结构力学课后习题答案

合集下载

福大结构力学课后习题详细答案..-副本

福大结构力学课后习题详细答案..-副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)(d-1)(d-2)(d-3)解原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)解原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C组成了一个以C为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)解原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

1-1 (h)解原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。

因此,可以只分析余下部分的内部可变性。

这部分(图(h-1))可视为阴影所示的两个刚片用一个杆和一个铰相连,是一个无多余约束几何不变体系。

福大结构力学课后习题详细答案(祁皑).. - 副本

福大结构力学课后习题详细答案(祁皑).. - 副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)(解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (c)[(c-1)(a)(a-1)(b)(b-1)*(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)!(d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e)~解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f)[解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相(d )(e )(e-1)AB}AB (e-2)(f )(f-1)连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

结构力学课后习题答案 (3)

结构力学课后习题答案 (3)

结构力学课后习题答案问题1:悬臂梁的挠曲分析问题描述一个长度为L的悬臂梁,截面形状为矩形,宽度为b,高度为h。

悬臂梁上受到一个分布载荷q(x)。

求悬臂梁在某一点x处的弯矩和挠度。

解答根据结构力学的基本原理,可以使用弯曲方程和挠度方程来求解该问题。

首先,我们通过积分来求得悬臂梁上任意一点x处的弯矩M(x):M(x) = \\int_{0}^{x} q(x')dx'其中,q(x’)表示分布载荷。

这个积分可以通过数值方法或者解析方法来求解。

然后,根据挠度方程,我们可以得到悬臂梁上任意一点x 处的挠度v(x)的微分方程:\\frac{d^2v(x)}{dx^2} = \\frac{M(x)}{EI}其中,E表示悬臂梁的弹性模量,I表示悬臂梁的惯性矩。

这个微分方程可以通过常微分方程的求解方法来求解。

最后,我们可以得到悬臂梁在某一点x处的挠度v(x):v(x) = \\int_{0}^{x} \\int_{0}^{x'} \\frac{M(x '')}{EI} dx''dx'问题2:钢梁的热膨胀应力分析问题描述一个长度为L的钢梁固定在一端,另一端自由伸张。

当温度升高时,钢梁会因为热膨胀而产生应力。

假设钢梁的热膨胀系数为α,温度升高ΔT。

求钢梁上某一点x处的应力。

解答根据热膨胀原理,钢梁上某一点x处的应力可以通过以下公式计算:\\sigma(x) = E \\cdot \\alpha \\cdot \\Delta T \\cdot x其中,E表示钢梁的弹性模量。

这个公式说明了应力与距离x成正比。

需要注意的是,这里假设钢梁在温度变化时没有发生塑性变形,即没有超过材料的屈服强度。

问题3:钢筋混凝土梁的抗弯分析问题描述一个长度为L的钢筋混凝土梁,截面形状为矩形,宽度为b,高度为h。

在梁的底部布置了一定数量的钢筋,用于增加梁的抗弯强度。

求梁在某一点x处的最大弯矩和最大应力。

结构力学课后习题答案

结构力学课后习题答案

结构⼒学课后习题答案附录B 部分习题答案2 平⾯体系的⼏何组成分析2-1 (1)× (2)× (3)√ (4)× (5)× (6)×。

2-2 (1)⽆多余约束⼏何不变体系;(2)⽆多余约束⼏何不变体系;(3)6个;(4)9个;(5)⼏何不变体系,0个;(6)⼏何不变体系,2个。

2-3 ⼏何不变,有1个多余约束。

2-4 ⼏何不变,⽆多余约束。

2-5 ⼏何可变。

2-6 ⼏何瞬变。

2-7 ⼏何可变。

2-8 ⼏何不变,⽆多余约束。

2-9⼏何瞬变。

2-10⼏何不变,⽆多余约束。

2-11⼏何不变,有2个多余约束。

2-12⼏何不变,⽆多余约束。

2-13⼏何不变,⽆多余约束。

2-14⼏何不变,⽆多余约束。

5-15⼏何不变,⽆多余约束。

2-16⼏何不变,⽆多余约束。

2-17⼏何不变,有1个多余约束。

2-18⼏何不变,⽆多余约束。

2-19⼏何瞬变。

2-20⼏何不变,⽆多余约束。

2-21⼏何不变,⽆多余约束。

2-22⼏何不变,有2个多余约束。

2-23⼏何不变,有12个多余约束。

2-24⼏何不变,有2个多余约束。

2-25⼏何不变,⽆多余约束。

2-26⼏何瞬变。

3 静定梁和静定刚架3-1 (1) √;(2) ×;(3) ×;(4) √;(5) ×;(6) √;(7) √;(8) √。

3-2 (1) 2,下;(2) CDE ,CDE ,CDEF ;(3) 15,上,45,上;(4) 53,-67,105,下; (5) 16,右,128,右;(6) 27,下,93,左。

