二次根式教材分析报告
初中数学_二次根式(复习)教学设计学情分析教材分析课后反思
第九章二次根式单元复习教学设计备课人:第九章二次根式(复习)学情分析:根据八年级学生的性格特点维活跃,乐于表现,善于思考,具有了一定的动手能力。
学生在数学学习活动中的参与程度和思维水平能反应出他们的年龄特点,他们能积极主动参与各项活动,能在学习活动中进行主动思考,向老师表达自己的想法,听取老师的意见和建议,能正确地运用所学解决相关问题。
虽然学生已经对二次根式有了全面的认识,本章的学习也有了良好的基础,但是当被开方数是分数和小数时,学生的理解能力不是很好,加上部分同学的计算能力相对薄弱,更增加了对最简二次根式化简的难度,因此在教学过程中,先从知识网络入手,整体复习二次根式的相关知识点,采取由易到难,由简到繁层层推进的办法,既巩固了基础,又提升了能力。
使得学生在理解二次根式概念上有更深刻的认识,也就为后续运算的内容奠定了基础。
通过对整章内容的复习,使绝大多数学生对于化简最简二次根式以及二次根式的运算,做到有方法、有技巧、有策略!二次根式(复习)效果分析本节课教学效果分析从教学过程中学生掌握的成绩和当堂测评练习两个方面进行分析。
在教学过程中,学生复习回顾,巩固练习表现很好,正确答案在90%以上,对能力提升部分学生掌握也不错。
从当堂测评练习的分析得出:测评练习设置四块内容:其中包括跟踪练,拓展延伸,走进中考,课后思维延伸。
在教学效果分析中学生对本章知识掌握的较好。
绝大多数学生的测评成绩能达到掌握准确程度。
二次根式(复习)教材分析《二次根式》是八年级下册第九章内容,本章共分3节,概念及性质,加减法,乘除法。
不仅与实数及二次根式的概念、性质有关,而且与学生已经学过的整式、分式的基本运算有着紧密的联系。
二次根式在初中数学学科体系中的地位作用:二次根式在初中数学中具有特殊的地位.它不仅是实数运算的重要依据,而且还是学习二次方程和二次函数的基础.二次根式是在学生学习了平方根、立方根等内容的基础上进行的,是对“实数、整式”等内容的延伸和补充,对数与式的认识更加完善。
《二次根式》单元教材分析
《二次根式》单元教材分析教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.a≥0)是一个非负数,2=a(a≥0)(a≥0).(2(3a≥0,b〉0)(a≥0,b〉0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点a≥0a≥0)是一个非负数;(2=a(a1.≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点≥02=a(a≥0)(a1≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下: 21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时。
数学最简二次根式教案(精选7篇)
数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。
本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。
(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。
重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。
二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。
因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。
②本节的难点是化简二次根式的方法与技巧。
难点分析化简二次根式,实际上是二次根式性质的综合运用。
化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。
所以对初学者来说,这一过程容易出现符号和计算出错的问题。
熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。
③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。
因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。
初中数学_二次根式教学设计学情分析教材分析课后反思
16.2二次根式的乘除(1)教学设计备课人学科数学年级八年级时间课题16.1二次根式第( 1 )课时课型新授课三维目标知识与技能:了解二次根式的概念,掌握二次根式有意义的条件;过程与方法:激发学生观察、归纳、思考能力,训练学生语言表达能力;情感态度与价值观:通过观察、归纳、应用等活动,培养积极地探索数学规律的兴趣,提高应用所学知识的能力。
教学重难点重点:二次根式的概念;二次根式有意义的条件。
难点:二次根式有意义的条件。
教学过程(双边活动)教学流程师生活动设计意图一、课前准备检测(1)什么是平方根,如何表示;(2)什么是算术平方根,如何表示。
(3)举例说明二、自主学习问题一(1)面积为3的正方形的边长为,面积为的正方形的边长为 .(2)一个长方形围栏,长是宽的2 倍,面积为130m2,则它的宽为______m.(3)一个物体从高处自由落下,教师展示问题学生回答学生出题目,同桌回答学生自主学习课本第二页上面思考温故知新激发学习积极性和学习兴趣,活跃课堂气氛发展学生自主学习能力,让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系 h=5t2,如果用含有h 的式子表示 t ,则t为 _____.问题二观察所得、、、有什么共同特点?三、学习新知(1)二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式。
(2)认识被开方数和二次根号,以及二次根式的读法。
练习:判断下列各式是二次根式吗?、,(x,y异号)、3 2分钟后学生出示结果教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根让学生体会由特殊到一般的过程,由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.(教师书写板书时,空出a满足的条件,并追问在二次根式的概念中a满足的条件,为什么要强调“a≥0”?)学生作答说明不是二次根式的理由学生小组交流,学会总结学习重点。
教材分析 二次根式
第1章 二次根式二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”“代数式”等内容的延伸和补充。
二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。
这些都说明了前后知识之间的内在联系。
本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。
一、教科书内容和教学目标1、本章的教学要求。
(1)了解二次根式的概念,了解简单二次根式的字母取值范围;(2)了解二次根式的性质;(3)了解二次根式的加、减、乘、除的运算法则;(4)会用二次根式的性质和运算法则进行有关实数的简单四则运算(不要求分母有理化)。
