高等数学各章知识结构复习课程

合集下载

大一高数下册知识点框架

大一高数下册知识点框架

大一高数下册知识点框架在大一的高等数学下册中,学生们将进一步学习和掌握一系列高数的重要知识点。

本文将为您提供大一高数下册的知识点框架,以便于您对该学期的学习内容有一个全面的了解。

一、多元函数及其极限1. 二元函数的概念与表示2. 二元函数的极限与连续性3. 多元函数的极限与连续性4. 二元函数的偏导数与全微分二、多元函数的微分学1. 多元函数的偏导数与全微分的概念2. 多元函数的微分法则与高阶偏导数3. 隐函数与参数方程的求导4. 多元函数的泰勒展开式三、多元函数的积分学1. 重积分的概念与性质2. 二重积分的计算方法3. 三重积分的计算方法4. 曲线与曲面的面积四、向量代数与空间解析几何1. 向量的基本概念与运算2. 空间直线与平面的方程3. 空间曲线的参数方程与切向量4. 空间曲面的方程与切平面五、微分方程1. 常微分方程的基本概念与解法2. 一阶线性微分方程及其应用3. 高阶线性常微分方程及其应用4. 非齐次线性微分方程的常数变易法六、级数1. 数项级数的概念与性质2. 收敛级数的判定方法3. 幂级数的收敛半径与收敛域4. 泰勒级数与函数的展开七、常微分方程初步1. 常微分方程的基本概念与解法2. 可化为常微分方程的高阶微分方程3. 高阶线性微分方程的常数变易法4. 常微分方程的应用问题八、多元函数微分学应用1. 多元函数的条件极值与最值2. 线性规划与凸集3. 多元函数在工程与物理问题中的应用4. 二重积分在平面图形中的应用九、场论初步1. 初等矢量场2. 偏导数与梯度3. 散度与旋度4. 基本定理与应用以上为大一高数下册的知识点框架,希望对您的学习有所帮助。

通过系统地学习这些知识点,并进行大量的练习与应用,相信您将能够顺利掌握高等数学下册的内容,并取得优异的成绩。

祝您学业进步!。

高等数学各章知识结构

高等数学各章知识结构

高等数学各章知识结构一.总结构数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学.微分学与积分学统称为微积分学.微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分.冯. 诺伊曼注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合著的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.微积分中重要的思想和方法:1.“极限”方法,它是贯穿整个《微积分》始终。

导数是一种特殊的函数极限;定积分是一种特殊和式的极限;级数归结为数列的极限;广义积分定义为常义积分的极限;各种重积分、曲线积分、曲面积分都分别是某种和式的极限。

所以,极限理论是整个《微积分》的基础。

尽管上述各种概念都是某种形式的极限,但是它们都有各自独特和十分丰富深刻的内容,这是《微积分》最有魅力的地方之一。

2.“逼近”思想,它在《微积分》处处体现。

在近似计算中,用容易求的割线代替切线,用若干个小矩形面积之和代替所求曲边梯形面积;用折线段的长代替所求曲线的长;用多项式代替连续函数等。

这种逼近思想在理论和实际中大量运用。

3.“求极限、求导数和求积分”是最基本的方法。

高等数学大一知识点结构图

高等数学大一知识点结构图

高等数学大一知识点结构图高等数学是大学学习中的重要一门学科,其基础知识点的掌握对于后续学习和应用都有着重要的影响。

为了帮助大一学生更好地理解和掌握高等数学的知识点,本文将为大家呈现一个高等数学大一知识点结构图。

一、微积分1. 极限与连续1.1 数列极限1.2 函数极限1.3 无穷小量与无穷大量1.4 连续函数2. 导数与微分2.1 导数的定义与计算2.2 高阶导数2.3 微分及其应用3. 积分与不定积分3.1 不定积分的定义与计算3.2 定积分的定义与计算3.3 微积分基本定理3.4 微积分的应用二、数列与级数1. 数列的概念1.1 通项与数列的表示方法1.2 数列的极限2. 级数的概念2.1 级数的收敛与发散2.2 常见级数的性质与求和方法三、多元函数与偏导数1. 二元函数与偏导数1.1 二元函数的概念与性质1.2 偏导数的定义与计算1.3 高阶偏导数2. 多元函数的极值与条件极值2.1 极值与驻点2.2 条件极值与拉格朗日乘数法四、重积分与坐标系1. 二重积分1.1 二重积分的定义与计算1.2 二重积分的应用2. 三重积分2.1 三重积分的定义与计算2.2 三重积分的应用3. 极坐标系与柱坐标系3.1 极坐标系及其转换3.2 柱坐标系及其转换五、常微分方程1. 常微分方程的基本概念1.1 微分方程的定义与分类 1.2 一阶微分方程的解法2. 高阶常微分方程2.1 二阶线性微分方程2.2 高阶方程的特解与通解六、向量代数与空间解析几何1. 空间向量1.1 向量的表示与运算1.2 向量的夹角与投影2. 空间曲线与曲面2.1 参数方程与曲线的切线2.2 曲面的法线与切平面以上是高等数学大一知识点的一个结构图,通过这个结构图可以清晰地展示各个知识点之间的关系和层次。