3-3 (a) 298AC M ql =-,Q 32AC F ql =;(b) M C = 50kN·m ,F Q C = 25kN ,M D = 35kN·m ,F Q D = -35kN ;(c) M CA = 8kN·m ,M CB = 18kN·m ,M B = -4kN·m ,F Q BC = -20kN ,F Q BD = 13kN ; (d) M A = 2F P a ,M C = F P a ,M B = -F P a ,F Q A = -F P ,F Q B 左 = -2F P ,F Q C 左 = -F P 。

同济大学 结构力学课后习题及答案解析(完整版)

同济大学 结构力学课后习题及答案解析(完整版)

(c) (d)
(e) (f)
(g) (h)
2-5 试从两种不同的角度分析图示体系的几何构造。 (a)
(b)
同济大学朱慈勉 结构力学 第 3 章习题答案 3-2 试作图示多跨静定梁的弯矩图和剪力图。
(a) A
FP
B
C
FPa
D
E
F
a
a
a
a
a
(b) 2kN/m
10kN
A
2m
6m
B
C
2m
D
4m
2m
1
1
2a
1
2
2
M1
6-4 试用力法计算图示结构,并绘其内力图。 (a)
6m
20kN/m
B
1.75EI
C
D
EI
A
6m
3m
解:基本结构为:
20kN/m
X1
6 1
M1
6 810
810
Mp
11X1 1p 0
M M1X1 M p
(b) E
2a
4a
C
D
q
EI=常数
A
B
4a
4a
解:基本结构为:
X1
计算 M 1 ,由对称性知,可考虑半结构。
(c)
15kN
20kN/m
A
B
C
D
E
F
2m 2m 3m
3m
3m
4m
(d)
6kN·m
4kN·m
A 3m
B
C
D
2m 2m
E 2m 2m
A
4kN
FG
H
2m 2m 2m

结构力学课后习题答案

结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。

(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。

(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。

(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。

P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。

(b)(a)题4-3图4-4 作图示刚架的M 图。

(a)题4-4图4-5 已知结构的M 图,试绘出荷载。

(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。

(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的内力。

题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。

C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的内力。

习题66-1 判定图示桁架中的零杆。

(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆内力。

(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的内力。

(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。

(a)题6-4图6-5 用适宜方法求桁架中指定杆内力。

(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及内力Q C 、M C 的影响线。

(完整版)!完整的结构力学答案-同济大学朱慈勉!

(完整版)!完整的结构力学答案-同济大学朱慈勉!

朱慈勉 结构力学 第2章课后答案全解2-2 试求出图示体系的计算自由度,并分析体系的几何构造。

(a )ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(Ⅱ Ⅲ)舜变体系`ⅠⅡⅢ(b)W=5×3 - 4×2 – 6=1>0几何可变(c)有一个多余约束的几何不变体系(d)2-3 试分析图示体系的几何构造。

(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(Ⅱ Ⅲ)几何不变W=3×3 - 2×2 – 4=1>0可变体系ⅠⅡⅢ(ⅠⅡ)(ⅠⅢ)(ⅡⅢ)几何不变2-4 试分析图示体系的几何构造。

(a)(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)ⅠⅡⅢ几何不变(b)W=4×3 -3×2 -5=1>0几何可变体系ⅢⅠⅡ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)几何不变(d)(ⅠⅡ)ⅢⅠⅡ(ⅡⅢ)(ⅠⅢ)二元杆有一个多余约束的几何不变体ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)舜变体系(f)ⅠⅡⅢ(ⅠⅢ)(ⅡⅢ)(ⅠⅡ)无多余约束内部几何不变ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体(h)ⅠⅡⅢ(ⅠⅢ)(ⅠⅡ)(ⅡⅢ)二元体多余约束W=3×8 - 9×2 – 7= -1, 有1个多余约束2-5 试从两种不同的角度分析图示体系的几何构造。

(a)(ⅠⅢ)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)舜变体系(b)ⅠⅡⅢ(ⅠⅡ)(ⅡⅢ)(ⅠⅢ)几何不变同济大学朱慈勉 结构力学 第3章习题答案3-2 试作图示多跨静定梁的弯矩图和剪力图。

(a)4P F a2P F a 2P F a M4P F Q34P F 2P F(b)ABCaa aaaF P a DEFF P2m6m2m4m2mABCD10kN2kN/m42020M Q10/326/3410(c)21018018040M1560704040Q(d)3m2m2mA B CEF15kN 3m3m4m20kN/mD 3m2m2m2mA2m 2m2mABCD E FG H 6kN ·m4kN ·m 4kN2m7.5514482.524MQ3-3 试作图示刚架的内力图。

同济大学 结构力学课后习题及答案解析(完整版)

同济大学 结构力学课后习题及答案解析(完整版)