2、本章教材分析。
课本在回顾算术平方根的基础上,通过“合作学习”的三个问题引出二次根式的概念,并说明以前学的数的算术平方根也叫做二次根式。
在例题和练习的安排上,着重体现三个方面的要求:一是求二次根式中字母的取值范围;二是求二次根式的值;三是用二次根式表示有关的问题。
对于二次根式的性质,课本利用第4页图1-2给出的。
该图的含义是如果正方形的面积为a ,那么这个正方形的边长就是a ;反之,如果正方形的边长为a ,那么这个正方形的面积就是a ,因此就有a a 2)(。
从而得出二次根式的第一个性质。
至于第二个性质,可以通过学生的计算来发现,所以课本安排了一个“合作学习”,让学生自己去发现和归纳。
该节第一课时的重点在于对这两个性质的理解和运用,例题和练习的设计就围绕这两个性质展开。
第二课时是学习二次根式的另外两个性质,课本安排两组练习,意在让学生通过自己的尝试,与同学的合作交流来发现这两个性质。
通过两个例题和一组练习,使学生知道运用二次根式的性质,可以简化实数的运算,也可以对结果是二次根式的式子进行化简。
二次根式的教学实践报告(2篇)
第1篇一、背景与目的随着新课程改革的不断深入,数学教育越来越注重学生的实践能力和创新能力的培养。
二次根式作为高中数学中的重要内容,对于培养学生的逻辑思维和解题能力具有重要意义。
本报告旨在通过对二次根式的教学实践进行分析,总结教学经验,为今后的教学提供参考。
二、教学内容与方法1. 教学内容本次教学实践围绕二次根式的概念、性质、运算和实际应用展开。
具体内容包括:(1)二次根式的概念:理解二次根式的定义,掌握二次根式的符号表示。
(2)二次根式的性质:掌握二次根式的性质,如乘法、除法、平方等。
(3)二次根式的运算:熟练掌握二次根式的加减、乘除、开方等运算。
(4)二次根式的实际应用:结合实际生活,运用二次根式解决实际问题。
2. 教学方法(1)讲授法:通过教师的讲解,使学生掌握二次根式的基本概念和性质。
(2)讨论法:组织学生进行小组讨论,激发学生的学习兴趣,培养学生的合作意识。
(3)练习法:通过大量的练习题,使学生熟练掌握二次根式的运算。
(4)案例分析法:结合实际案例,引导学生运用二次根式解决实际问题。
三、教学过程1. 导入新课首先,通过回顾实数、有理数等基础知识,引导学生思考二次根式的概念。
然后,通过展示一些二次根式的实例,激发学生的学习兴趣。
2. 讲授新课(1)二次根式的概念:教师讲解二次根式的定义,并举例说明。
(2)二次根式的性质:教师讲解二次根式的性质,如乘法、除法、平方等,并引导学生进行练习。
(3)二次根式的运算:教师讲解二次根式的加减、乘除、开方等运算,并引导学生进行练习。
(4)二次根式的实际应用:教师结合实际案例,引导学生运用二次根式解决实际问题。
3. 小组讨论组织学生进行小组讨论,让学生在交流中巩固所学知识,提高解题能力。
4. 练习与巩固布置适量的练习题,让学生在练习中巩固所学知识。
四、教学效果通过本次教学实践,学生掌握了二次根式的基本概念、性质、运算和实际应用。
具体表现在以下几个方面:(1)学生对二次根式的概念有了清晰的认识。
21章二次根式教材分析
21.3 二次根式的加减
二次根式运算应注意的问题 1.注意运算顺序
5 2 6 3
注意乘除法属于同级运算,从左到右的 的顺序依次进行.
21.3 二次根式的加减
2.不要违背运算率:
1 1 2 3 ( ) 6 2
21.3 二次根式的加减
3.教学中要应充分运用类比的方法,让学生 学生体会有理数的运算、二次根式的运算 以及整式的运算之间的联系,感受数的扩 充过程中运算性质和运算律的一致性以及 数式通性等,提高运算能力。
21.2二次根式的乘除
3.在学生熟悉两条运算法则的前提下,通过 变式训练加以巩固,提高学生的计算能力 和速度。本节课应以学生练习为主,教师 注重知识应用的误区设置,及时提醒学生 易犯的错误,强调计算结果的要求。
21.2二次根式的乘除
4最简二次根式是今后学习二次根式加减运 算的关键一步。要注意化简正确,并且要 注意化简熟练和速度。教学时要注意把握 层次。 8, 12, 18, 27, A.
教学建议
2.加大学生探索空间,体现由特殊到一 般的认识 过程,要注重学生的观察、分析、归纳、探究能力 的培养。 3.注意把握教学难度 与以往的教材相比,二次根式已大大降低了要求。 如运用二次根式的性质将二次根式化简,只要求 简单的,不要出现过于复杂的式子.对二次根式的 四则运算,也仅局限于简单的。当然对不同层次 的学生,应该体现一定的弹性。
6.降低了对公式 a | a | 的要求,给出字母的取 值范围不出现讨论的情况。 7.降低了二次根式运算和化简的要求,二次 根式的混合运算没有单立节。不出现繁琐 式子的运算。
2
五、与原有教材的变化
8.淡化了概念名词:教材中没有出现同类 二次根式、有理化因式、分母有理化等 名词。
二次根式教材分析备用
冯震虎
二次根式
1、课程标准要求 2、单元教学目标 3、教学重难点 4、教材的地位和作用 5、教材编写特色 6、本章知识结构 7、教法分析 8、学法指导 9、教学建议 10、评价建议
掌握用简单 的一元一次
一课、程课标程准标要准求要求
不等式解决
通过二次根式
二次根式中
性质和四则运
字母的取值
引导学生积累数学活动经验,感悟数学思想
关注学生的学习兴趣和参与程度
十、中考分析
一元二次方程的根的化简
与二次根式结合考察
经常和绝对值、
完全平方、算术平方根
性质等知识结合起 来考查。
二次根式的 性质
与一元二次 方程结合
求直角三角形的边或角, 常与二次根式化简结合, 是中考必考知识点之一。
与解直角
三角形结合
平方根、算术平方 根、实数概念
二次根式
为一元二次方程 解直角三角形 二次函数打基础
为高中数学学 习提供知识准 备
五、《二次根式》教材编写特色
体现知识的形成过 程,让学生在数学 活动的过程中,逐 步理解所学的知识。
本章内容共分为 3节,包括二次 根式的概念及性 质、二次根式的 的加减法及二次 根式的乘除法。
二次根式的
有关概念 中考分析
与二次函数 结合
最简二次根式、同类 二次根式是中考考查 重点。
运用二次根式的有 关知识解决实际问题, 或与其他知识结合设 计开放型试题。
掌握二次根式的化简和运算 规律,需要适当加强练习, 在练习过程中,要注意知识 之间的相互联系,养成以联系 和发展的观点学习数学的习惯
勤动手、勤观察、 注意与实际的联系, 体会二次根式在生活 中的应用
二次根式教材分析(学生版)
第二十一章 《二次根式》教材分析一、本章知识结构框图:二、本章地位与作用承上启下的作用,与前面实数及整式一章有非常紧密的联系;二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是后续解直角三角形、一元二次方程和二次函数的基础。
三、(建议) 课时安排21.1 二次根式 约2课时 21.2 二次根式的乘除 约2课时21.3 二次根式的加减 约3课时 数学活动与小结 约2课时 四、中考考试要求五、教学建议(一)加强知识间的纵向联系,充分理解概念与性质1.教学中要注意与已有知识和经验的联系,要在“实数”一章的基础上进行教学;对平方根的有关概念和性质进行复习,使学生理解二次根式的本质就是将数的算术平方根扩充到式的算术平方根,进而理解二次根式的性质。
2.教学中注意本章与第十五章“整式”的联系。
