应用数学基础 第二章-矩阵的相似标准形
矩阵的相似标准形
而
A (1)n A
A 12 n .
从定理可以看出, 若A的特征值有一个为零, 则|A|=0. 反之亦成立.
推论 矩阵A可逆A的特征值全不为零.
定理2.4 若n阶可逆方阵A的特征值为1, 2, …, n,则A1的特征值为
1 1 ,1 2 ,1 n . 证明: 由定理2.3, 1 1 ,1 2 ,1 n 有意义.
1
因此A的属于2= 3=1的全部特征向量是
k(1, 2, 1), (k 0).
例2 求矩阵
1 B 2
2 1
2 2
的特征值和特征向量.
2 2 1
解: 特征方程
1 2 2
E B 2 1 2 ( 1)2( 5) 0
2 2 1
B的特征值为 1= 2= 1, 3=5. 对二重特征值 = 1,解方程组(EB)x=0,
1 0 2
所以A的特征值为 1=2, 2= 3=1.
对1=2, 解齐次方程组 (2EA)x=0,
3 x1 x2 0 即 4x1 x2 0 一般解为
x1 取基础解系
0
x
0 0,
1
x1 0
x2
0
x3 x3
得A的属于λ1=2的全部特征向量为 k(0, 0, 1) (k 0).
注意:0和1不一定同时是幂等矩阵的特征值, 比如E是幂等矩阵, 但其特征值只有1.
2. 有关特征值的几个定理
定理2.1 相似的矩阵具有相同的特征多项式, 也有相同的特征值. 证明: 设A∽B, 则存在可逆矩阵P, 使得
B=P-1AP.
因此 E B P 1(E)P P 1 AP P 1(E A)P E A.
的特征向量.
问题:对任何方阵A, 是否有特征值呢? A有 特征值时,如何求出它的全部特征值和全部 特征向量呢?
相似矩阵的基本知识点
相似矩阵的基本知识点:
首先了解相似矩阵的由来,因为一个线性变换在不同基下矩阵就不同,我们就要考虑它们之间是不是有联系,这就引入了相似矩阵的概念。
定义(定理):设线性空间V 中线性变换A 在两组基n εεε,.....,21和n ηηη,.......,21下的矩阵分别为A 和B ,从n εεε,.....,21到n ηηη,.......,21的过渡矩阵是X ,于是AX X B 1-=。
我们就称矩阵A 和矩阵B 是相似的。
相似是矩阵间的一种关系,具有三种特性:
1. 反身性:即A 与它自身是相似的。
2. 对称性:即A 与B 相似,则称B 与A 相似。
传递性:即A 与B 相似,B 与C 相似,则称A 与C 相似 练习:
1如何来证相似矩阵有相同的特征多项式?
证明:设A 与B 相似,则有可逆矩阵P ,使得
B AP P =-1 于是A E P A E P AP P E B E -=-=-=---λλλλ11。
这表明线性变换关于不同基的矩阵可以不同。
但这些矩阵有相同的特征多项式)(λf ,故)(λf 是由线性变换确定的。
由此称)(λf 为线性变换的特征多项式。
2相似矩阵有相同的特征多项式
证明:设A B ,即有可逆矩阵X ,使得1B X
A X -=,于是 ()111E
B E X
A X X E a X X E A X E A λλλλλ----=-=-=-=-
3一个线性变换在不同基之下的矩阵相似。
第二章第二章矩阵的相似及应用矩阵的相似及应用
x1 x2 = ( α 1 , α 2 , Λ , α n )A Μ x n
x1 x2 λξ = (α 1 , α 2 , Λ , α n )λ Μ x n
T ξ = λξ
T(α1,α2 ,Λ ,αn )x = λ(α1,α2 ,Λ ,αn )x
(α1,α2 ,Λ ,αn )Ax= (α1,α2,Λ ,αn )λx
,α
n
x1 x2 其中 x = Μ x 坐标。 n
x1 x2 ( A λ I ) Μ x n
= 0
(2.1.4)
是特征向量 ξ 在基
s 下的
(2.1.4)有非零解 x 的充分必要 条件是:
( λ ) = det( λ I A ) = 0
定义2.1.2 λ I A 为矩阵 A 的特征矩阵,
T
酉矩阵 U ,使得 u1是它的第1列量。
定理 2.1.6
(Schur定理) A 设 n 为
阶方阵,λ1 ,λ 2 ,Λ , λn 是 A 的特征值,不论 它们是实数还是复数,总存在相似酉矩 阵 U 使得
A = UTU H ,
其中
T
为三角矩
λ 阵,对角线上的元素1 ,λ 2 ,Λ , λn
是
.
推论 1
x1 x1 x2 x2 (α 1 , α 2 , Λ , α n )A = (α 1 , α 2 , Λ , α n )λ Μ Μ x x n n (2 1 . 3) .
(2.1.3)成立可以等价于 α 1 , α 2 , Λ
ξj 在变换
T 下满足:
Tξ j = λ jξ j
定义2.1.1 ξ ≠ 0 是线性空间 V 中的 向量,如果对于线性变换
Tξ = λξ λ ∈P
两矩阵相似的充分必要条件
两矩阵相似的充分必要条件1. 嘿,你知道吗,两矩阵相似的充分必要条件之一就是它们有相同的特征多项式啊!就像两个小伙伴,有一样的性格特点一样。
比如矩阵 A 和矩阵 B,它们的特征多项式一模一样,那它们就是相似的呀!2. 哇哦,要是两个矩阵的秩相等,这也是它们相似的一个重要条件呢!这就好像比赛中两个人处在同一水平线上,矩阵 A 和矩阵 B 的秩一样,那它们很可能是相似的哟!3. 嘿呀,两矩阵的行列式值之比为常数,这也能说明它们相似呀!好比是两个物品的价值比例固定,矩阵 C 和矩阵 D 就是这样,那它们不就相似了嘛!4. 哎呀呀,若存在可逆矩阵 P,使得一个矩阵能通过 P 变换成另一个矩阵,这就是相似的标志呀!就如同一个人经过某种神奇的转变变成了另一个样子,矩阵 E 和矩阵 F 就是这样神奇地相似啦!5. 嘿,两矩阵的特征值完全相同,这可是相似的关键哦!就像两个人有着完全一样的喜好,矩阵 G 和矩阵 H 的特征值相同,那它们肯定相似呀!6. 哇,要是两个矩阵对应的元素成比例,这也是相似的条件呢!这就好像是两个相似的图形,矩阵 I 和矩阵 J 的元素有着这样的关系,那它们当然相似咯!7. 哎呀,两矩阵的迹相同也能说明它们相似呢!就跟两个人走过的路程一样长似的,矩阵 K 和矩阵 L 的迹一样,不就相似了嘛!8. 嘿哟,若两个矩阵的不变因子相同,那它们就是相似的呀!这就好像是两件东西有着相同的本质特征,矩阵 M 和矩阵 N 就是这样呢!9. 哇塞,两矩阵的初等因子相同也是相似的必要条件哦!就仿佛是两首歌有着相同的旋律,矩阵 O 和矩阵 P 的初等因子相同,那它们就是相似的呀!10. 嘿,你想想,两矩阵要是满足了这些条件,它们不相似都难呀!这就像是拼图的碎片找到了对应的位置,一切都那么刚刚好!所以呀,这些条件真的很重要呢!我的观点结论:两矩阵相似的充分必要条件有很多,每一个都像是打开相似之门的一把钥匙,只有都满足了,才能确定两矩阵是相似的。
5.11矩阵的相似标准形3
二、性质
A、B为f 在V 的 不同基下的矩阵。
f 在不同基下的矩阵相似,而相似的矩阵具有相
同的特征多项式,故可称
为f 的特征多项式。
n=2时:
n=3时:
n=3时:
一般情况时:
=
补充
证: tr(AB) tr( BA )
证明:(1)
A ,B 为列向量时, (2)特别地,
取 1 = 1 1,1,1 ,由施密特正交化方法:
再令
1 1 1 1 = , 1 , , 1 3 3 3 2 1 1 2 = , 2 , , 2 6 6 6
3 1 1 = 3 , ,0 , 3 2 2
三、化零多项式与最小多项式
一、Schur引理
作业:
2 1 1 1、设 A 4 3 1 , 0 0 2
求A的特征值与特征向量.