R=2m
4m
A O
M ( ) 1 (R sin )2 1 2 R(1 cos ) 2
M ( ) 1
B
1 EI
2 1 [1 (R sin )2 1 2 R(1 cos )]Rd 02
= (8-3 ) -1.42 (逆时针)
EI
EI
(d) A q
R EI=常数
O
B
5-7 试用图乘法计算图示梁和刚架的位移:(a) ΔyC ;(b) ΔyD ;(c) ΔxC ;(d) ΔxE ;(e) D ;(f) ΔyE 。 (a)
5-5 已知桁架各杆的 EA 相同,求 AB、BC 两杆之间的相对转角 ΔB 。 5-6 试用积分法计算图示结构的位移:(a) ΔyB ;(b) ΔyC ;(c) B ;(d) ΔxB 。
(a)
q2 q1
A
EI
B
l
以B点为原点,向左为正方向建立坐标。
q( x)
q2
l
q1
x
q1
M
p(x)
1 2
52.17
M
248.49
104.37 52.14
6-6 试用力法求解图示超静定桁架,并计算 1、2 杆的内力。设各杆的 EA 均相同。
(a)
(b)
1
1
2
FP
FP
a
a
a
2m
题 6-6 图
6-7 试用力法计算图示组合结构,求出链杆轴力并绘出 M 图。
2
30kN 2m
(a)
a 1.5m
l
A
kθ=
12EI l
2 3
2 3
6 1 20 62 8
3 2
1 6180 3 2

结构力学课后习题答案

结构力学课后习题答案

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】「习题11】【习题12】【习题13】【习题14】【参考答衆】习题22-1〜2-14试对图示体系进行儿何组成分析,如果是只有多余联系的儿何不变体系,则应指出多余联系的数目。

d5∑° X 厂^τ"βH题2-2图ΓΛ题2-3图题2-5图题2-6图题2-1图H 2-9 图题2-10图题2-11图题2-12图题2-13图习题3试作图示多跨挣定梁的M及Q图。

(a) (b)题3-1图3-2试不计算反力而绘出梁的M图。

题3-2图习题44-1作图示刚架的M、Q、N图。

40fcN 40kN20kNm4-2作图示刚架的M图。

2OkN m SkN mSkXm 40fcN题4-1图4-3作图示三狡刚架的M图。

4-4作图示刚架的M图。

AEmJnIAr lD1题4-2图4-5己知结构的M图•试绘出荷载。

题4-4图3IOkNnlJ^1.5mC(a)题4-3日6erIB9 9题5-1图5-2带拉杆拱,拱轴线方程y= il(l-χ)χ,求截面K 的弯矩。

题5-2图5-3试求图示带拉杆的半圆三狡拱截面K 的内力・4-6检査F 列刚架的M 图,并予以改正。

题4-5图ω∙I ∣ULL∏ ∏ ⅛)题4-6图习题5图示抛物纟戈三铁拱轴线方程y = ff(l-x)x ,试求D 截面的内力。

IkNm15m [ 5m [ ICm 1=3OmC题5-3图习题6 6-1判定图示桁架中的零杆。

题6-1图6-2用结点法计算图示桁架中各杆内力。

(a) FGH月Λ4x4m=16m题6-2图6-3用截面法计算图示桁架中指定各杆的内力。

40kN题6-3图6-4试求图示组介结构中齐链杆的轴力并作受弯杆件的Q图。

2m ] 2m ]lm]lπ⅝] 2m [题6-4图6-5用适宜方法求桁架中指定杆内力。

题6-6图习题88-1试作图示悬臂梁的反力V B 、MB 及内力Q C 、MC 的影响线。

结构力学课后习题答案(朱慈勉)

结构力学课后习题答案(朱慈勉)

FCD
1 4
FP ,
F2
1 2
FP
(b)
1 3
FP
FP D
2
E 3B
1
F2
F4 F6
F5
C 取截面左侧分析由
Fy 0, F5
2 13
1 3
FP
0
F3
13 6
FP
A
再由节点法分析A,B节点马上可以求得F1=
1 3
FP , F1
0.5FP
Fx
0, F2
F4
1 2
FP
13 6
FP
3 13
0
F2
F4
2Fa
2Fa
-
-
-
-
2Fa
2Fa
+
2Fa
2F
MC 0 VB 2Fp (), M E 0 2HB VF
M B 0 3FP 2a 2a HH 2FP 2a VF 2a
HH FP (),VF 2FP () HD 4FP (),VD 0
(f)
8 8
8
8
利用对称性
FP
FP
FP
FP
FP
又易求得杆4=
13 4
FP
再利用节点法可得
2FP
FN 1
FP 2
,FN 2
13 4
FP
;
3-13 试选用两种途径求图示桁架各指定杆件的内力。
,
(a)

