信号与系统实验 上机报告
信号与系统实验四实验报告
实验四 时域抽样与频域抽样一、实验目的加深理解连续时间信号的离散化过程中的数学概念和物理概念,掌握时域抽样定理的基本内容。
掌握由抽样序列重建原连续信号的基本原理与实现方法,理解其工程概念。
加深理解频谱离散化过程中的数学概念和物理概念,掌握频域抽样定理的基本内容。
二、 实验原理时域抽样定理给出了连续信号抽样过程中信号不失真的约束条件:对于基带信号,信号抽样频率sam f 大于等于2倍的信号最高频率m f ,即m sam f f 2≥。
时域抽样是把连续信号x (t )变成适于数字系统处理的离散信号x [k ] ;信号重建是将离散信号x [k ]转换为连续时间信号x (t )。
非周期离散信号的频谱是连续的周期谱。
计算机在分析离散信号的频谱时,必须将其连续频谱离散化。
频域抽样定理给出了连续频谱抽样过程中信号不失真的约束条件。
三.实验内容1. 为了观察连续信号时域抽样时抽样频率对抽样过程的影响,在[0,0.1]区间上以50Hz 的抽样频率对下列3个信号分别进行抽样,试画出抽样后序列的波形,并分析产生不同波形的原因,提出改进措施。
)102cos()(1t t x ⨯=π答: 函数代码为: t0 = 0:0.001:0.1;x0 =cos(2*pi*10*t0);plot(t0,x0,'r')hold onFs =50;t=0:1/Fs:0.1;x=cos(2*pi*10*t); stem(t,x); hold offtitle('连续信号及其抽样信号')函数图像为:)502cos()(2t t x ⨯=π同理,函数图像为:)0102cos()(3t t x ⨯=π同理,函数图像为:由以上的三图可知,第一个图的离散序列,基本可以显示出原来信号,可以通过低通滤波恢复,因为信号的频率为20HZ,而采样频率为50>2*20,故可以恢复,但是第二个和第三个信号的评论分别为50和100HZ,因此理论上是不能够恢复的,需要增大采样频率,解决的方案为,第二个信号的采样频率改为400HZ,而第三个的采样频率改为1000HZ,这样可以很好的采样,如下图所示:2. 产生幅度调制信号)200cos()2cos()(t t t x ππ=,推导其频率特性,确定抽样频率,并绘制波形。
北航信号与系统上机实验报告
信号与系统上机实验报告我是 buaa 快乐的小2B目录实验一、连续时间系统卷积的数值计算 (3)一、实验目的 (3)二、实验原理 (3)三、实验程序源代码、流图实验程序源代码 (4)4.1源代码与程序框图: (4)4.2数据与结果 (5)4.3数据图形 (6)实验二、信号的矩形脉冲抽样与恢复 (7)一、实验目的: (7)二、实验原理: (7)三、实验内容 (9)四、实验程序流程图和相关图像 (9)4.1、画出f(t)的频谱图即F(W)的图像 (9)4.2、对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形f(t) (11)4.3、三种不同频率的抽样 (14)4.4、将恢复信号的频谱图与原信号的频谱图进行比较 (17)实验五、离散时间系统特性分析 (21)一、实验目的: (21)二、实验原理: (21)三、实验内容 (21)四、程序流程图和代码 (22)五、实验数据: (23)5.1单位样值响应 (23)5.2幅频特性 (24)六、幅频特性和相频特性曲线并对系统进行分析。
(25)6.1幅频特性曲线 (25)6.2相频特性曲线 (26)实验一、连续时间系统卷积的数值计算一、实验目的1 加深对卷积概念及原理的理解;2 掌握借助计算机计算任意信号卷积的方法。
二、实验原理1 卷积的定义卷积积分可以表示为2 卷积计算的几何算法卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。
3 卷积积分的应用卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应,它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。
设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信号为e(t)时,系统的零状态响应为由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。
因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。
卷积积分的数值运算实际上可以用信号的分段求和来实现,即:如果我们只求当t )时r(t)的值,则由上式可以得到:1 1 2t = nΔt (n为正整数, nΔt 记为当 1 Δt 足够小时,( ) 2 r t 就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:1、将信号取值离散化,即以Ts 为周期,对信号取值,得到一系列宽度间隔为Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;2、将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为t=0 时的卷积积分的值。
信号与系统实验报告
信号与系统实验报告一、实验目的(1) 理解周期信号的傅里叶分解,掌握傅里叶系数的计算方法;(2)深刻理解和掌握非周期信号的傅里叶变换及其计算方法;(3) 熟悉傅里叶变换的性质,并能应用其性质实现信号的幅度调制;(4) 理解连续时间系统的频域分析原理和方法,掌握连续系统的频率响应求解方法,并画出相应的幅频、相频响应曲线。
二、实验原理、原理图及电路图(1) 周期信号的傅里叶分解设有连续时间周期信号()f t ,它的周期为T ,角频率22fT,且满足狄里赫利条件,则该周期信号可以展开成傅里叶级数,即可表示为一系列不同频率的正弦或复指数信号之和。