2、设A是3阶矩阵, 它的3个特征值为 1 1, 2 1,
3 2, 设B A3 5 A2, 求 B ; A 5 I .
的多项式函数);
1 1 当 可逆时, 是 的特征值;并且X 仍是矩阵 A A 4. 的 kA, Am , f A, A1 分别对应于特征值 k , m , f , 1
的特征向量;
§3.2 Schur引理、Hamilton-Cayley定理
一、 Schur引理
二、Hamilton-Cayley定理
1 解得 x1 x 2 , 所以对应的特征向量可 取为 p1 . 1 故相应于1 2的全体特征向量为kp1 (k 0)
当 2 4时,由 3 4 1 x1 0 1 1 x1 0 ,即 , 1 3 4 x 2 0 1 1 x 2 0 1 解得x1 x2 , 所以对应的特征向量可取为p2 . 1 故相应于1 4的全体特征向量为kp2 (k 0)
相似矩阵的定义及性质
,
2
则有
P 1 AP
1
1
.
即矩阵P 的列向量和对角矩阵中特征值的
位置要相互对应.
13
把一个矩阵化为对角阵,不仅可以使矩阵运算简化,而且 在理论和应用上都有意义。
可对角化的矩阵主要有以下几种应用:
1. 由特征值、特征向量反求矩阵
例3:已知方阵 A 的特征值是 1 0,2 1,3 3,
二. 相似矩阵的定义及性质
定义: 设 A, B 都是 n 阶矩阵,若存在可逆矩阵P,使得 P1AP B
则称矩阵 B是矩阵A 的相似矩阵,
或称矩阵 A 与矩阵 B 相似,记作 A B 对 A进行运算 P-1 AP 称为对 A 进行相似变换, 可逆矩阵 P 称为把矩阵 A 变成矩阵 B 的相似变换矩阵。
即 A 与 B 相似。
25
再求乘积即为行列式的值。
设 f (x) x 3
A 的特征值是 2,4, ,2n 即 i 2i, A 3E 的特征值是 f (i ) 2i 3
n
A 3E 2i 3 (1) 1 3 (2n 3) i 1
20
方法2:已知 A有 n 个不同的特征值,所以 A 可以对角化,
2 3
1 1,2 2. A 可以对角化。
当 1 1 时, 齐次线性方程组为 A E x 0
系数矩阵
A
E
5 2
5 1
2
0
1
0
1
x1 x2
令x2 1得基础解系:
p1
相似矩阵的判定及其应用
相似矩阵的判定及其应用摘要:相似矩阵是高等代数中重要的知识点,在本文中,我们先给出了判定两个矩阵相似的三种方法,然后我们知道矩阵相似于对角矩阵是高等代数中一个重要而基本的问题,我们给出怎样判断矩阵A是否可对角化,然而我们知道一个矩阵未必相似于对角矩阵,但是在复数域上任何一个矩阵都与一个若而当形矩阵相似,因此我们给出了矩阵的相似标准形及其应用;最后,我们给出了矩阵相似在实际生活中(尤其是考研中)的应用.关键字:相似矩阵,对角矩阵,若尔当标准形1.相似矩阵及其判定这一节我们在系统归纳相似矩阵的一些相关概念和性质的基础上,着重介绍相似矩阵的几种判定方法。
并通过一些具体的例子加以说明。
下面我们首先介绍相关的概念和性质。
定义1设A,B为数域P上两个n级矩阵,如果可以找到数域P上的n级可逆矩阵X,使得B=1X A X,就说A相似于B,记BA~过渡矩阵矩阵等价 特征矩阵 行列式因子 不变因子 初等因子相似是矩阵之间的一种关系,这种关系具有三个性质: ⑴反身性: A A ~⑵对称性:如果B A ~,那么A B ~⑶传递性:如果B A ~,C B ~,那么C A ~在此基础上,定理1.1 线性变换在不同基下所对应的矩阵相似。
我们从下面的例1来看这个定理的应用。
例112312312311112A B A a εεεεεεεεεεεεε⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ΛΛΛΛΛ=++1112133332312122232322213132331312112131a a a a a a 设=a a a ,a a a 是数域P 上的矩阵,证明A ,B 相似.a a a a a a 证明:设数域P 上的三维线性空间V 的一个线性变换在V 中的一组基,,下的矩阵为A ,(,,)=(,,)a a 即:32123312333212321132********,,a B A B a εεεεεεεεεεεεεεεεεεεεεεε⎧⎪Λ=++⎨⎪Λ=++⎩Λ=++⎧⎪Λ=++⎨⎪Λ=++⎩Λ⎡⎤⎢⎥=Λ⎢⎥⎢⎥⎣⎦12223213233333231332221231213332312322211312a a a a a a a a a 于是a a a a a 在基,下的矩阵a a a a a a ,为同一线性变换在两组不同的基下的矩阵,a a 由定理1A B 可得:同一线性变换在两组不同的基下的矩阵相似,可得,相似.例2 设3P 的线性变换σ将基1α=(-1,0,-2),2α=(0,1,2)3α=(1,2,5)变成σ(1α)=(2,0,-1),σ(2α)=(0,0,1),σ(3α)=(0,1,2)求σ在基1β,2β,3β下的矩阵,其中1β=(-1,1,0),2β=(1,0,1),3β=(0,1,2). 解题步骤:(1)先求出σ在基1α,2α,3α下的矩阵A ;(2)求出由基1α,2α,3α到1β,2β,3β的过渡矩阵P ; (3)求出σ在基1β,2β,3β下的矩阵B =1P AP -.解:我们从平常的解题中知道,我们通常取标准基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)为中介,若令M =200001112⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦ , N = 101012225-⎡⎤⎢⎥⎢⎥⎢⎥-⎣⎦, T =110101012-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦则σ(1α,2α,3α)=(1ε,2ε,3ε)M (1α,2α,3α)=(1α,2α,3α)N (1β,2β,3β)=(1ε,2ε,3ε)T ,故σ在基1α,2α,3α下的矩阵1A N M -=,并且由基1α,2α,3α到基1β,2β,3β的过渡矩阵1P N T -=,从而σ在基1β,2β,3β下的矩阵1111221421211B P AP T NN MN T -----⎡⎤⎢⎥===-⎢⎥⎢⎥--⎣⎦定理1.2 设A ,B为数域P 上两个n ⨯n 矩阵,它们的特征矩阵E A λ-和E B λ-等价则可得A 与B相似.想保留证明过程,可以把它作为用定义1来判定矩阵相似的例子。
矩阵的相似标准形
a11 a12 a13 a14 a15
a21
a22
a23
a24
a25
a31
a32
a33
a34
a35
a41 a42 a43 a44 a45
a51 a52 a53 a54 a55
a21 a22 a24 a31 a32 a34 a51 a52 a54
金品质•高追求 我们让你更放心! 12
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
主子式与子式
a11 a12 a13 a14 a15
a21
a22
a23
a24
a25
a31 a41
a32 a42
a33 a43
a34 a44
a35 a45
a51 a52 a53 a54 a55
a22 a23 a25 a32 a33 a35 a52 a53 a55
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
例4
设A
3 3
4 5
.求A1000.
C() 2 2 3
金品质•高追求 我们让你更放心! 19
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
例5
1 2 2 已知A 1 0 3,求A100。
1 1 2
C() ( 1)( 1)2
金品质•高追求 我们让你更放心! 20
金品质•高追求 我们让你更放心! 25
返回
◆语文•选修\中国小说欣赏•(配人教版)◆
最小多项式
定义:矩阵A的次数最低的、最高次项系数为一的化零多项式 称为A的最小多项式.
性质1:若m(x),(x)分别是矩阵A的最小多项式、化零多项式, 则m(x) | (x).