整式的运算法则和公式及运算律在二次根式的运算中同样适用。
教学中要注意本章内容与“整式”中相关内容的联系,使学生的学习形成正迁移。
3.注意本章知识与已学过知识的综合,如与因式分解的综合、与勾股定理的综合,与分式运算的综合等. (二)加强与实际的联系,突出二次根式的数学本质研究二次根式的概念和运算既是数学内在的需要,也是实际的需要,教学时应加强与实际的联系,可以适当增加一些贴近学生生活的实例,使学生在兴趣中认识二次根式的有关概念和运算,在解决实际问题中理解二次根式的本质,调动学生学习数学的积极性。
(三)重视二次根式的化简 1.二次根式的主要性质:(1))0(,0≥≥a a ; (2))0()(2≥=a a a ; (3)⎩⎨⎧<-≥==)0()0(2a a a a a a ;(4) 积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ;(5) 商的算术平方根的性质:)0,0(>≥=b a ba b a ; (6)若0≥>b a ,则b a >.2.二次根式的化简是本章的主要内容之一,掌握化简的方法需要进行一定的训练;3.⎩⎨⎧<-≥==)0()0(2a a a a a a 与)0()(2≥=a a a 的逆用。
初中数学_16.1二次根式教学设计学情分析教材分析课后反思
16.1二次根式(第一课时)一、教学目标a≥的意义解答具体题目.1.0)2.利用二次根式表示实际问题中的数量与数量的关系.3.经历观察、比较,总结二次根式概念的被开方数取值的过程,发展学生的归纳概念能力.二、重点与难点1.重点:a≥的式子叫做二次根式的概念0)2.难点:a≥解决具体问题0)三、教学方法“自主合作分层达标”五环节教学法。
教学中采用发现法、启发法、讨论法、类比法等教学方法。
教师积极引导,鼓励学生积极探索、勇于发现、集体讨论。
四、教学媒体多媒体课件五、教学过程(一)知识回顾在实数一章我们学习了平方根与算术平方根,根据所学知识完成下列题目.1、2的平方根是,2的算术平方根是;2、0的平方根是,0的算术平方根是;3、-7有没有平方根?有没有算术平方根?【设计意图】复习回顾已有知识,为下面从数与式运算的完整性提出要研究的问题做铺垫。
这节课我们将进一步向下学习第十六章二次根式第一课时,首先看一下本节课的学习目标(二)学习目标1.了解二次根式的概念。
2.能够运用二次根式的意义解答具体题目。
【设计意图】让学生有的放矢.(三)自主学习1.思考用带有根号的式子填空,看看所填的结果有什么特点:(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______.(2)一个长方形围栏,长是宽的 2 倍,面积为130m²,则它的宽为______m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下的高度h(单位:m)满足关系h =5t²,如果用含有h 的式子表示t ,则t= _____.2.请你凭借已有的知识,说说对二次根式的认识.3.下列式子,哪些是二次根式,哪些不是二次根式:1x0),x>0)x>【设计意图】让学生用学过的实数相关知识完成填空,经历观察、比较,总结二次根式概念的被开方数取值的。
学会学习是新课程的要求,更是学生终生学习的基础。
二次根式的加减运算
二次根式的加减运算一、教材分析1、内容分析:本节内容共一课时。
主要内容是学习二次根式的加减运算。
2、地位与作用:二次根式属于“数与代数”领域的内容,它是在学生在学习了勾股定理、平方根、立方根、实数等概念的基础上进行的,是对“实数”“代数式”内容的延伸和补充。
在进行二次根式的加减时,所采用的方法与合并同类项类似;这说明了前后知识之间的内在联系。
同时本部分内容还是后面学习“锐角三角函数”、“一元二次方程”和“二次函数”的基础.二、学情分析学生已经学习了二次根式的概念及性质等知识,已具备了学习二次根式加减运算的知识基础和心理基础,本节课主要是采用类比的思想来学习二次根式的加减运算,难度不大。
班级学生课堂上能积极参与、有一定的自学能力,好奇心、求知欲、表现欲都非常强;在前面学习的基础上,他们具有一定的观察能力、分析能力、归纳能力,学习新知识速度快模仿能力强,具备一定的探索知识自主创新的能力,但经常因为粗心而出错,同时课后复习巩固的效果较差。
结合以上分析,为了加强他们的自学能力,提高课堂学习效率,根据他们的特点,本节课采用启发引导,讲练结合的方式完成学习,选择联系生活中的实际问题,适合学生的习题,由浅入深的引导,注重培养学生的自学能力,通过一定练习,激发学生的求知欲和提高学生的自信心。
三、目标分析1、了解同类二次根式的概念,会辨别同类二次根式。
2、经历探索二次根式的加法和减法运算法则的过程,理解二次根式的加法和减法算理,进一步发展学生的类比推理能力。
3、能熟练地进行二次根式的加法和减法运算。
四、教学重难点【重点】会辨别同类二次根式,熟练掌握二次根式的加减运算。
【难点】探索二次根式加减运算的方法和准确地进行二次根式的加减运算。
五、教具准备多媒体投影、实物展台、课件、学案、六、活动流程《数学课程标准》明确指出:“数学教学是数学活动的教学,学生是数学学习的主人。
”为了向学生提供更多从事数学活动的机会,我将本节课的教学过程设定为以下六个环节:活动3:探索交流活动4:例题分析活动5:随堂练习活动6:课堂小结,活动7:达标测试先独立完成,再探索交流,得出新的概念和法则运用法则进行计算,加深对运算法则的理解通过练习,巩固所学知识学生归纳小结,教师评价,形成系统学生测试,检验本节课的掌握情况教学过程问题与情境师生行为设计意图【活动一】情境引入如图,两个长方形的宽都是a m,它们的长分别是2 m和3 m,用不同的方法求这两个长方形的面积的和。
初中数学_【课堂实录】二次根式教学设计学情分析教材分析课后反思
《二次根式》教学设计一、教材分析《二次根式》是在学生学习了平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习本节课。
《二次根式》不仅是对前面所学知识的综合应用,也是本章《二次根式》的基础,还是后面一元二次方程以及三角函数的基础,因此本节课起着承上启下的重要作用。
二、学情分析学生的知识技能基础:学生已经学过“勾股定理”、“实数”,并且通过前面的学习,学生对平方根和算术平方根的知识比较熟悉。
学生活动经验基础:在前面相关知识的学习过程中,学生已经具备了一定的合作交流和探究能力,对新知识的接受较为容易。
本节课采用让学生观察、思考、合作探究的方法实现学习目标。
三、教学目标1.知识技能⑴了解二次根式的概念。
⑵初步理解二次根式有意义的条件。
⑶理解掌握二次根式的性质,并能应用性质进行相关计算。
2.过程方法让学生经历由特殊到一般最后归纳的方法,探求二次根式的性质。
3.情感态度与价值观通过师生活动,学生合作探究,激发学生学习数学的兴趣,建立自信心,形成团队合作的意识。
四、教学重点和难点重点:探求二次根式有意义的条件,并能简单运用。
难点:二次根式的探究;理解、掌握、运用二次根式的性质。
五、教学策略:1.树立以学生为本的思想,通过复习以前所学,启发学生观察---分析 ---归纳,培养学生积极思考,勇于探索的精神,充分发挥其自主能动性;2.通过一系列活动,指导学生合作交流,自主探索二次根式有意义的条件以及二次根式的性质,并通过性质的探索与应用,发掘不同层次学生的学习能力。
