 互补的角共有3个.其中正确结论有_____. 3.如图,直线l 上有A 、B 两点,点O 是线段AB 上的一点,且OA =10cm ,OB =5cm . (1)若点C 是线段 AB 的中点,求线段CO 的长. (2)若动点 P 、Q 分别从 A 、B 同时出发,向右运动,点P 的速度为4c m/s ,点Q 的速度为3c m/s ,设运动时间为 x 秒, ①当 x =__________秒时,PQ =1cm ;②若点M 从点O 以7c m/s 的速度与P 、Q 两点同时向右运动,是否存在常数m ,使得4PM +3OQ ﹣mOM 为定值,若存在请求出m 值以及这个定值;若不存在,请说明理由. (3)若有两条射线 OC 、OD 均从射线OA 同时绕点O 顺时针方向旋转,OC 旋转的速度为6度/秒,OD 旋转的速度为2度/秒.当OC 与OD 第一次重合时,OC 、OD 同时停止旋转,设旋转时间为t 秒,当t 为何值时,射线 OC ⊥OD ?2020年秋学期期末学业质量测试七年级数学参考答案题号 1 2 3 4 5 6 答案CBDCBD(本大题共有10题,每小题3分,共30分)7. 2021 8. 2.674×1011 9. 146 10.﹣3x 4(答案不唯一) 11. 六棱柱 12. 1 13. 22 14. 8 15. 25 16. 8a +4b +2c三、解答题(本大题共有8题,共102分.解答时应写出必要的步骤)17.(1)解:原式213433=-+-+(2分) 21(34)33⎛⎫=--++ ⎪⎝⎭(2分)71=-+6=- (2分)(2)解:原式12(3)2=-+-⨯(3分) 16=-- (1分) 7=- (2分) 18.(1)解:42311x x -=+ (2分) 214x = (1分) 7x = (1分)(2)解:()32196x x --=- (1分) 32196x x -+=- (1分) 1110x -=- (1分)1011x = (1分) 19.解:原式22222524a b ab a b a b ab =-+-+(2分)22222254a b a b a b ab ab =+--+2ab =- (3分) 当1a =-,3b =时,()2213ab -=--⨯ (2分)9= (1分)20.解: ()23112x x +=+6212x x +=+41x =-14x =- (2分)14-的倒数是4-(2分) 将4-代入方程()62233kx -=+ 则6223k-=-(2分)626k -=- 212k -=-6k = (2分)21.(1)画出垂线(1分) (2)标出格点P (1分) (2)画出平行线(1分)只要标出1个格点Q (1分) (3)画出三角形(2分)标出字母(1分) (4)9.5 (3分)22.解:(1)由题意知,()3-※5()()335=-⨯-+⎡⎤⎣⎦ (2分)()32=-⨯ 6=- (2分)(2)由题意知,()2-※(32)x -()()()2232x =-⨯-+-⎡⎤⎣⎦(2分)()()234x =-⨯- 68x =-+(2分)因为()2-※(32)1x x -=+ 所以681x x -+=+(1分)77x -=-1x = (1分)23.解:(1)因为∠AOC 与∠BOD 是对顶角所以∠AOC =∠BOD =32°(1分) 因为∠AOE 与∠AOC 互余所以∠AOE +∠AOC =90°(1分) 所以∠AOE =90°-∠AOC (1分)=90°-32° =58° (2分)(2)因为∠AOD :∠AOC =5:1所以∠AOD =5∠AOC (1分) 因为∠AOC +∠AOD =180°(1分) 所以6∠AOC =180°∠AOC =30°(1分) 由(1)知∠BOD =∠AOC =30°∠COE =∠DOE =90°(1分)所以∠BOE =∠DOE +∠BOD=90°+30° =120°(1分)24.解:(1)连接DE因为MN ∥PQ所以∠MDE +∠PED =180°(2分)即∠CDM +∠CEP +∠CDE +∠CED =180° 因为∠CDE +∠CED +∠DCE =180°所以∠CDM +∠CEP =∠DCE =90°(1分) 所以∠CEP =90°-∠CDM=90°-40° =50°(2分)(2)由(1)知∠CEP =50°因为∠CEP +∠CEB '=180° 所以∠CEB '=180°-∠CEP=180°-50° =130°(1分)因为∠ECB '+∠CEB '+∠CB 'E =180° 所以∠ECB '=180°-∠CEB '-∠CB 'E=180°-130°-22° =28°(1分)因为∠A 'CB '是由∠ACB 旋转得到 所以∠A 'CB '=∠ACB =90°(1分) 所以∠A 'CB =∠A 'CB '+∠ECB '=90°+28° =118°(2分)25.解:(1)设采购A 种机械x 台,则采购B 种机械(15-x )台.(1分)由题意得742(15)x x =⨯-(3分)解得8x =151587x -=-=答:采购A 种机械8台,采购B 种机械7台.(2分) (2)①两周=14天9×10+9×0.9×4 (1分) =90+32.4=122.4(万元)答:应付122.4万元.(1分)②购买20天费用:9×10+8.1×10=171(万元)购买30天费用:9×10+8.1×10+7.2×10=243(万元) 171<207<243设国外医疗机构购买了y 天的口罩产量(20<y <30) 则9×10+8.1×10+7.2×(y -20)=207(2分) 解得y =25答:国外医疗机构购买了25天的口罩产量.(2分)26.(1)48 (3分)(2)设点P 在数轴上表示的数是x , 则(10)10PE x x =--=+(4)4PF x x =--=+ (1分) 因为10PE PF +=所以(10)(4)10x x +++= (1分) 解得2x =-答:点P 在数轴上表示的数是﹣2.(1分)(3)①36;1 (4分) ②由题意知移动t 秒后,点E 、F 、A 、B 在数轴上分别表示的数是 103t -+、43t -+、2t +、10t + 情况一:当点A 在E 、F 之间时(43)(2)26AF t t t =-+-+=- 由题意知148242AF AD S ⋅==⨯= 所以()62624t ⋅-=解得5t =(2分)情况二:当点B 在E 、F 之间时()()10103202BE t t t =+--+=-由题意知148242BE BC S ⋅==⨯=所以()620224t ⋅-= 解得8t =(1分)综上所述,当S 是长方形ABCD 面积一半时,5t =或8.(1分)附加题1.(28+1/2 n )°2. 答案为①④.3. 【答案】解:(1)∵OA =10cm ,OB =5cm ,∴AB =OA +OB =15cm . ∵点C 是线段 AB 的中点,∴AC =12AB =7.5cm ,∴CO =AO -AC =10-7.5=2.5(cm ). (2)①∵PQ =1,∴|15-(4x -3x )|=1,∴|15-x |=1,∴15-x =±1,解得:x =14或16.②∵PM =10+7x -4x =10+3x ,OQ =5+3x ,OM =7x ,∴4PM +3OQ ﹣mOM =4(10+3x )+3(5+3x )-7mx =55+(21-7m )x ,要使4PM +3OQ ﹣mOM定值,则21-7m =0,解得:m =3,此时定值为55.(3)分两种情况讨论:①如图1,根据题意得:6t -2t =90,解得:t =22.5; ②如图2,根据题意得:6t +90=360+2t ,解得:t =67.5.综上所述:当t =22.5秒和67.5秒时,射线 OC ⊥OD .。

2020-2021七年级上期末数学试卷(含答案)

2020-2021七年级上期末数学试卷(含答案)