矩阵相似的若干判别法及应用知识讲解
矩阵相似的若干判别法及应用本科生毕业论文矩阵相似的若干判别法及应用学号: 2011562010姓名:邵坷年级: 2011级本科班系别:数学系专业:数学与应用数学指导教师:由金玲完成日期: 2015 年4月30日承诺书我承诺所呈交的毕业论文(设计)是本人在指导教师指导下进行研究工作所取得的研究成果.据我查证,除了文中特别加以标注的地方外,论文中不包含他人已经发表或撰写过的研究成果.若本论文(设计)及资料与以上承诺内容不符,本人愿意承担一切责任.毕业论文(设计)作者签名:日期:年月日目录摘要 (I)Abstract (II)前言 (1)第一章基本概念 (2)1.1 矩阵 (2)1.1.1 矩阵的概念 (2)1.1.2 矩阵的性质 (2)1.2 矩阵相似 (3)1.2.1矩阵相似的概念 (3)1.2.2 矩阵相似的性质 (4)第二章矩阵相似的判别 (5)2.1 特征值与特征向量法判定 (5)2.1.1 特征值和特征向量的定义及求法 ............................................. 错误!未定义书签。
2.1.2 特征值和特征向量的基本性质与矩阵相似的判定 (5)2.2用初等变法换判定 (8)2.3 应用分块矩阵相似判定 (11)第三章矩阵相似的应用 (14)3.1 利用相似变换把方阵对角化 (14)3.2 矩阵相似性质的简单应用 (15)3.3 矩阵相似在实际生活中的应用 (15)结论 (17)参考文献 (18)致谢 (19)摘要相似矩阵是高等代数课程范围内,一个很重要的基本问题,并且矩阵相似是矩阵中很重要的一种关系.本文从矩阵的基本理论出发,以定性分析法,以综述的形式总结了几个重要的判定矩阵相似的定理和结论.通过矩阵的特征值与特征向量、矩阵的对角化、可逆矩阵、矩阵的初等变换和分块矩阵对矩阵相似进行判别,并运用例证对每一种判别法加以说明;另外,还对相似矩阵的一些应用进行了介绍,以便对矩阵的相似有更进一步的了解.关键词:特征值;特征向量;相似矩阵;判别;分块矩阵AbstractThe similarity of matrix is one of the most important problem within the area of the advanced algebra. In addition, the similarity of matrix is an elementary relationship between the matrixes.This paper reviews several important criteria which are used to judge the similarity of matrix. These criteria are generally based on the calculation of the Eigen value and Eigen vector, the diagonalization of matrix, the invertible transformation of matrix, the elementary transformation of matrix, and the partition of the matrix. Further, the examples follow and elucidate the counterpart criteria. At the end, the application of the similarity of matrix is given to deepen the understanding.Keywords: Eigen value;Eigen vector;Similarity of matrix;Distinguish;Partitioned matrix前言在数学中,矩阵就是一个平面上的数阵,矩阵理论的起源可追溯到18世纪,在以后的发展中,又相应的产生了许多理论知识,例如初等矩阵,矩阵的秩,矩阵的特征值与特征向量等.其中,矩阵相似理论也是在矩阵的发展之后才进一步发展和应用的起来的.矩阵相似的好处很多,最大的好处是通过相似可以让任何一个矩阵变为若当标准型.相似矩阵间有很多相同的性质,比如秩,矩阵对应的行列式,迹(对角线元素之和),特征值,特征多项式,初等因子都相同.一个矩阵很重要的一点就是它的特征值,通过相似变换,可以转而研究一个结构简单得多的矩阵的特征值的性质.利用矩阵相似的一些性质,可以让我们在解决一些特殊和复杂的问题时更加的简便,而且矩阵相似在实际生活中同样有着巨大的作用.本文主要介绍了矩阵的各种性质和特点,什么是矩阵相似,以及矩阵相似的判断和矩阵相似的一些应用.在第一章中,我们主要介绍了矩阵以及由它延伸出来的相关理论知识,例如矩阵的相似及它的一些简单的性质;在第二章中,着重介绍和总结了矩阵相似的三种判别方法.借助矩阵的特征值与特征向量将矩阵对角化,进而来对矩阵进行相似的判别,是对相似矩阵性质的综合运用,理论及方法都较为简单便于理解和掌握;初等变换法逻辑性强、理论系统;利用分块矩阵判别矩阵的相似,是对特型矩阵相似的一种判别法,较为简洁,但有局限性.第一章 基本概念1.1 矩阵矩阵是现代数学中极其重要、应用非常广泛的一个重要内容.利用这一数学工具,可以把所研究的多数据、多数量关系的问题化成简明的易于理解和分析的形式.1.1.1 矩阵的概念定义1.1 由t ⨯s 个数),2,1,,,2,1(n j m i a ij ==排成的s 行t 列的数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 我们把它称为s 行t 列矩阵,简t s ⨯阵矩,其中ij a 称为矩阵A 的第i 行第j 列元素;如果矩阵A 的行数和列数相等,则我们也把矩阵A 叫做方阵A .定义1.2 如果一个矩阵的元素全为零,我们就称之为零矩阵,记为mn O ,我们也可以简单的记为O .定义1.3 如果方阵A 中的元素能够满足条件)(0j i a ij ≠=,则我们就把方阵叫做对角阵.定义1.4 如果一个n n ⨯矩阵除了主对角线上的元素,别的元素都是0,且主对角线是1的元素⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001 我们把它称之为n 级单位矩阵,记作n I ,一般情况下简写为I .1.1.2 矩阵的性质定义1.5 设ms ik a A )(=,sn kj b B )(=,那么矩阵mn ij c C )(=,其中∑==++++=sk kj ik sj is j i j i j i ij b a b a b a b a b a c 1332211 (1-1)我们将其称之为A 与B 的乘积,记为AB C =.注意,在乘法预算中方阵,要求前面方阵的行与后面方阵的列数位相同 定义1.6 由方阵A 中的元素保持其原来相对的位置不变而构成的行列式称为方阵A 的行列式,记作A 或A det .定义1.7 对于数域P 上的n 阶方阵A ,如果满足0≠A ,则我们称其为非退化的;反之我们称它为退化的.定义1.8 对于n 级方阵A ,如果有一个n 级方阵B ,使得I BA AB == (1-2)成立,我们就称方阵A 是可逆的,这里的I 是n 级单位矩阵.我们就称方阵A 是可逆的,这里的I 是n 级单位矩阵.定义1.9 如果有n 级方阵B 适合(1-2),那么我们就把方阵B 叫做方阵A 的逆矩阵,记作1-A .引理1.1 0≠A 是n 阶方阵可逆的充要条件.定义1.10 设ij A 是矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211 中元素ij a 的代数余子式,则矩阵 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n A A A A A A A A A A 212221212111* 就是矩阵A 的伴随矩阵.定理1.1 如果A 方阵是非退化的,那么它是可逆的;反之方阵A 可逆,则它也一定是非退化的有 *11A dA =- (0≠=A d ). (1-3)定义1.11 矩阵的行秩是指以矩阵每一行的元素作为行向量而构成的行向量组的秩;矩阵的列秩是指以矩阵每一列的元素作为列向量而构成的列向量组的秩.定理1.2 矩阵的行秩和列秩相等.因为矩阵的行秩和列秩相等,所以我们将行秩和列秩统称为矩阵的秩,矩阵A 的秩记为)(A R .1.2 矩阵相似相似的矩阵有很多共同的性质,所以只要从与A 相似的矩阵中找到一个特别简单的矩阵,只需通过对这个简单矩阵性质的研究就可以知道A 的性质.1.2.1 矩阵相似的概念定义1.12[1] 有A ,B 方阵在数域F 上,若是F 上有n 阶可逆方阵T 使等式:AT T B 1-=成立,那么就说B 与A 相似,并且写作.~B A定义1.13[1] 设)(λij a )...,2,1,,...,2,1(n j m i ==是数域F 上的多项式,以)(λij a 为元素的n m ⨯矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=)(...)()(............)(...)()()(...)()()(212222111211λλλλλλλλλλmn m m n n a a a a a a a a a A称为λ矩阵.记[]()(n m P A ⨯∈λλ[]nm P ⨯λ表示数域∈P 的λ矩阵的全体).定义1.14 方阵上的相似关系~与数域K 上的n 阶方阵之间的关系是互推的,对任何n n K A ⨯∈,存在集合[]{}B A K B B A n n ~,|~⨯∈=则我们可称矩阵A 形成的相似(~)等价类. 1.2.2 矩阵相似的性质性质1.1 反身性:由于AI I A 1-=所以每一个n 级方阵都是和自己相似的.