傅里叶级数有三角形式和指数形式两种。
1)三角形式的傅里叶级数:01212011()cos()cos(2)sin()sin(2)2cos()sin()2n n n n a f t a t a t b t b t a a n t b n t 式中系数n a ,n b 称为傅里叶系数,可由下式求得:222222()cos(),()sin()T T T T nna f t n t dtb f t n t dtTT2)指数形式的傅里叶级数:()jn tn nf t F e式中系数n F 称为傅里叶复系数,可由下式求得:221()T jn tT nF f t edtT周期信号的傅里叶分解用Matlab进行计算时,本质上是对信号进行数值积分运算。
Matlab中进行数值积分运算的函数有quad函数和int函数。
其中int函数主要用于符号运算,而quad函数(包括quad8,quadl)可以直接对信号进行积分运算。
因此利用Matlab进行周期信号的傅里叶分解可以直接对信号进行运算,也可以采用符号运算方法。
quadl函数(quad系)的调用形式为:y=quadl(‘func’,a,b)或y=quadl(@myfun,a,b)。
其中func是一个字符串,表示被积函数的.m文件名(函数名);a、b分别表示定积分的下限和上限。
信号与系统实验报告
信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。
2.通过软件工具绘制不同信号的时域和频域图像。
3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。
三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。
2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。
3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。
4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。
四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。
通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。
此外,通过滤波器的处理,我也了解了滤波对信号的影响。
通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。
武大电气学院信号系统实验报告
《信号与系统》上机实验实验一连续时间信号的表示及可视化一.实验目的熟练掌握连续时间信号的表示及可视化处理。
二.实验源程序δf(t))=)(tf=@(t)dirac(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)= ε(t)(f=Heaviside(n))f=@(t)heaviside(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=at e(分别取a>0及a<0)a=1时f=@(t)exp(t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标a=-1时f=@(t)exp(-t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=R(t)t=-5:0.01:5; %设定时间变量t的范围及步长y=rectpuls(t,2); %用rectpuls(t a)命令表示门函数,默认以零点为中心,宽度为aplot(t,y); %用plot函数绘制连续函数grid on; %显示网格命令title('门函数'); %用title函数设置图形的名称axis([-5 5 -0.5 1.5]);f(t)=Sa(wt)w=5时,f=Sa(5*t)f=@(t)Sinc(5*t) %定义函数ezplot(f,[-5:5]); %利用ezplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标axis([-5 5 -1.2 1.2])w=8时,f=Sa(8*t)f=@(t)sinc(8*t) %定义函数ezplot(f,[-4:4]); %利用eaplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标f(t)=Sin(2πft)(分别画出不同周期个数的波形)f(t)=Sin(t)f=@(t)sin(t) %定义函数ezplot(f,[-15:15]); %利用eaplot( )命令绘制连续图形xlabel('(t)'); %横坐标ylabel('(f)'); %纵坐标axis([-15 15 -1.2 1.2])三.程序运行结果(1)(2)(3)-5-4-3-2-1012345-1-0.8-0.6-0.4-0.200.20.40.60.81(t)dirac(t)(f )-5-4-3-2-101234500.20.40.60.81(t)heav iside(t)(f )(4)-5-4-3-2-1012345010********607080(t)exp(t)(f )-5-4-3-2-1012345010********607080(t)exp(-t)(f )(5)-5-4-3-2-1012345-1-0.8-0.6-0.4-0.200.20.40.60.81(t)Sinc(5 t)(f )(6)-4-3-2-101234 -1-0.8-0.6-0.4-0.20.20.40.60.81(t)sinc(8 t)(f)-15-10-5051015 -1-0.8-0.6-0.4-0.20.20.40.60.81(t)sin(t)(f)实验二离散时间信号的表示及可视化一.实验目的学会对离散时间信号进行标识和可视化处理。
