第八章配气机构设计.
柴油机配气机构设计
柴油机配气机构设计柴油机是目前世界上使用最为广泛的动力引擎之一,而其中配气机构设计则是柴油机工作顺畅的重要保障。
下面我们将从步骤方面详细介绍柴油机配气机构的设计方法。
第一步:确定进、排气道位置进排气道是柴油机配气机构设计的重要组成部分,因此在设计时需要首先确定它们的位置。
一般情况下,尽量使进气道靠近气缸中心轴线,而排气道则要尽量靠近汽缸底部。
这样可以保证气缸在工作时能够获得足够的气流动力支持,从而降低能耗和噪音。
第二步:确定气门宽度和角度气门宽度和角度是决定柴油机配气机构设定的关键之一。
在设计时,需要根据柴油机的规格和使用要求,结合密闭度、通气饱和度和动态效应等因素来确定气门宽度和角度。
同时,还需要注意气门和气门席圈配合的紧密度,以防渗漏或过紧的情况出现。
第三步:确定活塞运动规律活塞运动规律是柴油机配气机构设计的另一个重要内容。
在设计时,需要根据活塞的运动特征和工作场合,确定气门开启和关闭的节律和时序。
同时,还需要考虑活塞在运动过程中的能量变化和磨损情况,以保证配气机构的可靠性和长寿命性能。
第四步:确定气门升程和压强气门升程和压强是指某种运动状态下气门的最高开启程度和对气门产生影响的指标。
在设计柴油机配气机构时,需要根据柴油机的使用和应用要求来确定气门升程和压强,并保证气门在合适的参数下实现合理的关闭和开启。
第五步:确定配气图配气图是柴油机配气机构设计中的一个重要环节,它有助于精确计算各种配气参数与运动规律。
在设计时,需要结合柴油机工作规律和使用性能要求,综合考虑气道结构、工作条件和压缩比等因素,确定合理的配气图,以达到最佳的化油性能和出力效率。
总之,柴油机配气机构设计对柴油机的工作和性能有着至关重要的作用。
通过以上几个步骤的详细介绍,我们可以更好地理解和掌握柴油机配气机构设计的方法和技巧,为柴油机的高效运转提供有力的保障。
配气机构的组成和工作原理
配气机构的组成和工作原理哎呀,说起配气机构,这玩意儿就像是汽车的呼吸器官,你想想,人要是呼吸不畅,那肯定得难受死,汽车也一样。
咱们今天就聊聊这个配气机构,看看它是咋工作的。
首先,配气机构,顾名思义,就是负责调配气体的。
在汽车发动机里,它主要负责控制进气和排气的时机,让空气和燃料混合得恰到好处,然后燃烧,产生动力。
这就像是你做饭的时候,得控制火候,火大了,菜就糊了,火小了,菜又不熟。
咱们先说说进气门,这家伙就像是你家的前门,得时刻开着,让新鲜空气进来。
但是,进气门不是一直开着的,它得在发动机的气缸里,活塞下行的时候,也就是吸气冲程,打开,让空气和燃料混合气进去。
然后,活塞上行,压缩混合气,准备点火。
接下来是排气门,这就像是你家的后门,得在活塞下行的时候打开,把燃烧后的废气排出去。
排气门的开闭时机也很讲究,得在活塞上行,也就是排气冲程的时候打开,这样废气才能顺利排出。
现在,咱们说说配气机构的心脏——凸轮轴。
凸轮轴上有很多凸起,这些凸起就是凸轮。
凸轮轴转动的时候,凸轮就会推动气门,让它们按时打开和关闭。
凸轮的形状和位置决定了气门的开闭时间,这就相当于你做饭的时候,控制火候的开关。
凸轮轴的转动是由曲轴驱动的,曲轴是发动机的另一个重要部件,它负责把活塞的往复运动转换成旋转运动。
这样,发动机就能带动汽车的轮子转动,让汽车跑起来。
说到这,我想起有一次,我开着车去郊外,突然感觉车子动力不足,油门踩下去,车子就是不给力。
我心想,这不会是配气机构出问题了吧?我赶紧停车检查,发现排气管冒黑烟,这明显是燃烧不充分。
我打开引擎盖,检查了一下,发现进气门有点卡,气门间隙调整得不好。
