脱硫吸收塔系统常见故障分析及处理

脱硫吸收塔系统常见故障分析及处理
脱硫吸收塔系统常见故障分析及处理

脱硫吸收塔系统常见故障分析及处理

在电力系统中,脱硫吸收塔扮演着十分重要的角色,其在运行过程中如果出现了故障将会严重影响到电力系统的正常生产和运行,因此,对于脱硫吸收塔可能存在的问题需要我们及时的进行分析和研究,并找到解决的方案。本文主要就脱硫吸收塔系统中常见的故障原因进行了分析和研究,并提出了相应的解决对策,希望通过本次研究对更好的促进脱硫吸收塔常见故障的解决有一定的帮助。

标签:脱硫吸收塔常见故障解决对策

脱硫吸收塔系统在保障电力安全生产和环境保护工作中起到了至关重要的作用,而且在运行过程中不同温度和环境的作用下,会严重影响到系统正常的工作流程,进而导致各种系统故障出现,因此,做好对脱硫系统运行过程中各种缺陷、故障的检修和维护工作就显得十分重要了。

一、脱硫吸收塔系统中循环泵叶轮以及泵壳出现磨损故障

1.故障原因分析

在脱硫吸收系统在运行过程中,由于系统中主要的介质是石灰石浆液,外加浆液的酸碱度变化程度很大,因此,在系统运行过程中,浆液循环泵的叶轮磨损是在所难免的。在系统运行过程中,浆液会在泵内高速运转,产生的冲击力会对泵壳产生一定的冲击,最终将会导致泵壳的磨损。这种情况持续进行下去就会逐步造成泵壳壁的磨损,严重时还会出现磨穿的现象,给系统安全运行造成严重的影响。当泵壳的厚度变薄之后,经过叶轮对其做功后,浆液会出现回流的现象,这就导致了浆液在系统中的循环总量降低,循环液的液压就会减小,达不到设计的高度,导致系统的吸收效果减弱,出力达不到额定的数值,最终导致了脱硫吸收塔系统的各个参数出现异常情况,使得整个系统的脱硫效率持续降低。

2.解决对策

当系统中浆液循环泵叶轮以及泵壳出现了严重的磨损之后,系统中相应的参数就会出现循环泵电流减小,整个浆液系统的出力就会下降,整个浆液的循环量会随之持续降低。当系统出现这种情况之后,应该及时的将系统停止运行,对该系统中的泵叶轮以及泵壳进行特殊的工业防磨处理。当这项工作处理完毕之后,就可以再次使系统投入运行。而当系统中叶轮出现严重的磨损之后,应该根据设备在系统中的运行时间长短,综合考虑各项经济效益,及时的更换成全新的叶轮,从而保证系统能够正常的循环,保持正常的浆液循环量。

二、脱硫吸收塔系统中循环泵出口喷头以及母管出现堵塞故障

1.故障原因分析

湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用

通道的能力。 3结语在煤炭行业所运用的多级安全数据库系统,其经典的BLP 模型的“向上写”违反了数据库的完整性,而随之带来的是会产生隐通道问题。事务间的提交和回退依赖也会产生隐通道。然后,通过分析隐通 道的产生的原因,提出了利用并发控制上锁机制进行隐蔽通信的方式,通过提出算法,来消除用户通过并发控制上锁机制泄漏信息的途径。算法中当高安全级事务将数据读入私有区后,低安全级事务更新数据后,系统将通知用户,由用户自行处理。文中对于事务并发执行时事务间的安全问题,只讨论了隐通道问题这个方面,而如何去提高避免 隐通道算法的性能将是未来研究的主力方向。 参考文献: [1]谷千军,王越.BLP 模型的安全性分析与研究[J].计算机工程,2006 (22):157-158.[2]肖卫军, 卢正鼎,洪帆.安全数据库系统中的事务[J].小型微型计算机系统,2004(4):591-594.[3]朱虹,冯玉才.避免隐通道的并发控制机制[J].小型微型计算机系统,2000(8):844-846. (责任编辑赵勤)收稿日期:2012-08-18;修订日期:2012-10-22 基金项目:河北省教育厅自然科学计划项目(Z2012198) 作者简介:闫志谦(1973-),男,河北晋州人,副教授,硕士,研究方向:化学工程。0前言 锅炉烟气中的SO 2与氧化镁反应后生成的亚硫酸镁,再氧化反应生成为硫酸镁(MgSO 4)溶液。氧化镁湿法烟气脱硫,具有脱硫效率高,操作简单,不易结垢等优点[1],以氧化镁(MgO)作为脱硫剂,可有效防止沉淀、积垢、堵塞、结块;运行可靠性高,电耗低,取得了较高的脱硫效率。1吸收塔装置设计脱硫吸收塔选用逆流喷淋结构,塔身为圆柱体,底部为锥形的循环浆液池。吸收塔的上部为喷淋洗涤区,共布置了3层喷嘴。氢氧化镁/亚硫酸镁/硫酸镁浆液通过喷嘴向吸收塔下方成雾罩形状喷射,形成液雾高度叠加的喷淋区,含有SO 2的烟气与浆液中悬浮的氧化镁微粒发生化学反应而被洗涤吸收。为了避免烟气和喷淋浆液在接触区形成沉淀,采用 工业水定期喷水,清洗吸收塔入口部分的内壁。吸收塔下部的浆池与吸收塔体为一体的结构。吸收塔内所有部件能承受最大入口气流及最高进口烟气温度的冲击。 吸收塔体为碳钢加防腐衬里的结构,在烟气进口处采取预冷却喷水的防高温措施。 1个吸收塔共配有3台离心式浆液循环泵,整个脱硫区配有罗茨型强制氧化风机,吸收塔选用的材料适合工艺过程的特性,并且能承受烟气飞灰和脱硫工艺固体悬浮物的磨损。所有部件包括塔体和内部结构设计上都考虑了腐蚀度。吸收塔设计成气密性结构,防止液体泄漏。为保证壳体结构的完整性,使用焊接连接,法兰和螺栓连接仅在必要时使用。塔体上的入孔、通道、连接管道等需要在壳体穿孔的地方进行密封,防止泄漏。 第32卷第2期2013年2期煤炭技术Coal Technology Vol.32,No.02February,2013湿式氧化镁法烟气脱硫中吸收塔系统的设计与应用 闫志谦,程艳坤,张 滨,霍鹏(河北化工医药职业技术学院化工与环境工程系,石家庄050026)摘要:介绍了湿法氧化镁烟气脱硫技术应用的原理及工艺,对吸收氧化反应所在的吸收塔系统进行了装置的设 计与应用,并提供理论依据和参考影响吸收因素。 关键词:氧化镁;烟气脱硫;吸收塔 中图分类号:X701.3文献标识码:A 文章编号:1008-8725(2013)02-0181-03 Application of Absorbing Tower System in Wet Process of Magnesium Flue Gas Desulfurization YAN Zhi-qian ,CHENG Yan-kun ,ZHANG Bin ,HUO Peng (Department of Chemical and Environmental Engineering,Hebei Chemical and Pharmaceutical Vocational Technology College,Shijiazhuang 050026,China ) Abstract:Introduced the application of the principle of wet magnesia flue gas desulphurization technology and process,this paper absorption oxidation reaction in which the absorber tower system design and application of the device,and provides a theoretical basis and reference. Key words:magnesium oxide;flue gas desulfurization;absorbing tower system !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