六、课时安排:1课时七、教学过程教学环节教师活动学生活动设计意图创设情境引入课题图片引入意大利物理学家伽利略曾在比萨斜塔塔顶上做过著名的自由落体实验,得出结论:一个物体从高度为h米的高处自由下落,如果不考虑空气的阻力,那么物体从开始下落到刚好落地所用的时间可以用式子9.4h秒来表示。
温故知新1.7的算术平方根是_____。
二次根式教材分析(学生版)
第二十一章 《二次根式》教材分析一、本章知识结构框图:二、本章地位与作用承上启下的作用,与前面实数及整式一章有非常紧密的联系;二次根式的化简对勾股定理的应用是很好的补充;二次根式的概念、性质、化简与运算是后续解直角三角形、一元二次方程和二次函数的基础。
三、(建议) 课时安排二次根式 约2课时 二次根式的乘除 约2课时$二次根式的加减 约3课时数学活动与小结 约2课时 四、中考考试要求五、教学建议(一)加强知识间的纵向联系,充分理解概念与性质1.教学中要注意与已有知识和经验的联系,要在“实数”一章的基础上进行教学;对平方根的有关概念和性质进行复习,使学生理解二次根式的本质就是将数的算术平方根扩充到式的算术平方根,进而理解二次根式的性质。
2.教学中注意本章与第十五章“整式”的联系。
整式的运算法则和公式及运算律在二次根式的运算中同样适用。
教学中要注意本章内容与“整式”中相关内容的联系,使学生的学习形成正迁移。
3.注意本章知识与已学过知识的综合,如与因式分解的综合、与勾股定理的综合,与分式运算的综合等.【(二)加强与实际的联系,突出二次根式的数学本质研究二次根式的概念和运算既是数学内在的需要,也是实际的需要,教学时应加强与实际的联系,可以适当增加一些贴近学生生活的实例,使学生在兴趣中认识二次根式的有关概念和运算,在解决实际问题中理解二次根式的本质,调动学生学习数学的积极性。
(三)重视二次根式的化简 1.二次根式的主要性质:(1))0(,0≥≥a a ; (2))0()(2≥=a a a ; (3)⎩⎨⎧<-≥==)0()0(2a a a a a a ;(4) 积的算术平方根的性质:)0,0(≥≥⋅=b a b a ab ;(5) 商的算术平方根的性质:)0,0(>≥=b a ba b a ; (6)若0≥>b a ,则b a >.2.二次根式的化简是本章的主要内容之一,掌握化简的方法需要进行一定的训练; 3.⎩⎨⎧<-≥==)0()0(2a a a a a a 与)0()(2≥=a a a 的逆用。
-《二次根式》观课报告(推荐五篇)
-《二次根式》观课报告(推荐五篇)第一篇:-《二次根式》观课报告《二次根式》观课报告今年暑期研修中,按照省远程研修的要求,我认真、细致、耐心的观看了四位教师的课,这些教师都认真对待本次讲课,积极准备,从备教材、备数学课程标准,备学生、备重点、备难点方面,在教学设计中设计详细,各项目书写全面,给我提供了很好的讲课蓝本,就其中一节初中数学《二次根式》谈一下自己的体会。
尹老师的这节课,教学设计合理,教材与学情分析准确、全面;教学目标明确。
重点、难点处理符合学生认知规律;情境与活动设计指向问题解决。
教学环节相对完整、过程流畅、结构清晰;课堂容量适当。
学生学习兴趣浓厚,积极主动,参与度高,在学习活动中获得良好体验,课堂气氛活跃有序。
总体来看本节课凸显学生的主体地位,以如何提高学生的证明思路分析能力为着力点,通过定理的证明、例题的引领、练习题的巩固,及时地总结提升,培养学生分析问题、解决问题的能力。
从创造性地使用例题到设计变式训练、迁移训练;从设计条件开放、结论开放题,到设计条件不变、图形变化的各种训练;从展示正确证明过程到展示错误证明过程让学生评价,使学生的思维在广度和深度上得以发展,从而实现数学思维的全方位训练。
这节课有以下几点很值得学习:1、从教师教学来看,教师对课堂教学进行了精心设计,课堂结构合理,活动安排科学,能够落实分层教学,考虑全体学生。
练习设计合理,有层次,有梯度,基础知识掌握在课堂上,关键性的训练完成在课堂上,问题解决在课堂上。
面向全体,不同层次学生均得到发展;过程体验充分,学习能力得到提升;教学目标检测及时有效,达成度高。
2、目标明确,设置恰当,符合课程标准的要求。
教学中,始终围绕目标进行,教学内容安排合理,讲授正确,课堂结构合理;3、课堂气氛营造:针对初二学生的年龄特点,教师又适当的加入激励性的语言,激起学生的参与意识,例如:“在这一节的学习中,我们又会面临哪些挑战呢?大家想不想挑战自我?”这节课中类似这样的语言很多。
初中数学_【课堂实录】二次根式教学设计学情分析教材分析课后反思
《二次根式》教学设计一、教材分析1、地位与作用:从有理数扩充到实数是初中阶段数系扩充的最后一个阶段,中学阶段的多数问题是在实数范围内进行的,同时实数也是后继内容。
学生已经学习了实数的概念,数的范围又扩大了,本节课起到了承前启后的作用。
及时的探究二次根式的概念和性质可以使学生进一步加深对数的认识和对式的理解,同时也为学生后续学习一元二次方程、二次函数打下良好的基础。
2、教学目标:知识目标:(1)了解二次根式和最简二次根式的概念,能将二次根式(根号下仅限于数)化简为最简二次根式。
(2)探究并掌握二次根式的性质,熟练运用二次根式的性质进行化简能力目标:经历观察、分析、归纳的过程,发展抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力。
情感目标:使学生经历观察、猜想、总结、归纳等数学活动,感受和体验数学活动的乐趣,并提高学生用数学的意识。
3、重点、难点重点: 探究二次根式的性质及应用。
难点:熟练、灵活将二次根式化简为最简二次根式。
二、教法与学法教法:启发引导式,讲练结合法.学法:观察、讨论,归纳、实践。
三、教学过程分析【一】、引入新课1.快速反应:(1)两直角边分别为1和2的直角三角形的斜边为_______(2)面积为2的正方形的边长是__________(3)11的算术平方根是___________(4)7.2改成整数的平方根是_______观察:这些式子有什么共同特征?归纳:都含有开方运算, 并且被开方数都是非负数。
引出二次根式的概念:一般地,式子)0(≥a a 叫做二次根式。
a 叫做被开方数.强调条件:0≥a .2.辨析:它们是二次根式吗?√49121;√(c +b )(c −b )(其中b=24,c=25);6481⨯; 625⨯; 95. 意图:给大脑缓冲的时间,更方便自然地接受二次根式的概念。
3.二次根式有什么性质呢?让我们一起探索。
【二】探究性质1.计算(1)94⨯=____,94⨯=____;√49=____√4√9=____;√2549=____,√25√49=____ ;2.用计算器计算:76⨯= ,76⨯= ;76= ,76= .问题1:观察上面的结果,你发现了什么规律?能用字母表示这个规律吗?问题2:其中的字母有限制条件吗?意图:通过计算、观察和用字母表达规律,学生不难发现二次根式的性质(重点)b a b a •=⋅(a ≥0,b ≥0),b ab a=(a ≥0, b >0).再次强调条件:a ,b 的取值范围文字归纳:积的算术平方根,等于__________________商的算术平方根,等于__________________【三】应用性质例1 用规律(1)6481⨯;(2)625⨯;(3)95。
二次根式的教材分析
11、设a、b、c为实数, 且
a - 1 +|b+1|+
(c - 2)
2
=0
求:a2008+b2007+c2的值.