即A A ~.性质1.2 对称性:如果B A ~,那么 A B ~ ;如果B A ~ ,那么 有X ,使TX X B 1-=令1-=X Y就有BY Y XBX A 11--==所以A B ~.性质1.3 传递性:如果B A ~,C B ~,那么C A ~.事实上,由AT T B 1-=和BU U C 1-=得)()(111TU A TU ATU T U C ---== (2-1) 由等式AT T B 1-=可知,对于n 维向量空间上的两个线性变换的基它们相似.矩阵相似还有具有如下一些性质.(1)相似矩阵的行列式相等;(2)相似矩阵有相同的秩;(3)相似矩阵有相同的可逆性,且它们可逆时,它们的逆矩阵也相似;(4)相似矩阵的幂仍相似;(5)相似矩阵有相同的特征值.第二章 矩阵相似的判别研究矩阵相似的好处很多,最大的好处是通过相似变换可以让任何一个矩阵变为若当标准型.若当标准型是尽可能最简单的一种矩阵,这种矩阵在运算上有许多方便之处.另一种好处是矩阵相似有许多相同的属性,这样可以将对形式复杂矩阵的研究转化为对简单形式矩阵的研究.本章给出三种判别矩阵相似的方法.2.1 特征值与特征向量法判定矩阵的特征值与特征向量作为一个极为重要的数学概念,它在数学中有着最为广泛的应用.应用特征值与特征向量将矩阵对角化,进而做矩阵相似的判断,是较为常用的、基本的判别矩阵相似的方法.2.1.1 特征值和特征向量定义及求法矩阵的特征值与特征向量是线性代数中的两个基本概念,是判定矩阵相似的工具之一.定义2.1[1] 我们假设A 为n 阶方阵,如果有复数λ及n 维非零列向量,x 得x Ax λ= (1-1) 或者0)(=-x A E λ(1-2)那么把λ看作是A 的特征向量,而x 则是λ的特征向量.求n 阶矩阵A 的特征值与特征向量有一般如下步骤:第一步:我们应先求出矩阵的特征多项式||E A λ-;第二步: 那么接下来我们应需要知道||A E -λ0=的所有根值n λλλ,,,21 并且n λλλ,,,21 便是矩阵的所有特征值;假如i λ是特征方程的单根,则称i λ为A 的单特征值;若是j λ是特征方程的k 重根,那么A 的k 重特征值是j λ,并且j λ的重数是k .第三步:对A 的相异特征值中的每个特征值i λ,再求得齐次线性方程组0)(=-A E i λ(1-3)的一个基础解系j ik i i ξξξ,,,21 ,则有j ik i i ξξξ,,,21 即为对应于特征值i λ的特征空间的一个基,则有A 的属于i λ的全部特征向量为j j ik k i i c c c x ξξξ+++= 2211其中j k c c c ,,,21 是不全部为零的任意常数.2.1.2 特征值和特征向量的基本性质与矩阵相似的判定性质2.1 设n n ij a A ⨯=)(的全部特征值为n λλλ,,,21 ,则存在着||,21121A a n ni ii n ==+++∑=λλλλλλ在这里咱们可以利用性质1.3.1去简化特征值的问题的一些相关的运算. 性质2.2 如果λ是方阵A 的特征值,x 是相应的特征向量矩阵,然后任意正整数k ,有x 是k A 的特征值的特征向量且特征值为k λ.性质2.3 假使λ是可逆矩阵A 的一个特征值,若λλ1,0≠为1-A 的一个特征值,且λ||A 为*A 的一个特征值.性质2.4 如果有i x ),,2,1(m i =是方阵A 的相互存在差别的特征值m λλλ,,,21 的特征向量,那么存在着线性无关的向量组m x x x ,,,21 .并且,如果i λ的线性无关特征向量为i ik i i x x x ,,,21 ),,2,1(m i =,那么向量组,,,,11211i k x x x m mk m m k x x x x x x ,,,,,,,,21222212为线性无关.性质2.5 假使0λ是方阵A 的k 重特征值,那么0λ有不多过k 的个数的性无关的特征向量.定理2.1[6] 设存在着两个n 阶的方阵A 与B ,它们有n 个互不相同的特征值,并且它们两个的特征值是完全一样的,那么则矩阵A 与矩阵B 相似.证明 假使n λλλ,,, 21是A 的n 个互不相同的特征值,那么存在着可逆的 方阵1P ,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ=-n AP P λλλ 21111 又因为方阵B 的特征值也是n λλλ,,, 21,那么则会有2P 可逆矩阵,使得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=Λ=-n BP P λλλ 21212 所以212111BP P AP P --=.而()()1211121121112-----=P P A P P P AP P P ,即存在可逆矩阵P P P =-121,使得B AP P =-1,而矩阵A 与矩阵B 相似.定理2.2 存在着n 阶方阵A ,且它的每一个i S 重特征值i λ,能使得秩()i i S n A E -=-λ那么A 相似于对角矩阵,否则不相似.例2.1 证明矩阵⎪⎪⎪⎭⎫ ⎝⎛---=122212221A 与⎪⎪⎪⎭⎫ ⎝⎛----=30241112065B 相似.解 A 的特征多项式为()()()311122212221--+=------=-λλλλλλλA E所以A 的全部特征值为3,1,1321==-=λλλA 的属于特征值3,1,1-的全部特征向量分别为⎪⎪⎪⎭⎫ ⎝⎛-=0111α ⎪⎪⎪⎭⎫ ⎝⎛-=1112α ⎪⎪⎪⎭⎫ ⎝⎛-=1103α.若令(123,,)P ααα=⎪⎪⎪⎭⎫ ⎝⎛-=300011001,则有⎪⎪⎪⎭⎫ ⎝⎛-=-3000100011AP P ,而B 的特征值为 ()()()311--==-λλλλB E所以B 的全部特征值为3,1,1321==-=λλλB 的属于特征值3,1,1-的特征向量为⎪⎪⎪⎪⎭⎫ ⎝⎛-=13211β ⎪⎪⎪⎭⎫ ⎝⎛-=1222β ⎪⎪⎪⎭⎫ ⎝⎛-=1433β 令⎪⎪⎪⎪⎭⎫ ⎝⎛---=1114232321Q ,则有⎪⎪⎪⎭⎫ ⎝⎛-=-3000100011BQ Q .显然 BQ Q AP P 11--=,()()11111-----==QP B QP BQP PQ A 记⎪⎪⎪⎭⎫ ⎝⎛==-1011111231QP U ,有BU U A 1-=,所以A 与B 相似.例题2.2 证明下方矩阵是否相似于对角矩阵.(1)⎪⎪⎪⎭⎫ ⎝⎛=16-3-05-3-064A (2)⎪⎪⎪⎭⎫ ⎝⎛=300130013B解 (1)由于()()()212+-=λλλA f ,所以A 的特征值是11=λ(重数1S 2=),22-=λ(重数12=S ).又由()1231S n A E r -=-==-,()==--22A E r 113S n -=-可知矩阵A 相似于对角矩阵.(2)因为()()33-=λλB f ,所以B 的特征值是3=λ(重数3=S ),又由于()03323=-=-≠==-S n r A E r ,故B 不相似于对角阵.2.2 用初等变换法判定引理2.1 如果)(λA 是数域P 上的一个λ方阵,那么有数域P 上的可逆λ方阵)(λV ,使得)(λA )(λV 为上三角方阵.引理2.2 如果A ,B 是数域上的两个n 级方阵,那么A 与B 相似的充要条件是数域P 上会有两个可逆的λ方阵)(),(λλV U ,能让A E VB E U -=-λλλλ)())(( (1-1)并且A 与B 相似时有B AT T =-1,使得)(A U T i =是)(λU 在A =λ时的左值. 定理2.3[12] 假使A ,B 是数域上的两个n 级方阵,那么方阵A 与B 相似的充要条件是在数域P 上有可逆的λ矩阵)(),(),(21λλλV V U ,成立12()()()()()U E B V E A V λλλλλ-=- (1-2)有方阵A 与B 相似时有B AT T =-1,并且)(A U T i =是)(λU 在A =λ时的左值. 证明 充分性:当存在)(),(),(21λλλV V U ,可逆,我们把(1-2)式两端同时都在右边乘上12)(-λV 有,)()())((121A E V V B E U -=--λλλλλ令121)()()(-=λλλV V V ,那么)(λV 可逆,且A E VB E U -=-λλλλ)())((,由引理2.2可知,A 与B 相似.必要性:可在(1-1)式中让E V V V ==)(),()(21λλλ那么可得(1-2)式.在A 与B 相似时,我们可以通过引理2.2得出B AT T =-1,那么)(A U T i =是)(λU 在A =λ时的左值.定理2.4[6] 如果有两个n 阶矩阵A ,B 存在于数域P 上,则存在可逆的λ方阵)(),(),(),(2121λλλλV V U U 在数域P 上,他们是矩阵A 与B 相似的充分必要条件 可以使得:)())(()())((2211λλλλλλV A E U V B E U -=- (1-3)当方阵A 与B 相似时会有有B AT T =-1,同时有)(A U T i =是)()()(112λλλU U U -=在A =λ时的左值.证明 充分性:假使)(),(),()(2121λλλλV V U U 可逆,当我们把(1-3)式两端同时左乘上12)(-λU 得到)()()())(()(21112λλλλλλV A E V B E U U -=--令)()()(112λλλU U U -=则)(λU 可逆,并且有)()()())((21λλλλλV A E V B E U -=-由定理2.3得A 与B 相似.