脱硫塔吸收塔安装方案

脱硫塔吸收塔安装方案 Prepared on 22 November 2020

华电国际莱城发电厂 1号机组烟气脱硫增容改造工程 1号机组吸收塔安装方案 编制: 审核: 批准: 青岛华拓科技股份有限公司 莱城项目部 2014年5月 目录 1、工程概况 (3) 2、施工前的准备 (3) 3、编制依据 (5) 4、吸收塔安装 (5) 5、喷淋层安装 (14) 6、附件安装 (15) 7、吸收塔焊接 (15) 8、脚手架搭拆 (15)

9、充水试验 (15) 10、表面处理 (16) 11、补底漆 (17) 12、质量保证措施 (17) 13、安全生产保证措施 (18) 14、安全风险控制计划 (21) 15、环境控制计划 (22) 1、工程概况 1.1.1、工程名称:华电国际莱城发电厂#1~#4机组4×300MW烟气脱硫改造工程 1.1.2、工程性质:改造工程 1.1.3、工程规模:四套烟气脱硫改造装置 1.1.4计划工期:1号系统自2014年05月20日~2014年09月13日竣工。 工程简介 华电国际莱城发电厂#1机组1×300MW烟气脱硫改造工程,由青岛华拓科技股份有限公司总承包。内容包括完整范围内的设计、工程服务、建筑工程、制造、供货、运输、安装、调试、试验和培训等。本次是吸收塔安装工程(包括喷淋层3层,除雾器1层安装)。

本项目烟气脱硫吸收塔塔体内径12000mm,高度34275mm,内部装有喷淋层、除雾器等系统组件,塔体内壁防腐为玻璃鳞片。 工作范围 1.3.1脱硫岛吸收塔本体安装。 1.3.2吸收塔基本条件 2、施工前的准备 作业人员应经过三级安全教育和考试合格后方可上岗。 焊工需持有焊接有效合格证件。 施工前应熟悉了解图纸和有关规程规范,参加作业前的技术交底工作,未经技术交底不得上岗。 焊工应有良好的工艺作风,严格按照给定的焊接工艺施焊,并认真实行质量自检。 作业人员应严格按图纸、有关规程规范及作业指导书要求进行施工。 、施工人员准备 注:由工地统一调派人员 、施工机具准备

脱硫系统运行操作手册 docx资料

*****************安装脱硫设施工程石灰石_石膏法湿法脱硫工程 操 作 手 册 ***************** 2017年10月

前言 制定本操作手册的目的是为了加强本工程脱硫装置的标准化管理,保证脱硫装置的正常安全运行,使脱硫装置的运行维护操作程序化、规范化。本手册只对操作和维护起指导作用。 如果在长时间运行后,由于脱硫操作人员经验的不断积累,最终发现操作程序与目前的手册不同,应向承包商报告此情况以修改操作手册,承包商保留修改和添加的权利。为保证系统的正常运行,装置必须置于有效的监督之下,且操作人员必须明确自己应承担的责任。