2020-2021七年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分,注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在表格内. 1.如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是()2 .沿图中虚线旋转一周,能围成的几何体是下面几何体中的()3 .下列说法错误的是()A .长方体、正方体都是棱柱B .六棱柱有六条棱、六个侧面C .三棱柱的侧面是三角形D .球体的三种视图均为同样的图形4. a与b的平方的和可表示为()A.(a+b)2B. a2+b2C. a2+bD. a+b25.下列说法正确的是()A .二是单项式B .一""’-是五次单项式C . ab2 2a+3是四次三项式D. 2 ∏r勺系数是2 ∏,次数是1次6.下列计算正确的是()A.2x+3y=5xyB. 2a2+2a 3=2a5C. 4a23a2=1D. 2ba2+a2b=a2b7.把一副三角板按如图所示那样拼在一起,那么∠ ABC的度数是()A. 150°B. 135°C. 120° D . 1058 .将21.54 °用度、分、秒表示为( )A. 21° 54'B. 21° 50' 24C. 21° 32' 40D . 21° 32' 24〃9.若单项式γχ2a W4与2xy4是同类项,则式子(1 a)2015 =(A. 0 B . 1 C.讨D . 1 或讨10 .为庆祝“六?一”儿童节,某幼儿园举行用火柴棒摆“金鱼比赛.如图所示:按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A . 2+6n B . 8+6n C . 4+4n D . 8n二、填空题:本大题共6小题,每小题4分,共24分.11.某年我国的粮食总产量约为8920000000吨,这个数用科学记数法表示为 ___________ 吨.12.两个有理数a、b在数轴上的位置如图所示,则a+b __________ 0 ; ab _________ 0 (填“v” 或“>.”)—I--------- 乂盘0b13 .用“>”、“v” 填空:914. p的倒数是__________; 3 的相反数为__________; 2的绝对值是 ____________ .15.如果代数式5x8与代数式3x的值互为相反数,则X= __________ .16.在长为48cm的线段AB上,取一点D,使AD=TAB,C为AB的中点,贝y CD= ____________ m .三、解答题(一):本大题共3小题,每小题6分,共18分,要有必要的运算过程或演算步骤.17 .计算:(20 ) — (28 ) — (19) + (24).18 .计算: 8X 弓一专)+ (—) 3÷4.19 .解方程:x+2=6 3x .四、解答题(二):本大题共3小题,每小题7分,共21分.20 .根据下列语句,画出图形.已知四点A、B、C、D .①画直线AB ;②连接AC、BD,相交于点O ;③画射线AD、BC,交于点P .21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A , B两点的位置,分别写出它们所表示的有理数.(2)请问A, B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A, B 的其它字母表示),并写出这些点表示的数.B A―I-5 -4-3 -2-1 Q 1 2 3 4 522.先化简再求值:3a+ (七a+2 ) - 3 4a),其中a=* .五、解答题(三):本大题共3小题,每小题9分,共27分.23.连州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问:(1)若设乙旅行社的人数为X,请用含X的代数式表示甲旅行社的人数;(2)甲、乙两个旅游团各有多少人?24.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10〜20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)________________________________ 这里采用的调查方式是 ________________________________________ (填“普查”或“抽样调查”,样本容量是 _____________ ;(2)__________________ 表中a= ______ , b= ,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,贝U “ 40〜50”的圆心角的度数 ___________ .时间分段皿祖频数人数頻率10-20S0. 2002(MO14a30-4010O. 2□040-50b Q. 12550-6030. 075合计40↑ . OOo25.观察下列关于自然数的等式:32 - -4×=5 ①52 - 4×=9 ②72-4×=13 ③根据上述规律解决下列问题:(1)完成第四个等式:92- 4×2= ___________ ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.七年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,注意每小题的四个选项中只有一个是对的,将正确答案相对应的字母填在表格内. 1.如图,由两块长方体叠成的几何体,从正面看它所得到的平面图形是(【考点】简单组合体的三视图.B.【分析】细心观察图中几何体摆放的位置,根据主视图是从正面看到的图形判定即可.【解答】解:长方体的主视图是:长方形,此图有两个长方体组成,因此主视图是两个长方形,再根据长方体的摆放可得:A正确,故选;A.【点评】此题主要考查了几何体的三视图,从正面看到的图叫做主视图,再注意长方体的摆放位置即可.2 .沿图中虚线旋转一周,能围成的几何体是下面几何体中的()【考点】点、线、面、体.【分析】根据该图形的上下底边平行且相等的特点可得旋转一周后得到的平面应是平行且全等的关系,据此找到正确选项即可.【解答】解:易得该图形旋转后可得上下底面是平行且半径相同的2个圆,应为圆柱,故选B.【点评】长方形旋转一周得到的几何体是圆柱.3 .下列说法错误的是()A .长方体、正方体都是棱柱B .六棱柱有六条棱、六个侧面C .三棱柱的侧面是三角形D .球体的三种视图均为同样的图形【考点】认识立体图形;简单几何体的三视图.【分析】利用常见立体图形的特征分析判定即可.【解答】解:A、长方体、正方体都是棱柱,此选项正确,B、六棱柱有六条棱、六个侧面,此选项正确,C、三棱柱的侧面是平行四边形或长方形或正方形,此选项错误,D、球体的三种视图均为同样的图形,此选项正确,故选:C .【点评】本题主要考查了认识立体图形及简单几何体的三视图,解题的关键是熟记常见立体图形的特征.4. a与b的平方的和可表示为()A. (a+b ) 2B. a2+b2C. a2+bD. a+b2【考点】列代数式.【分析】用a加上b的平方列式即可.【解答】解:a与b的平方的和可表示为a+b2.故选:D .【点评】此题考查列代数式,理解题意,搞清运算的顺序与方法即可.5 .下列说法正确的是()A .:是单项式B ."-bi:是五次单项式C . ab2 2a+3是四次三项式D. 2冗r的系数是2 ∏,次数是1次【考点】多项式;单项式.【分析】分别根据单项式以及多项式的定义判断得出即可.2【解答】解:A、「是分式,不是单项式,故此选项错误;,2B∖=a2b3c是六次单项式,故此选项错误;C、ab22a+3是三次三项式,故此选项错误;D、2∏r勺系数是2π,次数是1次,故此选项正确.故选:D .【点评】此题考查了多项式和单项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.6 .下列计算正确的是()A、2x+3y=5xy B. 2a2+2a 3=2a5C . 4a23a2=1D .2ba2+a2b= a2b【考点】合并同类项.【分析】根据合并同类项的法则,系数相加字母部分不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、不是同类项不能合并,故B错误;C、系数相加字母部分不变,故C错误;D、系数相加字母部分不变,故D正确;故选:D .【点评】本题考查了合并同类项,系数相加字母部分不变.7.把一副三角板按如图所示那样拼在一起,那么∠ ABC的度数是()A. 150°B. 135°C. 120° D . 105°【考点】角的计算.【分析】∠ ABC等于30度角与直角的和,据此即可计算得到.【解答】解:∠ ABC=30° +90° =120° , 故选C .【点评】本题考查了角度的计算,理解三角板的角的度数是关键.8 .将21.54 °用度、分、秒表示为()A. 21° 54'B. 21° 50' 24C . 21° 32' 40D . 21° 32' 24〃【考点】度分秒的换算.【分析】根据大单位化小单位乘以进率,可得答案.【解答】解:21.54 ° =21 ° 32.4 ' =21 ° 32' 24〃 . 故选:D .【点评】本题考查了度分秒的换算,不满一度的化成分,不满一分的化成秒.9.若单项式γχ2a W4与2xy4是同类项,则式子(1 a)2015 =(A. 0 B . 1 C.讨D . 1 或讨【考点】同类项.【分析】禾U用同类项的定义求解即可.【解答】解:I单项式aχ2a a y4与2xy 4是同类项,••• 2a1-=1,解得a=1 ,.•.(1 a)2015 =0 ,故选:A.【点评】本题主要考查了同类项,解题的关键是熟记同类项的定义.10 .为庆祝“六?一”儿童节,某幼儿园举行用火柴棒摆“金鱼① ② ③按照上面的规律,摆n个“金鱼”需用火柴棒的根数为()A. 2+6n B . 8+6n C . 4+4n D . 8n【考点】规律型:图形的变化类.【专题】压轴题;规律型.【分析】观察给出的3个例图,注意火柴棒根数的变化是图②的火柴棒比图①的多6根,图③的火柴棒比图②的多6根,而图①的火柴棒的根数为2+6 .【解答】解:第n条小鱼需要(2+6n )根,故选A .【点评】本题考查列代数式,本题的解答体现了由特殊到一般的数学方法(归纳法),先观察特例,找到火柴棒根数的变化规律,然后猜想第n条小鱼所需要的火柴棒的根数.二、填空题:本大题共6小题,每小题4分,共24分.11.某年我国的粮食总产量约为8920000000吨,这个数用科学记数法表示为8.92 × 10吨.【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为a× 10的形式,其中1≤ IalV 10 , n为整数.确定n的值是易错点,由于8920000000有10位,所以可以确定n=10 4=9 .【解答】解:8 920 000 000=8.92 × 10故答案为:8.92 × 190【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.12.两个有理数a、b在数轴上的位置如图所示,则a+b V0; abV0 (填“V” 或“>.”)r ⅛t *【考点】数轴.【分析】先根据数轴确定a , b的取值范围,根据有理数的加法、乘法,即可解答.【解答】解:由数轴可得:a V 0 V b, |a| > |b|,••• a+bv0, ab V 0,故答案为:V,V.【点评】本题考查了数轴,解决本题的关键是根据数轴确定a, b的取值范围.14 213 .用“>”、“v”填空三F;一■!三一孑.【考点】有理数大小比较.【专题】综合题.【分析】前两个数可直接比较大小.利用负数小于O,后两个数,先求它们的绝对值,再利用绝对值大的反而小比较即可.【解答】解:∙∙∙⅛≡∣4t, i義輕,12 10 h>L,故答案为:>,v.【点评】本题利用了负数小于0,两个负数相比较绝对值大的反而小的知识.2 314 .-的倒数是G 3的相反数为二3;2的绝对值是2 .【考点】倒数;相反数;绝对值.【分析】根据乘积为1的两个数互为倒数,可得答案;根据只有负号不同的两个数互为相反数,可得答案;根据负数的绝对值等于它的相反数,可得答案.【解答】解:三的倒数是3的相反数为-3; 2的绝对值是2,故答案为:土-, 2 .【点评】本题考查了倒数,求倒数:分子分母交换位置;求相反数:在一个数的前面加上符号就是这个数的相反数.15 .如果代数式5x 8与代数式3x的值互为相反数,则X=].【考点】解一元一次方程;相反数.【专题】计算题.【分析】利用互为相反数两数之和为O列出方程,求出方程的解即可得到X的值.【解答】解:根据题意得:5x8+3x=0 ,移项合并得:8x=8 ,解得:x=1 ,故答案为:1【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.16.在长为48cm的线段AB上,取一点D,使AD=UAB , C为AB的中点,贝y CD=8cm .【考点】两点间的距离.【分析】根据线段间的比例,可得AD的长,根据线段中点的性质,可得AC的长,根据线段的和差,可得答案.【解答】解:由AB=48 (Cm), AD^AB,得AD= -IAB=弋× 48=16 (Cm ).由C为AB的中点,得AC=亍AB= ± × 48=24 (Cm ),由线段的和差,得CD=AC AD=24 16=8 (Cm),故答案为:8 .【点评】本题考查了两个点间的距离,利用线段中点的性质得出AC的长,利用线段的和差.三、解答题(一):本大题共3小题,每小题6分,共18分,要有必要的运算过程或演算步骤.17.计算:(Ao ) — 28 ) A(I A ) + (A4).【考点】有理数的加减混合运算.【专题】计算题;实数.【分析】首先根据有理数减法法则,把算式进行化简,然后应用加法交换律和结合律,求出算式的值是多少即可.【解答】解:(80 )- 28 ) — (18) + (84)= 40+28+19 24=—40+24 ) + (28+19 )=64+47=17【点评】此题主要考查了有理数的加减混合运算,要熟练掌握,解答此题的关键是要明确:在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法.18.计算:)+ (2) 3÷ 4.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果.【解答】解:原式=6 4 8 ÷ 4=64-2=0 .【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.19.解方程:x+2=6 3x .【考点】解一元一次方程.【分析】按照解一元一次方程的步骤依次移项、合并同类项、系数化为1可得方程的解.【解答】解:移项,得:x+3x=6 2,合并同类项,得:4x=4 ,系数化为1,得:x=1 .【点评】本题主要考查解一元一次方程的基本素质,严格遵循解方程的一般步骤是解方程基础.四、解答题(二):本大题共3小题,每小题7分,共21分.20 .根据下列语句,画出图形.已知四点A、B、C、D .①画直线AB ;②连接AC、BD,相交于点O ;③画射线AD、BC,交于点P .卜-C【考点】直线、射线、线段.【专题】作图题.【分析】根据直线、线段和射线的定义作出即可.【解答】解:如图所示.-------------- 7/■【点评】本题考查了直线、射线、线段,主要是对文字语言转化为图形语言的能力的培养.21.根据下面给出的数轴,解答下面的问题:(1)请你根据图中A , B两点的位置,分别写出它们所表示的有理数.(2)请问A, B两点之间的距离是多少?(3)在数轴上画出与点A的距离为2的点(用不同于A, B 的其它字母表示),并写出这些点表示的数.B A—I________J 丄一丄』」—丄于-4-3 -2-1 Q 1 2 3 4 5【考点】数轴.【专题】数形结合.【分析】(1)读出数轴上的点表示的数值即可;(2)两点的距离,即两点表示的数的绝对值之和;(3)与点A的距离为2的点有两个,一个向左,一个向右.【解答】解:(1)根据所给图形可知A: 1 , B :25 ;(2)依题意得:AB之间的距离为:1+2.5=3.5 ;R AV 7-5 -4-3 -2-1 O 1 2 3 4 5设这两点为C、D ,则这两点为C : 1 2= 1, D : 1+2=3 .【点评】本题主要考查了学生对数轴的掌握情况,要会画出数轴,会读准数轴.22.先化简再求值:3a+ (2a+2 )- 3 4a),其中a结.【考点】整式的加减一化简求值.【专题】计算题;整式.【分析】原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=3a 8a+2 3+4a= a 4 , 当a=二时,原式=8.【点评】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.五、解答题(三):本大题共3小题,每小题9分,共27分.23.连州某旅行社组织甲、乙两个旅游团分别到西安、北京旅游,已知这两个旅游团共有55人,甲旅游团的人数比乙旅游团的人数的2倍少5人,问:(1)若设乙旅行社的人数为X,请用含X的代数式表示甲旅行社的人数;(2)甲、乙两个旅游团各有多少人?【考点】一元一次方程的应用.【分析】(1)设甲旅游团个有X人,乙旅游团有(2x 5)人.(2)根据题意可得等量关系:甲团+乙团=55人;甲团人数=乙团人数× 2,根据等量关系列出方程,再解即可.【解答】解:(1)乙旅游团有(2x 5)人.(2)由题意得:2x 5+x=55 ,解得:x=20 ,所以2x 5=35 (人)答:甲旅游团有35人,乙旅游团有20人.【点评】本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.24.某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10〜20”表示等候检票的时间大于或等于10min而小于20min,其它类同.(1)这里采用的调查方式是抽样调查(填“普查”或“抽样调查”)样本容量是40 ;(2)表中a=0.350 , b=5,并请补全频数分布直方图;(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,贝y “ 40〜50”的圆心角的度数是45°.【考点】频数(率)分布直方图;频数(率)分布表;扇形统计图. 【分析】(1)由于前往参观的人非常多,5月中旬的一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,由此即可判断调查方式,根据已知的一组数据可以求出接受调查的总人数C;(2)总人数乘以频率即可求出b,利用所有频率之和为1即可求出a,然后就可以补全频率分布直方图;(3)用周角乘以其所在小组的频率即可求得其所在扇形的圆心角;【解答】解:(1)填抽样调查或抽查;总人数为:8÷ 0.200=40 ;(2) a=1 0.200 Q .250 £.125 0.075=0.350 ;b=8 ÷ 0.200 × 0.125=5 ;频数分布直方图如图所示:(3)“ 40〜50”的圆心角的度数是0.125 × 360° =45° .故答案为:抽样调查,40 ; a=0.350 , b=5 ; 45°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查了中位数、频率和频数的定义.25.观察下列关于自然数的等式:32- 4×=5 ①52- 4×=9 ②72 - 4×33③•••根据上述规律解决下列问题:(1)完成第四个等式:92- 4×2=17 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.【专题】规律型.【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1 ,由此规律得出答案即可.【解答】解:(1) 32 - 4×1①52- 4×=9 ②72- 4×=13 ③•••所以第四个等式:92- 4×=47 ;(2)第n 个等式为:(2n+1 )24n2=4n+1 ,左边=(2n+1 ) 2 4n2=4n2+4n+1 4n2=4n+1 ,右边=4n+1 .左边=右边∙∙∙(2n+1 ) 24n2=4n+1 .【点评】此题考查数字的变化规律,找出数字之间的运算规律,利用规律解决问题.。

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021 学年七年级上期数学期末质量监测试题(含答案解析)