方法一:利用对称性和反对称性
C
F
G FP
a a 2a
E
1 D
A
原结构可等价为
FP (已经去除零力杆)
FP
2

结构力学第三版课后习题答案精选全文

结构力学第三版课后习题答案精选全文

20kN/m
M图
4.5kN
8.98
4
4.5
6 11
4.5 FQ图
M图 (kN.m)
FQ图(kN)
37
3.3 静定平面刚架
必作题: P.109 3-3 (b) (d) (f) (j) P.110 3-4 (a — i) P.111 3-7 (a) P.112 3-8 (a) (d)
选作题: P.109 3-3 (a) (e) (g) (l) P.112 3-8 (c) P.112 3-9 (a) P.113 3-11
2
P.37 2-1(b)
1
2
3
三链杆交于一点,瞬变
3
P.37 2-2(b)
4几何不变,无多余约束5P.37 2-3(c)
有一个多余 约束
1
2 3
几何不变,有一个多余约束
6
P.37 2-4(d)
O(I、III) O(II、III) I
II
1
2
O(I、II)
III
铰O(I、II)、 O(II、III)的连线与1、2两链 杆不平行,体系几何不变,无多余约束
2.5m 5m 5m 2.5m
FN图
60
3.4 静定平面桁架
必作题:
P.113 P.114 P.115
选作题:
P.116 P.117
3-13 (b) (d) (f) 3-14 (a) (b) (c) 3-17 (a) (d)
3-18 (a) 3-20
P.116 3-18 (b)
61
P.113 3-13 (b) 分析桁架类型,指出零杆
FP
联合桁架,10根零杆。
62
P.113 3-13 (d) 分析桁架类型,指出零杆

《结构力学》课后习题答案__重庆大学出版社

《结构力学》课后习题答案__重庆大学出版社

第1章 绪论(无习题)第2章 平面体系的几何组成分析习题解答习题2.1 是非判断题(1) 若平面体系的实际自由度为零,则该体系一定为几何不变体系。

( )(2) 若平面体系的计算自由度W =0,则该体系一定为无多余约束的几何不变体系。

( ) (3) 若平面体系的计算自由度W <0,则该体系为有多余约束的几何不变体系。

( ) (4) 由三个铰两两相连的三刚片组成几何不变体系且无多余约束。

( )(5) 习题2.1(5) 图所示体系去掉二元体CEF 后,剩余部分为简支刚架,所以原体系为无多余约束的几何不变体系。

( )B DACEF习题 2.1(5)图(6) 习题2.1(6)(a)图所示体系去掉二元体ABC 后,成为习题2.1(6) (b)图,故原体系是几何可变体系。

( )(7) 习题2.1(6)(a)图所示体系去掉二元体EDF 后,成为习题2.1(6) (c)图,故原体系是几何可变体系。

()(a)(b)(c)AEBFCD习题 2.1(6)图【解】(1)正确。

(2)错误。

0W 是使体系成为几何不变的必要条件而非充分条件。

(3)错误。

(4)错误。

只有当三个铰不共线时,该题的结论才是正确的。

(5)错误。

CEF 不是二元体。

(6)错误。

ABC 不是二元体。

(7)错误。

EDF 不是二元体。

习题2.2 填空(1) 习题2.2(1)图所示体系为_________体系。

习题2.2(1)图(2) 习题2.2(2)图所示体系为__________体系。

习题2-2(2)图(3) 习题 2.2(3)图所示4个体系的多余约束数目分别为_______、________、__________、__________。

习题2.2(3)图(4) 习题2.2(4)图所示体系的多余约束个数为___________。

习题2.2(4)图(5) 习题2.2(5)图所示体系的多余约束个数为___________。

习题2.2(5)图(6) 习题2.2(6)图所示体系为_________体系,有_________个多余约束。

结构力学课后习题答案

结构力学课后习题答案

习题7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。

(a) (b) (c)1个角位移 3个角位移,1个线位移 4个角位移,3个线位移(d) (e) (f)3个角位移,1个线位移 2个线位移3个角位移,2个线位移(g) (h) (i)一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么为何将这些基本未知位移称为关键位移是否可以将静定部分的结点位移也选作位移法未知量7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。

7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化如何变化7-5 试用位移法计算图示结构,并绘出其内力图。

(a)lBl l解:(1)确定基本未知量和基本结构有一个角位移未知量,基本结构见图。

Z 1M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程iql Z ql iZ ql R i r p 24031831,821212111==-∴-==(4)画M 图M 图(b)4m 4m4mC解:(1)确定基本未知量1个角位移未知量,各弯矩图如下1Z =1M 图32EIp M 图(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程 1115,352p r EI R ==- 153502EIZ -=114Z EI=(4)画M 图()KN mM ⋅图(c)6m6m9m解:(1)确定基本未知量 一个线位移未知量,各种M 图如下1M 图243EI 243EI 1243EI p M 图F R(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程 1114,243p pr EI R F ==- 140243p EIZ F -=12434Z EI=(4)画M 图94M 图(d)解:(1)确定基本未知量 一个线位移未知量,各种M 图如下11Z1111r 252/25EA a 简化a2aa2aaF F P图1pR pp M(2)位移法典型方程 11110pr Z R +=(3)确定系数并解方程 11126/,55p pr EA a R F ==-126055p EA Z F a -=13a Z EA=(4)画M 图图M(e)l解:(1)确定基本未知量 两个线位移未知量,各种M 图如下图1=11211 EA r l r ⎛⇒=⎝⎭1M221EA r l ⎛=⎝⎭图12 0p p p R F R ⇒=-=p M pF(2)位移法典型方程1111221211222200p p r Z r Z R r Z r Z R ++=++=(3)确定系数并解方程11122122121,4414,0p p p EA r r r l l EA r l R F R ⎛⎫=+== ⎪⎝⎭⎛=+ ⎝⎭=-=代入,解得12p p lZ F EAlZ F EA=⋅=⋅(4)画M 图图M p7-6 试用位移法计算图示结构,并绘出M 图。