信号与系统实验报告
信号与系统实验报告好啦,今天咱们来聊聊信号与系统实验报告。
这话题有点儿“高大上”,但咱们不妨来点轻松的,把它聊得有趣一些。
先说说信号是什么。
信号其实就是一种信息传递的方式,可能是声音,可能是光,甚至是你手机屏幕上刷过的每一条消息。
简单来说,信号就是承载着信息的载体。
你看,像咱们日常生活中,电台广播,手机接收到的短信,甚至你家电视里放的广告,它们都是信号的一种表现形式。
啊,听起来有点儿复杂吧?其实不难,就像你一收到朋友发来的微信,手机屏幕上跳出来的就是一个信号。
信号怎么才能“正常工作”呢?这就得说到“系统”了。
系统呢,说白了就是一套能够处理信号的工具。
你想啊,信号如果没有一个合适的“平台”去接收、传递和处理,那就变得一团乱麻了。
就像是你给朋友发了个短信,但他手机坏了,信号接收不进去,结果信息就白发了。
系统在这里就相当于是一个“修理工”,它能让信号顺利通过、准确无误地到达目的地。
接下来说说我们在实验中的“主角”——信号与系统。
你看,实验嘛,往往让我们有点“心慌慌”。
不过,信号与系统的实验其实有点像玩拼图。
你得先弄清楚信号的各种“形状”,然后用系统去“加工处理”,让它变得符合要求。
比如,咱们常用的模拟信号,它是一个连续的过程,类似于咱们生活中的声音一样,是没有间断的。
而数字信号呢,就像你手机屏幕上的数字,离散的,断断续续的。
每种信号都有自己独特的“脾气”,你得了解它们的特点,才能搭配合适的系统。
你要是觉得这些实验有点儿复杂,那就来点儿幽默的比喻吧。
信号就像是你的朋友说的话,而系统就是你听的耳朵。
朋友说话的声音,可能因为距离远近,语速快慢,甚至音量的大小而有所不同。
系统就得根据这些变化去处理,比如调节音量、清晰度,甚至过滤掉不必要的噪声。
你想想,假如你能在嘈杂的环境下清楚地听到朋友的声音,那就是系统给你提供的帮助。
信号与系统的实验,就是在这种“听”和“说”之间找到平衡点。
咱们得说说实验中的一些基本工具了。
信号与系统实验报告
信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。
实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。
实验一:信号的基本特性与运算。
学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。
实验二:信号的时间域分析。
在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。
实验三:系统的时域分析。
学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。
信号与系统实验报告
信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。
由于b=2,故平移量为2时,实际是右移1,符合平移性质。
两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。
平移,伸缩变化都会导致输出结果相对应的平移伸缩。
2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。
两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。
二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。
两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。
3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。
两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。
三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。
2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。
两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。
信号与系统实验报告
实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。
在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。
1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。
在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。
在MATLAB中连续信号可用向量或符号运算功能来表示。
⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。
向量f为连续信号在向量t所定义的时间点上的样值。
⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。
⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。
%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。
方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。
《信号与系统》实验报告