2020—2021学年七年级上期数学期末质量监测试题注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.12.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A 重合的点是()A.点B ,IB.点C ,EC.点B ,ED.点C ,H8.下列各组数中,相等的是()A.()23-与23- B.()32-与32-C.23与23- D.32-与()32-9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.9410.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +-> D.0b c a +->11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +312.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x⨯++= D.3(20)5109x x ⨯++=+二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.14.若5a =,3b =-,且0a b +>,则ab =_______.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg 4741体重与平均体重的差值/kg+302-+416.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.20.如图,已知点A ,B ,C ,利用尺规,按要求作图:(1)作线段AB ,AC ,过B ,C 作射线BQ ;在射线CQ 上截取CD=BC ,在射线DQ 上截取DE=BD ;(2)连接AE ,在线段AE 上截取AF=AC ,作直线AD 、线段DF ;(3)比较BC 与DF 的大小,直接写出结果.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.22.解方程:(1)()235x x +=-;(2)325123y y ---=.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/325.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h,骑车速度是步行速度的4倍,从学校到家有2km的路程,通过计算发现,方案1比方案2多用6min.(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km,用含x的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.-和10的位置上,沿数轴做向东、向西移动的游戏.26.如图,甲、乙两人(看成点)分别在数轴10移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)请用含m,n的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.2020—2021学年七年级上期数学期末质量监测试题答案解析注意事项:1.试题卷上各题的答案签字笔书写在答题卡...上,不得在试题卷上直接作答;2.答题前认真阅读答题卡...上的注意事项;3.作图(包括作辅助线)请一律用2B..铅笔..完成;4.考试结束,由监考人员将试题卷和答题卡...一并收回.一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡...上题号右侧正确答案所对应的方框涂黑.-+的结果是()1.21A.3B.1-C.3-D.1【答案】B【解析】【分析】直接利用有理数的加法法则计算即可.-+=-【详解】211故选:B.【点睛】本题主要考查有理数的加法,掌握有理数的加法法则是解题的关键.2.如图,虚线左边的图形绕虚线旋转一周,能形成的几何体是()A. B. C. D.【分析】从运动的观点来看,点动成线,线动成面,面动成体,根据“面动成体”可得答案.【详解】解:根据“面动成体”可得,旋转后的几何体为两个底面重合的圆锥的组合体,因此选项B中的几何体:符合题意,故选:B.【点睛】本题考查“面动成体”,解题的关键是明确点、线、面、体组成几何图形,点、线、面、体的运动组成了多姿多彩的图形世界.3.下图是由4个大小相同的正方体搭成的几何体,这个几何体的主视图是().A. B. C. D.【答案】D【解析】【分析】根据主视图定义,由此观察即可得出答案.【详解】解:从物体正面观察可得,左边第一列有2个小正方体,第二列有1个小正方体.故答案为D【点睛】本题考查三视图的知识,主视图是从物体的正面看得到的视图.4.下面几何体的截面图不可能是圆的是()A.圆柱B.圆锥C.球D.棱柱【详解】解:上述四个几何体中,圆柱、圆锥和球的截面图都有可能是圆;只有棱柱的截面图不可能是圆.故选D .5.下列计算中,结果等于5的是()A.()()94--- B.()()94-+-C.94-+- D.9+4-+【答案】A 【解析】【分析】根据绝对值的性质化简化简求解.【详解】A.()()94---=9455-+=-=,故正确;B.()()94941313-+-=--=-=,故错误;C.949413-+-=+=,故错误;D .9+4-+=9413+=,故错误;故选A .【点睛】此题主要考查绝对值的运算,解题的关键是熟知绝对值的定义.6.某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③ B.①③⑤C.②③④D.②④⑤【答案】C 【解析】【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【详解】解:根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.【点睛】此题主要考查统计调查的应用,解题的关键是熟知体育运动项目的定义.7.如图,是一个正方体盒子的展开图,如果要把它粘成一个正方体,那么与点A重合的点是()A.点B,IB.点C,EC.点B,ED.点C,H【答案】B【解析】【分析】首先能想象出来正方形的展开图,然后作出判断即可.【详解】由正方形的展开图可知A、C、E重合,故选B.【点睛】本题考查了正方形的展开图,比较简单.8.下列各组数中,相等的是()A.()23-与23-B.()32-与32-C.23与23-D.32-与()32-【答案】D【解析】【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】∵(-3)2=9,-32=-9,故选项A不符合题意,-=,故选项B不符合题意,∵(-2)3=-8,328∵32=9,-32=-9,故选项C不符合题意,∵-23=-8,(−2)3=-8,故选项D 符合题意,故选D .【点睛】此题考查有理数的乘法,有理数的乘方,解题关键在于掌握运算法则.9.定义a ※2(1)b a b =÷-,例如3※()295351944=÷-=÷=.则()3-※4的结果为()A.3-B.3C.54 D.94【答案】B 【解析】【分析】根据给出的※的含义,以及有理数的混合运算的运算法则,即可得出答案.【详解】解: a ※2(1)b a b =÷-,∴()3-※4()()2=341933-÷-=÷=,故选B .【点睛】本题考查了新定义的运算以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,后算加减;同级运算,应按从左往右的顺序进行计算,如果有括号,要先计算括号里的.10.如图,点A ,B ,C 在数轴上,它们分别对应的有理数是a ,b ,c ,则以下结论正确的是()A.0a b +>B.0a c +<C.0a b c +->D.0b c a +->【答案】D 【解析】【分析】根据数轴上点的位置确定出a ,b ,c 的正负及绝对值大小,利用有理数的加减法则判断即可.【详解】解:根据数轴上点的位置得:a <0<b <c ,且|b|<|a|<|c|,∴a+b <0,故选项A 错误,不符合题意;0a c +>,故选项B 错误,不符合题意;0a b c +-<,故选项C 错误,不符合题意;0b c a +->,故选项D 正确,符合题意;故选:D .【点睛】此题考查了有理数的减法,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.11.在桌上的三个空盒子里分别放入了相同数量的围棋子n 枚(n ≥4).小张从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中;再从乙盒中取出与甲盒中数量相同的棋子数放入甲盒中.此时乙盒中的围棋子的枚数是()A.5B.n +7C.7D.n +3【答案】C 【解析】【分析】先求出从甲盒子中取出2枚后剩下的棋子数,再求出从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数,把它们相减即可求解.【详解】解:依题意可知,乙盒中的围棋子的枚数是n +2+3-(n -2)=7.故选:C .【点睛】考查了列代数式,关键是得到从甲盒子中取出2枚后剩下的棋子数,从甲盒子中取出2枚放入乙盒中,从丙盒中取出3枚放入乙盒中乙盒的棋子数.12.在编写数学谜题时,小智编写的一个题为3259⨯+=,“”内要求填写同一个数字,若设“”内数字为x .则列出方程正确的是()A.3259x x ⨯+=B.3205109x x ⨯+=⨯C.320590x x ⨯++=D.3(20)5109x x ⨯++=+【答案】D 【解析】【分析】直接利用表示十位数的方法进而得出等式即可.【详解】解:设“”内数字为x ,根据题意可得:3×(20+x )+5=10x+9.故选:D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示十位数是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡...中对应的横线上.13.一元一次方程213x -=的解是x =__.【答案】2;【解析】【分析】方程移项合并后,将x 的系数化为1,即可求出方程的解.【详解】解:213x -=23+1x =2x=4,解得:x=2.故答案为:2.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项,合并同类项,将x 的系数化为1,求出解.14.若5a =,3b =-,且0a b +>,则ab =_______.【答案】15-;【解析】【分析】根据绝对值的意义及a+b>0,可得a ,b 的值,再根据有理数的乘法,可得答案.【详解】解:由|a|=5,b=-3,且满足a+b >0,得a=5,b=-3.当a=5,b=-3时,ab=-15,故答案为:-15.【点睛】本题考查了绝对值、有理数的加法、有理数的乘法,确定a 、b 的值是解题的关键.15.某中学七年级学生的平均体重是44kg ,下表给出了6名学生的体重情况,最重和最轻的同学体重相差_____kg .姓名小润小华小颖小丽小惠小胜体重/kg4741体重与平均体重+302-+4的差值/kg【答案】7;【解析】【分析】根据题目中的平均体重即可分别求出体重与平均体重的差值及体重,然后填表即可得出最重的和最轻的同学体重,再相减即可得出答案.【详解】解: 某中学七年级学生的平均体重是44kg,∴小润的体重与平均体重的差值为4744=3-kg;+kg;小华的体重为443=47+kg;小颖的体重为440=44-kg;小丽的体重为442=42--kg;小惠的体重与平均体重的差值为4144=3+kg;小胜的体重为444=48填表如下:姓名小润小华小颖小丽小惠小胜体重/kg474744424148体重与平均体重+3+302--3+4的差值/kg可知,最重的同学的体重是48kg,最轻的同学的体重是41kg∴最重和最轻的同学体重相差4841=7-kg.故答案为:7.【点睛】本题考查了有理数加减的应用,熟练掌握有理数的加减运算法则是解题的关键.16.如图,∠AOC=∠BOD=α,若∠BOC=β,则∠AOD=____.(用含α,β的代数式表示).【答案】2αβ-【解析】【分析】由,AOD AOC DOC ∠=∠+∠,DOC BOD BOC ∠=∠-∠可得:,AOD AOC BOD BOC ∠=∠+∠-∠从而可得答案.【详解】解:,AOD AOC DOC ∠=∠+∠ ,DOC BOD BOC ∠=∠-∠,AOD AOC BOD BOC ∴∠=∠+∠-∠,,AOC BOD BOC αβ∠=∠=∠= 2.AOD ααβαβ∴∠=+-=-故答案为:2.αβ-【点睛】本题考查的是角的和差关系,掌握利用角的和差关系进行计算是解题的关键.17.如图,某小区准备在一个长方形空地上进行造型,图示中的x 满足:1020x ≤<(单位:m ),其中两个扇形表示草坪,两块草坪之间用水池隔开,那么水池(图中空白部分)的面积为___________(单位:2m ).【答案】20125400x π-+;【解析】【分析】根据题意和图形可知,水池的面积是长方形的面积减去两个扇形的面积,本题得以解决.【详解】解:由图可得,水池的面积为:20×(x +20)−π×102×14−π×202×14=20125400x π-+(m 2),故答案为:20125400x π-+.【点睛】本题考查列代数式,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,是某剧场第一排座位分布图.甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲购买1号座位的票,乙购买2,4,6号座位的票,丙购买3,5,7,9,11号座位的票,丁无法购买到第一排座位的票.若让丙第一购票,要使其他三人都能购买到第一排座位的票,写出满足条件的丁所选的座位号之和为____________.【答案】66.【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为1,3,5,6可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4,5.丁所购票数最多,即可得出丁应该为6,8,10,12,14,16,再将所有数相加即可.【详解】解: 甲、乙、丙、丁四人购票,所购票数分别为1,3,5,6.∴丙选座要尽可能得小,选择:1,2,3,4,5.此时左边剩余5个座位,右边剩余6个座位,∴丁选:6,8,10,12,14,16.∴丁所选的座位号之和为681012141666+++++=;故答案为:66.【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.19.计算:(1)16373311-÷+⨯;(2)()123+153234⎛⎫-⨯- ⎪⎝⎭.【答案】(1)-6;(2)5【解析】【分析】(1)根据有理数的混合运算法则先算乘除后算加减即可;(2)根据有理数混合运算法则先算括号里面的再算乘除.【详解】解:(1)原式=93-+6=-;(2)原式123+12234⎛⎫=-⨯ ⎪⎝⎭12312+×1212234=⨯-⨯6+89=-5=.【点睛】此题考查了有理数混合运算的运算法则,难度一般,认真计算是关键,注意能简便运算的尽量简便运算.20.如图,已知点A,B,C,利用尺规,按要求作图:(1)作线段AB,AC,过B,C作射线BQ;在射线CQ上截取CD=BC,在射线DQ上截取DE=BD;(2)连接AE,在线段AE上截取AF=AC,作直线AD、线段DF;(3)比较BC与DF的大小,直接写出结果.【答案】(1)见解析;(2)见解析;(3)BC=DF【解析】【分析】(1)利用几何语言画出对应的图形即可;(2)利用几何语言画出对应的图形即可;(3)利用作图特征和等量代换即可得出答案.【详解】解:(1)、(2)如图所示,要求有作图痕迹;(3)BC=DF.证明:由作图知CD=DF ,又 CD=BC ,∴BC=DF .【点睛】本题考查了尺规作图-线段,利用圆规和直尺的特征作图是解题的关键.21.化简下列各式:(1)()()222ab c ab c -+-+;(2)()22233(2)x xy x xy --+-+.【答案】(1)2ab c -;(2)236x xy --+【解析】【分析】(1)原式先去括号,然后合并同类项即可得到答案;(2)原式先去括号,然后合并同类项即可得到答案.【详解】解:(1)()()222ab c ab c -+-+242ab c ab c =--+2ab c =-.(2)()22233(2)x xy x xy --+-+2262+336x xy x xy =-+-+236x xy =--+.【点睛】本题考查整式的加法运算,要先去括号,然后合并同类项.运用去括号法则进行多项式化简.合并同类项时,注意只把系数想加减,字母与字母的指数不变.22.解方程:(1)()235x x +=-;(2)325123y y ---=.【答案】(1)11x =-;(2)5y =-【解析】【分析】(1)按照去括号,移项、合并同类项、将系数化为1的步骤计算即可;(2)按照去分母、去括号、移项、合并同类项、将系数化为1的步骤计算即可.【详解】解:(1)去括号,得265x x +=-移项,得256x x -=--合并同类项,将系数化为1,得11x =-.(2)去分母,得3(3)62(25)y y --=-去括号,得396410y y --=-移项,得341096y y -=-++合并同类项,得5-=y 系数化为1,得5y =-.【点睛】本题考查了解一元一次方程,熟练掌握解方程的一般步骤是解题的关键.23.小李家准备购买一台台式电脑,小李将收集到的该地区A ,B ,C 三种品牌电脑销售情况的有关数据统计如下:根据上述三个统计图,请解答:(1)直接写出6至11月三种品牌电脑销售总量最多的电脑品牌,以及11月份A 品牌电脑的销售量;(2)11月份,其它品牌的电脑销售总量是多少台?(3)你建议小李购买哪种品牌的电脑?请写出你的理由(写出一条理由即可).【答案】(1)6至11月三种品牌电脑销售量总量最多是B 品牌,11月份,A 品牌的销售量为270台;(2)221台;(3)答案不唯一,如,建议买C 品牌电脑;或建议买A 品牌电脑,或建议买B 产品,见解析【解析】【分析】(1)从条形统计图、折线统计图可以得出答案;(2)根据A品牌电脑销售量及A品牌电脑所占百分比即可求出11月份电脑的总的销售量,再减去A、B、C品牌的销售量即可得出答案;(3)从所占的百分比、每月销售量增长比等方面提出建议即可.【详解】解:(1)6至11月三种品牌电脑销售量总量最多是B品牌;11月份,A品牌的销售量为270台;(2)11月,A品牌电脑销售量为270台,A品牌电脑占27%,÷=(台).所以,11月份电脑的总的销售量为27027%1000---=(台).其它品牌的电脑有:1000234270275221(3)答案不唯一.如,建议买C品牌电脑.销售量从6至11月,逐月上升;11月份,销售量在所有品牌中,占的百分比最大.或:建议买A品牌电脑.销售量从6至11月,逐月上升,且每月销售量增长比C品牌每月的增长量要快.或:建议买B产品.因为B产品6至11月的总的销售量最多.【点睛】本题考查了条形图、折线统计图、扇形统计图,熟练掌握和理解统计图中各个数量及数量之间的关系是解题的关键.24.用一张正方形纸片,在纸片的四个角上剪去四个相同的小正方形,经过折叠,就可成一个无盖的长方体.(1)如图,这是一张边长为a cm的正方形,请在四个角上画出需要剪去的四个小正方形的示意图,剪去部分用阴影表示;(2)如果剪去的四个小正方形的边长为b cm,请用含a,b的代数式表示出无盖长方体的容积(可不化简);a=cm,完成下列表格,并利用你的计算结果,猜想无盖长方体容积取得最(3)若正方形纸片的边长为18大值时,剪去的小正方形的边长可能是多少?(保留整数位)剪去小正方形的边长b的值/cm123456……cm……无盖长方体的容积/3【答案】(1)见解析;(2)()22v b a b =-;(3)见解析,剪去的小正方形的边长可能是3cm 【解析】【分析】(1)将正方形的四个角的小正方形大小要一致即可;(2)根据图形中的字母表示的长度即可得出()22v b a b =-;(3)将18a =cm 结合容积公式及表格即可得出答案.【详解】解:(1)如图所示(可以不标出a ,b ,但四个角上的正方形大小要一致).(2)无盖厂长方体盒子的容积v 为()22v b a b =-(3)当18a =,b=1时,()2221(1821)256v b a b =-=⨯-⨯=,当18a =,b=2时,()2222(1822)392v b a b =-=⨯-⨯=,当18a =,b=3时,()2223(1832)432v b a b =-=⨯-⨯=,当18a =,b=4时,()2224(1842)400v b a b =-=⨯-⨯=,当18a =,b=5时,()2225(1825)320v b a b =-=⨯-⨯=,当18a =,b=6时,()2226(1826)216v b a b =-=⨯-⨯=,填表如下:剪去小正方形的边长/cm 123456……无盖长方体的容积/3cm 256392432400320216……有表可知,无盖长方体容积取得最大值时,剪去的小正方形的边长可能是3cm .【点睛】本题考查了代数式求值的实际应用,结合题意得到等量关系是解题的关键.25.小明和小亮是同学,同住在一个小区.学校门前是一条东西大道.沿路向东是图书馆,向西是小明和小亮家所在的小区.一天放学后,两人相约到图书馆,他们商议有两种方案到达图书馆.方案1:直接从学校步行到图书馆;方案2:步行回家取自行车,然后骑车到图书馆.已知步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .(1)请在下图中表示出图书馆、小明和小亮家所在小区的大致位置;(2)假设学校到图书馆的路程为x km ,用含x 的代数式表示出方案2需要的时间;(3)求方案1中需要的时间.【答案】(1)见解析;(2)2210=52020x x +++,或62156010x x --=;(3)需要的时间为48min 【解析】【分析】(1)根据题意可知小区在学校的左边,标出即可;(2)根据“步行速度是5km/h ,骑车速度是步行速度的4倍,从学校到家有2km 的路程,通过计算发现,方案1比方案2多用6min .”解答即可;(3)设学校到图书馆的路程为x km ,根据题意得出226554560x x +=++⨯,求解后即可得出方案1需要的时间.【详解】解:(1)如图所示;(2)根据题意,得2210=52020x x +++,或62156010x x --=(3)设学校到图书馆的路程为x km ,根据题意,得226554560x x +=++⨯解方程,得4x =.所以,455x =.460=485⨯.答:方案1中,需要的时间为48min .【点睛】本题考查了一元一次方程的应用,解题的关键是明确题意,找到命题中隐含的等量关系式是解题的关键.四、解答题:(本大题1个小题,共8分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡...中对应的位置上.26.如图,甲、乙两人(看成点)分别在数轴10-和10的位置上,沿数轴做向东、向西移动的游戏.移动游戏规则:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏.10次游戏结束后,甲猜对了m 次,乙猜对了n 次.(1)请用含m ,n 的代数式表示当游戏结束时,甲、乙两人在数轴上的位置上的点代表的数;(2)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好相距10个单位,求乙猜对的次数.【答案】(1)甲在数轴上的位置上的点代表的数为:640m -,其中010m ≤≤,且m 为整数;乙在数轴上的位置上的点代表的数为:405n -,其中010n ≤≤,且n 为整数;(2)n 的值2n =或6n =【解析】【分析】(1)甲猜对了m 次,则猜错了()10m -次,根据“如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位”即可表示出甲在数轴上的位置上的点;乙猜对了n 次,则猜错了()10n -次,根据“如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位”即可表示出乙在数轴上的位置上的点;(2)分两种情况:当甲在乙西面,甲乙相距10个单位及当甲在乙东面,甲乙相距10个单位,列关于m 、n 的方程,将10m =求n 的值即可.【详解】解:(1)甲猜对了m 次,则猜错了()10m -次,10次游戏结束后,甲在数轴上的位置上的点,代表的数为:()103310640m m m -+--=-,其中010m ≤≤,且m 为整数;乙猜对了n 次,则猜错了()10n -次,10次游戏结束后,乙在数轴上的位置上的点,代表的数为:()102310405n n n -+-=-,其中010n ≤≤,且n 为整数.(2)当甲在乙西面,甲乙相距10个单位,可得64010405m n -+=-,其中,=10m ,010n ≤≤,即60570n +=,解得2n =.当甲在乙东面,甲乙相距10个单位,可得。