必要性: 可以在(1-2)式中让E U U U ==)(),()(21λλλ那么可得(1-3)式.在A 与B 相似时,通过引理2.2得B AT T =-1,那么)(A U T i =是)()()(112λλλU U U -=在A =λ时的左值.例题2.3 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=011121111,211111110B A .判断A 与B 两个方阵是否相似,并且当相似时求可逆矩阵P ,使得B AP P =-1.解⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+-−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+--−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=--++-+++10011023133001101231330011123100*********112121111111223223)](23[2)]1(32[2)](31[)]2(31[)]1(21[λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλA E ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+----+---−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+---−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-+-+-+1000010112212001111000010101110011110011010121001111)|(22)]1(12[2)](31[)]1(21[λλλλλλλλλλλλλλλλλλE B E ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+--+--+-−−−→−⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+-+-+--+--+-−−−−→−--++-++-+10010011111012243423133100001111011122434133231000010110111224341332310000101101012243413323222223222232)]1(2[222232)]1(32[222232)]12(31[)]24(21[22λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ所以,A 与B 相似.令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+-+-+-=000111122434)(222λλλλλλλU则⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100111123000000244000000111)(2λλλU 令⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==011111101100111123000000244211111110000000111423212322100111123000000244000000111)(2A A A U P l 则 ⎢⎢⎢⎣⎡-011111101 ⎥⎥⎥⎦⎤100010001⎢⎢⎢⎣⎡-→110210101 ⎥⎥⎥⎦⎤--101011001⎢⎢⎢⎣⎡-→110210101 ⎥⎥⎥⎦⎤--110011001 ⎢⎢⎢⎣⎡→100010001⎥⎥⎥⎦⎤----110211111 故 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-1102111111P 所以B AP P =-12.3 分块矩阵相似判定在上一节我们通过利用矩阵的特征值与特征向量定理研究了矩阵的相似,那么这一小节我们来了解矩阵中的分块矩阵是否相似,现有两个分块矩阵着⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00,在著名的Roth (罗斯)定理中表示⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00相似的一个充要条件是方阵方程C XB AX =- (1-1) 有解.定理2.5[10] 如果已知有A ,B 两个矩阵,并且有2A A =与B B =2,那么B AC +C C =则是分块矩阵⎪⎪⎭⎫ ⎝⎛B C A 0与⎪⎪⎭⎫ ⎝⎛B A 00相似的充分必要条件.证明 必要性 已知分块矩阵⎪⎪⎭⎫ ⎝⎛B A 00,要是它中的A 和B 两个方阵都幂等的,那么它也必然为幂等的方阵.所以如果⎪⎪⎭⎫ ⎝⎛B C A 0和⎪⎪⎭⎫ ⎝⎛B A 00相似,那么⎪⎪⎭⎫ ⎝⎛B C A 0也是幂等方阵的,也就是20⎪⎪⎭⎫ ⎝⎛B C A =⎪⎪⎭⎫ ⎝⎛B C A 0 把两边矩阵分别展开得到C CB AC =+.充分性 已知A 和B 这两个幂等方阵,因此它们可以分解为11000,000--⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=Q IQ Q B P IP P A (1-2) 把它们代入(1-1)式中,得知PCQ IQ PXQ PXQ IP =⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡000000 (1-3)我们让⎥⎦⎤⎢⎣⎡=4321Y Y Y Y PXQ ⎥⎦⎤⎢⎣⎡=4321F F F F PCQ (1-4)通过(1-4)式可知⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡4321323121000000F F F F Y Y Y Y Y Y (1-5)那么01=F 和04=F 是方程有解的充要条件,我们通过(1-2),(1-4),则可明确的知道等价于0=ACB 和0)()(=--B I C A I n m所以这两个方程也等价于C CB AC =+.由此可知,在C CB AC =+条件下,方程(1-1)有解,所以两个分块方阵0A C B ⎛⎫ ⎪⎝⎭和⎪⎪⎭⎫ ⎝⎛B A 00相似,证明完毕. 例题2.4 设存在两矩阵C 和D ,并且D C ~其中B A ~,求证⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D B C A 00~00. 证 因为B A ~,且矩阵.~D C 所以⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--C A Y X Y E E X C O A E X Y E 00000000000001111 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-D B YCY AX X Y X 0000001又由于⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----Y E E X Y E E X E X Y E 0000000000001111111 故.00~00⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D B C A第三章 矩阵相似的应用3.1 利用相似变换把方阵对角化定义3.1 相对应n 阶方阵A ,假使存在可逆矩阵P ,让B AP P =-1变为对角矩阵,那么我们就称矩阵A 可对角化,且可对角化为B . 定理3.1 如果n 阶矩阵A 可对角化,那么它对角矩阵相似. ⇔A 中存在着n 个线性无关的特征向量.推论3.1 如果n 阶矩阵A 存在n 个不同的特征值,那么矩阵A 与对角矩阵相似.例题3.1 利用相似变换将矩阵A 对角化..2-4242-2-22-1⎪⎪⎪⎭⎫ ⎝⎛=A解λλλλ-------=-242422221E A()()0722=+--=λλ得.7,2321-===λλλ当221==λλ时,齐次线性方程组()20A E X -=的基础解系为121,0P -⎛⎫ ⎪= ⎪ ⎪⎝⎭2201P ⎛⎫ ⎪= ⎪ ⎪⎝⎭当37λ=-时,齐次线性方程组()70A E X +=的基础解系为3122P ⎛⎫ ⎪= ⎪ ⎪-⎝⎭因为,02-10201122-≠所以321,,P P P 线性无关,即A 有3个线性无关的特征向量,所以,利用线性变换221102012P -⎛⎫ ⎪= ⎪ ⎪-⎝⎭,可将矩阵A 对角化为200020007⎛⎫ ⎪Λ= ⎪ ⎪-⎝⎭,即矩阵A 与矩阵Λ相似.3.2 矩阵相似性质的简单应用应用矩阵相似的简单性质我们可以在方阵乘法的运算中可以简化运算的过程,大量的节省时间,极大的方便了我们.例3.2 设⎪⎪⎪⎭⎫ ⎝⎛=1-1-2-020021A ,求证100A .解(1)先算出A 方阵特征值与特征向量.