大一学生在学习高等数学时,可以根据这个结构图进行有针对性地学习和复习,逐步夯实基础知识,为后续学习打下坚实的基础。

通过以上的学习,相信大家对高等数学的大一知识点已经有了更清晰的认识。

大学高数知识框架归纳总结

大学高数知识框架归纳总结

大学高数知识框架归纳总结在大学学习中,高等数学无疑是一门重要的基础课程。

高等数学的内容非常广泛,包括了微积分、数学分析、概率论和线性代数等多个方面。

为了帮助同学们更好地理解和掌握高等数学的知识,下面将对其知识框架进行归纳总结。

一、微积分部分微积分是高等数学的核心部分,主要包括了极限、导数和积分。

在微积分的学习中,我们需要掌握以下几个重要概念和定理:1. 极限极限是微积分的基础。

在学习极限时,需要了解函数趋近于无穷时的行为,同时要熟悉常用的极限计算方法,如利用夹逼定理、洛必达法则等。

2. 导数导数是函数变化率的度量,也是微积分的重要内容之一。

在导数的学习中,我们需要熟悉导数的定义、性质和常见的导数计算法则,如常数因子法、求和法等。

3. 积分积分是对函数的反向运算,也是微积分不可或缺的一部分。

在积分的学习中,我们需要了解定积分和不定积分的概念、性质及其计算方法,如换元积分法、分部积分法等。

二、数学分析部分数学分析是对数学概念和计算方法的深入研究,主要包括了数列、级数和函数。

1. 数列数列是由一系列数字按照一定规律排列而成的。

在数列的学习中,我们需要了解数列的定义、性质以及数列的极限,同时要掌握数列的收敛性和发散性判断方法,如比较判别法、比值判别法等。

2. 级数级数是数列的和,也是数学分析中的重要内容。

在级数的学习中,我们需要熟悉级数的定义、性质以及级数的敛散性判断方法,如比较判别法、积分判别法等。

3. 函数函数是数学中常见的概念,也是数学分析的核心内容之一。

在函数的学习中,我们要了解函数的定义、性质以及函数的极限、连续性和可导性。

三、概率论部分概率论是研究随机现象的数学分支,主要包括了概率、随机变量和概率分布等内容。

1. 概率概率是指事件发生的可能性大小。

在概率的学习中,我们需要掌握概率的定义、性质以及概率计算的方法,如加法法则、乘法法则等。

2. 随机变量随机变量是随机现象的数学描述,是概率论的核心概念之一。

高中数学各章节内容

高中数学各章节内容

第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用【必修二】第一章空间几何体1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型【必修四】第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换【必修五】第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2-1第一章常用逻辑用语1-1命题及其关系1—2充分条件与必要条件1-3简单的逻辑联结词1—4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2—1曲线与方程2-2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线探究与发现2-4抛物线探究与发现阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章空间向量与立体几何3-1空间向量及其运算阅读与思考向量概念的推广与应用3—2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1-1变化率与导数1-2导数的计算1-3导数在研究函数中的应用1-4生活中的优化问题举例1—5定积分的概念1—6微积分基本定理1-7定积分的简单应用小结复习参考题第二章推理与证明2—1合情推理与演绎推理2—2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入3-1数系的扩充和复数的概念3—2复数代数形式的四则运算小结复习参考题选修2—3第一章计数原理1—1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1-2排列与组合探究与发现组合数的两个性质1—3二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2-1离散型随机变量及其分布列2—2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2—3离散型随机变量的均值与方差2—4正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3—1回归分析的基本思想及其初步应用3-2独立性检验的基本思想及其初步应用实习作业小结复习参考题。

高等数学第一章复习课ppt课件.ppt

高等数学第一章复习课ppt课件.ppt

3.极限的性质
定理 设 lim f ( x) A,lim g( x) B,则 (1) lim[ f ( x) g( x)] A B; (2) lim[ f ( x) g( x)] A B; (3) lim f ( x) A , 其中B 0. g(x) B
推论1 如果lim f ( x)存在,而c为常数,则 lim[cf ( x)] c lim f ( x).
1 o 1
x
(5) 函数的周期性:
设函数 f(x) 的定义域为D,如果存在一个不为零的
数l,使得对于任一 x D,有 x l D .且 f(x+l)=f(x)
恒成立,则称f(x)为周期函数,l 称为 f(x) 的周期.(通
常说周期函数的周期是指其最小正周期).
T 1
y
y x [x]
1
o
1
x
3.反函数
由y f ( x)确定的y f 1( x)称为反函数.
y sinh x
4.隐函数
y f 1( x) ar sinh x
由方程F ( x, y) 0所确定的函数 y f ( x)称为隐函数.
5.反函数与直接函数之间的关系
设函数f ( x)是一一对应
函数, 则
y y f 1( x)
3.连续的充要条件
定理 函数f ( x)在 x0 处连续 是函数f ( x)在 x0 处 既左连续又右连续.
4.间断点的定义
函数f ( x)在点x0处连续必须满足的三个条件: (1) f ( x)在点x0处有定义;
(2) lim f ( x)存在; x x0
(3) lim x x0
f (x)
f ( x0 ).
2.函数的性质