结构力学第四版习题及答案

结构力学第四版习题及答案

结构力学第四版习题及答案习题1:一个弹簧的刚度系数为k,长度为L,在其两端分别施加力F1和
F2,求弹簧的形变量。

答案:根据胡克定律,弹簧的形变量与施加的力成正比,即x = (F1 - F2) / k。

习题2:一个悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上的集中力为P,求梁的最大弯矩。

答案:悬臂梁的最大弯矩发生在集中力作用点,即Mmax = P * L。

习题3:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上均匀分布的荷载为q,求梁的最大挠度。

答案:悬臂梁的最大挠度发生在梁的自由端,即δmax = (5qL^4) /
(384Ebh^3)。

习题4:一根梁上有两个集中力,分别为P1和P2,作用点距离为a,梁的长度为L,求梁的反力。

答案:根据力的平衡条件,可以得到反力F1和F2的表达式: F1 = (P1 * a + P2 * L) / L F2 = (P1 * (L - a) + P2 * L) / L
习题5:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E,梁上均匀分布的荷载为q,求梁的最大剪力。

答案:悬臂梁的最大剪力发生在梁的支点处,即Vmax = qL / 2。

《结构力学》习题解答(内含解答图)

《结构力学》习题解答(内含解答图)
习题2-12图习题2-12解答图
习题2-13试对图示体系进行几何组成分析。
习题2-13图习题2-13解答图
解:将原图结点进行编号,并将支座6换为单铰,如图(b)。取基础为刚片Ⅰ,△134为刚片Ⅱ,△235为刚片Ⅲ,由规则一知,三刚片用三个不共线的铰联结组成几何不变体。在此基础上增加二元体674、785,而杆38看作多余约束。杆910由铰联结着链杆10,可看作二元体,则整个体系为有一个多余约束的几何不变体系。
习题2-7试对图示体系进行几何组成分析。
习题2-7图习题2-7解答图
解:将题中的折杆用直杆代替,如图(b)所示。杆CD和链杆1由铰D联结构成二元体可以去掉;同理,去掉二元体杆CE和链杆2,去掉二元体ACB,则只剩下基础,故整个体系为几何不变体系,且无多余约束。
另外也可用基础与杆AC、杆BC是由不共线的三个铰联结,组成几何不变体,在此几何不变体上增加二元体杆CD和链杆1、杆CE和链杆2的方法分析。,
习题2-8试对图示体系进行几何组成分析。
习题2-8图习题2-8解答图
解:为了便于分析,对图中的链杆和刚片进行编号,分析过程见图2-21(b)。首先去掉二元体NMI、JNI,然后分析剩余部分。杆AD由固定支撑与基础联结形成一体,构成几何不变体,在此基础上增加二元体DEB、EFC、EHF形成刚片Ⅰ(注意固定铰支座与铰相同);铰结△GIJ为刚片Ⅱ;刚片I与刚片Ⅱ之间用不交于一点的杆DI、杆GI、杆HJ相连,组成几何不变体。
习题2-18试对图示体系进行几何组成分析。
解:将原图结点进行编号,并将固定铰支座换为单铰,如图(b)。折杆AD上联结杆EF,从几何组成来说是多余约束;同理,折杆CD上联结杆EF也是多余约束。取基础为刚片Ⅰ,折杆AD为刚片Ⅱ,折杆CD为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由链杆A和杆BD相连,刚片Ⅰ与刚片Ⅲ是由链杆C相连,注意,杆BD只能使用一次。由规则二知,体系为几何可变体系。

结构力学课后练习题+答案

结构力学课后练习题+答案
E
2cm
A CB 2cm 2cm
42、求图示结构 A 点竖向位移(向上为正) AV 。
M EI
EI A
a
EI
EI = ∞ 1
3 EI
K = a3
a
a
43、求图示结构 C 点水平位移 CH ,EI = 常数。
M B
2l
C 6 EI k=
l3
A l
44、求图示结构 D 点水平位移 DH 。EI= 常数。
a/ 2 D
a
A
c1
A'
a
B B'
aห้องสมุดไป่ตู้
c2
35、图示结构 B 支座沉陷 = 0.01m ,求 C 点的水平位移。
C l
A
B
l/2 l/2
—— 25 ——
《结构力学》习题集
36、结构的支座 A 发生了转角 和竖向位移 如图所示,计算 D 点的竖向位移。
A
D
l
l l/ 2
37、图示刚架 A 支座下沉 0.01l ,又顺时针转动 0.015 rad ,求 D 截面的角位移。
P
P
l
l
l
l
18、用力法计算图示结构并作弯矩图。
—— 31 ——
100 kN C EI
《结构力学》习题集
100 kN D
2 EI A
2 EI
4m
B
1m
6m
1m
19、已知 EI = 常数,用力法计算并作图示对称结构的 M 图。
q
q
EA=
l
l
l
20、用力法计算并作图示结构的 M 图。EI =常数。
a
P q