我调整了一下气门间隙,车子马上就恢复了正常。
所以啊,配气机构虽然看起来不起眼,但它对发动机的性能影响可大了。
就像人一样,呼吸顺畅了,干啥都有劲儿。
汽车也是,配气机构工作正常了,发动机才能发挥出最佳性能。
总之,配气机构就是发动机的呼吸器官,它让发动机能够顺畅地呼吸,提供动力。
毕业设计__配气机构的设计
毕业设计说明书配气机构的设计姓名:所属院校:专业:班级:学号:指导教师:目录概述1、配气机构的功用 (6)2、配气机构的设计要求 (6)3、配气机构计算参数的确定 (7)一、凸轮轴的设计:1、凸轮轴的设计要求 (7)2、凸轮轴的结构 (7)3、凸轮轴的选材 (7)4、凸轮轴的支承轴颈轴承的材料 (7)5、凸轮轴的定位方式 (7)6、凸轮轴的最小尺寸定位方式 (7)7、凸轮轴的热处理工艺 (8)8、凸轮轴的损坏形式 (8)9、凸轮轴的计算 (9)二、凸轮的设计1、凸轮设计的要求 (10)2、凸轮基圆设计 (11)①基圆半径的确定 (13)②凸轮位置的确定 (13)③配气相位与凸轮的作用角 (14)④凸轮顶部的圆弧半径 (14)三、挺柱的设计1、挺柱的结构 (10)2、挺柱的材料 (15)3、平面挺柱导向面与导向孔之间挤压应力的计算 (16)4、平面挺柱的最大速度 (16)5、凸轮与挺柱间接触应力的计算 (17)6、挺柱导向面直径r d与长度r L按照下面的公式确定 (18)7、挺柱头部球面支座的设计 (19)8、凸轮和挺柱的主要损坏形式及其预防 (19)四、推杆的设计1、推杆的功能 (20)2、推杆的材料 (20)3、推杆的结构形式 (20)4、尺寸设计 (20)5、推杆稳定性安全系数的确定 (20)6、推杆球头与挺柱球面支座,推杆球头与摇臂调节螺钉球面支座间接触应力的计算 (21)五、摇臂的设计1、摇臂的工作原理 (22)2、摇臂的结构 (22)3、摇臂比 (22)4、摇臂润滑 (22)5、摇臂的定位 (23)6、摇臂的材料 (23)7、摇臂与气门杆顶面间接触应力的计算 (23)六、气门组的设计1、气门的设计 (25)➢1)气门设计的基本要求 (25)➢2)气门的工作条件分析 (25)➢3)气门材料的选择 (26)➢4)气门头的设计 (27)➢5)气门杆的设计 (29)2、气门旋转机构的设计 (30)3、气门座圈的设计 (30)4、气门导管的设计 (32)5、气门的主要损坏形式和预防措 (33)七、气门弹簧的设计1、气门弹簧的设计要求 (34)2、气门弹簧的作用 (35)3、气门弹簧的工作条件 (35)4、气门弹簧的结构 (35)5、气门弹簧的选材 (35)6、气门弹簧特性曲线与气门惯性力曲线的配合 (36)7、气门弹簧的有关计算 (37)➢1)弹簧的最大弹力 (37)➢2)弹簧最小的弹力 (38)➢3)弹簧的刚度 (38)➢4)弹簧变形 (38)➢5)内、外弹簧之间的负荷分配 (39)➢6)内外弹簧的刚度 (39)➢7)弹簧的尺寸 (40)8、提高气门弹簧疲劳强度的措施 (42)参考文献 (43)致谢 (43)配气机构的设计概述1、配气机构的功用:是完成换气过程,根据发动机气缸的工作循环次序,定时地开启和关闭进、排气门,不断的用新鲜的气体来气缸内上一循环的的废气。
配气机构课程设计
配气机构课程设计一、教学目标本课程旨在让学生了解和掌握配气机构的基本原理、组成及工作过程,培养学生分析和解决实际问题的能力。
具体目标如下:1.知识目标:(1)掌握配气机构的基本原理及作用;(2)了解配气机构的组成及其各部分的功能;(3)熟悉配气机构的工作过程及其影响因素。