高等数学各章知识结构

高等数学各章知识结构

高等数学各章知识构造一.总构造可积性函数(高等数学研究的主要对象)连续性可微性一元函数一元微积分导数微分不定定积积分分空多元函数多元微积分偏导数全微分重间积解分析,几曲何线数列无量级数积分方程常微分方程数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学.微分学与积分学统称为微积分学.微积分学是高等数学最基本、最重要的构成部分,是现代数学很多分支的基础,是人类认识客观世界、探究宇宙神秘以致人类自己的典型数学模型之一.恩格斯( 1820-1895 )曾指出:“在全部理论成就中,未必再有什么像17 世纪下半叶微积分的发明那样被看作人类精神的最高成功了”.微积分的发展历史波折跌荡,撼人心灵,是培育人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘) .微积分是近代数学中最伟大的成就 ,对它的重要性不论做如何的预计都不会过分 .冯.诺伊曼注:冯 .诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最优秀的数学家之一,在纯粹数学、应用数学、计算数学等很多分支,从会合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献 .他与经济学家合著的《博弈论与经济行为》确立了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.微积分中重要的思想和方法:1.“极限”方法,它是贯串整个《微积分》一直。

导数是一种特别的函数极限;定积分是一种特别和式的极限;级数归纳为数列的极限;广义积分定义为常义积分的极限;各样重积分、曲线积分、曲面积分都分别是某种和式的极限。

所以,极限理论是整个《微积分》的基础。

只管上述各样观点都是某种形式的极限,可是它们都有各自独到和十分丰富深刻的内容,这是《微积分》最有魅力的地方之一。

2.“迫近”思想,它在《微积分》到处表现。

在近似计算中,用简单求的割线取代切线,用若干个小矩形面积之和取代所求曲边梯形面积;用折线段的长取代所求曲线的长;用多项式取代连续函数等。

大一同济高数知识点框架图

大一同济高数知识点框架图

大一同济高数知识点框架图在大一的学习生涯中,高等数学是一个必修课程,也是建立起学生数学基础的重要一环。

同济大学的高数课程内容丰富,涵盖了许多重要的数学概念和技巧。

为了帮助同学们更好地理解和掌握高数知识,我准备了一个简洁而有条理的框架图,以帮助大家系统地学习和复习高数知识。

第一章:函数与极限函数是高数的基石,在这一章中,我们将学习函数的概念、性质和分类。

了解函数的基本特征对解决实际问题非常重要。

在函数的基础上,我们将研究极限的概念和性质。

极限是描述事物趋势的重要工具,通过学习极限,我们能够更好地理解事物的发展趋势和变化规律。

第二章:导数与微分导数是函数变化率的度量,它在许多实际问题中具有重要的应用价值。

在这一章中,我们将深入研究导数的定义、运算规则和几何意义。

通过学习导数,我们能够推导出函数的各种性质,从而更好地理解函数的行为。

此外,我们还将学习微分的概念和性质,微分是导数的一个重要应用。

第三章:不定积分与定积分积分是对函数的反向运算,它在解决实际问题时具有重要的作用。

在这一章中,我们将学习不定积分的定义、基本性质和计算方法。

通过学习不定积分,我们能够找到函数的原函数,从而解决各种不定积分问题。

同时,我们还将学习定积分的概念和性质,定积分可以计算函数在一个区间上的累积变化量。

第四章:多元函数与多元函数的微分多元函数是高数的拓展部分,它涉及到多个自变量和一个因变量的函数关系。

在这一章中,我们将学习多元函数的概念、性质和分类。

了解多元函数可以帮助我们更好地理解多变量问题的本质。

同时,我们还将学习多元函数的偏导数和全微分,它们是多元函数微分的重要工具。

第五章:多元函数的极值与条件极值在这一章中,我们将学习多元函数的极值和条件极值问题。

通过求解多元函数的极值,我们能够找到函数取得最大和最小值的点,从而解决实际问题。

同时,条件极值是在一定条件下求解函数的极值问题,它在约束优化中有广泛的应用。

通过上述学习内容的框架图,我们可以清晰地了解高等数学的知识结构和逻辑关系。

大一高数知识点框架图

大一高数知识点框架图

大一高数知识点框架图高等数学是大一学生必修的一门重要课程,它是数学学科的一门基础课程,对于学习后续专业课程和培养科学思维具有重要意义。

在学习高等数学时,了解清晰的知识点框架图可以帮助学生更好地整理和掌握知识。

下面是大一高数知识点的一个简要框架图,供参考:1.函数与极限1.1 函数的概念与性质1.2 一元函数的极限1.3 极限的运算1.4 无穷小与无穷大1.5 函数的连续性2.微分与导数2.1 导数的概念与性质2.2 基本导数公式2.3 高阶导数与高阶导数公式2.4 隐函数与参数方程的导数 2.5 微分中值定理与导数的应用3.微分学的应用3.1 函数的单调性与极值3.2 函数的凹凸性与拐点3.3 曲线的渐近线与渐近曲线 3.4 已知导数求函数3.5 微分方程的基本概念4.不定积分4.1 原函数与不定积分的概念 4.2 基本积分法4.3 分部积分法4.4 有理函数的积分4.5 径向量积分与弧长5.定积分5.1 定积分的概念与性质5.2 定积分的计算方法5.3 反常积分5.4 物理应用:面积、体积、质量与重心6.微分方程6.1 微分方程的基本概念与分类6.2 一阶微分方程的常见类型6.3 二阶线性微分方程6.4 常系数线性微分方程6.5 微分方程的应用:生物、物理、工程等领域通过以上的知识点框架图,我们可以清晰地看到大一高数的主要知识点及其内部的关联关系。