2020-2021学年七年级上学期期末考试数学试题(附答案)

2020-2021学年七年级上学期期末考试数学试题(附答案)

2020-2021学年七年级上学期期末考试数学试题一.选择题1.2020的相反数是()A.2020B.﹣2020C.D.﹣2.下列几何体是由4个相同的小正方体搭成的,其中左视图与主视图相同的是()A.B.C.D.3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为()A.47.24×109B.4.724×109C.4.724×105D.472.4×105 4.单项式﹣32xy2z3的次数和系数分别为()A.6,﹣3B.6,﹣9C.5,9D.7,﹣95.若数a,b在数轴上的位置如图示,则()A.a+b>0B.ab>0C.a﹣b>0D.﹣a﹣b>0 6.按如图所示的运算程序,能使输出的结果为10的是()A.x=3,y=﹣2B.x=﹣3,y=2C.x=2,y=3D.x=3,y=﹣3 7.关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,则m的值为()A.0B.2C.﹣D.﹣28.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm9.已知代数式a+2b的值是5,则代数式2a+4b+1的值是()A.5B.10C.11D.不能确定10.仔细观察,探索规律:(x﹣1)(x+1)=x2﹣1;(x﹣1)(x2+x+1)=x3﹣1;(x﹣1)(x3+x2+x+1)=x4﹣1;(x﹣1)(x4+x3+x2+x+1)=x5﹣1;…则22020+22019+22018+…+2+1的个位数字是()A.1B.3C.5D.7二.填空题11.如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2019=.12.已知a,b为有理数,且|a+1|+|2013﹣b|=0,则a b=.13.已知A,B,C三点在同一条直线上,AB=8,BC=6,M,N分别是AB、BC的中点,则线段MN的长是.14.如图,点A、O、B在一条直线上,∠AOC=130°,OD是∠BOC的平分线,则∠COD =度.15.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=(直接写出答案).16.如果m﹣n=5,那么﹣3m+3n﹣7的值是.17.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+2020n+c2021的值为.18.某玩具标价100元,打8折出售,仍盈利25%,这件玩具的进价是元.三.解答题(共19小题)19.计算:(1)12﹣(﹣8)+(﹣7)﹣15;(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|.20.先化简,再求值:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)的值,其中x=1,y=﹣2.21.解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).22.如图,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.已知代数式A=3x2﹣x+1,马小虎同学在做整式加减运算时,误将“A﹣B”看成“A+B”了,计算的结果是2x2﹣3x﹣2.(1)请你帮马小虎同学求出正确的结果;(2)x是最大的负整数,将x代入(1)问的结果求值.25.我校九年级163班所有学生参加体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级163班参加体育测试的学生共有多少人?(2)将条形统计图补充完整;(3)在扇形统计图中,求出等级C对应的圆心角的度数;(4)若规定达到A、B级为优秀,我校九年级共有学生850人,估计参加体育测试达到优秀标准的学生有多少人?26.甲、乙两人要各自在车间加工一批数量相同的零件,甲每小时可加工25个,乙每小时可加工20个.甲由于先去参加了一个会议,比乙少工作了1小时,结果两人同时完成任务,求每人加工的总零件数量.27.观察下表三行数的规律,回答下列问题:第1列第2列第3列第4列第5列第6列…第1行﹣24﹣8a﹣3264…第2行06﹣618﹣3066…第3行﹣12﹣48﹣16b…(1)第1行的第四个数a是;第3行的第六个数b是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的三个数的和为2562,若设第1行第n列的数为x,试求x的值.28.如图在数轴上有A,B两点,点A表示的数为﹣10,点O表示的数为0,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动,点N以每秒2个单位长度的速度从点O 向右运动(点M,点N同时出发).(1)数轴上点B表示的数是.(2)经过几秒,点M,N到原点的距离相等?(3)点N在点B左侧运动的情况下,当点M运动到什么位置时恰好使AM=2BN?参考答案一.选择题1.【解答】解:2020的相反数是:﹣2020.故选:B.2.【解答】解:A、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;B、左视图为,主视图为,左视图与主视图相同,故此选项符合题意;C、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;D、左视图为,主视图为,左视图与主视图不同,故此选项不合题意;故选:B.3.【解答】解:47.24亿=4724 000 000=4.724×109.故选:B.4.【解答】解:该单项式的次数为6,系数为﹣9,故选:B.5.【解答】解:根据题意得:a<﹣1<0<b<1,则a+b<0,ab<0,a﹣b<0,﹣a﹣b>0,故选:D.6.【解答】解:由题意得:x2+|2y|=10,当x=2,y=3满足x2+|2y|=10,故选:C.7.【解答】解:由3y﹣3=2y﹣1,得y=2.由关于y的方程2m+y=m与3y﹣3=2y﹣1的解相同,得2m+2=m,解得m=﹣2.故选:D.8.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN =BM﹣BN=5﹣2=3cm.故选:C.9.【解答】解:给a+2b=5两边同时乘以2,可得2a+4b=10,则2a+4b+1=10+1=11.故选:C.10.【解答】解:利用题中的式子得(x﹣1)(x2020+x2019+x2018+…+x+1)=x2021﹣1;当x=2时,22020+22019+22018+…+2+1=22021﹣1;∵21=2,22=4,23=8,24=16,25=32,而2021=505×4+1,∴22021的个位数字为2,∴22021﹣1的个位数字为1,即22020+22019+22018+…+2+1的个位数字是1.故选:A.二.填空题11.【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,故(a﹣b)2019=(3﹣2)2019=1.故答案为:1.12.【解答】解:|a+1|+|2013﹣b|=0,∴a+1=0,2013﹣b=0,a=﹣1,b=2013,∴a b=(﹣1)2013=﹣1,故答案为:﹣1.13.【解答】解:由AB=8,BC=6,M、N分别为AB、BC中点,得MB=AB=4,NB=BC=3.①C在线段AB的延长线上,MN=MB+NB=4+3=7;②C在线段AB上,MN=MB﹣NB=4﹣3=1;③C在线段AB的反延长线上,AB>BC,不成立,综上所述:线段MN的长7或1.故答案为7或1.14.【解答】解:∵点A、O、B在一条直线上,∠AOC=130°,∴∠COB=180°﹣130°=50°,∵OD是∠BOC的平分线,∴∠COD=∠BOC=25°.故答案为:25.15.【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣8,故答案为:﹣816.【解答】解:当m﹣n=5时,﹣3m+3n﹣7=﹣3(m﹣n)﹣7=﹣3×5﹣7=﹣15﹣7=﹣22.故答案为:﹣22.17.【解答】解:∵m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,∴m=﹣1,n=0,c=1,∴m2019+2020n+c2021的=(﹣1)2019+2020×0+12021=﹣1+0+1=0故答案为:0.18.【解答】解:设该玩具的进价为x元.根据题意得:100×80%﹣x=25%x.解得:x=64.故答案是:64.三.解答题19.【解答】解:(1)12﹣(﹣8)+(﹣7)﹣15=12+8﹣7﹣15=(12+8)+(﹣7﹣15)=20﹣22=﹣2(2)﹣12﹣(﹣2)3÷+3×|1﹣(﹣2)2|=﹣12﹣(﹣8)×+3×|1﹣4|=﹣12+10+3×|﹣3|=﹣12+10+9=720.【解答】解:5y2﹣x2+3(2x2﹣3xy)﹣5(x2+y2)=5y2﹣x2+6x2﹣9xy﹣5x2﹣5y2=(5y2﹣5y2)+(﹣x2+6x2﹣5x2)﹣9xy=0+0﹣9xy=﹣9xy,∵x=1,y=﹣2,∴原式=﹣9×1×(﹣2)=18.21.【解答】解:(1)4﹣4x+12=18﹣2x,﹣4x+2x=18﹣4﹣12,﹣2x=2,x=﹣1.(2)2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1﹣x=3,x=﹣3.22.【解答】解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+BC=6cm.∵D是AC的中点,∴AD=AC=3cm.∴BD=AD﹣AB=1cm.23.【解答】解:(1)∵OA平分∠EOC,∴∠AOC=∠EOC=×70°=35°,∴∠BOD =∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC =2x=72°,∴∠AOC=∠EOC=×72°=36°,∴∠BOD=∠AOC=36°.24.【解答】解:(1)根据题意知B=2x2﹣3x﹣2﹣(3x2﹣x+1)=2x2﹣3x﹣2﹣3x2+x﹣1=﹣x2﹣2x﹣3,则A﹣B=(3x2﹣x+1)﹣(﹣x2﹣2x﹣3)=3x2﹣x+1+x2+2x+3=4x2+x+4;(2)∵x是最大的负整数,∴x=﹣1,则原式=4×(﹣1)2﹣1+4=4﹣1+4=7.25.【解答】解:(1)九年级163班参加体育测试的学生共有15÷30%=50(人);(2)D等级的人数为:50×10%=5(人),C等级人数为:50﹣15﹣20﹣5=10(人);补全统计图如下:(3)等级C对应的圆心角的度数为:×360°=72°;(4)估计达到A级和B级的学生共有:×850=595(人).26.【解答】解:设每人加工x个零件,﹣=1解得:x=100答:甲加工了100个,乙加工了100个.27.【解答】解:(1)第1行的第四个数a是﹣8×(﹣2)=16;第3行的第六个数b是64÷2=32;故答案为:16;32.(2)若第1行的某一列的数为c,则第2行与它同一列的数为c+2.故答案为:c+2.(3)解:根据题意,这三个数依次为x,x+2,x得,x+x+2+x=2562,解得:x=1024.28.【解答】解:(1)故答案为:30;(2)设经过x秒,点M,N到原点的距离相等,分两种情况:①当点M,N在原点两侧时,根据题意列方程:得:10﹣3x=2x,解得:x=2②当点M,N重合时,根据题意列方程,得:3x﹣10=2x,解得:x=10所以,经过2秒或10秒,点M,N到原点的距离相等;(3)设经过y秒,恰好使AM=2BN根据题意得:3y=2(30﹣2y)解得:.又所以当点M运动到数轴上表示的点的位置时,AM=2BN。