结果:4
12、实数a、b在数轴上对应点的 位置如下图所示:
分析:体现数形结合的思想,进一步巩 固二次根式的定义、性质, 由于a<0,b>0,且|a|>|b|.
13、在Rt△ABC中,∠C=900,记AB=c, BC=a, AC=b,若a: c=1:2,则b: a=______
2
(4)a 6a 9
4 2
5、已知
a b 6与
ab8
互为相反数,求a、b的值。 6、化简
(
x 4)
2
( x 2)
2
7、化简
1
1 -
3
2
2
2
-2
3
2
3
4
3 - 7
1 -
2
7 5
2
2 7
2
2
2
2
2
3 3 2
求(1)四边形ABCD的周长; (2)四边形ABCD的面积。 D A
B
拓展1
设a、b为实数,且|2 -a|+ √ b-2 =0
2 2
( 1 ) 求 a - 2 2a + 2 + b 的 值 . a 2 , b 2
解 :1 而 2 a 0, 2 a b2 0 b2 0
2
(a 0)
2. a
2
a (a 0) a (a 0)
变式应用
《二次根式》教材分析
《⼆次根式》教材分析《⼆次根式》教材分析1⼀、本章地位与作⽤本章内容属于“数与代数”的基础内容,既是“整式”、“分式”之后引⼊的第三类重要代数式,也是“实数”之后对“数”的认识的深化.本章内容具有极强的“⼯具性”,教材中安排本章在“勾股定理”之后、“⼆次⽅程”之前,意在为解⼆次⽅程做好准备;本学期安排本章在“勾股定理”之前,能为解任意直⾓三⾓形的三边数值扫清障碍.⼆、知识⽹络归纳三、课标及中考要求【课标要求】了解⼆次根式、最简⼆次根式的概念,了解⼆次根式(根号下仅限于数)加、减、乘、除运算法则,会⽤它们进⾏有关的简单四则运算.(不要求进⾏根号下含字母的⼆次根式的四则运算,如,等.)【中考要求】1参考了之前⼏次同题教材分析稿,例题也⼤多沿⽤之。
四、课时安排建议21.1 ⼆次根式约2课时 21.2 ⼆次根式的乘除约2课时 21.3 ⼆次根式的加减约3~4课时数学活动与⼩结约2课时五、全章教学建议1.注意本章内容的“⼯具性”.⼆次根式相关知识的学习是为后续勾股定理、⼆次⽅程的学习打基础,因此应重点落实⼆次根式的性质、化简和计算(特别是实数的化简和计算)的准确性,提⾼学⽣的计算能⼒.尽管课本中的例题相对简单,但不要忽视它们在学⽣建⽴知识结构的过程所起的过渡作⽤.⾮实验班不建议在此补充涉及代数式化简、运算技巧的内容(如分母有理化等),相应地,学探诊测试6第6题及之后的题⽬可不作为基本教学要求.2.从提出⼆次根式的概念开始,就注意强化“⼆次根式在⼀定条件下才有意义”这⼀观念.避免教材第7页⼩贴⼠“在本章中,如果没有特别说明,所有的字母都表⽰正数”给学⽣带来的误解和误导.总有为数不少的学⽣将⼆次根式有意义的“⾮负性”条件误记为“正性”条件,可能与此有关.3.注意对“实数”⼀章知识的复习,体现“数式通性”的原则;注意与“整式”、“分式”相关知识的联系,相关结论可以类⽐记忆.4.注意教材和学探诊中,有些题⽬需要⽤到勾股定理,可先回避.六、各⼩节教学建议 21.1 ⼆次根式(1)实例引⼊,注意复习开平⽅、算术平⽅根的概念和符号表⽰.(2)⼆次根式的形式定义:建议不要把精⼒放在辨别⼀个式⼦是否为⼆次根式上,⽽应该侧重于理解被开⽅数是⾮负数(不要误记为正数)的要求.作为单独⼀个数应属于单项式,⾮⼆次根式.学探诊92页第6题:下列各式中,⼀定是⼆次根式的是:(A B C D 答案B .本⼈认为题⼲应该改为“下列各⼆次根式⼀定有意义的是”.总之,真正该提醒学⽣的是“数式通性”:如果被开⽅数是⼀个常数,那么它不可以是负数;如果被开⽅数含字母,那么它有取值范围的限制(与分式类似).(3)⼆次根式(根号)的双重⾮负性:)0(,0≥≥a a ;(4)教材要求掌握的公式:2 (0)a a =≥ (0)a a ≥,建议授课时提⾼要求,理解并掌握??<-≥==)0()0(2a a a a a a .2a 与2)(a 的对⽐:①运算顺序不同:2)(a 是先求算术平⽅根再平⽅,2a 是先平⽅再求算术平⽅根;② a 的取值不同:2)(a 中a 的取值是0≥a ,⽽2a 中a 的取值是任意实数;③运算结果不同:2)(a =a (0≥a );2a =??<-≥=)0()0(||a a a a a .(5)代数式的概念:建议适当补充⼀些代数式的书写规范(如果之前没有讲过).例1 :当x 是怎样的实数时,下列各式在实数范围内有意义?(1 (2 (3(4 答案:(1)1x ≥;(2)1x ≤;(3)1x >;(4)0x ≥且1x ≠.提⾼题:求下列函数解析式中⾃变量x 的取值范围:(1)y x 23-;(2)y 11x +;(3)y =(4)y .答案:(1)322x -≤≤;(2)0x ≤且1x ≠-;(3)12x ≥且2x ≠;(4)全体实数.例2 :若x 、y 为实数,且y =2-x +x -2+3.求y x 的值.(y x =9)例3 :判断下列等式是否成⽴:(1)219()= (2)219()=-19()= (4)2()a b=-()a b =- (6)0)().a a =≤答案:(1)√;(2)×;(3)√;(4)√;(5)×;(6)√.例4 :已知c b a ,,为三⾓形的三边,则222)()()(a c b a c b c b a -++--+-+=.(a b c ++)21.2 ⼆次根式的乘除(10,0)a b ≥≥理解⼆次根式乘除运算法则的合理性:可与()n n n a b ab =做形式上的类⽐;***可以利⽤算术平⽅根的定义进⾏推理证明:∵222ab =?= 且0≥≥,∴.从公式的适⽤范围看,包括了某些字母取0的情况;为降低难度,如果遇到纯⼆次根式化简问题,可以默认为字母都表⽰正数;当涉及字母的取值范围问题时,不能认为字母都是正数.(2)公式的逆⽤:)0,0(≥≥?=b a b a ab ;.能利⽤这条性质对⼆次根式进⾏化简.注意学⽣不易理解“开得尽⽅的因数或因式”的含义,教材在第8页⼩贴⼠的解释:可以开⽅后移到根号外的因数或因式.在这⾥,不妨多举⼀些例⼦,让学⽣明确在化简时,⼀般先将被开⽅数进⾏因数分解或因式分解,然后再将能开得尽⽅的因数或因式开出来.