2.技能目标:(1)能够画出配气机构的结构示意图;(2)能够分析配气机构的工作原理及性能;(3)能够运用所学知识解决实际问题。
3.情感态度价值观目标:(1)培养学生对配气机构的兴趣,激发学生学习热机事业的激情;(2)培养学生珍惜能源、保护环境的意识;(3)培养学生勇于探索、创新的精神。
二、教学内容本课程的教学内容主要包括配气机构的基本原理、组成、工作过程及其相关应用。
具体安排如下:1.第一课时:配气机构的基本原理及作用(1)介绍配气机构的概念;(2)讲解配气机构的工作原理;(3)分析配气机构在发动机中的作用。
2.第二课时:配气机构的组成及其各部分的功能(1)介绍配气机构的组成;(2)讲解各组成部分的功能及作用;(3)分析各部分相互之间的关系。
3.第三课时:配气机构的工作过程及其影响因素(1)讲解配气机构的工作过程;(2)分析影响配气机构工作性能的因素;(3)探讨如何优化配气机构的工作性能。
4.第四课时:配气机构的应用及实例分析(1)介绍配气机构在发动机中的应用;(2)分析实际发动机中配气机构的工作情况;(3)分析配气机构在发动机性能提升中的作用。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用以下教学方法:1.讲授法:讲解配气机构的基本原理、组成、工作过程等基本知识;2.讨论法:学生讨论配气机构在各领域中的应用及其影响因素;3.案例分析法:分析实际发动机中配气机构的工作情况,培养学生解决实际问题的能力;4.实验法:安排实验课程,让学生亲身体验配气机构的工作过程,增强实践操作能力。
四、教学资源为了支持教学内容和教学方法的实施,丰富学生的学习体验,我们将准备以下教学资源:1.教材:选用权威、实用的配气机构教材;2.参考书:提供相关领域的参考书籍,拓展学生知识面;3.多媒体资料:制作精美的PPT、视频等多媒体资料,提高学生的学习兴趣;4.实验设备:准备相应的实验设备,让学生能够亲身体验配气机构的工作过程。
第八章 配气机构设计.
3、凸轮轴的布置及传动 (1)下置式凸轮轴:齿轮传动 (2)顶置式凸轮轴:链条或齿带传动
§8-2 凸轮型线设计
一、凸轮设计要求: (1)保证获得尽可能大的时间断面值,即气门开启和关闭得快, 以保证在尽可能大的凸轮转角内气门接近全开位置; (2)保证配气机构各零件所受的冲击和跳动尽可能小,即正负加 速度尽可能小且不产生突变,以保证配气机构的可靠性和寿 命。 二、分类 按工作段曲线型式,发动机上采用两类配气凸轮: 1、几何凸轮 先选定凸轮的几何形状和气门驱动形式,计算挺柱( 或气门)的运动规律,然后校核所设计凸轮的几何形 状是否满足设计要求。典型的几何凸轮如组合圆弧凸 轮
式中:h-任意时刻气门升程 γ -气门锥角 dh-气门喉口直径
气门的时间-断面值(角度-断面值)为
t2
t1
f (t )dt
可用下图表示
( f ( )d )
1
2
气门通过能力还可以用时间-断面丰满系数表示:
f f m / f max
fm-气门平均通过截面, 1 fmax-气门最大通过截面: f max H cos (d h 2 H sin 2 )
液力挺柱目前多用于轿车发动机上,可以降低噪声;无需检查、 调整气门间隙,简化维护保养;配气正时更为精确,保养周期更 长。
液力挺柱工作原理
2、工作段设计 工作段的设计应保证时面值大,加速度曲线无突变,曲 线尽可能高阶光滑。能较好地满足此条件的典型凸轮为高次 多项式凸轮。 这类凸轮的整个工作段为以无因次量 1 / w (下降段为 / w 1)作自变量的高次多项式,通常取5 ~7项。其挺柱升程表达式形式为:
c0 hT max hT max S R Q v R ( S R S Q R Q S R Q 1) c1 ( S P)(R P)(Q P ) hT max S R P v R ( S R S P R P S R P 1) c2 ( S Q)(R Q)(P Q) hT max S P Q v R ( S Q S P P Q S P Q 1) c3 ( S R )(Q R)(P R) hT max P R Q v R (Q R R P P Q P R Q 1) c4 ( R S )(Q S )(P S )
《配气机构设计》课件
结构设计优化
优化方法
结构优化目标:降低重量、 减小体积、提高刚度和稳定
性。
01
02
03
1. 运用现代设计理论,如有 限元分析、拓扑优化等。
2. 考虑制造工艺和装配要求 ,确保设计的可实现性。
04
05
3. 进行多方案比较,选择最 优设计方案。
03
配气机构关键部件设计
流体动力学分析
总结词
研究配气机构内部气体流动的规律和特性。
详细描述
流体动力学分析通过数值模拟和实验手段,研究配气机构内部气体流动的规律和特性,包括气体在气 门通道、气门座圈等处的流动特性、流动损失等,为优化配气机构设计提供依据。
05
配气机构优化设计
基于仿真的优化设计
仿真模型建立
建立配气机构的数学模型,通过仿真软件进行模拟, 预测其性能和行为。
气门设计
01
气门类型
根据发动机类型和性能要求,选 择合适的气门类型,如平顶、球 顶等。
气门尺寸
02
03
气门材料
根据发动机排量和性能要求,确 定气门的尺寸,包括直径和高度 。
选择耐高温、耐磨损、抗腐蚀的 气门材料,如合金钢、不锈钢等 。凸轮设计 Nhomakorabea01
02
03
凸轮形状
根据配气机构的工作要求 ,设计合适的凸轮形状, 如圆形、椭圆形等。
配气机构性能分析
动力学分析
总结词
研究配气机构在各种工况下的运动规律和动态响应。
详细描述
通过动力学分析,可以了解配气机构在发动机运转过程中的运动规律,包括气门 开启和关闭时刻、气门升程等参数,以及这些参数对发动机性能的影响。
配气机构组成及工作原理
配气机构组成及工作原理配气机构,这个名字听起来是不是有点儿高深?别急,咱们慢慢来聊聊它的组成和工作原理。
想象一下,一辆车就像一个灵活的舞者,配气机构就是它舞蹈时不可或缺的伴侣。
它帮助发动机吸入空气和燃油,保证这个舞蹈的每一步都恰到好处,动作协调。
没错,配气机构就像一个调皮的小助手,总是忙碌不停。
想知道它是怎么运作的吗?那就跟我一起“探险”吧!先说说配气机构的组成。
这个小家伙一般由气门、摇臂、气门弹簧、凸轮轴等等组成。
看上去是不是很复杂?其实啊,它们就像乐队里的不同乐器,各司其职,齐心协力。
气门就像乐队的主唱,负责开关气孔;摇臂则是小号,发出清脆的声音;而气门弹簧就像是在乐曲中调节音调的那把调音器,让一切都不会跑调。
你可别小看这几个小玩意儿,缺了谁都不行。
咱们得提提凸轮轴。
它可是配气机构的“指挥家”,负责指挥气门的开合,像是用手势在指挥乐团。
凸轮轴上的每个凸轮就像是音符,不同的形状和角度决定了气门开合的时间和高度。
简单来说,气门一开,空气和燃油就顺利进来了;气门一关,废气就顺利出去。
就这样,发动机才能顺畅地工作,不至于“喘不过气”。
再说说工作原理,真是让人感叹科技的神奇。
配气机构的工作就像一个精心设计的时钟,时针分针各自走各自的路,却又完美同步。
发动机工作的时候,活塞上下运动,气门就跟着节奏开合。