山东省聊城市2021年七年级上学期数学期末考试试卷(I)卷

山东省聊城市2021年七年级上学期数学期末考试试卷(I)卷

山东省聊城市2021年七年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(满分30分) (共10题;共30分)1. (3分) (2019七上·莲湖期中) 下列四个地方:安康市白河县城关镇(海拔168.6米),卡达拉低地(海拔﹣133米),罗讷河三角洲(海拔﹣2米),吐鲁番盆地(海拔﹣154米).其中海拔最低的地方是()A . 安康市白河县城关镇B . 卡达拉低地C . 罗讷河三角洲D . 吐鲁番盆地2. (3分)图为某个几何体的三视图,则该几何体是()A .B .C .D .3. (3分)一个数的相反数是﹣,则这个数是()A .B . 2C . -D . -24. (3分) (2020六下·高新期中) 下列现象中,用“两点之间,线段最短”来解释的现象是()A . 用两个钉子把木条固定在墙上B . 利用圆规可以比较两条线段的大小C . 把弯曲的公路改直,就缩短路程D . 植树时,只要固定两棵树的位置,就能确定一行树所在的直线5. (3分)据中央电视台“朝闻天下”报道,北京市目前汽车拥有量约为3100000辆,则3100000用科学记数法表示为()A . 0.31×107B . 31×105C . 3.1×105D . 3.1×1066. (3分)为庆祝抗战胜利70周年,我市某楼盘让利于民,决定将原价为a元/米2的商品房价降价10%销售,降价后的销售价为()A . a﹣10%B . a•10%C . a(1﹣10%)D . a(1+10%)7. (3分) (2016七上·中堂期中) 如果 xa+2y3与﹣3x3y2b﹣1是同类项,那么a、b的值分别是()A .B .C .D .8. (3分) (2016七上·微山期末) 若x=3是关于x的方程的解,则a的值是()A . 1B . ﹣1C . 0D . 29. (3分)(2016·攀枝花) 下列说法中正确的是()A . “打开电视,正在播放《新闻联播》”是必然事件B . “x2<0(x是实数)”是随机事件C . 掷一枚质地均匀的硬币10次,可能有5次正面向上10. (3分)服装店销售某款服装,一件服装的标价为300元,若按标价的八折销售,仍可获利60元,则这款服装每件的标价比进价多()A . 60元B . 80元C . 120元D . 180元二、填空题(满分24分) (共6题;共24分)11. (4分) (2020七上·庆云月考) ﹣的相反数是________,倒数是________.12. (4分) (2019七上·沈阳月考) 一个几何体由几个大小相同的小立方块搭成,从上面和从左面看到的这个几何体的形状如图所示,则这个几何体中小正方体的个数最少是________个.13. (4分) (2019七上·寿光月考) 如果单项式amb3单项式a2bn是同类项,那么(﹣m)n的值是________.14. (4分) (2020七上·天宁月考) 已知|a﹣3|+(b+4)2=0,则(a+b)2021=________.15. (4分)(2017·鹤岗模拟) 某商店老板将一件进价为800元的商品先提价50%,再打8折卖出,则卖出这件商品所获利润是________元.16. (4分) (2017七上·乐清期中) 如图,C,D,E是线段AB上的三个点,下面关于线段CE的表示:①CE=CD+DE;②CE=BC﹣EB;③CE=CD+BD﹣AC;④CE=AE+BC﹣AB.其中正确的是________(填序号).三、解答题(满分66分) (共9题;共66分)17. (6分) (2020七上·郾城期末) 计算(1)(2)18. (6分) (2019七上·新吴期末) 解方程:(1)(2)19. (6分) (2019七上·杭州期末) 先化简,再求值:(2x2+x)-[4x2-(3x2-x)],其中x=- .20. (7.0分) (2020六下·高新期中) 作图题如图,已知平面上四点A、B、C、D。

聊城市2021年七年级上学期数学期末考试试卷(I)卷

聊城市2021年七年级上学期数学期末考试试卷(I)卷

聊城市2021年七年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题(每小题4分,共48分) (共12题;共46分)1. (4分) (2015七上·南山期末) 下列结论中,正确的是()A . ﹣7<﹣8B . 85.5°=85°30′C . ﹣|﹣9|=9D . 2a+a2=3a22. (4分)有理数2012的相反数是()A . -2012B . 2012C .D .3. (4分)(2018·遵义模拟) 我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒钟会滴下2滴水,每滴水约0.05毫升.若每天用水时间按2小时计算,那么一天中的另外22小时水龙头都在不断的滴水.请计算,一个拧不紧的水龙头,一个月(按30天计算)浪费水()A . 23760毫升B . 2.376×105毫升C . 23.8×104毫升D . 237.6×103毫升4. (4分) (2019七上·高州期中) 下列说法中正确的是()A . 多项式的常数项B . 有理数分为正数和负数C . 如果两个数的绝对值相等,那么这两个数相等D . 互为相反数的两个数的绝对值相等5. (4分) (2019七下·漳州期末) 在下列图形中,与是对顶角的是A .B .C .D .6. (4分) (2017八下·金华期中) 要使式子有意义,x的取值范围是()A . x≤﹣1B . x≥2C . x≥﹣1D . x>27. (4分)某商品的标价为132元,若以9折出售,仍可获利10%,则该商品进价是()A . 105元B . 106元C . 108元D . 118元8. (2分)(2017·永嘉模拟) 如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=22°,那么∠2的度数是()A . 22°B . 78°C . 68°D . 70°9. (4分)下列各式计算正确的是()A . 5x+x=5x2B . 3ab2-8b2a=-5ab2C . 5m2n-3mn2=2mnD . -2a+7b=5ab10. (4分)小菲在假期时参加了四天一期的夏令营,这四天各天的日期之和是86,则夏令营的开营日为()A . 20日B . 21日C . 22日D . 23日11. (4分)(2017·黑龙江模拟) 下列运算正确的是()A . (ab)2=ab2B . 3a+2a2=5a2C . =﹣4D . a•a=a212. (4分)下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,…,则第⑥个图形中平行四边形的个数为()A . 45B . 35C . 41D . 65二、填空题(每小题4分,共24分) (共6题;共24分)13. (4分)多项式________与m2+m-2的和是m2-2m14. (4分)某冷库的室温为-4℃,有一批食品需要在-28℃冷藏,如果每小时降3℃,________小时能降到所要求的温度.15. (4分)已知:若≈1.910,≈6.042,则≈________.16. (4分) (2019七上·海安期中) 当x=________时,代数式2x+1与5x﹣8的值相等.17. (4分)如图,将一副直角三角板叠在一起,使直角顶点重合于点0,则∠AOB=155°,则∠COD=________,∠BOC=________.18. (4分) (2017七下·东营期末) 实验室里,水平桌面上有甲、乙、丙三个相同高度的圆柱形容器(容器足够高),底面半径之比为1:2:1,用两个相同的管子在10cm高度处连通(即管子底部离容器底10cm),现三个容器中,只有乙中有水,水位高4cm,如图所示.若每分钟同时向甲和丙注入相同量的水,开始注水1分钟,甲的水位上升3cm.则开始注入________分钟水量后,甲的水位比乙高1cm.三、解答题(本大题有8小题,共78分) (共8题;共78分)19. (10分)(2019·温州模拟)(1)计算:.(2)先化简,再求值:,其中x=-1.20. (8分) (2019七下·宿豫期中) 先化简,再求值: ,其中 .21. (10分)解方程:(1)(2)22. (6分) (2019七上·昌平月考) 按下列语句画出图形:(1)直线l经过点A ,但不经过点B.(2)三条直线a , b , c两两相交,交点分别为A , B , C.(3)射线AB与线段DE相交于点B.23. (10分) (2016七上·牡丹期末) 列方程解应用题今年某网上购物商城在“双11购物节“期间搞促销活动,活动规则如下:①购物不超过100元不给优惠;②购物超过100元但不足500元的,全部打9折;③购物超过500元的,其中500元部分打9折,超过500元部分打8折.(1)小丽第1次购得商品的总价(标价和)为200元,按活动规定实际付款________元.(2)小丽第2次购物花费490元,与没有促销相比,第2次购物节约了多少钱?(请利用一元一次方程解答)(3)若小丽将这两次购得的商品合为一次购买,是否更省钱?为什么?24. (8.0分) (2019八上·宁化月考) 在数轴上作出﹣应的点.25. (12分)(2016·娄底) 甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?26. (14.0分) (2016九上·东城期末) 已知:在等边△ABC中, AB= ,D,E分别是AB,BC的中点(如图1).若将△BDE绕点B逆时针旋转,得到△BD1E1 ,设旋转角为α(0°<α<180°),记射线CE1与AD1的交点为P.(1)判断△BDE的形状;(2)在图2中补全图形,①猜想在旋转过程中,线段CE1与AD1的数量关系并证明;②求∠APC的度数;(3)点P到BC所在直线的距离的最大值为________.(直接填写结果)参考答案一、选择题(每小题4分,共48分) (共12题;共46分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(每小题4分,共24分) (共6题;共24分) 13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(本大题有8小题,共78分) (共8题;共78分) 19-1、19-2、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、24-1、25-1、25-2、26-1、26-2、26-3、。