1.烟气脱硫系统工艺介绍 1.1设计原则 (1)认真贯彻执行国家关于环境保护的方针政策,严格遵守国家有关法规、规范和标准进行设计,能够适应锅炉运行时的负荷波动,在满足供热的同时,达到设计的排放参数; (2)选用先进可靠的脱硫技术工艺,确保脱硫效率高的前提下,强调系统的安全、稳定性能,并减少系统运行费用。 (3)充分结合厂方现有的客观条件,因地制宜,制定具有针对性的技术方案。 (4)系统平面布置要求紧凑、合理、美观,实现功能分区,方便运行管理。 (5)设计采用石灰石—石膏湿法脱硫工艺,该方法技术成熟、脱硫效率高达98%以上、运行安全可靠、操作简便。 (6)烟气系统不设增压风机,设置烟气旁路,不设置烟气—烟气换热器,脱硫后的烟气排入厂里现有大烟囱。 (7)采用烟气在线自动监测系统,对脱硫后的烟气排放进行实时监控,严格执行环保要求排放标准。 1.2工艺原理及工艺流程 1.2.1工艺化学反应机理 石灰石—石膏湿法脱硫工艺的主要原理是:送入吸收塔的脱硫吸收剂石灰石浆液,与进入吸收塔的烟气接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及鼓入的空气中的氧气发生化学反应,生成二水

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

脱硫吸收塔SO2吸收系统

共享知识分享快乐 第三章SO 2吸收系统 3. 1、系统简介 SO2吸收系统是整个脱硫装置的核心系统,对烟气除去SO等有害成分的过程主要在这个系统完 成。本系统主要是由吸收塔、浆液循环泵、除雾器、吸收塔搅拌器及氧化风机等组成。石灰石- 石膏湿法烟气脱硫是由物理吸收和化学吸收两个过程组成。在物理吸收过程中SQ溶解于吸收剂 中,只要气相中被吸收气体的分压大于液相呈平衡时该气体分压时,吸收过程就会进行,吸收过程取决于气-液平衡,满足亨利定律。由于物理吸收过程的推动力很小,所以吸收速率较低。 而化学吸收过程使被吸收的气体组分发生化学反应从而有效地降低了溶液表面上被吸收气体的 分压,增加了吸收过程的推动力,吸收速率较快。FG[反应速率取决于四个速率控制步骤,即SQ 的吸收、HSO氧化、石灰石的溶解和石膏的结晶。 3.2、吸收反应原理 3.2.1、物理过程原理 SQ吸收是从气相传递到液相的相间传质过程。对于吸收机理以双膜理论模型的应用较广, 双膜理论模型如图所示。图中p表示SQ在气相主体中的分压,p表示在界面上的分压,c和e 则分别表示SC2组分在液相主体及界面上的浓度。把吸收过程简化为通过气膜和液膜的分子扩 散,通过两层膜的分子扩散阻力就是吸收过程的总阻力。 气体吸收质在单位时间内通过单位面积界面而被吸收剂吸收的量称为吸收速率。根据双膜 理论,在稳定吸收操作中,从气相传递到界面吸收质的通量等于从界面传递到液相主体吸收质 的通量。吸收传质速率方程一般表达式为:吸收速率=吸收推动力x吸收系数,或者吸收速率=吸收推动力/吸收阻力。吸收系数和吸收阻力互为倒数。

共享知识分享快乐 3.2.2 、化学过程原理 321.1 、SQ、SQ和HCI 的吸收: 烟气中的SQ和SQ与浆液液滴中的水发生如下反应: —+ SQ + H2Q T HSQ3 + H SQ3 + H2Q T H 2SQ HCI 遇到液滴中的水即可迅速被水吸收而形成盐酸。 3.2.1.2 、与石灰石反应 浆液水相中的石灰石首先发生溶解,吸收塔浆池中石灰石溶解过程如下 CaCQ3 + H 2Q t Ca2+ + HCQ3—+ QH— 水中石灰石的溶解是一个缓慢的过程,其过程取决于以下几个因素: a. 固态石灰石颗粒的颗粒尺寸。颗粒细小的石灰石粉要比颗粒粗大的石灰石粉溶解要快。 b. 石灰石的反应率。活性石灰石的溶解率要比没有活性的石灰石溶解率要快。 c.吸收塔浆液的pH值。pH值越低,石灰石溶解得越快。 高的pH值对酸性气体的脱除效率有利,但是不利于石灰石的溶解。 的脱除效率,但是有利于石灰石的溶解。 SQ2、SQ3、HCI 等与石灰石浆液发生以下离子反应: 2+ — Ca2+ + HCQ3—+ QH—+ HSQ3—+ + 2H + 2+ — t Ca 2+ + HSQ + CQ 2 f +2H2Q 氧化反应:2HSQ3—+ Q2 t2SQ42—+ 2H + Ca2+ + HCQ3—+ QH —+ SQ42— + 2H +t Ca 2+ + SQ 42— + CQ2 f +2H2Q Ca2+ + HCQ3—+ QH—+ 2H+ + 2CI —t Ca 2+ + 2CI —+ CQ2f+ 2H 2Q 经验显示,吸收剂浆液的pH值控制在5.5?6.0之间,pH值为5.6时最佳,此时酸性气 体的脱除率和石灰石的溶解速度都很高。吸收塔浆液池中的pH值是通过调节石灰石浆液的投放 量来控制的,而加入塔内的新制备石灰石浆液的量取决于预计的锅炉负荷、SQ含量以及实际的吸收塔浆液的pH值。 3.2.1.3 、氧化反应通入吸收塔浆液池内的氧气将亚硫酸氢根氧化成硫酸根: —2—+ 2HSQ3—+ Q2 t 2SQ42—+ 2H + 3.2.1.4 、石膏形成: Ca2+ + SQ 42—+ 2H 2Q t CaSQ4 ? 2H2Q 石膏的结晶主要发生在吸收塔浆液池内,浆液在吸收塔内的停留时间、通入空气的体积和方式 低的pH值不利于酸性气体