由)2)(1)(1(112020021)(-+-=+---=-=λλλλλλλA E A f A所以,A 的3个互异特征值为,2,1,1321==-=λλλ故A 可以对角化,对每个(),3,2,1=i i λ求得分别属于211-321===λλλ,,的特征向量为.35121-01100321⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=ααα,,(2) 令=P 1(α,2α,,3511100210)3⎪⎪⎪⎪⎭⎫ ⎝⎛--=α 有.2000100011⎪⎪⎪⎭⎫ ⎝⎛-=-AP P (3) 因为11001100100100()010002P A P P AP --⎛⎫ ⎪== ⎪ ⎪⎝⎭所以100110010011110001210030100010101100025002010113A P P -⎛⎫⎛⎫- ⎪ ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭-- ⎪ ⎪⎝⎭⎝⎭ 10110113100100100100012111220002120020.501051120(12)033-⎛⎫⎛⎫ ⎪ ⎪-+⎛⎫ ⎪ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭--- ⎪ ⎪⎝⎭⎝⎭3.3 矩阵相似在实际生活中的应用矩阵相似有许多相同的属性,如秩矩阵,行列式,微量(对角),特征值,特征多项式,主要因素是相同的.一个矩阵很重要的一点就是它的特征值.通过相似变换的性质特点,可以使复杂运算变成更加简单的求值计算.例 3.3 一实验生产线每年二月为熟练和非熟练工人的数量统计,然后把61熟练工人支持其他生产部门,招募新的非熟练工人完成的空缺.旧的和新的非熟练工人通过培训和时间,年终考核将有52成为熟练的工人.假使过了n 年在二月份的一次统计中熟练工人与非熟练工人在总人数中为百分之n x 与百分之n y ,我们把它写为向量.⎥⎦⎤⎢⎣⎡n n y x(1)求⎥⎦⎤⎢⎣⎡++11n n y x 和⎥⎦⎤⎢⎣⎡n n y x 的关系式并写成方阵:⎥⎦⎤⎢⎣⎡++11n n y x .⎥⎦⎤⎢⎣⎡=n n y x A (2)求证A 有⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=11-1421ηη,这两个不相关的特征向量,然后在分别算出他们的特征值;解 (1)根据上述已知有⎪⎪⎩⎪⎪⎨⎧⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛++=++n n n n n n n y x y y x x x 615361526511 化简得⎪⎩⎪⎨⎧+=+=++n n n n n n y x y y x x 531015210911对其用矩阵表示即为,531015210911⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡++n n n n y x y x 于是 .5310152109⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=A (2) 令,),(⎥⎦⎤⎢⎣⎡==111-421ηηP 则由05≠=P 知,21ηη,这两个特征向量线性无关.因.1411ηη=⎥⎦⎤⎢⎣⎡=A 所以这个特征向量1η属于矩阵A .并且相应的11=λ为特征值. 因22212121ηη=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--A 故2η为A 的特征向量,且相应的特征值.212=λ结论本文以矩阵及矩阵的性质和矩阵相似的一些相关的性质为主要理论依据,从矩阵和矩阵相似的相关性质与应用处着手,主要论述了矩阵相似的几个判别方法,并在第三章中将矩阵相似的一些应用展示给了大家,通过将矩阵和矩阵相似的一些相关理论进行整理分析,找出了它们之间的转化关系.同时,在研究过程中,培养了应用数学的意识和能力.运用矩阵相似的性质和判别法,解决了几类较为基本的矩阵相似的应用问题.参考文献[1] 张禾瑞,郝鈵新,张禾瑞郝鈵新编.高等代数[M].北京:高等代数出版社,2007:327-328.[2] 冯天祥,李世宏.矩阵的QR分解[J].西南民族学院学报,20:4(2001),418-421.[3] 雷雪萍.高等代数中一道习题的推广[J].大学数学,2006,22(4):161-163.[4] 屠伯埙,四元数矩阵的UL分解[J].复旦学报(自然科学版),1988,(2),121-128.[5] 杨奇;孟道骥编.线性代数教程[M].南开大学出版社,216-225.[6] 吴强. 基于矩阵初等变换的矩阵分解法[J].数学理论与应用,20:4(2000), 105-107.[7] 黄宝强主编.线性代数[M].同济大学出版社. 223-226.[8] 姚允龙编.数学分析[M].上海:复旦大学出版社,2002:75-89.[9] 贺爱玲,马玉明,刘慧,陈业红.关于矩阵相似的一个注记.山东轻工业学院学报[J].2005,19(3):57-60.[10] 程士珍.两个方块矩阵相似性的研究[J].数学的实践和认识2005,35(3):191-194.[11] 王新民.矩阵环F[A]中元素的可逆性[J].数学的实践与认识,2002,38(23);223-226.[12] 王新民.袁强.关于矩阵相似的条件及其相似变换矩阵.聊城大学学报[J].2009,22(2):14-16.[13] 张天德,韩振来.数学分析同步辅导[M].天津:天津科学技术出版社,2010:26—29.[14] Liujia.Similarity matrix and its application.China western science andtechnology [J].2010,9(26):46-48.[15] Jefferson. Linear Algebra[J].USA:Create Space.2008,(124-205).致谢四年的大学生活即将结束,回头望去,百感交集.四年里,陪伴我的是敬爱的老师、亲爱的同学,所以,我要感谢母校黑河学院,您是养育我的土壤;我要感谢我的老师,是你们让我有了实现自我的能力和勇气;我要感谢我的同学们,是你们给了我家一样的感觉.另外,我要感谢我的指导老师由金玲老师,由于她的悉心指导,使我能够圆满地完成论文的撰写.在这段时间里,我深深的体会到由金玲老师的耐心与细致,以及她严谨的治学态度,这一切都将成为我今后生活、工作的榜样.再次由衷的感谢我的指导老师,您辛苦了!。
第2章 矩阵的相似标准形
第2章 矩阵的相似标准形n 阶矩阵A 和B 的关系有: (1) 等价:B =PAQ (2) 合同:B =P T AP (3) 相似:B =P -1AP其中,P 、Q 为可逆矩阵。
人们往往希望找到矩阵P 、Q ,将矩阵A 化简成其相似的标准形矩阵B ,这样可方便计算。
2.1 矩阵的初等变换在矩阵化简及矩阵求逆过程中常用到矩阵的初等变换。
定义:对任意n 阶方阵)(ij a A =,去掉第i 行第j 后剩余的n-1阶方阵的行列式称为元素ij a 的余子式,记为ij M ,而ij j i M +-)1(为元素ij a 的代数余子式,记为ij A ,n 阶方阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n nn n A A A A A AA A A 212221212111称为方阵A 的伴随矩阵,记为*A 。
容易计算,E A A A AA ==**,若0≠A ,则有AA A *1=-当n>3时,用公式AA A *1=-求逆计算量过大,所以需要其它工具,这就是初等变换。
矩阵的初等变换:(1) 交换矩阵两行(列),即对换;(2) 以某非零数乘某行(列),简称倍乘; (3) 将某行(列)乘以某个倍数加到另行(列)。
例:求A 的逆⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=533132321A 解:分析 1],[][,,-====A B B I I A B B BI I BA[]B I I A ,13310051413010719180011331005141301010282730113310051413010102827301133100514130100013211331000125100013211031430012510001321100533010132001321],[=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----==-13351413719181B A 变换时注意:先将先将对角线下的元素变为0,然后将对角线上的元素变为0⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡→⎥⎦⎤⎢⎣⎡C I B A 0220100011000100012.2 特征值和特征向量定义:设)(ij a A =是数域C 上的n 阶矩阵,λ是参数,A 的特征矩阵A I -λ的行列式nn n n na a a a a a a a A I --------=-λλλλ21222111211)det(称为A 的特征多顶式,记为)(λϕ。
相似矩阵简.ppt
5)相似矩阵或者都可逆 或都不可逆,当它们都可逆 时,它们的逆矩阵也相似.
A~ B
A与B可逆性相同. 当它们都可逆时,A1 ~ B1
证2) 由 A ~ B
B P 1 AP
B P 1 AP P 1 A P 1 A P A P
" " 反推即得 .
A可对角化
A有n个线性无关的特征向量
设A的n个 线性无关的特征向量为
p11
p12
p1n
1
p21
2
p22
... n
p2n
pn1
相应的特征值为
pn
2
1,2 ,...,n
A ~ B Ak ~ Bk
当k=2,3,4,…时,由 A ~ B, B P1 AP
Bk
P 1 AP
k
(
P
1
AP
)(
P
1
AP
)(
P
1
AP
)
...