初步总结乘法运算的结果应满⾜以下两个要求:①结果是⼀个⼆次根式,或单项式乘以⼆次根式;也可能没有根号,只是单项式;②根号下不再有 “开得尽的因数或因式”.(30,0)a b=≥>,)0,0(>≥=b a ba b a注意0b >的条件;可以通过归纳、或证明、或类⽐nn n a a b b ??=得出此公式;对于⼆次根式的除法运算和⼆次根式的化简,应让学⽣⼀题多解,⼀⽅⾯是熟悉⼆次根式性质、运算法则和⽅法,另⼀⽅⾯,通过⼀题多解,总结做题经验,使运算更灵活、更简洁.如515515555353532==??==; 515)5(155553532==??=. a a a a aa a a224222828===;a aaa a a a a 22222228====.⼜如 222222212212212=?==?=; 22)2(2122122==?=;22142122122=?=?=.如果学⽣觉得不易灵活运⽤,也可总结为更易操作的“算法”:=再化简.⽤具体的实例归纳总结出把⼀个⼆次根式化为最简⼆次根式的⽅法技巧.如:当被开⽅数较⼤时,可⽤分解因数的办法将被开⽅数尽可能写成完全平⽅数的乘积形式.⾄此学⽣应能对……等常见数值进⾏化简.总之,学⽣在化简运算的简洁性和准确性上都容易出现问题,因此建议在教学过程中先要求学⽣观察⼆次根式的特点,根据其特点分析运⽤哪条性质、哪种⽅法来解答,每步运算的根据的什么,培养学⽣的分析能⼒和观察能⼒,以及计算的⽬的性和条理性.(4)最简⼆次根式的概念:不要求学⽣背出定义,关键是遇到实际式⼦能够加以判断,让学⽣在练习中熟悉这个概念,同时明确⼆次根式的运算结果应化为最简⼆次根式.例5 :计算:(1 (2;(3 (4例6 :化简:(1 (2 (3 (4(5 (6 (7 (8(9 (10)例7 :计算:(1;(2 (3;(4;(5 (6)3 (7 (8 (9例8 :计算:(1)12322??;(2))126(75?÷.例9 1.4143个有效数字). 21.3 ⼆次根式的加减(1)教材采⽤了“被开⽅数相同的最简⼆次根式”的说法;为简洁明了,建议还是类⽐同类项的概念给出“同类⼆次根式”的概念,能通过实例判断⼏个⼆次根式是不是同类⼆次根式,注意强调先化简的重要性.例如,分成⼏个⼩问题:①把被开⽅数都是整数的放在⼀个⼩题中,②把被开⽅数都是分数的放在⼀个⼩题中,③把被开⽅数带有简单字母的放在⼀个⼩题中,④把字母次数略⾼于2的放在⼀个⼩题中,……使问题的解决有⼀个由浅⼊深的渐进过程,最终再给出类似a(2)明确⼆次根式的加减法运算的实质就是合并同类⼆次根式,这与整式加减的实质类似.加减法的练习也同样可细分成⼏个层次进⾏教学.例如:①不需要化简能直接进⾏相加减的,②需要化简但被开⽅数都是简单整数的,③被开⽅数都是有理数但既有整数⼜有分数的,④被开⽅数含有字母的,等等.加减运算中常出现的错误类型有:①或类似的式⼦;②运算过程中有3294+=+或34143=或类似的问题;③运算过程中有532=+或2322311=-或类似的问题.(4)⼆次根式的混合运算.教材利⽤⼩贴⼠类⽐了它与实数、整式运算的联系:第14页: “在有理数范围内成⽴的运算律,在实数范围内仍成⽴”;第17页: “在⼆次根式的运算中,多项式乘法法则和乘法公式仍然适⽤”.分析式⼦结构,明确运算顺序;关注乘法公式和运算律的应⽤;计算少跳步,避免类似(5516=,之类的典型错误.例10计算:(1(2)2484554+-+(3)3241182182-+;(4)4832714122+-;(5()3122--?(6)0(π1)+-(7)1+(8)68 13222124--+-例11计算:(1)3)154276485(÷+- (2)x xx x 3)1246(÷- (3) )65153(1051-?(4)2136233÷-(5)2)32()122)(488(---+ (6))2332)(2332(-+ (7)2)534(+(8))3225)(65(-+(9) 1515)103()103(-+ (10) (11))13(1312+?+÷(12)abb a ab b 3)23(235÷-?(13))93()24(3ab a ba b a a b a b +-+ (14)221122??-+-+(15)((((22221111(16)ab -b a ―ab+2++a b b a (a >0,b >0)例12⼀个长⽅体的长为,宽为cm 3,⾼为cm 2,则它的表⾯积为 2cm ,体积为3cm .(8+例13若8a ,⼩数部分是b ,则22ab b -= .(5)★章节复习及综合(1)条件求值类题⽬:例14甲、⼄两⼈对题⽬“求值:21122-++a a a ,其中51=a ”有不同的解答,甲的解答:11112495a a a a a a a ==+-=-=,⼄的解答:5111)1(1211222==-+=-+=-++a a a a a a a a aa ,谁的解答是错误的?为什么?例15(1)如果524-+=+b a b a ,那么b a 2+=_____.(2)若实数x y ,满⾜033222=+-++y y x ,则xy 的值是..例16①已知: 101=+a a ,求221a a +的值.(6)②已知: ()5721+=x , ()5721-=y ,求x 2- xy + y 2的值.(112)(2)寻找规律、现场学习类:例17已知下列等式:10=100,1000,······,①根据上述等式的特点,请你写出第四个等式,并通过计算验证等式的正确性;②观察上述等式的规律,请你写出第n 个等式.(允许写成99999n个的形式)例18 观察下列等式:12)12)(12(12121-=-+-=+;23)23)(23(23231-=-+-=+;34)34)(34(34341-=-+-=+;……回答下列问题:①;② ......