当活塞下行,空气和燃油“嗖”的一声就进来了;当活塞上行,废气又“呼”的一声就被排出。
这时候的气门可不能偷懒,得时刻准备着。
就像一场接力赛,配气机构得稳稳当当地传递“接力棒”。
说到这里,咱们得聊聊气门的类型。
气门有进气门和排气门之分。
进气门就像一扇大门,欢迎新鲜空气和燃油进来;而排气门则是个“出口”,把废气送走。
两者的开合时间得恰到好处,差之毫厘,失之千里。
你想想,要是进气门开得太早,废气还没出去,那可真是“前堵后塞”,整个发动机就得“罢工”。
再来讲讲气门弹簧,它就像一个弹簧玩具,总是准备弹回来。
气门关上后,弹簧会把气门紧紧压住,防止它再开。
配气机构设计
配气机构设计9.1配气机构的工作条件和设计要求配气机构的功用是按发动机所进行的工作循环和发火次序的要求,定时开启和关闭进排气门,使新鲜的可燃混合气得以及时进入气缸,废气得以及时排出气缸O在高速的发动机中,每个工作循环的进、排气过程只有千分之几秒,在这短暂的肘间内,废气排出得愈彻底,进入的可燃混合气愈多,发动机发出的功率愈大。
同时.配气机构在急剧变化的高速条件卜.工作,要受到很大的冲击力,还要受高温燃气的热负荷及化学腐蚀的作用,工作条件恶劣。
现代摩托车发动机对配气机构和制造质量都有很高的要求,四行程发动机的要求有:1)要有足够的气体流通面积,以提高进气量;2)要有小的排气阻力,使排气干净,以提高进气量;3)结构要简单,工作要可靠,维修要方便。
9.2配气机构的型式选择配气机构因发动机结构不同而异,H前摩托车常用的配气机构有:气孔式配气机构和气门式配气机构。
由于气孔式配气机构适用于二冲程发动机,气门式配气机构适用于四冲程发动机,且它充气系数高,燃料热量的利用率高,燃烧较完全,排放污染小,润滑条件好,机件磨损慢,同时发动机的动力性和经济性都比较好。
因此本设计采用气门式配气机构。
9.3配气机构的布置及传动931气门的布置气门式配气机构由气门组和气门传动组组成。
进气门布置在进气道上, 开启时•可燃混合气能顺利地进入气缸;排气门布置在排气道上,开启时废气能排出气缸。
气门收集配气机构有侧置气门式和顶置气门式两种形式。
由于侧置气门式配气机构燃烧室面积大,热量损失多,气道长,进气阻力大,压缩比较低,燃料经济性差。
而顶置气门式配气机构进气道短,充气效率高,燃烧室紧凑,压缩比较高,发动机的热效率高,其动力性和经济性比侧置气门式好。
因此,选取顶置气门式配气机构。
顶置气门式配气机构的进气门和排气门都倒挂在气缸上。
其气门组包括排气门和进气门、气门导管、气门弹簧、气门弹簧座和气门锁夹等。
气门传动组包括气门摇臂、摇臂轴、凸轮轴、正时从动链轮和链条等。
《配气机构》课件
了解配气机构的结构和工作原理,以及其在发动机中的作用。探索各种配气 机构的分类、优势和应用范围,以及未来发展趋势。
什么是配气机构?
配气机构是一种用于控制气缸内混合气进入和排出的机械装置。它协调活塞运动和气门开闭,确保发动机的正 常运转。
配气机构的功能是什么?
• 准确控制气门的开启和关闭时间,以优化燃烧效率。 • 确保气门和活塞之间的配合,以防止机械碰撞。 • 调整气门的开启程度,以适应不同工况。
长曲轴配气机构的结构及工作 原理
• 使用较长的曲轴,将活塞和气门通过滑块相连。 • 曲轴上的滑块沿着凸轮轨迹运动,控制气门的开闭。 • 提供稳定的气门控制和较高的发动机效率。
斜盘配气机构的结构及工作原理
• 采用斜盘和滚子,将曲轴的旋转运动转化为气门的线性运动。 • 通过斜盘的倾斜角度来控制气门的开闭。 • 结构紧凑,可实现精确的气门控制。
配气机构的分类及其特点有哪些?