在学习高等数学时,我们应该先打好基础,理解函数与极限的概念,掌握导数的运算法则,然后学习微分与积分的概念及其计算方法。

在学习的过程中,要注重理论联系实际,灵活应用所学知识解决实际问题,提高数学能力和运用能力。

总结起来,大一高数知识点框架图为函数与极限、微分与导数、微分学的应用、不定积分、定积分和微分方程。

这个框架图可以帮助我们清晰地了解高等数学的知识结构和学习路径,为我们的学习提供指导和支持。

在学习过程中,我们要注重理论与实践相结合,灵活运用知识解决问题,提高数学思维的能力和创新的能力。

(完整word版)高等数学辅导讲义.doc

(完整word版)高等数学辅导讲义.doc

第一部分函数极限连续函数、极限、连续函数极限连续函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质函数的奇偶极限的唯一函数极限的跳跃间断点性性唯一性函数的周期收敛数列的函数极限的第二类间断性有界性局部有界性点收敛数列的函数极限的保号性局部保号性数列极限四函数极限与数则运算法则列极限的关系极限存在准函数极限四则则运算法则夹逼准则两个重要极限单调有界准无穷小的比则较高阶无穷小低阶无穷小同阶无穷小等价无穷小历年试题分类统计及考点分布考点复合函数极限四则两个重要单调有界无穷小的合计运算法则极限准则阶年份19871988 5 3 8 19891990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 199819992000 5 5 200120022003 4 4 8 2004 4 4 20052006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27本部分常见的题型1.求分段函数的复合函数。

2.求数列极限和函数极限。

3.讨论函数连续性,并判断间断点类型。

4.确定方程在给定区间上有无实根。

一、 求分段函数的复合函数 例 1 (1988, 5 分) 设 f (x)e x2, f [ (x)]1 x 且 ( x) 0 求 (x) 及其定义,域。

解: 由 f (x) e x 2知 f [ ( x)] e2( x)1x ,又 (x) 0 ,则 ( x)ln(1 x), x 0 .例 2 (1990, 3 分) 设函数 f ( x)1, x1则 f [ f ( x)]10, x 1, .1, x1,练习题 : (1)设f (x)0, x1, g ( x)e x , 求f [ g( x)] 和 g[ f (x)] , 并作出这1, x 1,两个函数的图形。

高等数学各章节知识点框架

高等数学各章节知识点框架

第⼀一讲极限与连续分为如下部分:1.定义2.性质3.⽆无穷⼩小4.⽆无穷⼤大5.函数极限的计算6.数列列极限的计算7.应⽤用!定义(极限定义——四句句话)⼀一.⼀一共有25种定义(6x4+1)6:x的六种趋向⽅方式,分为局部性质与渐进性质(注意对于x不不等于x0)4:f的四种趋向⽅方式,有三种是⽆无穷的情况(注意:任取M,与⽆无界定义相区别)(宇哥基础笔记)1:数列列定义(注意n为⾃自然数,只有渐进性质)函数极限定义注意两点:1.x趋向于x0,x不不等于x02.若f在x0的去⼼心邻域⽆无定义,则极限不不存在,反之,极限存在,则推在x0的去⼼心邻域处处有定义数列列极限的定义也注意两点:1.xn的极限与其前有限项⽆无关(类似于⽆无穷级数的收敛性与前n项⽆无关)2.xn的极限为a互推xn的任意的⼦子列列的极限也为a,特别的,xn的极限为a互推xn的奇数项与偶数项的极限均为a(注意:要涵盖xn的所有项)⼆二.有关定义的考法(17宇哥强化笔记)1.定X,N以及那个什什么(打不不出来)(主要是利利⽤用极限语⾔言来证明极限)⽅方法是:从有关f的不不等式推导出有关x的不不等式,从⽽而来定,若f的式⼦子复杂,可通过适当的放缩。

2.定e(原谅我不不能打出来)来讨论f(x)的范围Note1.注意例例题中有个结论 f极限为a可以推出f的绝对值极限为a的绝对值(利利⽤用极限的定义与中学知识来证,同理理数列列极限也是)2.e要取正整数,不不能取变量量。

3.由极限来推出的f的范围,只是陈述事实,⽽而不不是取值范围。

4.即使给我整个世界,我也只在你的身边"性质及其考法三⼤大性质——唯⼀一性,局部有界性,局部保号性1.唯⼀一性——极限存在必唯⼀一,所以极限存在可以推左极限等于右极限Note:⼀一般分左右极限的情况1.分段点 2.e的∞ 3.arctan∞2.局部有界性(注意局部包括局部性质与渐进性质)定义(会证会⽤用)(利利⽤用了了中学知识,绝对值的不不等式)Note:该定义只是有界的充分⾮非必要条件,即函数有界不不⼀一定极限存在,如sinx关于函数f(x)的有界性的判定⽅方法:1.理理论法(中学知识):连续初等函数在闭区间内必有界2.计算法(⼤大学知识):函数在开区间内连续,再加上端点的极限存在,则可以推出该函数在区间内有界3.四则运算:当极限不不存在时,拆!(⚠)(有限个)有界+有界=有界(有限个)有界x有界=有界Note:初等函数在闭定义区间内连续有界(初等函数在定义区间内连续,在闭定义区间内连续,必有界)3.局部保号性(此处的局部也是包括局部和渐进性质)定义(会证会⽤用)拓拓展:脱帽法(没有=号)带帽法(有等号,尤其极限A必须有等号,如x分之1在x趋于∞)Note:1.极限的运算法则:能不不能拆,拆了了再说。