聊城市人教版(七年级)初一上册数学期末测试题及答案

聊城市人教版(七年级)初一上册数学期末测试题及答案

聊城市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.4 =( )A.1 B.2 C.3 D.42.已知线段AB的长为4,点C为AB的中点,则线段AC的长为()A.1 B.2 C.3 D.43.下列四个数中最小的数是()A.﹣1 B.0 C.2 D.﹣(﹣1)4.如果a﹣3b=2,那么2a﹣6b的值是()A.4 B.﹣4 C.1 D.﹣15.已知一个多项式是三次二项式,则这个多项式可以是()A.221x x-+B.321x+C.22x x-D.3221x x-+6.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A.(2,1) B.(3,3) C.(2,3) D.(3,2)7.如图,能判定直线a∥b的条件是( )A.∠2+∠4=180°B.∠3=∠4 C.∠1+∠4=90°D.∠1=∠48.如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠GEP,则∠1与∠2的数量关系为( )A.∠1=∠2 B.∠1=2∠2 C.∠1=3∠2 D.∠1=4∠29.已知∠A=60°,则∠A的补角是()A.30°B.60°C.120°D.180°10.3的倒数是()A.3B.3-C.13D.13-11.已知点A,B,P在一条直线上,则下列等式中,能判断点P是线段AB中点个数有()①AP=BP;②.BP=12AB;③AB=2AP;④AP+PB=AB.A.1个B.2个C.3个D.4个12.如图,已知点C在线段AB上,点M、N分别是AC、BC的中点,且AB=8cm,则MN的长度为( )cm .A .2B .3C .4D .6二、填空题13.已知x=5是方程ax ﹣8=20+a 的解,则a= ________ 14.多项式2x 3﹣x 2y 2﹣1是_____次_____项式. 15.|-3|=_________;16.写出一个比4大的无理数:____________. 17.﹣213的倒数为_____,﹣213的相反数是_____. 18.计算221b a a b a b ⎛⎫÷- ⎪-+⎝⎭的结果是______ 19.如图所示,ABC 90∠=,CBD 30∠=,BP 平分ABD.∠则ABP ∠=______度.20.数字9 600 000用科学记数法表示为 .21.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.22.3.6=_____________________′23.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)24.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.三、压轴题25.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB的上方.将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周.(1)如图2,经过t秒后,OP恰好平分∠BOC.①求t的值;②此时OQ是否平分∠AOC?请说明理由;(2)若在三角板转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠POQ?请说明理由;(3)在(2)问的基础上,经过多少秒OC平分∠POB?(直接写出结果).26.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC,∠BOD的平分线OM、ON,然后提出如下问题:求出∠MON的度数.特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM和ON仍然是∠AOC和∠BOD的角平分线.其中,按图2方式摆放时,可以看成是ON、OD、OB在同一直线上.按图3方式摆放时,∠AOC和∠BOD相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON的度数为°.图3中∠MON的度数为°.发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论:小明:由于图1中∠AOC和∠BOD的和为90°,所以我们容易得到∠MOC和∠NOD的和,这样就能求出∠MON的度数.小华:设∠BOD为x°,我们就能用含x的式子分别表示出∠NOD和∠MOC度数,这样也能求出∠MON的度数.(2)请你根据他们的谈话内容,求出图1中∠MON的度数.类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC、∠BOD的平分线OM、ON,他们认为也能求出∠MON的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON的度数;若不同意,请说明理由.27.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,则以上三个等式两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯. ()1观察发现()1n n 1=+______;()1111122334n n 1+++⋯+=⨯⨯⨯+______.()2拓展应用有一个圆,第一次用一条直径将圆周分成两个半圆(如图1),在每个分点标上质数m ,记2个数的和为1a ;第二次再将两个半圆周都分成14圆周(如图2),在新产生的分点标上相邻的已标的两数之和的12,记4个数的和为2a ;第三次将四个14圆周分成18圆周(如图3),在新产生的分点标上相邻的已标的两数之和的13,记8个数的和为3a ;第四次将八个18圆周分成116圆周,在新产生的分点标上相邻的已标的两个数的和的14,记16个数的和为4a ;⋯⋯如此进行了n 次.n a =①______(用含m 、n 的代数式表示); ②当n a 6188=时,求123n1111a a a a +++⋯⋯+的值.28.如图,以长方形OBCD的顶点O为坐标原点建立平面直角坐标系,B点坐标为(0,a),C点坐标为(c,b),且a、b、C满足6a +|2b+12|+(c﹣4)2=0.(1)求B、C两点的坐标;(2)动点P从点O出发,沿O→B→C的路线以每秒2个单位长度的速度匀速运动,设点P 的运动时间为t秒,DC上有一点M(4,﹣3),用含t的式子表示三角形OPM的面积;(3)当t为何值时,三角形OPM的面积是长方形OBCD面积的13?直接写出此时点P的坐标.29.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.30.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)31.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE . (1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数. (3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.32.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空) ()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据算术平方根的概念可得出答案.【详解】解:根据题意可得:,故答案为:B.【点睛】本题考查算术平方根的概念,解题关键在于对其概念的理解. 2.B解析:B【解析】【分析】根据线段中点的性质,可得AC的长.【详解】解:由线段中点的性质,得AC=12AB=2.故选B.【点睛】本题考查了两点间的距离,利用了线段中点的性质.3.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.4.A解析:A【解析】【分析】将a﹣3b=2整体代入即可求出所求的结果.【详解】解:当a﹣3b=2时,∴2a﹣6b=2(a﹣3b)=4,故选:A.【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.5.B解析:B【解析】A. 2x2x1-+是二次三项式,故此选项错误;B. 3+是三次二项式,故此选项正确;2x1C. 2x2x-是二次二项式,故此选项错误;D. 32-+是三次三项式,故此选项错误;x2x1故选B.6.C解析:C【解析】【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案.【详解】∵(1,2)表示教室里第1列第2排的位置,∴教室里第2列第3排的位置表示为(2,3),故选C.【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键. 7.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.8.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.9.C解析:C【解析】【分析】两角互余和为90°,互补和为180°,求∠A的补角只要用180°﹣∠A即可.【详解】设∠A的补角为∠β,则∠β=180°﹣∠A=120°.故选:C.【点睛】本题考查了余角和补角,熟记互为补角的两个角的和等于180°是解答本题的关键.解析:C【解析】根据倒数的定义可知.解:3的倒数是.主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.11.A解析:A【解析】①项,因为AP=BP,所以点P是线段AB的中点,故①项正确;②项,点P可能是在线段AB的延长线上且在点B的一侧,此时也满足BP=12AB,故②项错误;③项,点P可能是在线段BA的延长线上且在点A的一侧,此时也满足AB=2AP,故③项错误;④项,因为点P为线段AB上任意一点时AP+PB=AB恒成立,故④项错误.故本题正确答案为①.12.C解析:C【解析】【分析】根据MN=CM+CN=12AC+12CB=12(AC+BC)=12AB即可求解.【详解】解:∵M、N分别是AC、BC的中点,∴CM=12AC,CN=12BC,∴MN=CM+CN=12AC+12BC=12(AC+BC)=12AB=4.故选:C.【点睛】本题考查了线段中点的性质,找到MC与AC,CN与CB关系,是本题的关键二、填空题13.7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解析:7【解析】试题分析:使方程左右两边相等的未知数的值是该方程的解.将方程的解代入方程可得关于a的一元一次方程,从而可求出a的值.解:把x=5代入方程ax﹣8=20+a得:5a﹣8=20+a,解得:a=7.故答案为7.考点:方程的解.14.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.15.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.﹣ 2【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213. 【点睛】 本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.18.【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式===故答案为:.【点睛】本题考查分式的计算,掌握分式的通分和约分是关键. 解析:1a b- 【解析】【分析】先将括号内进行通分计算,再将除法变乘法约分即可.【详解】解:原式=()()+⎛⎫÷- ⎪-+++⎝⎭b a b a a b a b a b a b =()()+⋅-+b a b a b a b b =1a b- 故答案为:1a b-. 【点睛】 本题考查分式的计算,掌握分式的通分和约分是关键.19.60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分 ,所以只要求 的度数即可.【详解】解:,,,平分,.故答案为60.【点睛】解析:60【解析】【分析】本题是对平分线的性质的考查,角平分线的性质是将两个角分成相等的两个角因为BP 平分ABD ∠ ,所以只要求ABD ∠ 的度数即可.【详解】 解:ABC 90∠=,CBD 30∠=,ABD 120∠∴=,BP 平分ABD ∠,ABP 60∠∴=.故答案为60.【点睛】角平分线的性质是将两个角分成相等的两个角角平分线的性质在求角中经常用到. 20.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.21.140【解析】【分析】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:140解析:140【解析】【分析】【详解】解:∵OD平分∠AOC,∴∠AOC=2∠AOD=40°,∴∠COB=180°﹣∠COA=140°故答案为:14022.【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】解:=3°36′.故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的解析:336【解析】【分析】由题意直接根据角的度分秒的计算法则进行运算即可.【详解】=︒+︒=︒+⨯=3°36′.解:3.630.63(0.660)'故答案为:3; 36.【点睛】本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.23.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.解析:416x+【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x+++++++=+故答案为416x+.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.24.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.三、压轴题25.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.26.(1)135,135;(2)∠MON=135°;(3)同意,∠MON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【解析】【分析】(1)由题意可得,∠MON=12×90°+90°,∠MON=12∠AOC+12∠BOD+∠COD,即可得出答案;(2)根据“OM和ON是∠AOC和∠BOD的角平分线”可求出∠MOC+∠NOD,又∠MON =(∠MOC+∠NOD)+∠COD,即可得出答案;(3)设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,进而求出∠MOC和∠BON,又∠MON=∠MOC+∠BOC+∠BON,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.27.(1)11n n 1-+,n n 1+(2)①()()n 1n 2m 3++②75364 【解析】【分析】 ()1观察发现:先根据题中所给出的列子进行猜想,写出猜想结果即可;根据第一空中的猜想计算出结果;()2①由16a 2m m 3==,212a 4m m 3==,320a m 3=,430a 10m m 3==,找规律可得结论;②由()()n 1n 2m 22713173++=⨯⨯⨯⨯知()()m n 1n 22237131775152++=⨯⨯⨯⨯⨯=⨯⨯,据此可得m 7=,n 50=,再进一步求解可得.【详解】()1观察发现:()111n n 1n n 1=-++; ()1111122334n n 1+++⋯+⨯⨯⨯+, 1111111122334n n 1=-+-+-+⋯+-+, 11n 1=-+, n 11n 1+-=+, n n 1=+; 故答案为11n n 1-+,n n 1+. ()2拓展应用16a 2m m 3①==,212a 4m m 3==,320a m 3=,430a 10m m 3==, ⋯⋯()()n n 1n 2a m 3++∴=,故答案为()()n 1n 2m.3++()()n n 1n 2a m 61883②++==,且m 为质数, 对6188分解质因数可知61882271317=⨯⨯⨯⨯,()()n 1n 2m 22713173++∴=⨯⨯⨯⨯, ()()m n 1n 22237131775152∴++=⨯⨯⨯⨯⨯=⨯⨯,m 7∴=,n 50=,()()n 7a n 1n 23∴=++, ()()n 131a 7n 1n 2=⋅++, 123n1111a a a a ∴+++⋯+ ()()33336m 12m 20m n 1n 2m =+++⋯+++()()311172334n 1n 2⎡⎤=++⋯+⎢⎥⨯⨯++⎢⎥⎣⎦31131172n 27252⎛⎫⎛⎫=-=- ⎪ ⎪+⎝⎭⎝⎭ 75364=. 【点睛】 本题主要考查数字的变化规律,解题的关键是掌握并熟练运用所得规律:()111n n 1n n 1=-++. 28.(1)B 点坐标为(0,﹣6),C 点坐标为(4,﹣6)(2)S △OPM =4t 或S △OPM =﹣3t+21(3)当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6)【解析】【分析】(1)根据绝对值、平方和算术平方根的非负性,求得a ,b ,c 的值,即可得到B 、C 两点的坐标;(2)分两种情况:①P 在OB 上时,直接根据三角形面积公式可得结论;②P 在BC 上时,根据面积差可得结论;(3)根据已知条件先计算三角形OPM 的面积为8,根据(2)中的结论分别代入可得对应t 的值,并计算此时点P 的坐标. 【详解】 (1)∵6a ++|2b +12|+(c ﹣4)2=0,∴a +6=0,2b +12=0,c ﹣4=0,∴a =﹣6,b =﹣6,c =4,∴B 点坐标为(0,﹣6),C 点坐标为(4,﹣6).(2)①当点P 在OB 上时,如图1,OP =2t ,S △OPM 12=⨯2t ×4=4t ; ②当点P 在BC 上时,如图2,由题意得:BP =2t ﹣6,CP =BC ﹣BP =4﹣(2t ﹣6)=10﹣2t ,DM =CM =3,S △OPM =S 长方形OBCD ﹣S △0BP ﹣S △PCM ﹣S △ODM =6×412-⨯6×(2t ﹣6)12-⨯3×(10﹣2t )12-⨯4×3=﹣3t +21. (3)由题意得:S △OPM 13=S 长方形OBCD 13=⨯(4×6)=8,分两种情况讨论: ①当4t =8时,t =2,此时P (0,﹣4); ②当﹣3t +21=8时,t 133=,PB =2t ﹣626188333=-=,此时P (83,﹣6). 综上所述:当t 为2秒或133秒时,△OPM 的面积是长方形OBCD 面积的13.此时点P 的坐标是(0,﹣4)或(83,﹣6).【点睛】本题考查了一元一次方程的应用,主要考查了平面直角坐标系中求点的坐标,动点问题,求三角形的面积,还考查了绝对值、平方和算术平方根的非负性、解一元一次方程,分类讨论是解答本题的关键.29.(1)20;(2)t =15s 或17s (3)43s. 【解析】【分析】(1)设P 、Q 速度分别为3m 、2m ,根据12秒后,动点P 到达原点O 列方程,求出P 、Q 的速度,由此即可得到结论.(2)分两种情况讨论:①当A 、B 在相遇前且相距5个单位长度时;②当A 、B 在相遇后且相距5个单位长度时;列方程,求解即可.(3)算出P 运动到B 再到原点时,所用的时间,再算出Q 从B 到A 所需的时间,比较即可得出结论.【详解】(1)设P 、Q 速度分别为3m 、2m ,根据题意得:12×3m =36,解得:m =1,∴P 、Q 速度分别为3、2,∴BC =12×2=24,∴OC =OB -BC =44-24=20.(2)当A 、B 在相遇前且相距5个单位长度时:3t +2t +5=44+36,5t =75,∴ t =15(s );当A 、B 在相遇后且相距5个单位长度时:3t +2t -5=44+36,5t =85,∴ t =17(s ). 综上所述:t =15s 或17s .(3)P 运动到原点时,t =3644443++=1243s ,此时QB =2×1243=2483>44+38=80,∴Q 点已到达A 点,∴Q 点已到达A 点的时间为:3644804022+==(s ),故提前的时间为:1243-40=43(s ). 【点睛】 本题考查了一元一次方程的应用-行程问题以及数轴上的动点问题.解题的关键是找出等量关系,列出方程求解.30.(1)是;(2)5cm 或7.5cm 或10cm ;(3)10或607. 【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C 在中点的左边,点C 在中点,点C 在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P 应在Q 的右边,分别表示出AQ 、QP 、PB ,求出t 的范围.然后根据(2)分三种情况讨论即可.【详解】(1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP=3t-20≥0,∴t≥203,∴203≤t≤10.分三种情况讨论:①当AQ=13AP时,20-t=13×2t,解得:t=12>10,舍去;②当AQ=12AP时,20-t=12×2t,解得:t=10;③当AQ=23AP时,20-t=23×2t,解得:t607;答:t为10或607时,点Q是线段AP的“2倍点”.【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.31.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示, ∵OD 、OE 分别平分∠AOC 和∠BOC ,∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD ﹣∠COE=12(∠AOC ﹣∠BOC )=45°; 如图4所示,∵OD 、OE 分别平分∠AOC 和∠BOC , ∴∠COD=12∠AOC ,∠COE=12∠BOC , ∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC )=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.32.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.。