信号与系统实验报告班级:姓名:信息与通信工程学院实验一 系统的卷积响应实验性质:提高性 实验级别:必做 开课单位:信息与通信工程学院 学 时:2一、实验目的:深刻理解卷积运算,利用离散卷积实现连续卷积运算;深刻理解信号与系统的关系,学习MATLAB 语言实现信号通过系统的仿真方法。
二、实验设备: 计算机,MATLAB 软件 三、实验原理: 1、 离散卷积和: 调用函数:conv ()∑∞-∞=-==i i k f i f f f conv S )()(1)2,1(为离散卷积和,其中,f1(k), f2 (k) 为离散序列,K=…-2, -1, 0 , 1, 2, …。
但是,conv 函数只给出纵轴的序列值的大小,而不能给出卷积的X 轴序号。
为得到该值,进行以下分析:对任意输入:设)(1k f 非零区间n1~n2,长度L1=n2-n1+1;)(2k f 非零区间m1~m2,长度L2=m2-m1+1。
则:)(*)()(21k f k f k s =非零区间从n1+m1开始,长度为L=L1+L2-1,所以S (K )的非零区间为:n1+m1~ n1+m1+L-1。
2、 连续卷积和离散卷积的关系:计算机本身不能直接处理连续信号,只能由离散信号进行近似: 设一系统(LTI )输入为)(t P ∆,输出为)(t h ∆,如图所示。
)t)()(t h t P ∆∆→)()(lim )(lim )(0t h t h t P t =→=∆→∆∆→∆δ若输入为f(t):∆∆-∆=≈∑∞-∞=∆∆)()()()(k t P k f t f t f k得输出:∆∆-∆=∑∞-∞=∆∆)()()(k t hk f t y k当0→∆时:⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==ττδτd t f k t P k f t f t f k )()()()(lim)(lim )(0⎰∑∞∞-∞-∞=∆→∆∆→∆-=∆∆-∆==τττd t h f k t hk f t y t y k )()()()(lim)(lim )(0所以:∆∆-∆=-==∑⎰→∆)()(lim)()()(*)()(212121k t f k fd t f f t f t f t s τττ如果只求离散点上的f 值)(n f ∆])[()()()()(2121∑∑∞-∞=∞-∞=∆-∆∆=∆∆-∆∆=∆k k k n f k f k n f k fn f所以,可以用离散卷积和CONV ()求连续卷积,只需∆足够小以及在卷积和的基础上乘以∆。
信号与系统实验报告 连续信号的时域描述与运算
信号与系统实验报告课程名称:信号与系统实验实验项目名称:连续信号的时域描述与运算专业班级:姓名:学号:完成时间:年月日一、实验目的1.通过绘制典型信号的波形,了解这些信号的基本特征。
2.通过绘制信号运算结果的波形,了解这些信号运算对信号所起的作用。
二、实验原理1.基于MATLAB的信号描述方法如果一个信号在连续时间范围内(除有限个间断点外)有定义,则称该信号为连续时间信号,简称为连续信号。
从严格意义上讲, MATLAB数值计算的方法并不能处理连续信号,但是可利用连续信号在等时间间隔点的采样值来近似表示连续信号,即当采样间隔足够小时,这些离散采样值能够被MATLAB处理,并且能较好地近似表示连续信号。
(1)向量表示法对于连续时间信号f(t),可以定义两个行向量f和t来表示,其中向量t是形如t=t1:Δt:t2的MATLAB命令定义的时间范围向量,t1为信号起始时间,t2为终止时间,Δt为时间间隔;向量f为连续时间信号f(t)在向量t所定义的时间点上的采样值。
(2)符号运算表示法如果信号可以用一个符号表达式来表示,则可用ezplot命令绘制出信号的波形。
2.连续信号的基本运算(1)信号的相加与相乘信号的已知信号f1(t)、f2(t),信号相加和相乘记为f(t)=f1(t)+f2(t)f(t)=f1(t)·f2(t)(2)微分与积分对于连续时间信号,其微分运算是用diff函数来完成的。
其语句格式为:diff(function,’variable’,n);其中function表示需要进行求导运算的信号,或者被赋值的符号表达式;variable为求导运算的独立变量;n为求导的阶数,默认值为求一阶导数。
连续信号的积分运算用int函数来完成。
其语句格式为:int(function,’variable’,a,b);其中function表示被积信号,或者被赋值的符号表达式;variable为积分变量;a,b为积分上、下限,a和b省略时求不定积分。
华工电信学院信号与系统实验一报告参考模板
华工电信学院信号与系统实验信号与系统实验报告(一)实验项目名称:MATLAB 编程基础及典型实例 上机实验题目:信号的时域运算及MA TLAB 实现 一、实验目的学习并掌握使用MATLAB 产生基本信号、绘制信号波形、实现信号的可视化表示,为信号分析和系统设计奠定基础。
二、实验内容1. 利用Matlab 产生下列连续信号并作图。
(1) 51),1(2)(<<---=t t u t x(2) 2000,)8.0cos()1.0cos()(<<=t t t t x ππ 2. 利用Matlab 产生下列离散序列并作图。
(1) ⎩⎨⎧≤≤-=其他,055,1][k k x , 设1515-≤<k 。
(2) )]25.0cos()25.0[sin()9.0(][k k k x k ππ+=,设2020-≤<k 。
3. 已知序列]3,2,1,0,1,2;2,3,1,0,2,1[][--=-=k k x , ]21,0,1,1,1[][=-=k k h 。
(1) 计算离散序列的卷积和][][][k h k x k y *=,并绘出其波形。
(2) 计算离散序列的相关函数][][][n k y k x k R k xy +=∑∞-∞=,并绘出其波形。
(3) 序列相关与序列卷积有何关系?三、实验细节1. 利用Matlab 产生下列连续信号并作图。