大一下高数知识点总结框架

大一下高数知识点总结框架

大一下高数知识点总结框架高等数学作为大学的一门重要基础课程,对于理工科学生来说尤为重要。

下面给出一份大一下学期的高等数学知识点总结框架,希望能帮助你更好地学习和理解高数知识。

第一章:函数与极限1.1 函数的定义和性质1.2 基本初等函数及其性质1.3 极限的概念与性质1.4 无穷小与无穷大1.5 极限运算法则1.6 极限存在准则1.7 无穷小的比较1.8 函数的连续性第二章:导数与微分2.1 导数的定义和性质2.2 基本初等函数的导数2.3 反函数的导数2.4 高阶导数与莱布尼茨公式2.5 隐函数与参数方程的导数2.6 微分的概念与性质2.7 微分中值定理及其应用2.8 泰勒公式与函数的近似计算第三章:积分与应用3.1 不定积分的定义和性质3.2 基本初等函数的不定积分3.3 数值积分与微积分基本定理3.4 定积分的概念和性质3.5 定积分的计算方法3.6 曲边梯形法和辛普森法3.7 定积分的应用(求面积、求体积)3.8 一致连续性与积分中值定理第四章:多元函数微分学4.1 二元函数的极限与连续性4.2 偏导数与全微分4.3 隐函数的偏导数4.4 多元函数的导数与方向导数4.5 多元函数的极值与条件极值4.6 多元函数的泰勒公式4.7 重积分的概念和性质4.8 二重积分的计算方法第五章:多元函数积分学5.1 三重积分的定义和性质5.2 三重积分的计算方法5.3 三重积分的应用5.4 重积分的曲线坐标和极坐标表示5.5 曲线、曲面和曲斜坐标系下的重积分5.6 曲线积分的概念和性质5.7 第一类曲线积分的计算方法5.8 第二类曲线积分的计算方法第六章:无穷级数6.1 数项级数的概念和性质6.2 正项级数收敛的判别法6.3 函数项级数的收敛性6.4 幂级数的收敛半径6.5 幂级数的性质与展开式6.6 傅里叶级数的定义和性质6.7 傅里叶级数的收敛条件6.8 傅里叶级数的展开和应用这是一份基于大一下学期高等数学知识点的总结框架,涵盖了函数与极限、导数与微分、积分与应用、多元函数微分学、多元函数积分学以及无穷级数等内容。

大学高等数学知识点框架

大学高等数学知识点框架

大学高等数学知识点框架
一、微积分
1.导数与微分
2.积分与不定积分
3.定积分与曲线下面积
4.微分方程
二、级数
1.数列与级数的概念
2.收敛与发散
3.数项级数
4.幂级数
三、微分方程
1.一阶微分方程
2.二阶线性齐次微分方程
3.二阶线性非齐次微分方程
4.变量分离法与齐次微分方程
四、空间解析几何
1.三维空间直角坐标系
2.平面与直线的方程
3.空间曲面与二次曲线
4.空间直线与平面的位置关系
五、多元函数微分学
1.多元函数的极限
2.偏导数与全微分
3.多元复合函数的求导法则
4.隐函数与参数方程的求导
六、重积分与曲线曲面积分
1.重积分的概念与性质
2.二重积分的计算
3.三重积分的计算
4.曲线曲面积分的计算
七、常微分方程
1.一阶常微分方程
2.二阶常微分方程
3.高阶常微分方程
4.常微分方程的解析解与数值解
八、线性代数
1.线性方程组与矩阵
2.矩阵的运算与性质
3.矩阵的秩与逆
4.特征值与特征向量
九、概率论与数理统计
1.基本概念与概率空间
2.随机变量及其分布律
3.多维随机变量与联合分布
4.参数估计与假设检验
以上是大学高等数学的主要知识点框架,涵盖了微积分、级数、微分方程、空间解析几何、多元函数微分学、重积分与曲线曲面积分、常微分方程、线性代数以及概率论与数理统计等内容。

通过深入学习这些知识点,可以建立起扎实的数学基础,为进一步学习相关学科打下坚实的基础。

《高等数学》(1-3章)教学教案(全)

《高等数学》(1-3章)教学教案(全)

高等数学教学教案第1章函数、极限与连续授课序号01(是一个给定的非空数集.若对任意的授课序号02的左邻域有定义,如果自变量为当0x x →时函数授课序号032n n ++)(1,2,n x =授课序号04授课序号05授课序号06高等数学教学教案第2章导数与微分授课序号01授课序号02授课序号03授课序号04高等数学教学教案第3章微分中值定理与导数的应用授课序号01授课序号02授课序号03!n +!n +()()!n x n +!n +!n +[cos (x θ+=21)2!!x n α-++)(1(1)!n n αθ-++()nx R x +授课序号04(1)在生产实践和工程技术中,经常会遇到求在一定条件下,怎样才能使“成本最低”、“利润最高”、“原材料最省”等问题.这类问题在数学上可以归结为建立一个目标函数,求这个函数的最大值或最小值问题.(2)对于实际问题,往往根据问题的性质就可以断定函数()f x 在定义区间内部存在着最大值或最小值.理论上可以证明这样一个结论:在实际问题中,若函数()f x 的定义域是开区间,且在此开区间内只有一个驻点0x ,而最值又存在,则可以直接确定该驻点0x 就是最值点,0()f x 即为相应的最值. 四.例题讲解例1.讨论函数32()29123f x x x x =-+-的单调增减区间. 例2.判断函数3()=f x x 的单调性.例3.设3,0,()arctan ,0.x x f x x x x ⎧-<=⎨≥⎩确定()f x 的单调区间.例4.证明:当0x >时,e 1x x >+. 例5.求函数32()(1)f x x x =-的极值.例6.求函数22()ln f x x x =-的极值.例7.求函数233()2f x x x =+在区间1[8]8-,上的最大值与最小值.例8.水槽设计问题有一块宽为2a 的长方形铁皮如图3.8所示,将宽所在的两个边缘向上折起,做成一个开口水槽,其横截面为矩形,问横截面的高取何值时水槽的流量最大(流量与横截面积成正比). 图3.8例9.用料最省问题要做一圆柱形无盖铁桶,要求铁桶的容积V 是一定值,问怎样设计才能使制造铁桶的用料最省? 例10.面积最大问题将一长为2L 的铁丝折成一个长方形,问如何折才能使长方形的面积最大.授课序号05授课序号06教学基本指标教学课题第3章第6节弧微分与曲率课的类型新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点曲率的计算公式教学难点曲率的计算参考教材同济七版《高等数学》上册作业布置课后习题大纲要求了解曲率和曲率半径的概念,会计算曲率和曲率半径。