(9)例19m 和n ,使22mn a +=且mn =a ±222m n mn +±,即变成2()m n ±5±32++222++,==请仿照上例解下列问题:(1;(2七、***拓展专题(1)分母有理化:例20)a b ≠ 例21计算:)12008)(200720081...341231121(+++++++++(2)⼆次根式⽐较⼤⼩:例22⽐较⼤⼩:(1)3与22(平⽅法)(2)-(被开⽅数)(3)571-与351-(分母有理化)(4)2002-2001与2001-2000(倒数法/分⼦有理化)例23观察下列各式的特点:2312->-,3223->-,2532->-,……(1) 请根据以上规律填空20072007- >(2) 请根据以上规律写出第)1(≥n n 个不等式,并证明你的结论. (3) 计算下列算式:.....+9)(3)化简和运算技巧(注意隐含条件:字母的取值范围):例24(1)已知a <0,化简⼆次根式b a 3-的正确结果是(). AA .ab a --B .ab a -C .ab aD .ab a -(2)把mm 1-根号外的因式移到根号内,得(). C A .m B .m - C .m -- D .m -例25 (1)已知x+y=6,xy=6,求:xyy x +的值;(2)已知x +y=-8,xy=8,求的值.(-例26 计算)311)(37(6117)75)(53(7523+++++++++例27 (1)化简ba b a b a b ab a b a a ba b +-÷++-?-+-2;(a ba b +-)(2)化简111111112222-++--++--+-++a a a a a a a a .(1a >).(例28(1)已知x =2323-+, y =2323+-,求32234232y x y x y x xy x ++-的值;)(2)已知3 21+=a ,求a a a a a a a -+---+-2221 2121的值.(3)。
第十六章 二次根式 教材分析:二次根式教材分析
第十六章 二次根式教材分析:二次根式教材分析(一)课程学习目标1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2.了解最简二次根式的概念;3.理解二次根式的性质:(1))0(≥a a 是非负数;(2)())0(2≥=a a a ;(3))0(2≥=a a a ; 4.掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算(不要求分母有理化);5.了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。
(二)知识结构框图本章知识结构框图如下:注意:有关a 的取值及讨论.(三)课时安排本章教学时间约需10课时,具体分配如下(仅供参考):16.1 二次根式 约3课时 16.2 二次根式的乘除 约5课时 16.3 二次根式的加减 约4课时 小结 约2课时(四)内容安排本章是在第10章的基础上,进一步研究二次根式的概念、性质和运算。
本章重点是二次根式的化简和运算,难点是正确理解二次根式的性质和运算法则的合理性,学习本章的关键是理解二次根式的概念和性质,它们是学习二次根式的化简与运算的依据。
第10章“实数”中,我们学习了平方根、算术平方根的概念,以及利用平方运算与开平方运算的互逆关系求非负数的平方根和算术平方根的方法。
全章分为三节,第一节研究了二次根式的概念和性质。
教科书首先给出四个实际问题,要求学生根据已学的平方根和算术平方根的知识写出这四个问题的答案,并分析所得结果在表达式上的特点,由此引出二次根式的概念。
在二次根式的概念中,重要的一点是理解被开方数是非负数的要求,教科书结合例题对此进行了较详细的分析。
接下去,教科书采用由特殊到一般的方法,归纳给出了二次根式的性质())0(2≥=a a a ,并根据算术平方根的定义对这条性质进行了分析,对于二次根式的性质)0(2≥=a a a ,教科书同样采用了让学生通过具体计算,分析运算过程和运算结果,最后归纳得出一般结论的方法进行研究。
初中数学_16.1 二次根式教学设计学情分析教材分析课后反思
2.一个长方形,长是宽的2倍,面积为130, 则它的宽为_______。
3.苹果盒子的底面积表示为:2s r π= ,如果用含有s 的式子表示r ,那么r 为__________思考:3,s ,65,s π等式子的实际意义.说一说他们的共同特征? 三.二次根式的定义: 一般地,我们把形如_________的式子叫做二次根式,” ”成为二次根号。
例1 下列哪些是二次根式?1(1)3 ()328()(3)0x x -≤ ()416-()59 ()61a +()2721x +()2821a a ++1. 填一瑱你能把下列式子任意组合,填到下面的横线上吗? 21a+ ; ()21a -; 21a + ; a ; -2 ; 3_________你能写出几种情况?(例如a ) 四.二次根式有意义的条件二次根式a 有意义的条件是:___________例 2. x 是怎样的实数时,下列式子在实数范围内有意义?(1)2x - (2)132x- 练习:x 是怎样的实数时,下列式子在实数范围内有意义 获得对二次根式的感性认识.在体会这些式子的特征中,引出二次根式的定义,针对上述定义,强调以下几点: (1)a 中,a 必须是大于等于0的数或式子,否则它就没有意义了;(2)当a ≥0时,a 表示a的算术平方根,初步理解而一个非负数的算术平方根必然也是非负数,因而总有a ≥0(a ≥0)即双重非负性。
(3)强调是二次根号,而不是其他如三次根号。
二次根式被开方数非负数的前提下,上述组合分三种情况。
不能做被开方数的;可以做被开方数的;需要看字母的取值范围而定的。
由三种情形引出二次根式有意义的条件学情分析评测练习1. 若的平均数为x ,方差为S 2,则样本x 1+x ,x 2+x ,x 3+x 的平均数是 ,方差是 。
2. 甲、乙两种水稻,经统计甲水稻的株高方差是2.0,乙水稻的株高方差是1.8,可估计 水稻比 水稻长的整齐。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)公式的逆用: ;.