(1) 51),1(2)(<<---=t t u t xt=-1:0.01:5;x=-2.*((t-1)>=0); plot(t,x);axis([-1,5,-2.2,0.2])-112345-2-1.5-1-0.5(2) 2000,)8.0cos()1.0cos()(<<=t t t t x ππ t=0:2:200;x=cos(0.1*pi*t).*cos(0.8*pi*t); plot(t,x);20406080100120140160180200-1-0.8-0.6-0.4-0.200.20.40.60.812. 利用Matlab 产生下列离散序列并作图。
信号与系统实验报告实验一 信号与系统的时域分析
实验一信号与系统的时域分析一、实验目的1、熟悉与掌握常用的用于信号与系统时域仿真分析的MA TLAB函数;2、掌握连续时间与离散时间信号的MA TLAB产生,掌握用周期延拓的方法将一个非周期信号进行周期信号延拓形成一个周期信号的MA TLAB编程;3、牢固掌握系统的单位冲激响应的概念,掌握LTI系统的卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质;4、掌握利用MA TLAB计算卷积的编程方法,并利用所编写的MA TLAB程序验证卷积的常用基本性质;掌握MA TLAB描述LTI系统的常用方法及有关函数,并学会利用MATLAB求解LTI系统响应,绘制相应曲线。
基本要求:掌握用MA TLAB描述连续时间信号与离散时间信号的方法,能够编写MATLAB程序,实现各种信号的时域变换与运算,并且以图形的方式再现各种信号的波形。
掌握线性时不变连续系统的时域数学模型用MA TLAB描述的方法,掌握卷积运算、线性常系数微分方程的求解编程。
二、实验原理信号(Signal)一般都就是随某一个或某几个独立变量的变化而变化的,例如,温度、压力、声音,还有股票市场的日收盘指数等,这些信号都就是随时间的变化而变化的,还有一些信号,例如在研究地球结构时,地下某处的密度就就是随着海拔高度的变化而变化的。
一幅图片中的每一个象素点的位置取决于两个坐标轴,即横轴与纵轴,因此,图像信号具有两个或两个以上的独立变量。
在《信号与系统》课程中,我们只关注这种只有一个独立变量(Independent variable)的信号,并且把这个独立变量统称为时间变量(Time variable),不管这个独立变量就是否就是时间变量。
在自然界中,大多数信号的时间变量都就是连续变化的,因此这种信号被称为连续时间信号(Continuous-Time Signals)或模拟信号(Analog Signals),例如前面提到的温度、压力与声音信号就就是连续时间信号的例子。
信号与系统 实验报告
信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。
本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。
二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。
三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。
其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。
2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。
采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。
重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。
四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。
然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。
最后,将重建得到的信号与原始信号进行对比,分析重建误差。
实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。
而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。
2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。
例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。
同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。
实验结果表明,不同系统对信号的频率特性有着明显的影响。
高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。
通过调节滤波器的参数,可以实现对信号频率的选择性衰减。
五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。
《信号与系统》实验报告
《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。
通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。
本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。
本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。
每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。