高数学习资料(含讲义及全部内容)(一)

高数学习资料(含讲义及全部内容)(一)

第一 函数与极限函数和极限都是高等数学中最重要、最基本的概念,极值方法是最基本的方法,一切内容都将从这二者开始。

§1、 函 数一、集合、常量与变量1、集合:集合是具有某种特定性质的事物所组成的全体。

通常用大写字母A 、B 、C ……等来表示,组成集合的各个事物称为该集合的元素。

若事物a 是集合M 的一个元素,就记a ∈M (读a 属于M );若事物a 不是集合M 的一个元素,就记a ∉M 或a ∈M (读a 不属于M );集合有时也简称为集。

注 1:若一集合只有有限个元素,就称为有限集;否则称为无限集。

2:集合的表示方法:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧===+++======等。

中在点;为我校的学生;须有此性质。

如:中的元素必中,且,即:有此性质的必在所具有的某种性质合可表示为:,那么该集若知其元素有某种性质不到元素规律的集合,、列不出全体元素或找为全体偶数集;,,,然数集,为全体自,,,写出,如:元素的规律,也可类似、对无限集,若知道其;鸡一只猫,一只狗,一只的方法来表示,如:可用列举出其全体元素、若集合为有限集,就枚举法}),(),{(}{}0375{}{)(}642{}321{)(}{},10,,3,2,1{)(23D y x y x C x x B x x x x A A A x x A iii B A ii B A i 3:全体自然数集记为N,全体整数的集合记为Z,全体有理数的集合记为Q,全体实数的集合记为R 。