能利用这条性质对二次根式进行化简.注意学生不易理解“开得尽方的因数或因式”的含义, 教材在第8页小贴士的解释:可以开方后移到根号外的因数或因式.在这里,不妨多举一些例子,让学生明确在化简时,一般先将被开方数进行因数分解或因式分解,然后再将能开得尽方的因数或因式开出来.
建议不要把精力放在辨别一个式子是否为二次根式上,而应该侧重于理解被开方数是非负数(不要误记为正数)的要求.
例如, 是二次根式吗?按本人的理解, 作为单独一个数应属于单项式,非二次根式.
学探诊92页第6题:下列各式中,一定是二次根式的是:(A) (B) (C) (D) ,答案B.本人认为题干应该改为“下列各二次根式一定有意义的是”.
例4:已知 为三角形的三边,则 =
. ( )
21.2 二次根式的乘除
(1)从具体到抽象,归纳得出乘法公式:
理解二次根式乘除运算法则的合理性:可与 做形式上的类比;
***可以利用算术平方根的定义进行推理证明:
∵ 且 ,∴ .
从公式的适用围看,包括了某些字母取0的情况;
为降低难度,如果遇到纯二次根式化简问题,可以默认为字母都表示正数;
如 ; .
; .
又如 ;
; .
如果学生觉得不易灵活运用,也可总结为更易操作的“算法”:
型即 型,所有 的转化为 再化简;
或者: 型即 型,所有的 转化为 再化简.
用具体的实例归纳总结出把一个二次根式化为最简二次根式的方法技巧.如:当被开方数较大时,可用分解因数的办法将被开方数尽可能写成完全平方数的乘积形式.至此学生应能对 ……等常见数值进行化简.
《二次根式》教材分析
一、本章地位与作用
本章容属于“数与代数”的基础容,既是“整式”、“分式”之后引入的第三类重要代数式,也是“实数”之后对“数”的认识的深化.本章容具有极强的“工具性”,教材中安排本章在“勾股定理”之后、“二次方程”之前,意在为解二次方程做好准备;本学期安排本章在“勾股定理”之前,能为解任意直角三角形的三边数值扫清障碍.
提高题:求下列函数解析式中自变量 的取值围:
(1) - ; (2) - ;
(3) ;(4) .
答案:(1) ;(2) 且 ;(3) 且 ;(4)全体实数.
例2:若x、y为实数,且y= + +3.求yx的值. (yx=9)
例3:判断下列等式是否成立:
(1) (2)
(3) (4)
(5) (6)
答案:(1)√;(2)×;(3)√;(4)√;(5)×;(6)√.
② 的取值不同: 中 的取值是 ,而 中 的取值是任意实数;
③ 运算结果不同: = ( ); = .
(5)代数式的概念:建议适当补充一些代数式的书写规(如果之前没有讲过).
例1:当x是怎样的实数时,下列各式在实数围有意义?
(1) ; (2) ; (3) ; (4) .
答案:(1) ; (2) ; (3) ; (4) 且 .
数学活动与小结 约2课时
五、全章教学建议
1. 注意本章容的“工具性”.二次根式相关知识的学习是为后续勾股定理、二次方程的学习打基础,因此应重点落实二次根式的性质、化简和计算(特别是实数的化简和计算)的准确性,提高学生的计算能力.尽管课本中的例题相对简单,但不要忽视它们在学生建立知识结构的过程所起的过渡作用.
总之,学生在化简运算的简洁性和准确性上都容易出现问题,因此建议在教学过程中先要求学生观察二次根式的特点,根据其特点分析运用哪条性质、哪种方法来解答,每步运算的根据的什么,培养学生的分析能力和观察能力,以及计算的目的性和条理性.
(4)最简二次根式的概念:不要求学生背出定义,关键是遇到实际式子能够加以判断,让学生在练习中熟悉这个概念,同时明确二次根式的运算结果应化为最简二次根式.
总之,真正该提醒学生的是“数式通性”:如果被开方数是一个常数,那么它不可以是负数;如果被开方数含字母,那么它有取值围的限制(与分式类似).
(3)二次根式(根号)的双重非负性: ;
(4)教材要求掌握的公式: , ,
建议授课时提高要求,理解并掌握 .
与 的对比:
① 运算顺序不同: 是先求算术平方根再平方, 是先平方再求算术平方根;
初步总结乘法运算的结果应满足以下两个要求:
①结果是一个二次根式,或单项式乘以二次根式;也可能没有根号,只是单项式;②根号下不再有 “开得尽的因数或因式”.
(3)除法公式及逆用: ,
注意 的条件;
可以通过归纳、或证明、或类比 得出此公式;
对于二次根式的除法运算和二次根式的化简,应让学生一题多解,一方面是熟悉二次根式性质、运算法则和方法,另一方面,通过一题多解,总结做题经验,使运算更灵活、更简洁.
能根据二次根式的性质对代数式作简单变形;能在给定条件下,确定字母的值
二次根式的
化简和运算
理解二次根式的加、减、乘、除运算法则
会进行二次根式的化简,会进行二次根式的混合运算(不要求分母有理化)
四、课时安排建议
21.1 二次根式 约2课时
21.2 二次根式的乘除 约2课时
21.3 二次根式的加减 约3~4课时
3. 注意对“实数”一章知识的复习,体现“数式通性”的原则;注意与“整式”、“分式”相关知识的联系,相关结论可以类比记忆.
4. 注意教材和学探诊中,有些题目需要用到勾股定理,可先回避.
六、各小节教学建议
21.1 二次根式
(1)实例引入,注意复习开平方、算术平方根的概念和符号表示.
(2)二次根式的形式定义:
非实验班不建议在此补充涉及代数式化简、运算技巧的容(如分母有理化等),相应地,学探诊测试6第6题及之后的题目可不作为基本教学要求.
2. 从提出二次根式的概念开始,就注意强化“二次根式在一定条件下才有意义”这一观念.避免教材第7页小贴士“在本章中,如果没有特别说明,所有的字母都表示正数”给学生带来的误解和误导.总有为数不少的学生将二次根式有意义的“非负性”条件误记为“正性”条件,可能与此有关.
二、知识网络纳
三、课标及中考要求
【课标要求】
了解二次根式、最简二次根式的概念,了解二次根式(根号下仅限于数)加、减、乘、除运算法则,会用它们进行有关的简单四则运算.(不要求进行根号下含字母的二次根式的四则运算,如 , 等.)
【中考要求】
考试要求
A
B
二次根式
及其性质
了解二次根式的概念,
会确定二次根式有意义的条件