结构力学书本后答案解析

结构力学书本后答案解析

依次去用掉二元体FHG、CFD、 DGE以及三个支座链杆。
在依次去用掉二元体CAE和 CBE剩下CDE
CDE可以相对转动。结论是几 何可变体系。
习题2.2a
AB与基础用1、2、3杆,组成几何不变体系成为 刚片Ⅰ,DG与刚片Ⅱ用BD、4、5杆组成几何不 变体系。用掉二元体GH、6杆。 结论:无多余约束的几何不变体系。
习题2.2b
AB与基础用组成几何不变体系成为刚片Ⅱ 和Ⅰ 用BC、1杆组成几何不变体系。用掉二元体EF、 2杆。 结论:无多余约束的几何不变体系。
习题2.2c
BD与基础用AB、3、4杆组成几何不变体系。用 掉二元体EF、5杆。
结论:无多余约束的几何不变体系。Fra bibliotek 习题2.3a
Ⅰ、Ⅱ、Ⅲ用A、B、C相连组成几何不变体系。 结论:无多余约束的几何不变体系。
习题2.3b
与上题相比多一杆 结论:有一个多余约束的几何不变体系。
习题2.3c
去掉1、2、3杆。Ⅰ、Ⅱ、Ⅲ用A、B、C相连组 成几何不变体系。 结论:无多余约束的几何不变体系。
习题2.4
去掉1、2、3杆。铰接三角形ACF上增加两个二元 体CDF、DGA形成刚片Ⅰ,铰接三角形DEH上增加 一个二元体EBH形成刚片Ⅱ,两刚片用D铰和链 杆BG相连组成几何不变体系。 结论:无多余约束的几何不变体系。
习题2.1a 依次去掉二元体FIH、 CFG、GHE、CGE、 ACD、DEB最后剩下 AB与基础用四根杆连 接多一杆,有一个多 余约束的几何不变体 系。
依次去用掉二元体FHG、Ⅰ和ⅡC铰,Ⅰ和 习题2.1b Ⅲ用A铰,Ⅱ和Ⅲ用B角连接,多1、2两个杆, 结论:有两个多余约束的几何不变体系。
习题2.1c

福大结构力学课后习题详细答案(祁皑)..---副本

福大结构力学课后习题详细答案(祁皑)..---副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。

1-1(a)解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。

因此,原体系为几何不变体系,且有一个多余约束。

1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

'1-1 (c)…(c-1)(a )(a-1)(b )(b-1)%(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。

因此,原体系为几何不变体系,且无多余约束。

1-1 (d)((d-1) (d-2) (d-3)解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。

因此,原体系为几何不变体系,且无多余约束。

注意:这个题的二元体中有的是变了形的,分析要注意确认。

1-1 (e);解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。

在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。

在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。

因此,原体系为几何可变体系,缺少一个必要约束。

1-1 (f).解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相(d )(e )(e-1)AB"AB (e-2)(f )(f-1)连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉只分析其余部分。

很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。

因此,原体系为几何不变体系,且无多余约束。

1-1 (g)解 原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。

因此,可以将该刚片和相应的约束去掉,只分析其余部分。

余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。

因此,原体系为几何不变体系,且无多余约束。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题及参考答案【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】习题22-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。

题2-1图题2-2图题2-3图题2-4图题2-5图题2-6图题2-7图题2-8图题2-9图题2-10图题2-11图题2-12图 题2-13图 题2-14图习题33-1 试作图示多跨静定梁的M 及Q 图。