以后不特别说明的情况下考虑的集合均为数集。

4:集合间的基本关系:若集合A 的元素都是集合B 的元素,即若有A x ∈,必有B x ∈,就称A 为B 的子集,记为B A ⊂,或A B ⊃(读B 包含A)。

显然:R Q Z N ⊂⊂⊂.若B A ⊂,同时A B ⊂,就称A 、B 相等,记为A=B 。

5:当集合中的元素重复时,重复的元素只算一次.如:{1,2,2,3}={1,2,3}。

高等数学知识结构框架

高等数学知识结构框架

高等数学知识结构框架高等数学是大学数学的一门基础课程,它主要包括微积分和数学分析两个部分。

微积分主要研究函数、极限、导数、积分、微分方程等概念和方法;数学分析主要研究实数集、极限、连续性、一致连续性、可导性、不定积分、定积分、级数等概念和问题。

以下是高等数学中比较重要的知识结构框架及相关参考内容:一、函数与极限1. 函数的概念、基本初等函数以及函数的性质:韦达定理、复合函数、反函数等。

2. 极限的概念和性质:数列极限、函数极限、极限存在准则等。

3. 极限的计算方法:夹逼准则、单调有界数列的极限、洛必达法则等。

4. 无穷小量与无穷大量的定义与比较:无穷小量的阶、无穷大量的比较等。

二、导数与微分1. 导数的定义、性质和计算方法:导数的定义、导数的四则运算、高阶导数、隐函数与参数方程的导数等。

2. 函数的几何意义与微分中值定理:函数的单调性与极值点、罗尔中值定理、拉格朗日中值定理、柯西中值定理等。

3. 函数的图形与曲率:函数的图形、曲率、凹凸性与拐点。

三、不定积分与定积分1. 不定积分的定义与性质:原函数与不定积分的概念、基本积分表、换元积分法、分部积分法等。

2. 定积分的概念与性质:黎曼和与定积分的定义、定积分的性质、牛顿-莱布尼茨公式等。

3. 定积分的计算方法:变上限积分法、变量替换法、分段函数积分法等。

四、微分方程1. 常微分方程的基本概念与解法:一阶微分方程的基本概念、可分离变量方程、齐次方程、一阶线性非齐次方程等。

2. 高阶线性常微分方程的解法:二阶常系数齐次线性方程、二阶常系数非齐次线性方程、欧拉方程等。

五、级数1. 数列与级数:数列的极限、数列极限收敛性的准则、常数项级数、幂级数等。

2. 一致收敛性与函数级数:一致收敛性的概念、一致收敛级数的性质、Weierstrass判别法、Abel判别法、幂级数的收敛半径等。

以上是高等数学中较为重要的知识结构框架及相关参考内容,希望能为学习者提供一定的参考和指导。

高数专升本知识点目录总结

高数专升本知识点目录总结

高数专升本知识点目录总结第一章:集合与函数1.1 集合的基本概念1.2 集合的运算1.3 函数的概念1.4 函数的性质1.5 反函数和复合函数第二章:极限与连续2.1 数列的极限2.2 函数的极限2.3 极限的运算法则2.4 无穷大与无穷小2.5 连续的概念2.6 连续函数的运算法则第三章:导数与微分3.1 导数的定义3.2 导数的计算3.3 隐函数和参数方程的导数3.4 高阶导数和导数的应用3.5 微分的概念3.6 微分的近似计算第四章:不定积分4.1 不定积分的性质4.2 不定积分的基本公式4.3 特殊函数的不定积分4.4 不定积分的计算方法4.5 定积分的性质第五章:定积分5.1 定积分的定义5.2 定积分的计算5.3 特殊函数的定积分5.4 定积分的应用第六章:微分方程6.1 微分方程的基本概念6.2 微分方程的解的存在唯一性6.3 一阶微分方程的解法6.4 高阶微分方程的解法6.5 微分方程的应用第七章:多元函数微分学7.1 多元函数的极限7.2 偏导数7.3 全微分7.4 多元函数的极值7.5 条件极值第八章:重积分8.1 二重积分的概念8.2 二重积分的计算8.3 三重积分的概念8.4 三重积分的计算8.5 重积分的应用第九章:曲线曲面积分9.1 曲线积分的概念9.2 第一型曲线积分9.3 第二型曲线积分9.4 曲面积分的概念9.5 曲面积分的计算第十章:无穷级数10.1 级数的概念10.2 收敛级数的性质10.3 收敛级数的判别法10.4 幂级数的收敛半径10.5 函数展开为幂级数第十一章:向量代数11.1 向量的基本概念11.2 向量的线性运算11.3 空间直角坐标系中的向量11.4 点、线、面的向量方程11.5 向量的数量积和向量积第十二章:空间解析几何12.1 空间直角坐标系中的点、直线、平面12.2 空间中的曲线和曲面12.3 空间中的曲线积分12.4 空间中的曲面积分12.5 空间中的曲率和法线方程以上的知识点目录总结包括了高数专升本课程的所有重要知识点,涵盖了集合与函数、极限与连续、导数与微分、不定积分、定积分、微分方程、多元函数微分学、重积分、曲线曲面积分、无穷级数、向量代数以及空间解析几何等内容。

高数大一知识点总结结构图

高数大一知识点总结结构图

高数大一知识点总结结构图引言高等数学是大学阶段一门重要的数学课程,对于理工科学生来说尤为重要。

在大一的学习中,我们学习了高等数学的基本概念、理论和方法。

为了更好地掌握和复习这些知识,下面将对大一的高等数学知识进行总结,并呈现一个结构图,以便于理解和记忆。

一、函数与极限1. 函数的概念与性质a. 实函数与复函数b. 奇函数与偶函数c. 周期函数d. 反函数2. 极限的概念与性质a. 数列的极限c. 无穷小与无穷大3. 极限的计算方法a. 无穷小代换法b. 夹逼准则c. 极限的四则运算法则d. 微分中值定理二、导数与微分1. 导数的概念与性质a. 导数的定义b. 可导与连续的关系c. 导数的运算性质d. 高阶导数2. 基本初等函数的导数b. 指数函数的导数c. 对数函数的导数d. 三角函数的导数3. 微分的概念与应用a. 微分的定义b. 微分中值定理c. 泰勒公式d. 高阶导数应用三、积分与定积分1. 不定积分与定积分的概念a. 不定积分的定义与性质b. 定积分的定义与性质c. 积分中值定理2. 基本积分公式与方法a. 函数的原函数与不定积分b. 基本积分公式c. 换元积分法d. 分部积分法3. 定积分的应用a. 曲线长度问题b. 曲边梯形面积问题c. 平面图形的面积问题d. 物理应用问题四、微分方程1. 常微分方程的基本概念a. 微分方程的定义与分类b. 一阶线性微分方程c. 二阶线性常系数齐次微分方程d. 可降阶的高阶微分方程2. 常微分方程的解法a. 可分离变量方程b. 齐次方程c. 一阶线性非齐次方程d. 常系数齐次方程3. 常微分方程的应用a. 科学和工程问题b. 生态和经济问题c. 生物和医学问题结论高等数学是大学阶段一门重要的数学课程,通过对大一的高等数学知识进行总结,我们可以更好地掌握和应用这些知识。

通过结构图的形式,我们可以清晰地展示和记忆各个知识点的关系和内容。

希望这个知识点总结结构图能够对大一的高等数学学习提供一定的帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学各章知识结构
一.总结构
数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学.微分学与积分学统称为微积分学.
微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一.
恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘).
微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分.
冯. 诺伊曼
注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合著的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.
微积分中重要的思想和方法:
1.“极限”方法,它是贯穿整个《微积分》始终。