(
P
1
AP
)
P 1 Ak P Ak ~ Bk
k个
证7) 由 A ~ B 知,B P1 AP
P 1 AP
0
2
0
0 0 4 1令P1 1 0
1 1
1 2
0 1
P1可逆,
2 0 0
P11 AP1
0
相似矩阵
2
4 2
22 7 0
得 1 2 2, 3 7.
13 上一页 下一页 返 回
将 1 2 2 代入 A E x 0, 由
1 2 2 1 2 2
A
2E
2 2
4 4
44
0 0
0 0
0 0
得同解方程组 x1 2 x2 2 x3
得基础解系
1
-2
1
,
2
2 0.
可逆矩阵P称为把A变成B的相似变换矩阵.
2 上一页 下一页 返 回
矩阵的相似关系是一种等价关系,即有
(1)自反性
因为E 1 AE A.
(2)对称性
因P 1AP B, 则 P 1 1 BP 1 A
(3)传递性 因为P 1 AP B,Q1BQ C ,
则PQ1 APQ C.
3 上一页 下一页 返 回
,,
pn
1
2
又由于p1 ,
p2
,
,
pn线 性 无 关 , 所 以 P
p1 ,
n p2
,
,
pn
可逆.
1
从而
P -1
AP
=
2
.
9
n 上一页 下一页 返 回
注: (1)方阵A如果能够对角化,则对角矩阵Λ 在不计λk的排列顺序时Λ是唯一的,称为A的 相似标准形。
(2)相似变换矩阵P就是A的n个线性无关的 特征向量作为列向量排列而成的。
x
T
x
n
xixi
n
xi 2 0,
0,
i 1
i 1
即 , 由此可得是实数.
28 上一页 下一页 返 回
定理5.4的意义
判断两个矩阵相似的步骤
判断两个矩阵相似的步骤
《判断两个矩阵相似的步骤》
嘿,亲爱的小伙伴们!今天咱们来唠唠怎么判断两个矩阵是不是相似,这可有意思啦!
咱先瞅瞅这俩矩阵的特征值。
这就好比是矩阵的“个性标签”,要是它们的特征值都一模一样,那就有相似的可能性啦。
这就好像两个人都喜欢吃同样口味的冰淇淋,是不是感觉有点相似的苗头啦?
然后呢,咱再看看它们的特征多项式。
如果这俩矩阵的特征多项式长得一个样,那它们相似的可能性就更大咯。
这就好比两个人穿了款式相同的衣服,是不是更像啦?
还有哦,如果能找到一个可逆矩阵 P,把其中一个矩阵 A 变成另一个矩阵 B,也就是 P⁻¹AP = B ,那这俩矩阵肯定相似!这个可逆矩阵 P 就像是个神奇的魔法棒,能把它们变来变去,变得相似。
要是能确定这几个方面都没问题,那基本上就能拍板说这两个矩阵相似啦。
不过呢,这中间可得仔细认真,不能马虎哟。
有时候判断矩阵相似就像找两个长得像的双胞胎,得一点点去对比,看眼睛、看鼻子、看嘴巴。
一个小细节不对,可能就不是相似的啦。
所以呀,判断矩阵相似可不是一件随随便便的事儿,得有耐心,得细心。
就像解一道复杂的谜题,每一步都要走对,才能找到的答案。
咋样,小伙伴们,是不是觉得判断矩阵相似也没那么可怕啦?只要咱们按照这些步骤,一步一步来,就能把它们的相似关系给搞清楚!加油哟,相信你们都能行!。
第二章 矩阵的相似及应用
特征向量、特征子空间
det(λ E − A) = (λ − 2)(λ − 1) 2
λ1 = 2, x = (0,0,1)T , V1 = span{α3}
dimV1 = 1
特征根重数等于特征子空间维数
2 -1 0 λ2 = 1, (1E − A) x = 4 -2 0 x = 0 -1 0 -1 2 -1 0 ran 4 -2 0 = 2, x = (1, 2, -1)T , -1 0 -1 V2 = span{ξ }, ξ = α1 + 2α 2 − α 3 dim V2 = 1
定理2 定理2.1.3线性来自间中的线性变换在不同基下的矩阵相似. 同基下的矩阵相似 证明: 证明:
S = {α1 ,α2 ,⋯,αn }
S* = { β 1 , β 2 ,⋯ , β n }
( β 1 , β 2 ,⋯ , β n ) = (α 1 , α 2 , ⋯ , α n )P
T → A,
(α1,α2 ,⋯,αn )Ax= (α1,α2 ,⋯,αn )λx
x1 x1 x2 x2 (α 1 , α 2 , ⋯ , α n )A = (α 1 , α 2 , ⋯ , α n )λ ⋮ ⋮ x x n n (2 . 3 . (2 1 )
Tξ = λξ
并且因为
那么
x1 x2 ξ = x1α1 + x 2α 2 + ⋯ + xnα n = (α1 , α 2 ,⋯, α n ) ⋮ x n
Tξ = T(x1α1 + x 2α 2 + ⋯ + xnα n ) x1 x2 T(α1 , α 2 ,⋯, α n ) = ⋮ x n
等价标准形和相似标准型
等价标准形和相似标准型等价标准形和相似标准型是在数学中经常出现的概念,它们在代数学、几何学、线性代数等领域都有着重要的应用。
在本文中,我们将对这两个概念进行详细的介绍和比较,以帮助读者更好地理解它们的含义和特点。
首先,让我们来看看等价标准形。
在代数学中,等价标准形是指两个代数式在某种变换下可以变成相同形式的情况。
换句话说,如果两个代数式经过一系列的等价变换之后可以化为相同的形式,那么它们就是等价的。
例如,对于二次方程ax^2+bx+c=0,如果经过配方法、公式法、因式分解等操作之后可以化为标准的二次方程形式,那么这个二次方程就可以称为等价标准形。
与等价标准形相对应的是相似标准型。
在几何学中,相似标准型是指两个图形在某种变换下可以变成相似形状的情况。
如果两个图形经过一系列的相似变换之后可以变成相同的形状,那么它们就是相似的。
例如,对于两个三角形,如果它们的对应角相等,对应边的比值相等,那么这两个三角形就可以称为相似三角形,它们具有相似标准型。
在实际应用中,等价标准形和相似标准型都具有重要的意义。
在代数学中,等价标准形可以帮助我们简化和化简代数式,从而更方便地进行运算和求解。
在几何学中,相似标准型可以帮助我们研究图形的性质和关系,从而更好地理解几何学的基本原理和定理。
然而,等价标准形和相似标准型之间也存在着一些不同之处。
首先,在概念上,等价标准形更注重于代数式的变换和化简,而相似标准型更注重于图形的形状和比例。
其次,在应用上,等价标准形更多地用于解决代数方程和不等式,而相似标准型更多地用于解决几何图形的相似性和比例性质。
综上所述,等价标准形和相似标准型都是数学中重要的概念,它们在代数学和几何学中都有着广泛的应用。
通过对这两个概念的深入理解和比较,我们可以更好地掌握数学知识,提高数学解题的能力,从而更好地应对各种数学问题和挑战。
希望本文对读者有所帮助,谢谢阅读!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
记 f(x)= x n+ a1 x n-1 + + an-1 x + an,则 f(A)= A n+ a1 A n-1 + + an-1 A + an E
若 f()为的特征多项式,则 f(A)=0 .