脱硫塔

第一章运行管理 一、工艺流程及流程简介 1.1工艺流程 1.1 工艺流程图 1.2工艺流程简介 锅炉烟气经引风机、多管除尘器、后,首先进入脱硫除尘塔内与经喷嘴雾化后的脱硫液进行脱硫反应;烟气在塔内通过三层喷淋装置进行三级脱硫除尘反应,SO2总脱除率可达99%以上,除尘效率达到99%以上;脱硫塔内 NaOH吸收SO2发生中和反应生成NaHSO3与Na2SO3,然后流入下游水池进行循环使用,完成对烟气中SO2的吸收净化。 经一级除尘脱硫后的干净烟气通过塔上部的弯头、管道进入二级脱硫除尘塔经过收水器进一步净化脱水,,除去烟气中夹带的水,经过脱硫除雾后的烟气进入烟囱排放。随着脱硫反应的进行,循环池内pH值不断下降,当循环池内pH值降低到10以下时,要及时向循环池补充钠碱以防pH值过低影响脱硫效果。 二、人员配备 1、脱硫控制室配室操作人员3人,负责脱硫工程的日常工作。 2、脱硫工程配机修人员1人,负责站区日常的设备维修工作。 三、各主要处理单元运行控制参数 1、循环池中有关参数的控制 循环池中pH应控制在10以上,低于10时脱硫效果不理想。 2、脱硫塔内有关参数的控制 脱硫塔出口pH应控制在7.0以上。 第二章操作规程 一、循环泵房及泵房内循环水泵、冲洗水泵、排液泵 1、循环泵作用 向脱硫塔供脱硫液。 1.1、开泵前准备 (1)检查循环池内水位,确保循环池内水位不低于池深的2/3。

(2)检查管路系统是否有跑、冒、滴、漏现象存在,如有要及时处理。 (3)检查水泵及系统零部件是否齐全完好。如:所有紧固件是否紧固;连轴器间隙是否合适;水泵注油孔是否已按规定注油;仪表、阀门是否完好等。 (4)进行手动盘车旋转两周看是否正常,应不卡不重,无异常声音。否则应查明原因进行处理。 (5)检查循环泵有无冷却水,是否打开。 (6)检查机械部分时,不得将水泵电路开关合闸使电机处于带电状态,且在配电柜上挂有“有人操作,不许合闸”标牌。 1.2.操作顺序 (1)开启循环泵 打开泵进口管路的碟阀,开启循环泵。当压力表显示压力达到额定压力 0.3-0.4MPa后即为所需工况。 (2)关闭循环泵 循环泵停止工作后,慢慢关闭进水管路上的碟阀 1.3.泵在运行中,应注意以下事项: (1)开启水泵后,如压力表指针不动或剧烈摆动,有可能是泵内积有空气,停泵后排净泵内空气再启动。 (2)检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大、过小应立即停机检查。 (3)注意轴承温度,轴承最大温度不得大于95度。 (4)按动停泵按钮后,严禁马上再按启泵按钮,否则会发生水击造成设备管路损坏等重大事故。因此,特别规定,停泵10分钟后才允许按启动按钮,待无异常情况后方允许离开开关柜。 (5)泵电动机在不允许连续起动,启动间隔时间至少为10分钟。 2冲洗水泵的作用 向脱硫塔除雾器提供冲洗水,冲洗除雾器,防止除雾器积灰致使除雾器压降过大。建议每小时冲洗时间不低于10分钟。 2.1、开泵前准备

有机胺法脱硫工艺流程

有机胺法脱硫工艺 1、工艺流程 本烟气脱硫装置采用湿法有机胺脱硫工艺,装置采用有机胺浓液稀释到一定浓度后作为脱硫剂。该工艺主要分为4个过程,即烟气的预处理、SO2的吸收、SO2的再生和胺液的净化。 烟气预处理的目的是降低进入脱硫塔烟气温度和洗涤烟气中的酸雾及粉尘等杂质,为烟气在脱硫塔采用有机胺脱硫剂高效脱硫奠定基础。烟气预处理设置洗涤塔一座,采用空塔喷雾洗涤降温除尘。 二氧化硫吸收系统是烟气脱硫系统的核心。在吸收装置中吸收剂与烟气相接触,吸收剂与SO2发生可逆性反应。为了达到最大的吸收效果,采用高效耐腐蚀规整填料塔和空喷吸收相结合的形式。烟气经过洗涤塔洗涤降温净化后,将烟气中的粉尘和部分SO3等杂质洗涤下来,烟气温度被降低至约40℃,进入脱硫塔下段,与从喷头处循环喷淋的脱硫液逆流接触,气体中60%的SO2被吸收。未被吸收的烟气进入脱硫塔中部,在两段分布的规整填料中实现气液的逆流接触和SO2的高效吸收,吸收液为再生塔再生后温度35~45℃的贫液。未被吸收的净化气进入脱硫塔上部,经回收液回收夹带的溶液后,从塔顶引出,经塔顶烟囱送至硫酸尾气总管。 SO2再生装置包含一个再沸器、一座再生塔及二氧化硫、蒸汽冷凝冷却系统和二氧化硫真空系统,将吸收了SO2的富液从吸收装置通过换热后进入再生装置,减压再生后返回脱硫塔。从脱硫塔底部出来