(b)(a)20kN40kN20kN/m40kN题3-1图3-2 试不计算反力而绘出梁的M 图。

(b)5kN/m40kN(a)题3-2图习题44-1 作图示刚架的M 、Q 、N 图。

(c)(b)(a)20kN /m2kN /m题4-1图4-2 作图示刚架的M 图。

P(e)(d)(a)(b)(c)20k N /m4kN题4-2图4-3 作图示三铰刚架的M 图。

(b)(a)题4-3图4-4 作图示刚架的M 图。

(a)题4-4图4-5 已知结构的M 图,试绘出荷载。

(b)(a)题4-5图4-6 检查下列刚架的M 图,并予以改正。

(e)(g)(h)P(d)(c)(a)(b)(f)题4-6图习题55-1 图示抛物线三铰拱轴线方程x x l lfy )(42-=,试求D 截面的力。

题5-1图5-2 带拉杆拱,拱轴线方程x x l lfy )(42-=,求截面K 的弯矩。

C题5-2图 题5-3图5-3 试求图示带拉杆的半圆三铰拱截面K 的力。

习题66-1 判定图示桁架中的零杆。

(c)(b)题6-1图6-2 用结点法计算图示桁架中各杆力。

(b)题6-2 图6-3 用截面法计算图示桁架中指定各杆的力。

(b)题6-3图6-4 试求图示组合结构中各链杆的轴力并作受弯杆件的M 、Q 图。

(a)题6-4图6-5 用适宜方法求桁架中指定杆力。

(c)(b)(a)题6-6图习题88-1 试作图示悬臂梁的反力V B 、M B 及力Q C 、M C 的影响线。

B B题8-1图8-2 试作图示伸臂梁V A 、M C 、Q C 、M A 、Q A 左、Q A 右的影响线。

8-3 试作图示刚架截面C 的Q C 和M C 影响线。

8-4 试作图示多跨静定梁V A 、V C 、Q B 左、Q B 右和M F 、Q F 、M G 、Q G 的影响线。

8-5 利用影响线,计算伸臂梁截面C 的弯矩和剪力。

8-6 试求图示简支梁在两台吊车荷载作用下,截面C 的最大弯矩,最大正剪力及最大负剪 力。

题8-3图 题8-4图82kN82kN82kN 82kN q=20kN/m题8-5图 题8-6图8-7 试求图示简支梁在中—活载作用下M C 的最大值及Q D 的最大、最小值。

要求确定出最不利荷载位置。

CI IIII题8-7图 题8-8图8-8 试判定最不利荷载位置并求图示简支梁V B 的最大值及Q C 的最大、最小值:(a )在中—活载作用下;(b )在汽车-15级荷载作用下。

8-9~8-10 试求图示简支梁在移动荷载作用下的绝对最大弯矩,并与跨中截面最大弯矩作比较。

P 1题8-9图 题8-10图习题99-1 用积分法求图示简支梁跨中截面的竖向线位移Cy ∆及A 截面的转角A ϕ。

其中EI=2800×104kN ·cm 2。

9-2 用积分法求圆弧曲梁B 点的水平线位移Bx ∆。

EI=常数。

9-3 计算桁架C 点的竖向线位移Cy ∆,其中上弦及下弦杆的截面面积为2A ,其它各杆的面积为A ,各杆材料相同,弹性模量为E 。

9-4 计算图示组合结构C 点的竖向线位移Cy ∆,受弯杆件EI=4500×104kN ·cm 2,各链杆的EA=30×104kN 。

9-5 用图乘法计算指定截面位移。

9-6 计算图示刚架D 点水平位移Dx ∆及A 截面转角A ϕ。

EI=常数。

9-7 计算三铰刚架C 铰左、右两侧截面相对角位移ϕ。

EI=常数。

题9-2图题9-4图∏求求 跨中求(e)(c)(a)(b)求 cy求求 cyP=1kN题9-5图题9-6图 题9-7图 题9-8图9-8 计算图示刚架C 、D 两点相对水平线位移。

EI=常数。

9-9 如图所示,1t 、2t 分别为使用时与建造时的温度之差,试求刚架C 点的竖向位移Cy ∆。

α=0.00001,各杆截面相同且对称于形心轴,h =40cm 。

9-10 求图示刚架在温度改变时C 点的竖向位移Cy ∆。

各杆为矩形截面,截面高度h =l/10,材料的线膨胀系数为α。

9-11 在图示桁架中,杆件GE 由于制造误差比原设计长度短1cm ,求因此引起的结点G 的竖向线位移Cy ∆。

ECDBA+15 C 6m题9-9图 题9-10图 题9-11图9-12 图示三铰刚架因基础下沉引起刚架位移,已知21C C ==2cm ,求B 截面转角B ϕ。

9-13 求图示两跨并列简支梁当支座A 、B 、C 的下沉量分别为a =4cm 、b =10cm 、c =8cm 时,B 铰左、右两侧截面的相对角位移 。

a题9-12图 题9-13图习题1010-1 试确定图示结构的超静定次数n 。

(h)(f)(e)(d)(c)(a)题10-1图10-2 作图示超静定梁的M 、Q 图。

(e)(f)(b)(a)q2kN/m题10-2图10-3 作下列图示刚架的M 、Q 、N 图。

(f)(e)(d)(c)6mq=1kN/m(a)1m3m1m6m6ml题10-3图10-4计算图示桁架力。

各杆EA为常量。

(b)题10-4图10-5对5-3题进行最后力图的校核。

10-6计算图示刚架(1)D点的竖向线位移Dy∆;(2)D铰左、右两侧截面的相对角位移ϕ。

EI=常量。

10-7图示结构各杆截面为矩形,h=l/10,材料的线膨胀系数为α。

(1)作M图;(2)求杆端A的角位移Aϕ。

(a)00题10-6图题10-7图10-8图示连续梁为28a工字钢制成,I=7114cm4,E=210×103MPa,l=10m,F=50kN,若欲使梁中最大正负弯矩相等,问应将中间支座升高或降低多少?10-9任选两种与图示对应的基本结构,并列出相应的力法方程。