在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。
1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。
通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。
信号与系统的实验报告(2)
信号与系统实验报告——连续时间系统的复频域分析班级:05911101学号:**********姓名:***实验五连续时间系统的复频域分析——1120111487 信息工程(实验班)蒋志科一、实验目的①掌握拉普拉斯变换及其反变换的定义,并掌握MA TLAB 实现方法 ②学习和掌握连续时间系统系统函数的定义及其复频域分析方法③掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1、拉普拉斯变换连续时间信号x(t)的拉普拉斯变换定义为:X s =x (t )e −st dt +∞−∞拉普拉斯反变换为:x t =12πj X (s )e st ds σ+j ∞σ−j ∞在MA TLAB 中可以采用符号数学工具箱中的laplace 函数和ilaplace 函数进行拉氏变换和拉氏反变换。
L=laplace(F)符号表达式F 的拉氏变换,F 中时间变量为t ,返回变量为s 的结果表达式。
L=laplace(F,t)用t 替换结果中的变量s 。
F=ilaplace(L)以s 为变量的符号表达式L 的拉氏反变换,返回时间变量t 的结果表达式。
F=ilaplace(L,x)用x 替换结果中的变量t 。
2、连续时间系统的系统函数连续时间系统的系统函数是系统单位冲激响应的拉氏变换H s =ℎ(t )e −st dt +∞−∞此外,连续时间系统的系统函数还可以由系统输入和输出信号的拉氏变换之比得到H s =Y(s)/X(s) 单位冲激响应h(t)反映了系统的固有性质,而H(s)从复频域反映了系统的固有性质。
对于H(s)描述的连续时间系统,其系统函数s 的有理函数H s =b M s M +b M−1s M−1+⋯+b 0a n s n +a n −1s M−1+⋯+a 03、连续时间系统的零极点分析系统的零点指使式H s 的分子多项式为零的点,极点指使分母多项式为零的点,零点使系统的值为零,极点使系统函数的值无穷大。
信号与系统实验报告-1(常用信号的分类与观察)
信号与系统实验报告-1(常用信号的分类与观察)实验一:信号的时域分析一、实验目的1.观察常用信号的波形特点及产生方法2.学会使用示波器对常用波形参数的测量二、实验仪器1.信号与系统试验箱一台(型号ZH5004)2.40MHz双踪示波器一台3.DDS信号源一台三、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。
因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。
在本实验中,将对常用信号和特性进行分析、研究。
信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。
常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。
1、信号:指数信号可表示为f(t)=Ke at。
对于不同的a取值,其波形表现为不同的形式,如下图所示:图1―1 指数信号2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。
其波形如下图所示:图1-2 正弦信号3、指数衰减正弦信号:其表达式为其波形如下图:图1-3 指数衰减正弦信号4、Sa(t)信号:其表达式为:。
Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。
该函数在很多应用场合具有独特的运用。
其信号如下图所示:图1-4 Sa(t)信号5、钟形信号(高斯函数):其表达式为:其信号如下图所示:图1-5 钟形信号6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。
其信号如下图所示:f(t)…………0 t图1-6 脉冲信号7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示U(t)…………0 t图1-7 方波信号四、实验内容及主要步骤下列实验中信号产生器的工作模式为111、指数信号观察通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。
信号与系统实验报告
信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。
本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。
实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。
首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。
然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。
实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。
实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。
通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。
在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。