的吸收液温度约43~45℃,经富液泵打入再生塔一级冷凝器、贫富液换热器升温至约60~65℃,进入再生塔上部,塔釜经再沸器加热至75~85℃再生。从再生塔底部出来的溶液经贫液泵加压,进入贫富液换热器换热、贫液冷却器冷却后,大部分进入脱硫塔吸收SO2,小部分送溶液净化装置,以除去溶液中的热稳定性盐。 贫液经脱盐前冷却器冷却后,进入脱硫液净化系统除去系统中的SO42-和Cl-。净化后的脱硫液进入系统继续使用。 2、工艺原理 有机胺湿法烟气脱硫技术是一种新兴的烟气脱硫技术、具有处理二氧化硫浓度低、脱硫效率高、吸收剂可以循环利用、不产生二次污染、能有效解决烟气制酸的稳定性问题等优点。 有机胺脱硫化学原理为:在水溶液中,溶解的SO2会发生式(1) 、(2) 所示的可逆水合和电离过程。 在水中加入有机胺缓冲剂,通过和水中的氢离子发生反应,形成胺盐,反应(1)、(2) 方3程式向右发生反应,增大了SO2的溶解量如反应(3),可以增加SO2的溶解量。采用蒸汽加热,可以逆转(1) ~(3) 的方程式,再生吸收剂,得到高浓度的SO2气体,对SO2进行回收利用。 一元胺的吸收功能过于稳定,以至于无法通过改变温度再生SO2,一旦一元胺与SO2或其他的强酸发生化学反应便永久的生成一种非常稳定的胺盐。二元胺在烟气脱硫上具有更大优势,二元胺在工艺过程中首先与一种发生反应:

吸收塔的设计和选型

XXXXXXXXXXXXXXXXXXXXX-环境工程部 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX. Environmental Engineering Department 脱硫塔设计及选型指导手册 Guide Handbook for design and selection of desulphurizing tower 签署: 日期:

目录 1.1吸收塔的设计 (3) 1.1.1 吸收塔的直径和喷淋塔高度设计 (3) 1.1.2吸收塔喷淋系统的设计(喷嘴的选择配置) (13) 1.1.3 吸收塔底部搅拌器及相关配置 (16) 1.1.4 吸收塔材料的选择 (17) 1.1.5吸收塔壁厚的计算(包括计算壁厚和最小壁厚) (17) 1.1.6吸收塔封头选择计算 (19) 1.1.7吸收塔裙式支座选择计算 (21) 1.1.8吸收塔配套结构的选择 (21) 1.2吸收塔最终参数的确定 (22) 1.2.1设计条件 (22) 1.2.2吸收塔尺寸的确定 (22) 1.2.3吸收塔的强度和稳定性校核 (24)

1.1吸收塔的设计 吸收塔是脱硫装置的核心,是利用石灰石和亚硫酸钙来脱去烟气中二氧化硫气体的主要设备,要保证较高的脱硫效率,必须对吸收塔系统进行详细的计算,包括吸收塔的尺寸设计,塔内喷嘴的配置,吸收塔底部搅拌装置的形式的选择、吸收塔材料的选择以及配套结构的选择(包括法兰、人孔等)。 1.1.1 吸收塔的直径和喷淋塔高度设计 本脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1.1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU= )ln() ()(*** 2 2* 11* 22*112 121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[

大气污染控制工程课程设计——脱硫塔

《大气污染控制工程》 课程设计 学院:生态与环境学院 专业班级:环境工程 年级: 学号: 姓名: 指导教师: 完成日期:

目录 摘要 (1) 1. 背景介绍 (2) 1.1. 硫氧化物污染 (2) 1.2. 燃煤脱硫技术 (3) 1.2.1. 燃烧前脱硫 (3) 1.2.2. 燃烧中脱硫 (3) 1.2.3. 燃烧后脱硫 (3) 1.3. 湿法脱硫技术 (3) 1.3.1. 石灰石/石膏湿法脱硫 (3) 1.3.2. 氧化镁法脱硫 (4) 1.3.3. 双碱法脱硫 (4) 1.3.4. 氨法脱硫 (4) 1.3.5. 海水脱硫 (4) 2. 石灰石/石膏湿法脱硫技术 (5) 2.1. 主要特点 (5) 2.2. 反应原理 (5) 2.2.1. 吸收剂的反应 (5) 2.2.2. 吸收反应 (5) 2.2.3. 氧化反应 (6) 2.2.4. 其他污染物 (6) 2.3. 工艺流程 (7) 3. 设计任务与目的 (8) 3.1. 任务 (8) 3.2. 目的 (8) 3.3. 设计依据 (8) 4. 脱硫系统的设计 (9) 4.1. 脱硫系统设计的初始条件 (9) 4.2. 初始条件参数的确定 (9) 4.2.1. 处理风量的确定 (9) 4.2.2. 燃料的含S率及消耗量 (10) 4.2.3. 进气温度的确定 (10) 4.2.4. SO2初始浓度的确定 (10) 4.2.5. SO2排放浓度的确定 (10) 5. 脱硫系统的设计计算 (11) 5.1. 参数定义 (11) 5.2. 脱硫系统的组成及主要设备选型 (12) 5.2.1. SO2吸收系统 (12) 5.2.2. 烟气系统 (18) 5.2.3. 石灰石浆液制备系统 (20) 5.2.4. 石膏脱水系统 (21) 6. 参考文献 (25)