题10-8图 题10-910-10 用力法计算下列排架。

EAEA(b)求 = E = F =(a)求N CDql题10-10图10-11 用简化计算的方法求图示结构M 图。

10-12 计算图示连续梁作M 、Q 图,求支座反力,并计算Ky ∆及C ϕ。

(f)(c)(d)(b)(a)(e)aEFaDC qFECD10k N /m题10-11图20kN/m100kN题10-12图习题1111-1 确定下列图示结构基本未知量,并绘“基本结构”。

(d)(e)(c)(b)(a)题11-1图11-2 用位移法计算。

绘M 图,E=常数。

(c)(b)(a)4l题11-2图11-3 用位移法计算图示结构,绘M 图。

11-4 等截面连续梁B 支座下沉0.02m ,C 支座下沉0.012m 。

已知EI=420×102kN ·m 2,试绘M 图。

11-5 求图示刚架B 截面的转角B 及D 截面的水平线位移ΔD x 。

11-6 利用对称性计算,绘制M 图。

EI=常数。

(d)(c)(b)(a)20k N /m题11-3图题11-4图 题11-5图20kN/m(b)(a)C A3m题11-6图习题1212-1 用力矩分配法计算图示结构,并绘M 图。

(b)(a)题12-1图 12-2 用力矩分配法计算图示连续梁,绘M 图。

(c)(a)(b)题12-2图12-3 用力矩分配法计算,绘图示刚架M 图。

(a)(b)6q12-3图12-4 图示对称等截面连续梁,支座B 、C 都向下发生Δ=2cm 的线位移,用力矩分配法计算,绘M 图。

EI=8×104kN ·m 2。

题12-4图习题1313-1 图 a 、b 所 示 两 结 构 ,各 杆 EI 、l 相 同 ,不 计 轴 向 变 形 ,已 求 得图 b 所 示 结 构 的 结 点 位 移 列 阵 为{}T343 96192192ql ql ql EI REI EI ⎡⎤∆=--⎢⎥⎣⎦。

试 求 图 a 所 示 结 构 中 单 元 ① 的杆 端 力 列 阵。

q1234(a)ql2②③①1234(b)② ③① y6m(0,0,0)(1,0,3)(1,0,2)6m(a)i iy①②题13-1图 题13-2图13-2 图 a 所 示 结 构 (整 体 坐 标 见 图 b ),图 中 圆 括 号 数 码 为 结 点 定 位 向 量 (力和 位 移 均 按 水 平 、竖 直 、转 动 方 向 顺 序 排 列 )。

求 结 构 刚 度 矩 阵 []K 。

(不 考 虑 轴 向 变 形 )13-3 求 图 示 结 构 的 自 由 结 点 荷 载 列 阵 {}P 。

llqMym384kN(1,0,3)mm36(1,0,2)(b)xyM , θ① ②题13-3图 题13-4图13-4 图 a 所 示 结 构 ,整 体 坐 标 见 图 b ,图中 圆 括 号 数 码 为 结 点 定 位 向 量 (力 和 位 移 均 按 水 平 、竖 直 、转 动 方向 顺 序 排 列 )。

求 等 效 结 点 荷 载 列 阵 {}P E 。

( 不 考 虑 轴 向 变 形 )13-5 已 知 图 示 连 续 梁 结 点 位 移 列 阵 {}θ如 下 所 示 ,试 用 矩 阵 位 移 法 求 出 杆 件 23 的 杆 端 弯 矩 并 画 出 连 续 梁 的 弯 矩 图 。

设 q = 20kN /m,23 杆 的 i =⨯⋅10106.kN cm 。

{}θ=--⎧⎨⎪⎪⎩⎪⎪⎫⎬⎪⎪⎭⎪⎪⨯-365714572286104....rad1234i 6m3m3mxθ题13-5图13-6 图 示 桁 架EA =1kN ,已 知 结 点 位 移 列 阵 为:{}[]T0 0 2.5677 0.0415 1.0415 1.3673 1.6092 1.7265 1.6408 0 1.2084 0.4007∆=-- 。

试 求 杆 14 的 轴 力 。

1m1kN1m1m135246y 1kNA BC EI 2D 10 k N/m50 20k N kN . m6 m4 m2 mEI x yM , θ题13-6图 题13-7图13-7 试 用 矩 阵 位 移 法 解 图 示 连 续 梁,绘 弯 矩 图 。

EI =已 知 常 数 。

习题1414-1 求 图 示 体 系 的 自 振 频 率 。

相关文档
最新文档