实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。
实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。
我们通过输入不同频率和幅度的信号,观察系统的输出响应。
实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。
通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。
实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。
通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。
实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。
实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。
结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。
实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号与系统上机实验报告*实验三 信号的时域运算,时域变换与MATLAB 实现一、实验目的1. 掌握信号时域运算的MA TLAB 实现方法2. 掌握信号时域变换的MA TLAB 实现方法二、实验原理信号的时域运算包括信号的相加、相乘,信号的时域变换包括信号的平移、反折、倒相及信号的尺度变换。
下面就分别介绍连续时间信号和离散时间信号的各种时域运算、变换及MA TLAB 是实现。
【三】上机练习2.已知信号⎪⎪⎩⎪⎪⎨⎧<<<<-+=其它020104)1(41)(t t t t f ,画出)42()(+-t f t f 及的波形; 程序:syms tf=1/4*(t+1)*(heaviside(t+4)-heaviside(t))+heaviside(t)-heaviside(t-2) subplot(2,1,1) , ezplot(f) f1=subs(f,t,-2*t+4)subplot(2,1,2) ,ezplot(f1) 结果:-4-3-2-1012-0.500.51theaviside(t) -...+ (t/4 + 1/4) (heaviside(t + 4) - heaviside(t))11.522.533.54-0.500.51theaviside(2 - t) -...+ (t/2 - 5/4) (heaviside(2 - t) - heaviside(4 - t))3.已知两个连续信号)2sin()(,10,)(21t t f t t t f π=<<-=,用MATLAB 绘出下列信号的波形:1))()()(113t f t f t f +-= 2))]()([)(114t f t f t f +--= 3))()()(325t f t f t f ⨯= 4))()()(216t f t f t f ⨯= 程序:syms tf1=-t*(heaviside(t)-heaviside(t-1)) f2=sin(2*pi*t) f31=subs(f1,t,-t) f32=subs(f1,t,t) f3=f31+f32subplot(2,2,1),ezplot(f3) f4=-f3subplot(2,2,2),ezplot(f4) f5=f2*f3subplot(2,2,3),ezplot(f5) f6=f1*f2subplot(2,2,4),ezplot(f6) 结果:-1-0.500.51-1-0.5t t (heaviside(-t) - heaviside(- t - 1)) + t (heaviside(t - 1) - heaviside(t))-1-0.500.510.51t-...- t (heaviside(t - 1) - heaviside(t))-1-0.50.51-0.50.5tsin(2 π t) (t (heaviside(-t) - heaviside(- t - 1)) + t (heaviside(t - 1) - heaviside(t)))00.51-0.4-0.200.20.40.60.8tt sin(2 π t) (heaviside(t - 1) - heaviside(t))4、已知离散序列},0,3,3,3,,2,1,0,{)(3 ↑=k f ,用MATLAB 绘出下列序列的波形。
1))()2(k k f ε- 2))(k f -3))2(+-k f 4))2()2(--k k f ε程序: k1=-3:4f=[0,1,2,3,3,3,3,0] k2=-1:6f0=Heaviside(k2) stem(k1,f)f11=lsyw(f,k1,2)k3=-1:6stem(k3,f11)stem(k2,f0)subplot(2,2,1)f1=lsxc(f11,f0,k3,k2)stem(k1,f)subplot(2,2,2)f2=lsfz(f,k1)k4=-4:3stem(k4,f2)subplot(2,2,3)f3=lsyw(f2,k4,2)stem(k2,f0)f41=lsyw(f0,k2,2)k5=1:8stem(k5,f41)subplot(2,2,4)f4=lsxc(f11,f41,k3,k5) 结果:二、思考题在对信号进行平移、反折和尺度变换时,运算顺序对结果是否有影响?在运算中应该注意什么?答:信号的平移、反折和尺度变换运算的先后顺序对结果无影响。
应注意若先反折由f(t)变为f(-t)后,进行平移时应注意左右平移的方向。
*实验五 周期信号傅里叶级数【一】实验目的1.用MATLAB 实现周期信号傅里叶级数分解与综合。
2.利用MATLAB 对周期信号进行频谱分析。