脱硫中出现的问题

PDS法脱硫工艺及特点 1.1 pds法的工艺流程 我厂的PDS法煤气脱硫装置由脱硫和再生两部分组成。焦炉煤气依次经过串联的预冷塔、空喷塔脱硫塔、填料塔脱硫塔后进入硫铵洗氨工序。空喷脱硫塔和填料脱硫塔各自配有独立的再生系统。脱硫富液从脱硫塔塔底排出,经液封槽进入各自的反应槽,再由循环泵将富液从反应槽送入再生塔底部,压缩空气也由再生塔底部送入。PDS催化剂从反应槽上加入。再生后的脱硫液靠位差自流到对应的脱硫塔顶循环喷洒。生成的硫泡沫从再生塔顶自流入硫泡沫槽,经澄清分离后,清液返回反应槽。硫泡沫放入熔硫釜,经间歇熔硫、冷却成型后外售。 1.2 HPF法的特点 HPF法脱硫工艺是以煤气中的氨为碱源,脱硫液在吸收了煤气中硫化氢后,在复合催化剂HPF的作用下氧化再生,最终将硫化氢转化为元素硫得以除去,脱硫液循环使用。HPF法具有设备简单、操作方便稳定和脱硫效率高等特点,已在许多焦化企业得到推广应用。我厂HPF法脱硫装置历年来的部分操作数据列于表1。 表1 HPF法脱硫装置历年来的操作数据 年份硫化氢氰化氢 进口,g/m3 出口,g/m3 去除率,%进口,g/m3 出口,g/m3 去除率,% 2000年 7.51 0.06 99.0 1.48 0.09 90 2001年 8.45 0.11 98.5 1.72 0.11 92 2002年 7.39 0.13 98.2 1.28 0.10 92 2003年 8.41 0.11 98.2 1.99 0.19 91 2004年 7.08 0.05 98.9 1.18 0.06 95 2 HPF法的问题及解决措施 经我厂多年的生产实践表明,HPF法煤气脱硫工艺虽然具有运行较稳定、脱硫效率较高等优点,但实际生产中也存在着不少问题,现分述如下。 2.1 催化剂性能的影响 催化剂的性能不仅直接影响煤气的脱硫效率,而且影响到脱硫的生产成本。在1999年下半年的一段时间里,我厂的脱硫效果一直不太理想,脱硫效率从99%左右下降到95%以下。其主要原因是某一批次的催化剂存在质量问题,通过更换催化剂才恢复正常。所以,选择质量稳定和信誉好的催化剂生产厂家是很重要的。目前,催化剂生产厂家不少,而同类产品性价比更好的新产品却不多。另外,用户也缺少直接判断催化剂性能优劣的检验方法。

湿法脱硫工艺吸收塔及塔内件的设计选型

湿法脱硫工艺吸收塔及塔内件的设计选型 1 吸收塔塔型的选择 在湿法脱硫工艺中,吸收塔是一个核心部件,一个湿法脱硫工程能否成功,关键看吸收塔、塔内件及与之相匹配的附属设备的设计选型是否合理可靠。在脱硫工程中运行阻力小、操作方便可靠的吸收塔和塔内件的布置形式,将具有较大的发展前景。 目前,在国内的脱硫工程中,应用较多的吸收塔塔型有喷淋吸收空塔、托盘塔、液柱塔、喷射式鼓泡塔等。国内学者曾在实验室里对各种塔型做了实验测试(见图1),从测试情况看,在塔内烟气流速相同的情况下,喷淋吸收空塔的系统阻力最小,液柱塔的阻力次之,托盘塔的阻力相对较大。 由于喷淋吸收空塔塔内件较少,结垢的机率较小,运行维修成本较低,因此喷淋吸收空塔已逐渐成为目前应用最广泛的塔型之一。图2为喷淋吸收空塔(以下简称吸收塔)的结构简图。 2 喷淋吸收空塔主要工艺设计参数 (1)烟气流速