聊城市人教版(七年级)初一上册数学期末测试题及答案

聊城市人教版(七年级)初一上册数学期末测试题及答案

聊城市人教版(七年级)初一上册数学期末测试题及答案一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0 B .1C .2D .3 2.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.根据等式的性质,下列变形正确的是( )A .若2a =3b ,则a =23b B .若a =b ,则a +1=b ﹣1 C .若a =b ,则2﹣3a =2﹣3b D .若23a b =,则2a =3b 4.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-2 5.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃6.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了 12 个棋子,按这样的规律摆下去,摆成 第 20 个“H”字需要棋子( )A .97B .102C .107D .112 7.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC=∠BOCB .∠AOB=2∠BOCC .∠AOC=12∠AOBD .∠AOC+∠BOC=∠AOB8.点()5,3M 在第( )象限.A .第一象限B .第二象限C .第三象限D .第四象限9.当x=3,y=2时,代数式23x y -的值是( ) A .43 B .2C .0D .3 10.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=211.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<0 12.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .259.2元 二、填空题13.若x =2是关于x 的方程5x +a =3(x +3)的解,则a 的值是_____.14.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.15.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.16.如图,在数轴上点A ,B 表示的数分别是1,–2,若点B ,C 到点A 的距离相等,则点C 所表示的数是___.17.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.18.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号)19.化简:2x+1﹣(x+1)=_____.20.数字9 600 000用科学记数法表示为.21.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C等级所在扇形的圆心角是____度.22.如图,将△ABE向右平移3cm得到△DCF,若BE=8cm,则CE=______cm.23.规定:用{m}表示大于m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}=-1等;用[m] 表示不大于m 的最大整数,例如[72]= 3,[2]= 2,[-3.2]=-4,如果整数x 满足关系式:3{x}+2[x]=23,则x =________________.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x,则这四个数的和为______(用含x的式子表示)三、压轴题25.已知长方形纸片ABCD,点E在边AB上,点F、G在边CD上,连接EF、EG.将∠BEG 对折,点B落在直线EG上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′处,得折痕EN.(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.如图,在数轴上的A 1,A 2,A 3,A 4,……A 20,这20个点所表示的数分别是a 1,a 2,a 3,a 4,……a 20.若A 1A 2=A 2A 3=……=A 19A 20,且a 3=20,|a 1﹣a 4|=12.(1)线段A 3A 4的长度= ;a 2= ;(2)若|a 1﹣x |=a 2+a 4,求x 的值;(3)线段MN 从O 点出发向右运动,当线段MN 与线段A 1A 20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN =5,求线段MN 的运动速度.28.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.29.如图1,线段AB 的长为a .(1)尺规作图:延长线段AB 到C ,使BC =2AB ;延长线段BA 到D ,使AD =AC .(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB 所在的直线画数轴,以点A 为原点,若点B 对应的数恰好为10,请在数轴上标出点C ,D 两点,并直接写出C ,D 两点表示的有理数,若点M 是BC 的中点,点N 是AD 的中点,请求线段MN 的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D 处开始,在点C ,D 之间进行往返运动;乙从点N 开始,在N ,M 之间进行往返运动,甲、乙同时开始运动,当乙从M 点第一次回到点N 时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.30.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.31.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.32.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A .【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.3.C解析:C【解析】【分析】利用等式的性质对每个式子进行变形即可找出答案.【详解】解:A 、根据等式性质2,2a =3b 两边同时除以2得a =32b ,原变形错误,故此选项不符合题意;B 、根据等式性质1,等式两边都加上1,即可得到a+=b+1,原变形错误,故此选项不符合题意;C 、根据等式性质1和2,等式两边同时除以﹣3且加上2应得2﹣3a =2﹣3b ,原变形正确,故此选项符合题意;D 、根据等式性质2,等式两边同时乘以6,3a =2b ,原变形错误,故此选项不符合题意. 故选:C .【点睛】本题主要考查等式的性质.解题的关键是掌握等式的性质.运用等式性质1必须注意等式两边所加上的(或减去的)必须是同一个数或整式;运用等式性质2必须注意等式两边所乘的(或除的)数或式子不为0,才能保证所得的结果仍是等式. 4.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++ =5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.5.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.6.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.7.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC 是∠AOB 的角平分线,正确,故本选项错误;D. ∵∠AOC +∠BOC =∠AOB ,∴假如∠AOC =30°,∠BOC =40°,∠AOB =70°,符合上式,但是OC 不是∠AOB 的角平分线,故本选项正确.故选D.点睛: 本题考查了角平分线的定义,注意:角平分线的表示方法,①OC 是∠AOB 的角平分线,②∠AOC =∠BOC ,③∠AOB =2∠BOC (或2∠AOC ),④∠AOC (或∠BOC )=12∠AOB . 8.A解析:A【解析】【分析】根据平面直角坐标系中点的坐标特征判断即可.【详解】∵5>0,3>0,∴点()5,3M 在第一象限.故选A.【点睛】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.9.A解析:A【解析】【分析】当x=3,y=2时,直接代入代数式即可得到结果.【详解】23x y -=2323⨯-=43, 故选A【点睛】本题考查的是代数式求值,正确的计算出代数式的值是解答此题的关键.10.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.11.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a <b <0<c ,且|a |>|c |>|b |则A. a +b <0正确,不符合题意;B. a +c <0正确,不符合题意;C .a -b>0错误,符合题意;D. b -c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.A解析:A【解析】【分析】设这种商品每件进价为x 元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x 元,则根据题意可列方程270×0.8-x =0.2x ,解得x =180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题13.5【解析】【分析】把x =2代入方程求出a 的值即可.【详解】解:∵关于x 的方程5x+a =3(x+3)的解是x =2,∴10+a =15,∴a=5,故答案为5.【点睛】本题考查了方程的解解析:5【解析】【分析】把x=2代入方程求出a的值即可.【详解】解:∵关于x的方程5x+a=3(x+3)的解是x=2,∴10+a=15,∴a=5,故答案为5.【点睛】本题考查了方程的解,掌握方程的解的意义解答本题的关键.14.【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC 的中点求出AD的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴B解析:【解析】【分析】先根据AB=4,BC=2AB求出BC的长,故可得出AC的长,再根据D是AC的中点求出AD 的长度,由BD=AD﹣AB即可得出结论.【详解】解:∵AB=4,BC=2AB,∴BC=8.∴AC=AB+BC=12.∵D是AC的中点,∴AD=12AC=6.∴BD=AD﹣AB=6﹣4=2.故答案为:2.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.15.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键. 16.2+【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,–,∴AB=1–(–)=1+,则点C 表示的数为1+1+解析:2【解析】【分析】先求出点A 、B 之间的距离,再根据点B 、C 到点A 的距离相等,即可解答.【详解】∵数轴上点A ,B 表示的数分别是1,,∴AB=1–(,则点C 表示的数为,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.17.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.18.>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:,,.故答案为:【点睛】本题考查了多重符号化简和有理数的大小比较,解析:>【解析】【分析】根据有理数的大小比较的法则负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【详解】解:(9)9--=,(9)9-+=-,(9)(9)∴-->-+.故答案为:>【点睛】本题考查了多重符号化简和有理数的大小比较,掌握有理数的大小比较法则是解题的关键,理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.19.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x ﹣1=x ,故答案为:x .【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.20.6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是解析:6×106【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).9 600 000一共7位,从而9 600 000=9.6×106.21.72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键. 22.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE 向右平移3cm 得到△DCF ,∴BC=3cm ,∵BE=8cm ,∴CE=BE-BC=8-3=5cm ,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键. 23.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4【点睛】本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.解析:416x+【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x+++++++=+故答案为416x+.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 27.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.28.(1)35°;(2)∠AOE﹣∠BOF的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE和∠BOF的度数,然后根据∠AOE﹣∠BOF求解;(2)首先由题意得∠BOC=3t°,再根据角平分线的定义得∠AOC=∠AOB+3t°,∠BOD=∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF=(3t+14)°,故3314202t t+=+,解方程即可求出t的值.【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.29.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767. 【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A 为原点,若点B 对应的数恰好为10,则有 点C 对应的数为30,点D 对应的数为﹣30,MN =|20﹣(﹣15)|=35(3)设乙从M 点第一次回到点N 时所用时间为t ,则t =223522MN ⨯==35(秒) 那么甲在总的时间t 内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767.四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N点停止,甲在剩余的时间运行距离为5×347=5257=1767.位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.30.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析. 【解析】【分析】(1)根据角的定义即可解决;(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12∠COE,进而求出即可;(3)将图中所有锐角求和即可求得所有锐角的和与∠AOE、∠BOD和∠BOD的关系,即可解题.【详解】(1)如图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE.(2)如图2,∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),∴∠BOD=12∠AOD﹣12∠COE+12∠COE=12×108°=54°;(3)如图3,∠AOE=88°,∠BOD=30°,图中所有锐角和为∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=4∠AOB+4∠DOE=6∠BOC+6∠COD=4(∠AOE﹣∠BOD)+6∠BOD=412°.【点睛】本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,31.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10, ∴点P 运动10秒时追上点Q ;(4)线段MN 的长度不发生变化,都等于10;理由如下:①当点P 在点A 、B 两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10, ②当点P 运动到点B 的左侧时:MN=MP ﹣NP=12AP ﹣12BP=12(AP ﹣BP)=12AB=10, ∴线段MN 的长度不发生变化,其值为10.【点睛】 本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.32.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm ,BD=4cm .∵AB=12cm ,AM=4cm ,∴BM=8cm ,∴AC=AM ﹣CM=2cm ,DM=BM ﹣BD=4cm . 故答案为2,4;(2)当点C 、D 运动了2 s 时,CM=2 cm ,BD=4 cm .∵AB=12 cm ,CM=2 cm ,BD=4 cm ,∴AC+MD=AM ﹣CM+BM ﹣BD=AB ﹣CM ﹣BD=12﹣2﹣4=6 cm ;(3)根据C 、D 的运动速度知:BD=2MC .∵MD=2AC ,∴BD+MD=2(MC+AC ),即MB=2AM .∵AM+BM=AB ,∴AM+2AM=AB ,∴AM=13AB=4. 故答案为4;(4)①当点N 在线段AB 上时,如图1.∵AN ﹣BN=MN .又∵AN ﹣AM=MN ,∴BN=AM=4,∴MN=AB ﹣AM ﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.。

山东省聊城市阳谷县2020-2021学年七年级上学期期末数学试题

山东省聊城市阳谷县2020-2021学年七年级上学期期末数学试题
【详解】
∵线段AB长度为a,
∴AB=AC+CD+DB=a,
又∵CD长度为b,
∴AD+CB=a+b,
∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,
故选A.
【点睛】
本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.
8.C
20.计算:
(1) ;
(2) .
21.解下列方程
(1) ;
(2) .
22.已知多项式 , .
(1)若 ,化简 ;
(2)若 的结果中不含有 项以及 项,求 的值.
23.如图,已知线段AB=4,延长AB到点C,使得AB=2BC,反向延长AB到点D,使AC=2AD.
(1)求线段CD的长;
(2)若Q为AB的中点,P为线段CD上一点,且BP= BC,求线段PQ的长.
3.B
【分析】
根据题意,可以列出相应的代数式,本题得以解决.
【详解】
解:a的平方与b的和可以表示为:a2+b,
故选B.
【点睛】
本题主要考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
4.A
【解析】
根据题意可以列出相应的方程,从而可以解答本题.
解:由题意可得,
5x+(9﹣5)×(x+2)=44,
化简,得
5x+4(x+2)=44,
故选A.
5.D
【分析】
对于精确度要求高的调查,事关重大的调查往往选用普查.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.