导数是一种特殊的函数极限;定积分是一种特殊和式的极限;级数归结为数列的极限;广义积分定义为常义积分的极限;各种重积分、曲线积分、曲面积分都分别是某种和式的极限。

所以,极限理论是整个《微积分》的基础。

尽管上述各种概念都是某种形式的极限,但是它们都有各自独特和十分丰富深刻的内容,这是《微积分》最有魅力的地方之一。

2.“逼近”思想,它在《微积分》处处体现。

在近似计算中,用容易求的割线代替切线,用若干个小矩形面积之和代替所求曲边梯形面积;用折线段的长代替所求曲线的长;用多项式代替连续函数等。

这种逼近思想在理论和实际中大量运用。

3.“求极限、求导数和求积分”是最基本的方法。

熟练掌握求极限、求导数和求积分的方法,学习《微积分》就不会遇到太多困难,甚至能做到得心应手。

4.“特色定理”是《微积分》的支柱。

夹逼定理、中值定理、微积分基本定理等是《微积分》中最深刻、最基本、最能体现《微积分》特色的定理,支撑起《微积分》的大厦。

5.“综合运用能力”是《微积分》学习的出发点和归宿。

充分注重综合运用极限概念与方法的能力、综合运用导数与积分相结合的各种方法的能力、综合运用定积分思想方法解决问题的能力、综合运用一元和多元相结合方法的能力、综合运用各种方法解决实际问题的能力。

二.函数、极限与连续
函数是现代数学的基本概念之一,是高等数学的主要研究对象. 极限概念是微积分的理论基础,极限方法是微积分的基本分析方法,因此,掌握、运用好极限方法是学好微积分的关键. 连续是函数的一个重要性态.
极限思想是由于求某些实际问题的精确解答而产生的. 例如,我国古代数学家刘徽(公元3世纪)利用圆内接正多边形来推算圆面积的方法----割圆术(参看光盘演示), 就是极限思想在几何学上的应用. 又如,春秋战国时期的哲学家庄子(公元4世纪)在《庄子.天下篇》一书中对“截丈问题”(参看光盘演示)有一段名言:“一尺之棰, 日截其半, 万世不竭”,其中也隐含了深刻的极限思想.
极限是研究变量的变化趋势的基本工具,高等数学中许多基本概念,例如连续、导数、定积分、无穷级数等都是建立在极限的基础上. 极限方法又是研究函数的一种最基本的方法.
客观世界的许多现象和事物不仅是运动变化的,而且其运动变化的过程往往是连绵不断的,比如日月行空、岁月流逝、植物生长、物种变化等,这些连绵不断发展变化的事物在量的方面的反映就是函数的连续性. 连续函数就是刻画变量连续变化的数学模型.
16、17世纪微积分的酝酿和产生,直接肇始于对物体的连续运动的研究. 例如伽利略所研究的自由落体运动等都是连续变化的量. 但直到19世纪以前,数学家们对连续变量的研究仍停留在几何直观的层面上,即把能一笔画成的曲线所对应的函数称为连续函数. 19世纪
中叶,在柯西等数学家建立起严格的极限理论之后,才对连续函数作出了严格的数学表述.
连续函数不仅是微积分的研究对象,而且微积分中的主要概念、定理、公式法则等,往往都要求函数具有连续性.
我们将以极限为基础,介绍连续函数的概念、连续函数的运算及连续函数的一些性质.
从15世纪初文艺复兴时期起,欧洲的工业、农业、航海事业与商贸得到大规模的发展,形成了一个新的经济时代。

而16世纪的的欧洲,正处在资本主义的萌芽时期,生产力得到了很大的发展,生产实践的发展对自然科学提出了新的课题,迫切要求力学、天文学等基础科学的发展,而这些学科都是深刻依赖于数学的,因而也推动了数学的发展。

在各类学科对数学提出的种种要求下,下列三类问题导致了微分学的产生:
(1)求变速运动的*时速度;
(2)求曲线上一点处的切线;
(3)求最大值和最小值。

这三类实际问题的现实原型在数学上都可归纳为函数相对于自变量变化而变化的快慢程度,即所谓函数的变化率问题。

牛顿从第一个问题出发,莱布尼兹从第二个问题出发,分别给出了导数的概念。

在理论研究和实际应用中,常常又会遇到这样的问题:当自变量x有微小变化时,求函数)
y=的微小改变量
f
(x
f
y-

∆.
=
+
f
(
)
)
(x
x
x
这个问题初看起来似乎只要做减法运算就可以了,然而,对于较复杂的函数)
(x
f,差值f-
x
+却是一个更复杂的表达式,不易求出其值。

一个想法是:我们设法将y∆表x

)
(
)
(x
f
示成x
的线性函数,即线性化,从而把复杂问题化为简单问题。

微分就是实现这种线性化的一种数学模型。

数学中的转折点是笛卡尔的变数. 有了变数,
运动进入了数学;有了变数,辩证法进入了数学;
有了变数,微分和积分也就立刻成为必要的了,而
它们也就立刻产生,并且是有由牛顿和莱布尼茨大
体上完成的,但不是由他们发明的.
-------恩格斯
数学发展的动力主要来源于社会发展的环境力量. 17世纪,微积分的创立首先是为了解决当时数学面临的四类核心问题中的第四类问题,即求曲线的长度、曲线围成的面积、曲面围成的体积、物体的重心和引力等等. 此类问题的研究具有久远的历史,例如,古希腊人曾用穷竭法求出了某些图形的面积和体积,我国南北朝时期的祖冲之、祖恒也曾推导出某些图形的面积和体积,而在欧洲,对此类问题的研究兴起于17世纪,先是穷竭法被逐渐修改,后来由于微积分的创立彻底改变了解决这一大类问题的方法.
由求运动速度、曲线的切线和极值等问题产生了导数和微分,构成了微积分学的微分学部分;同时由已知速度求路程、已知切线求曲线以及上述求面积与体积等问题,产生了不定积分和定积分,构成了微积分学的积分学部分.
五.微分方程
六.向量代数与空间解析几何。

相关文档
最新文档