在保证除雾器对烟气中所携带水滴的去除效率及吸收系统压降允许的条件下,适当提高烟气流速,可加剧烟气和浆液液滴之间的湍流强度,从而增加两者之间的接触面积。同时,较高的烟气流速还可持托下落的液滴,延长其在吸收区的停留时间,从而提高脱硫效率。 另外,较高的烟气流速还可适当减少吸收塔和塔内件的几何尺寸,提高吸收塔的性价比。在吸收塔中,烟气流速通常为3~4.5m/s。许多工程实践表明,3.6m/s≤烟气流速(110%过负荷)≤4.2m/s是性价比较高的流速区域。 (2)液气比(L/G) L/G决定了SO2的吸收表面积。在吸收塔中,喷淋雾滴的表面积与浆液的喷淋速率成一定的比例关系。当烟气流速确定以后,L/G成为了影响系统性能的最关键变量,这是因为浆液循环率不仅会影响吸收表面积,还会影响吸收塔的其他设计,如雾滴的尺寸等。L/G的主要影响因素有:吸收区体积、SO2的去除效率、吸收塔空塔速率、原烟气的SO2浓度、吸收塔浆液的氯含量等。 根据吸收塔吸收传质模型及气液平衡数据计算出液气比(L/G),从而确定浆液循环泵的流量。 美国能源部编制的FGD-PRISM程序的优化计算,L/G以15L/m3为宜,此时,SO2的去除效率已接近100%。L/G超过15.5L/m3后,脱硫效率的提高非常缓慢,而且提高L/G将使浆液循环泵的流量增大,增加循环泵的设备费用,同时还会提高吸收塔的压降,加大增压风机的功率及设备费用。 (3)吸收塔浆池尺寸 吸收塔浆池尺寸可通过以下工艺设计参数确定: 1)石膏颗粒(晶种)生长的停留时间 湿法脱硫系统中,亚硫酸钙、硫酸钙的析出是在循环浆液的固体颗粒(晶种)表面上进行的,为了晶体的生长和结晶,循环浆池里的石膏颗粒必须有足够的停留时间,反应时间也必须足够长。停留时间的计算公式为: RT=(V×ρ×SC)/TSP 其中:RT—停留时间(min);TSP—石膏成品产量(干基)(kg/min);V—浆池体积(m3);ρ—浆液密度(kg/m3);SC—浆液含固量(%)。如生产的石膏要在水泥或石膏行业使用,FGD的石膏成品含水量必须<10%,石膏必须结晶成平均直径为35~50μm的立方晶体,停留时间必须>15小时。对于抛弃系统,由于石膏成品要被抛弃,石膏成品含水量可>15%,这样系统的停留时间可缩小到10小时左右。 2)石灰石溶解的停留时间 如要求吸收塔内的石灰石充分溶解,则石灰石在循环浆池内必须有足够长的停留时间。一般来说,石灰石的停留时间须>4.3min。石灰石溶解的停留时间按下式计算: T=V/(N×RF) 其中:T—停留时间(min);V—浆池体积(m3);N—循环泵数;RF—单台循环泵流量(m3 /h)。 3)氧化反应的体积和氧气从空气转移到液体的深度氧气从空气转移到液体的深度,是指吸收塔浆液池内释放氧化空气的曝气管或喷枪的位置。亚硫酸盐或亚硫酸氢盐的氧化分为两部分,一部分是吸收塔内烟气中的氧气进入浆液液滴的自然氧化,另一部分是空气通过曝气管网进入浆液池后的强制氧化。

大气污染控制工程烟气除尘脱硫系统设计

目录 一、课程设计的目的 二、设计原始资料 三、课程设计计算与说明 1、燃煤锅炉烟气量、烟尘和二氧化硫浓度的计算 2、除尘脱硫装置的选择设计 3、确定除尘脱硫设备、风机和烟囱的位置及管道的布置 4、烟囱的设计 5、系统阻力的计算 6、风机和电动机选择及计算 四、小结 五、课程设计教材及主要参考资料

一、课程设计的目的 通过课程设计进一步消化和巩固本课程所学内容,并使所学的知识系统化,培养运用所学理论知识进行净化系统设计的初步能力。通过设计,了解工程设计的内容、方法及步骤,培养学生确定大气污染控制系统的设计方案、进行设计计算、绘制工程图、使用技术资料、编写设计说明书的能力。 二、设计原始资料 锅炉型号:SZL4-13型,额定蒸发量2.8MW/h 设计耗煤量:见附表。 排烟温度:160℃ 烟气密度(标准状态下):1.34kg/m3 空气过剩系数:α=1.4 排烟中飞灰占煤中灰分(不可燃成分)的比例,见附表。 烟气在锅炉出口前阻力:800Pa 当地大气压力:97.86kPa 冬季室外空气温度:-1℃ 空气含水(标准状态下)按0.01293kg/m3 烟气其它性质按空气计算。 燃煤煤质(按质量百分含量计,%) 按锅炉大气污染排放标准(GB13271—2001)中二类区标准执行 烟气浓度排放标准(标准状况下):200mg/m3 二氧化硫排放标准(标准状况下):900mg/m3 净化系统布置场地在锅炉房北侧20米以内

三、课程设计计算与说明 1、燃煤锅炉烟气量、烟尘和二氧化硫浓度的计算 (1)标准状态下理论空气量 Q a’=4.76×(1.867C Y+5.56H Y+0.7S Y-0.7O Y) =4.76×( 1.867*68%+5.56*4%+0.7*1%-0.7*5%) =6.9684 (m3/kg) 式中:C Y, H Y, S Y, O Y-分别为煤中各元素所含的质量分数。 (2)标准状态下理论湿烟气量(设空气含湿量12.93g/m3) Q’s=1.867(C Y+0.375S Y)+11.2H Y+1.24W Y+0.016Q’a+0.79Q’a+0.8N Y =1.867(68%+0.375*1%)+11.2*4%+1.24*6%+0.016*6.9684+0.79*6.9684 +0.8*1%= 7.4235 (m3/kg) 式中:Q’a-标准状态下理论空气量,m3/kg; W Y-煤中水分所占质量分数,%; N Y-N元素在煤中所占质量分数,%。 (3)标准状态下实际烟气量 Q s=Q’s+1.016(a-1)Q’a =7.4235+1.016*(1.4-1)*6.9684 =10.2555(m3/kg) 式中:a-空气过量系数 Q’s-标准状态下理论烟气量,m3/kg; Q’a-标准状态下理论空气量,m3/kg。 注意:标准状态下烟气流量Q应以/h m3计,因此, 设计耗煤量 ? = s Q Q =10.2555*650=6666.08(m3/h) (4)标准状态下烟气含尘浓度 s Y sh Q A d C ? = =28% * 15% / 10.2555 =4095 (mg/m3 )