山东省聊城市2021版七年级上学期数学期末考试试卷B卷

山东省聊城市2021版七年级上学期数学期末考试试卷B卷

山东省聊城市2021版七年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、选择题(A卷) (共10题;共30分)1. (3分) (2020七上·泰兴月考) 已知a是任意有理数,则|﹣a|﹣a的值是()A . 必大于零B . 必小于零C . 必不大于零D . 必不小于零2. (3分) (2019七上·德阳月考) 下列四个方程中,是一元一次方程的是()A .B .C .D .3. (3分)若∠P=65°12′,∠Q=65.12°,∠R=65.2°,则下列结论中正确的是()A . ∠P=∠Q=∠RB . ∠Q=∠RC . ∠P=∠QD . ∠P=∠R4. (3分) (2020七上·德江期末) 如图,点是线段上的点,点是线段的中点,点是线段的中点,若,则()A .B .C .D .5. (3分)下列几何体中,主视图和左视图不同的是()A . 圆柱B . 正方体C . 正三棱柱D . 球6. (3分) (2020七下·泸县期末) 为反映某一天气温的变化情况,最好选择()A . 扇形统计图B . 条形统计图C . 折线形统计图D . 列表7. (3分)已知点A,B,C在同一直线上,若AB=20cm,AC=30cm,则BC的长是()A . 10cmB . 50cmC . 25cmD . 10cm或50cm8. (3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A . 6B . 7C . 8D . 99. (3分)如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是()A . 米B . (+1)米C . (+1)米D . (+1)米10. (3分) (2018七上·长春期中) 绝对值大于1且小于5的所有的整数的和是()A . 9B . ﹣9C . 6D . 0二、填空题(A卷) (共4题;共16分)11. (4分) (2018七上·宁波期中) 用代数式表示比a的2倍大3的数是________.12. (4分) (2019七上·崂山月考) 一个自然数的立方,可以分裂成若干个连续奇数的和.例如:23 , 33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;…;若103也按照此规律来进行“分裂”,则103“分裂”出的奇数中,最小的奇数是________13. (4分)用平面去截一个六棱柱,截面的形状最多是________边形.14. (4分)(2019·拉萨模拟) 若x=1是方程2(a﹣x)=x的解,则a=________.三、解答题(A卷) (共6题;共54分)15. (12分) (2019七上·靖远月考) 计算:(1) 36-76+(-23)-105;(2) |-21.76|-7.26+ -3;(3);(4)16. (6分)某个家庭为了估计自己家6月份的用电量,对月初的一周电表的读数进行了记载,上周日电表的读数是115度.以后每日的读数如下表:星期一二三四五六日电表的度数118122127133136140143(度)估计6月份大约用多少度电?17. (8分) (2017七上·埇桥期中) 如图所示的是一个正方体纸盒的展开图,按虚线折成正方体后,若使相对面上的两数互为相反数,试写出A,B,C分别表示的数.18. (8分) (2020七上·渭滨期末) 如图,∠AOC:∠BOC=1:4,OD平分∠AOB,且∠COD=40.5°,求∠AOB 度数.19. (10.0分) (2020九下·东台期中) 为了促进学生多样化发展,某校组织开展了社团活动,分别设置了体育类、艺术类、文学类及其它类社团(要求人人参与社团,每人只能选择一项).为了解学生喜爱哪种社团活动,学校做了一次抽样调查.根据收集到的数据,绘制成如下两幅不完整的统计图,请根据图中提供的信息,完成下列问题:(1)此次共调查了多少人?(2)求体育社团在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整;(4)若该校有3000名学生,请估计喜欢文学类社团的学生有多少人?20. (10分) (2019七上·赣榆月考) 如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣11,点B表示10,点C表示18,我们称点A和点C在数轴上相距29个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.(1)动点P从点A运动至C点需要多少时间?(2) P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.四、填空题(B卷) (共5题;共20分)21. (4分) (2015七上·阿拉善左旗期末) 某厂第一个月生产机床a台,第二个月生产的机床数量比第一个月的1.5倍少2台,则这两个月共生产机床________台.22. (4分) (2018七上·海沧期中) 已知代数式x+2y的值是3,则代数式2x+4y﹣1的值是________.23. (4分) (2018七上·慈溪期中) =________.24. (4分) 2:45钟表上时针与分针的夹角=________度.25. (4分) (2019七下·大洼期中) 小亮的储蓄罐里有面值5角和1元的两种硬币,共20枚,合计15元,面值5角的有________枚,1元的有________枚。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.如图,已知线段AB=4,延长AB到点C,使得AB=2BC,反向延长AB到点D,使AC=2AD.
(1)求线段CD的长;
(2)若Q为AB的中点,P为线段CD上一点,且BP= BC,求线段PQ的长.
24.全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散布;E:不运动.
15.如图,矩形内有两个相邻的正方形,面积分别为4和a2,那么阴影部分的面积为___________.
16.火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有不同的车票______种.
17.“ ”“ ”“ ”分别表示三种不同的物体.如图所示,天平①②保持平衡,如果要使天平③也平衡,那么应在天平③的右端放________________个“ ”.
则这家商店盈利了.
故选A.
【点睛】
此题主要考查列代数式,解题的关键根据题意列出代数式.
13.3.2×106
【分析】
科学记数法的表示形式为 的形式,其中 ,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值 10时,n是正数;当原数的绝对值 时,n是负数.
A.5x+4(x+2)=44B.5x+4(x﹣2)=44C.9(x+2)=44D.9(x+2)﹣4×2=44
5.下列调查中,适合采用抽样调查的是( )
A.对乘坐高铁的乘客进行安检
B.调查本班学生的身高
C.为保证某种新研发的战斗机试飞成功,对其零部件进行检查
D.调查一批英雄牌钢笔的使用寿命
6.下列解方程变形正确的是( )
【分析】
根据去括号和添括号法则解答.
【详解】
A、原式=−a−2,故本选项变形错误.
B、原式=−a+ ,故本选项变形错误.
C、原式=−(a−1),故本选项变形正确.
D、原式=−(a−1),故本选项变形错误.
故选:C.
【点睛】
本题主要考查了去括号与添括号,①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值;③添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号里的各项都改变符号.添括号与去括号可互相检验.
∵相对面的数的和相等,6+4=10,
A.若5x﹣6=7,那么5x=7﹣6
B.若 ,那么2(x﹣1)+3(x+1)=1
C.若﹣3x=5,那么x=﹣
D.若﹣ ,那么x=﹣3
7.如图,已知线段AB的长度为a,CD的长度为b,则图中所有线段的长度和为( )
A.3a+bB.3a-bC.a+3bD.2a+2b
8.下列变形正确的是()
A.
B.
C.
D.
【详解】
由科学记数法的定义得:
故答案为: .
【点睛】
本题考查了科学记数法的定义,熟记定义是解题键.
14.16
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“3”与“y”是相对面,
“x”与“1”是相对面,
“6”与“4”是相对面,
(1)两台复印机同时复印,共需多少分钟才能印完?
(2)若两台复印机同时复印30分钟后,B机出了故障,暂时不能复印,此时离发卷还有13分钟.请你算一下,如果由A机单独完成剩下的复印任务,会不会影响按时发卷考试?
(3)在(2)的问题中,B机经过紧急抢修,9分钟后修好恢复正常使用,请你再计算一下,学校能否按时发卷考试?
参考答案
1.A
【分析】
根据相反数的定义即可求出答案.
【详解】
解:4和﹣4互为相反数,
故选பைடு நூலகம்A.
【点睛】
本题考查相反数的定义,解题的关键是正确理解相反数的定义,本题属于基础题型.
2.D
【分析】
根据两点之间线段最短即可判断.
【详解】
从居民楼点A到“菜鸟驿站”点B的最短路径是A-E-B,故选D.
【点睛】
此题主要考查点之间的距离,解题的关键是熟知两点之间线段最短.
C、∵﹣3x=5,
化系数为1,得
x=- ,故选项错误;
D、∵﹣ x=1,
化系数为1,得
x=﹣3,故选项正确.
故选D.
【点睛】
本题主要考查了解方程步骤的运用,去分母,去括号,移项,合并同类项,化系数为1的过程的运用,解决本题的关键是要熟练掌握解方程的步骤.
7.A
【分析】
依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.
化简,得
5x+4(x+2)=44,
故选A.
5.D
【分析】
对于精确度要求高的调查,事关重大的调查往往选用普查.适合普查的方式一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.
【详解】
A、对乘坐高铁的乘客进行安检,必须普查;
B、调意本班学生的身高,必须普查;
C、为保证某种新研发的战斗机试飞成功,对其零部件进行检查,必须普查;
3.B
【分析】
根据题意,可以列出相应的代数式,本题得以解决.
【详解】
解:a的平方与b的和可以表示为:a2+b,
故选B.
【点睛】
本题主要考查列代数式,解答本题的关键是明确题意,列出相应的代数式.
4.A
【解析】
根据题意可以列出相应的方程,从而可以解答本题.
解:由题意可得,
5x+(9﹣5)×(x+2)=44,
A.盈利了B.亏损了
C.不赢不亏D.盈亏不能确定
二、填空题
13.2020年以来,新冠肺炎横行,全球经济遭受巨大损失,人民生命安全受到巨大威胁.截止6月份,全球确诊人数约3200000人,其中3200000用科学记数法表示为_____.
14.若要使图中平面展开图折叠成正方体后,使得相对面上的数的和相等,则 ______.
11.A
【分析】
根据多项式的加减运算法则,用B减去A得到差,若差为正则B大于A;若差为0则B等于A;若差为负则B小于A.
【详解】

故选:A
【点睛】
本题考查多项式作差法比较大小,多项式作差运算是易错点,巧用任意数或式的平方非负是解题关键.
12.A
【分析】
根据题意列出商店在甲批发市场童装的利润,以及商店在乙批发市场童装的利润,将两利润相加表示出总利润,根据a大于b判断出其结果大于0,可得出这家商店盈利了.
(2)若x=100,请通过计算说明学校采用以上哪个方案较为优惠.
(3)若x=100,如果到甲店购买30支球拍(送30筒球),剩余的网球到乙店购买,能更省钱吗?如果可以省钱,请直接写出比方案一省多少钱?
26.某中学举行数学竞赛,计划用A、B两台复印机复印试卷.如果单独用A机器需要90分钟印完,如果单独用B机器需要60分钟印完,为了保密的需要,不能过早复印试卷,学校决定在考试前由两台复印机同时复印.
山东省聊城市阳谷县2020-2021学年七年级上学期期末数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列每个选项中的两个数,互为相反数的是( )
A.4和﹣4B.﹣3和 C.|﹣2|和2D.|﹣2|和
2.如图,是某住宅小区平面图,点 是某小区“菜鸟驿站”的位置,其余各点为居民楼,图中各条线为小区内的小路.从居民楼点 到“菜鸟驿站”点 的最短路径是()
A. B.
C. D.
3.a的平方与b的和,用式子表示,正确的是( )
A.a+b2B.a2+bC.a2+b2D.(a+b)2
4.(2016云南省曲靖市)小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是( )
25.为丰富校园体育生活,某校增设网球兴趣小组,需要采购某品牌网球训练拍30支,网球x筒(x>30).经市场调查了解到该品牌网球拍定价100元/支,网球20元/筒.现有甲、乙两家体育用品商店有如下优惠方案:
甲商店:买一支网球拍送一筒网球;
乙商店:网球拍与网球均按则90%付款,
(1)方案一:到甲商店购买,需要支付元;方案二:到乙商店购买,需要支付元(用含x的代数式表示)
以下是根据调查结果绘制的统计图表的一部分.
运动形式
A
B
C
D
E
人数
12
30
m
54
9
请你根据以上信息,回答下列问题:
(1)接受问卷调查的共有人,图表中的m=,n=;
(2)统计图中,A类所对应的扇形圆心角的度数为;
(3)根据调查结果,我市市民最喜爱的运动方式是,不运动的市民所占的百分比是;
(4)郑州市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗“暴走团”的大约有多少人?
18.某人在解方程 去分母时,方程右边的 忘记乘以6,算得方程的解为 ,则a的值为__________.
三、解答题
19.先化简后求值: ,其中x=﹣2, .
20.计算:
(1) ;
(2) .
21.解下列方程
(1) ;
(2) .
相关文档
最新文档