【二】实验原理任何满足狄里赫里条件的周期信号,都可以表示成三角形式或指数形式的傅里叶级数展开式。
∑∑∑∞-∞=∞-∞=∞-∞=ΩΩ+Ω+==n n n n n tjn n t n b t n a a e F t f )sin()cos(2)(0(5.1)⎰⎰∞∞-∞∞-Ω=Ω=dt t n t f T b dt t n t f T a n n )sin()(2,)cos()(2 (5.2)一般来说,傅里叶级数有无限个非零值,即任何具有有限个间断点的周期信号都一定有一个无限非零系数的傅里叶级数表示。
但对数值计算来说,这是无法实现的。
在实际应用中,我们可以用有限项的傅里叶级数求和来逼近。
即对有限项和:∑∑∑==-=ΩΩ+Ω+==Nn n Nn n NNn tjn nt n b t n a a eF t f 110)sin()cos(2)( (5.3)当N 值取得较大时,上式就是原周期信号)(t f 的一个很好的近似。
上式常称作截断傅里叶级数表示。
MATLAB 强大的符号运算功能为我们进行周期信号的分析提供了强有力的工具。
本次实验我们以周期举行脉冲信号为例,来说明如何用MATLAB来实现周期信号的分解与综合过程。
【三]上机练习2.修改例5-1,将周期信号分解为前10次谐波的叠加,观察运行结果,能得出什么结论?function [A_sym,B_sym]=CTFShchsymsyms t n k xT=5;tao=0.2*T;a=0.5;if nargin<4;Nf=10;endif nargin<5;Nn=32;endx=time_fun_x(t);A0=2*int(x,t,-a,T-a)/T;As=int(2*x*cos(2*pi*n*t/T)/T,t,-a,T-a);Bs=int(2*x*sin(2*pi*n*t/T)/T,t,-a,T-a);A_sym(1)=double(vpa(A0,Nn));for k=1:Nf;A_sym(k+1)=double(vpa(subs(As,n,k),Nn));B_sym(k+1)=double(vpa(subs(Bs,n,k),Nn));endif nargout==0c=A_sym;disp(c)d=B_sym;disp(d)t=-8*a:0.01:T-a;N=length(t);ff=zeros(11,N);ff(1,:)=A_sym(1)/2;for i=2:11ff(i,:)=A_sym(i).*cos(2*pi*(i-1)*t/5);endff1=ff(1,:)+ff(2,:);ff2=ff(1,:)+ff(2,:)+ff(3,:)+ff(4,:)+ff(5,:);ff3=ff(1,:)+ff(2,:)+ff(3,:)+ff(4,:)+ff(5,:)+ff(6,:)+ff(7,:);ff4=ff(1,:)+ff(2,:)+ff(3,:)+ff(4,:)+ff(5,:)+ff(6,:)+ff(7,:)+ff(8,:)+f f(9,:)+ff(10,:)+ff(11,:);subplot(2,2,1)plot(t,ff1),hold ony=time_fun_e(t)plot(t,y,'r:')title('周期矩形波的形成-基波')axis([-4,4.5,-0.5,1.3])subplot(2,2,2)plot(t,ff2),hold ony=time_fun_e(t)plot(t,y,'r:')title('周期矩形波的形成-基波+2+3+4次谐波') axis([-4,4.5,-0.5,1.3])subplot(2,2,3)plot(t,ff3),hold ony=time_fun_e(t)plot(t,y,'r:')title('基波+2+3+4+5+6次谐波')axis([-4,4.5,-0.5,1.3])subplot(2,2,4)plot(t,ff4),hold ony=time_fun_e(t)plot(t,y,'r:')title('基波+2+3+4+5+6+7+8+9+10次谐波')axis([-4,4.5,-0.5,1.3])endfunction x=time_fun_x(t)h=1;x1=sym('Heaviside(t+0.5)')*h;x=x1-sym('Heaviside(t-0.5)')*h;function y=time_fun_e(t)a=0.5;T=5;h=1;tao=0.2*T;t=-8*a:0.01:T-a;e1=1/2+1/2.*sign(t+tao/2);e2=1/2+1/2.*sign(t-tao/2);y=h.*(e1-e2);运行结果为:3.观察例5-1运行结果脉冲宽度与频谱的关系;答:周期不变,信号的频带宽度与脉冲宽度成反比。
4.观察例5-1运行结果周期与频谱的关系;答:脉冲宽度不变,周期愈长,相邻谱线的间隔减小,频谱变密。
【四】思考题试用MATLAB绘出周期矩形脉冲信号的振幅频谱。
程序:x1=ones(1,2);x2=[x1,zeros(1,6)];x=10*x2;%所求的周期脉冲信号N=8;%长度为8n=[0:1:N-1];k=[0:1:N-1];k1=[-N/2:N/2];WN=exp(-j*2*pi/N);nk=n'*k;WNnk=WN.^nk;Xk=x*WNnk;magXk=abs([Xk(N/2+1:N),Xk(1:N/2+1)]); subplot(2,1,1);stem(n,x);%画出周期脉冲信号 subplot(2,1,2); stem(k1,magXk); xlabel('k1');ylabel('Xtilde(k)');title('DFS of SQ.wave :L=2,N=8')%该信号频谱图运行结果:01234567510-4-3-2-10123405101520k1X t i l d e (k )DFS of SQ.wave :L=2,N=8*实验六 傅里叶变换及其性质【一】实验目的1. 利用MATLAB 实现连续信号的傅里叶变换。