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

电厂脱硫吸收塔的改造方案

XX电厂吸收塔的改造方案 一、工程概况 1.1XXX烟气脱硫装置增容改造工程安装工程。本次脱硫改造对象为#1、#2机组配套的脱硫装置及公用系统。 1.2 原吸收塔为(16.5米*37.8)分两次截塔。一是从吸收塔浆池底部截塔加高4m,相应修改调整搅拌器、循环泵、安装门、液位计等各接口及吸收塔进出口烟道;二是从顶层喷淋层上方截塔加高2m,也就是在原塔标高27.5米处。本机组脱硫系统原增压风机已设置了增压风机旁路,改造后保留原增压风机旁路烟道和增压风机,只需根据要求拆除脱硫大旁路及旁路挡板门。 二、编制依据 1.1本次吸收塔改造增容招标文件以及设计图纸。 1.2 GB50205-95《钢结构工程施工及验收规范》 1.3 GB150-98《钢制压力容器》 1.4 DL/T869-2004《火力发电厂焊接技术规程》 1.5 DL/T5047-95《电力建设施工及验收技术规范》(锅炉机组篇) 1.6 GBJ128-90《立式圆筒型钢制焊接油罐施工及验收规范》 1.7 SH3530-93《石油化工立式圆筒型钢制储罐施工工艺标准》 1.8 JB4708-2000《钢制压力容器焊接工艺评定》 1.9 JB/T4709-2000《钢制压力容器焊接规程》 1.10 JB4735-97《压力容器无损检测》 1.11 吸收塔设备改造技术协议及规范书 1.12国电龙源FGD制作验收规范 1.13现场踏勘记录等 三、项目管理组织机构和人员配置 我公司对本工程非常重视,经领导班子研究,为了按期保质圆满完成本工程任务,由管理经验丰富的国家建造师 XXX、副经理XXX 组建现场项目部。

四、施工综合进度 4.1 工程里程碑进度 里程碑计划 工程项目完工时间 施工准备10天 浆液池部分改造15天 喷淋层改造25天包括交叉施工 移交防腐10天 其他工作完善20天 4.2 图纸交付进度(分项工程开工前20天应提供相应图纸,详见施工进度计划)

脱硫吸收塔的直径和喷淋塔高度设计

吸收塔的直径和喷淋塔高度设计 脱硫工艺选用的吸收塔为喷淋塔,喷淋塔的尺寸设计包括喷淋塔的高度设计、喷淋塔的直径设计 1.1 喷淋塔的高度设计 喷淋塔的高度由三大部分组成,即喷淋塔吸收区高度、喷淋塔浆液池高度和喷淋塔除雾区高度。但是吸收区高度是最主要的,计算过程也最复杂,次部分高度设计需将许多的影响因素考虑在内。而计算喷淋塔吸收区高度主要有两种方法: (1) 喷淋塔吸收区高度设计(一) 达到一定的吸收目标需要一定的塔高。通常烟气中的二氧化硫浓度比较低。吸收区高度的理论计算式为 h=H0×NTU (1) 其中:H0为传质单元高度:H 0=G m /(k y a)(k a 为污染物气相摩尔差推动力的总传质系数,a 为塔内单位体积中有效的传质面积。) NTU 为传质单元数,近似数值为NTU=(y 1-y 2)/ △y m ,即气相总的浓度变化除于平均推动力△y m =(△y 1-△y 2)/ln(△y 1/△y 2)(NTU 是表征吸收困难程度的量,NTU 越大,则达到吸收目标所需要的塔高随之增大。 根据(1)可知:h=H0×NTU=)ln() ()(***2 2*11*22*112121y y y y y y y y y y a k G y y y a k G y m m y m ------=?- a k y =a k Y =9.81×1025.07.04W G -]4[ 82.0W a k L ?=]4[ (2)

其中:y 1,y 2为脱硫塔内烟气进塔出塔气体中SO 2组分的摩尔比,kmol(A)/kmol(B) *1y ,*2y 为与喷淋塔进塔和出塔液体平衡的气相浓度,kmol(A)/kmol(B) k y a 为气相总体积吸收系数,kmol/(m 3.h ﹒kp a ) x 2,x 1为喷淋塔石灰石浆液进出塔时的SO 2组分摩尔比,kmol(A)/kmol(B) G 气相空塔质量流速,kg/(m 2﹒h) W 液相空塔质量流速,kg/(m 2﹒h) y 1×=mx 1, y 2×=mx 2 (m 为相平衡常数,或称分配系数,无量纲) k Y a 为气体膜体积吸收系数,kg/(m 2﹒h ﹒kPa) k L a 为液体膜体积吸收系数,kg/(m 2﹒h ﹒kmol/m 3) 式(2)中?为常数,其数值根据表2[4] 表3 温度与?值的关系 采用吸收有关知识来进行吸收区高度计算是比较传统的高度计算方法,虽然计算步骤简单明了,但是由于石灰石浆液在有 喷淋塔自上而下的流动过程中由于石灰石浓度的减少和亚硫酸钙浓度的不断增加,石灰石浆液的吸收传质系数也在不断变化,如果要算出具体的瞬间数值是不可能的,因此采用这种方法计算难以得到比较精确的数值。 以上是传统的计算喷淋塔吸收区高度的方法,此外还有另外一种方法可以计算。

相关文档
最新文档