( p60 Th2.11, Hamilton-Cayley定理 )
函数矩阵: 元素是函数的矩阵 多项式矩阵或-矩阵: 元素是的多项式的矩阵 如:方阵的A特征矩阵 E – A Note:多项式矩阵可以写成以矩阵为系数的多项式
Hint: 初等因子为 – 2,( + 1)2
cf. Mathematica示例 cf. Mathematica
例2.9 求矩阵A的Jö rdan标准形,其中
Hint: A1, A2初等因子分别为 i和 – 2,( – 1)2
示 例
19
§2.3 三、有理标准形
对任意的ni 次多项式 ()= 它的相伴矩阵Ci 定义为
特征值: f()= 0的根,即使 E – A为退化矩阵的数 特征向量:( E – A)X = 0的非零解 (为特征值) 谱:全部特征值的集合,记作(A)
有关特征值与特征向量的几个结论
2
§2.1-1
方阵的特征矩阵
矩阵多项式:以方阵 A代入一个多项式 f(x)的值,或者 说是 f(x)在 x = A处的值
15
§2.3 矩阵的相似标准形
一、矩阵相似的充分必要条件 定义2.8 设A, BCnn ,若存在可逆矩阵P Cnn ,使 P -1 A P = B , 则称A与B相似, 记作AB. 称 AB= P -1AP为相似变换, 称P为相似变换矩阵. 定理2.7 A, BCnn, A ~ B E – A E – B. Key
例2.4 求矩阵
的初等因子组.
Hint: - 2, ( - 1)2
cf. Mathematica示例
例2.5 求矩阵
的Smith标准形.
cf. Mathematica示例
14
§2.2-3 初等因子的求法例2.6 求矩阵的初等因子组. 解:由于
分别求的初等因子组,合并即得…
cf. Mathematica示例
例2.10 求矩阵A的Jö rdan标准形的有理标准形,其中
Hint: 把 A写成分块矩阵的形式: 子分别为 i和 – 2, + 1 , + 1.
,则A1, A2的初等因
cf. Mathematica示例
数字矩阵: 元素是数的矩阵
3
§2.1-1
方阵的特征矩阵
1) A有一个 r 级子式不等于零的充分必要条件是r(A) r 关于mn的数字矩阵A的秩 ,有一个重要结论 2) A的所有r+1级子式等于零的充分必要条件是r(A) r 定义2.1 对任意的-矩阵A()K[]mn,如果A()有一个 r 级子式非零,而所有r+1级子式等于零,则称A()的秩 为r,记作 rank A() = r . ( 1 r min{m, n} ) 定义2.2 设 A()K[]nn, 如果| A() | 0, 则称 A()是满 秩的或非奇异的. 定义2.3 设 A()K[]nn,若有B()K[]nn使得 A() B() = B() A() =E , 则称 A() 是可逆的或单模态的.
Sketch of the proof: 不妨设A()非零,设G()是所有与A()等价的 中,(1,1)位置元素次数最低的一个矩阵,则 g11 ()| gij () ( i, j), 把G()化为准对角形,再用数学归纳法… ( 关键是找G() )
7
§2.1-2 特征矩阵的Smith标准形
对任意方阵 A,它的特征矩阵 E – A是满秩的, 但不是可逆的-矩阵.
5
二、特征矩阵的Smith标准形
-矩阵的三类初等行(列)变换
表示方法:[i,
j], [i(k)], [i + j· )] (标在箭头上方/下方) (
初等矩阵的定义,初等矩阵的基本性质
初等变换与初等矩阵的相互关系
定理2.10 设ACnn,若特征矩阵 A的非常数的不变 因子为 则
A~ C = diag (C1, C2, …, Cs), 其中Ci是 i ()的相伴矩阵. (有理标准形及唯一性)
20
§2.3-3 有理标准形
Jö rdan标准形由初等因子确定;有理标准形由不变因子 确定,因而任何实矩阵都存在有理标准形;在不计有理 块 Ci 顺序的情况下,有理标准形 C由 A唯一确定.
第二章
内容提要:
矩阵的相似标准形 (10学时)
多项式矩阵及其性质;
特征矩阵、特征多项式、特征值、特征向量;
初等变换、等价; Smith标准形、不变因子、行列式因子、初等因子; 零化多项式和最小多项式及其计算方法; 矩阵的相似、矩阵相似的条件; Jö rdan标准形、有理标准形; 正规矩阵及其性质; Hermite矩阵、酉矩阵的酉对角化方法,Hermite二次型 的标准形及分类法.
不变因子与行列式因子的相互关系
行列式因子的唯一性
不变因子的唯一性 Smith标准型的唯一性
9
设
ACnn , A的不变因子与行列式因子即 的...
§2.2-1
行列式因子
例2.2 利用行列式因子求特殊矩阵A()的Smith标准型:
Hint: 先求出 A() 的行列式因子: Dn() = det A() = n + a1 n-1 ++ an-1 + an , 和 Dn-1() = Dn-2() = = D1() = 1, …
定理2.4 对任意 AC mn, 其特征矩阵 A的Smith标准 形S() = diag ( d1(), d2(), …, dn() )中, 所有di()都是非 零多项式. 称di()为 A的第i个不变因子, i = 1, 2, …, n. 例2.1 设 A= 求 A的Smith标准形和不变因子. 提 示 第一步:使左上角元为次数最低者 第二步:化为准对角形 结果: diag (1, -1, ( -1) ( + 2) ) cf. Mathematica程序示例
cf. Mathematica示例
10
§2.2-2 二、初等因子
定义2.7 设d1(), d2(), …, dn()是EA的n个不变因子, 在C上将每个di()分解成一次因式的方幂之乘积: 此处 i=1, 2,…, n, j=1, 2,…, t, kij为非负整数,对应kij>0的 那些因式统称为 的初等因子, 的全部初等因 子称为的初等因子组(相同时重复计数).
结论1 对角形-矩阵的初等因子:分解对角线元素即可 结论2 准对角形-矩阵diag (A1(), A2(), …, Ar() )的初 等因子组即A1(), A2(), …, Ar()的全体初等因子
结论3 若fi(x)都与gj(x)互素( i, j = 1,2 ),则下面矩阵等价
13
§2.2-3 初等因子的求法
1
§2.1 特征矩阵及其Smith标准形
一、方阵的特征矩阵 特征矩阵:
E–A=
, 此处,A=(ai j)nn
特征多项式:f()=| E – A|= n+ a1 n-1 + + an-1 + an 其中,a1= -tr A= -(a11+ a22+ + ann), an=(-1)n |A|
必要性易,充分性很难,参见北大编《高等代数》 pp342-344
例2.7 证明矩阵A与J相似,其中
Hint: A与J的初等因子组均为 – 2,( –1)2---再用Th2.6, Th2.7
16
§2.3 二、Jö rdan标准形
矩阵的等价标准形 (等价类的代表) 之存在唯一性较为简 单,但方阵的相似标准形就复杂了,只能退而求其次.
按上述约定和构造方法,在不计Jö rdan块顺序的情况下, J 唯一确定,称J为A的Jö rdan标准形. Question: 为什么在C中考虑?
定理2.9 ACnn能对角化A的初等因子都是一次的.
18
§2.3-2 Jö rdan标准形
例2.8 求矩阵A的Jö rdan标准形,其中
K[]mn中矩阵的等价关系满足自反性、对称性和传递性
定理2.2 若A()B(),则rank A() = rank B().
6
§2.1-2 特征矩阵的Smith标准形
定义2.5 若n阶对角矩阵 S() = diag (d1(), d2(), …, dn() ) 中,每一个非零的di()都是首1多项式, 且di() |di+1() , ( i = 1, 2, …, n-1),则称S()是一个Smith标准形或法对角 形 (-矩阵的标准形)
4
§2.1-1
方阵的特征矩阵
学习-矩阵的基本方法是: 由于-矩阵与数字矩阵在基本概念、基本性质、基 本操作和主要结论等方面有很多的共同点,因而只需了 解它们相同与不同的地方,即求同存异.
定理2.1 (1) 若A()Knn可逆,则 A()非奇异;反之不真. (2) A()Knn可逆的充分必要条件是det A()等于非 零常数c.
8
§2.2 行列式因子与初等因子
一、行列式因子 定义2.6 设 ACnn , 1 k n, 中一切k阶子式的首 一最大公因式称为 的k阶行列式因子,记作Dk ().
由定义知, Dk ()由唯一确定 (1 k n)
定理2.5 初等变换不改变 的各阶行列式因子.
三组因子 的 相互关系 不变因子 行列式因子 初等因子
例2.3 设A为4阶方阵,如果 的初等因子为 , 2, + 1, 求 的Smith标准型.
11
§2.2-2
初等因子