单凸轮轴配气机构
结构简单,控制精度较低,适用于低功率发动 机。
无凸轮轴配气机构
无需凸轮轴,采用电磁和液压控制。
双凸轮轴配气机构
控制精度较高,适用于高功率发动机。
长曲轴配气机构
采用长曲轴和滑块,具有高效稳定的运行。
单凸轮轴配气机构的结构及工 作原理
• 采用单个凸轮轴驱动气门的开闭。 • 凸轮轴上的凸轮控制气门的开闭时机。 • 通过连杆将凸轮轴的旋转运动转化为气门的线性运动。
齿轮式配气机构的结构及工作 原理
• 采用齿轮传动的方式控制气门的开闭。 • 齿轮上的凸轮控制气门的开闭时机。 • 精度高,适用于高功率发动机。
齿链式配气机构的结构及工作原理
• 采用齿链传动的方式控制气门的开闭。 • 齿链上的凸轮控制气门的开闭时机。 • 结构简单可靠,适用于中功率发动机。
配气机构概述ppt课件.ppt
引言:
充气效率Hv: 新鲜空气或可燃混合气被吸入气缸 愈多,则发动机可能发出的功率愈 大。新鲜空气或可燃混合气充满气 缸的程度,用充气效率hv表示。
涡轮增压
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
A. 气门打开:由曲轴通过正时齿轮驱动凸轮轴旋转,使 凸轮轴上的凸轮凸起部分通过挺柱、推杆、调整螺钉,推 动摇臂摆动,摇臂的另一端便向下推开气门,同时使弹簧 进一步压缩。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
3). 齿轮传动
(1)优点: 配气相位准确,工作可靠性好, 耐久性好。 (2)缺点: 噪音大,布置困难。 (3)应用: 凸轮轴下置式、 凸轮轴中置式。
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
1、按气门布置形式分类
气 门 顶 置 式
气 门 侧 置 式
在日常生活中,随处都可以看到浪费 粮食的 现象。 也许你 并未意 识到自 己在浪 费,也 许你认 为浪费 这一点 点算不 了什么
2、按凸轮轴布置形式分为
凸
凸
轮
轮
轴
轴
下
中
置
置
式
式
柴油机配气机构设计
柴油机配气机构设计
柴油机配气机构设计是柴油机制造过程中的一个重要环节。
柴油机配气机构的设计直接影响了柴油机的性能和使用寿命。
为了使柴油机能够正常工作,必须保证它的配气机构能够精确控制气门的开闭时间和幅度,并且在各工作状态下能够保持稳定的摩擦力和密封性。
因此,柴油机配气机构设计必须充分考虑到各种因素,如气门的直径、弹簧的刚度、凸轮轴的设计和材料等。
在柴油机的设计中,配气机构的设计应当遵循以下几个原则:
1.保证气门的开启和关闭时间、幅度与柴油机的运转速度和工作状态相适应,以充分利用气门开放时间,实现高效的燃烧;
2.合理选择气门的直径和凸轮轴的设计,以保证柴油机在高转速下的顺畅运行,同时兼顾低速和怠速工况的功率输出;
3.考虑到柴油机的使用寿命,需要优化气门弹簧的刚度和材料,以保证气门的开启和关闭不失精度和稳定性;
4.保证气门和气门座的密封性,以避免燃油和水分渗入燃烧室,同时减少气门磨损,延长柴油机的使用寿命。
综上所述,柴油机配气机构设计是一个复杂的过程,需要充分考虑各种因素,以保证柴油机的性能和寿命。
只有通过科学的设计和精细的制造,才能生产出高效、可靠的柴油机。
- 1 -。
汽车发动机-配气机构详细设计资料
汽车发动机配气机构6.1配气机构功用:•配气机构是控制内燃机进、排气过程的机构,即呼吸系统。
•按气缸的发火顺序和气缸中的工作过程,适时开启和关闭进气阀及排气阀,进入新鲜空气,排出废气。
工作条件:•转速高,若n=1000,四冲程,500次,以很高而变化的速度工作,惯性力和热负荷大,且润滑不良,零件磨损大。
要求:•定时准确;•有足够大的气体流通面积;•振动,噪音小;•工作可靠,寿命长;•结构简单,维修方便。
6.1配气机构的布置及传动• 配气机构的类型有气阀式,气孔式,气孔-气阀式。
6.1.1气阀式配气机构的布置:按气阀的布置可分为:•顶置式气阀和侧置式气阀按凸轮轴的位置可分为:•上置式凸轮和下置式凸轮。
按曲轴和凸轮轴的传动方式可分为•齿轮传动和链条传动侧置气门式气门机构3、优缺点:曲轴到气门距离近,方便齿轮传动,气门间隙调整方便,但气道拐弯多,流动阻力大,充气效率低,燃烧室扁平,结构不紧凑,容易爆震,压缩比低。
...1、结构特点: 气门布置在气缸体一侧,气门头部朝上,没有摇臂、推杆,下置式凸轮轴,齿轮传动。
...2、工作原理: 正时齿轮副带动凸轮轴转动,转到凸轮桃尖顶起气门挺杆,推动气门克服弹簧预紧力开启。
凸轮基圆与气门挺杆接触时,气门在气门弹簧预紧力的作用下关闭。
...顶置式气阀优点:燃烧室结构紧凑,可减小进,排气系统的阻力。
缺点:传动链的零件多,质量大因而惯性载荷较大。
2.凸轮轴布置形式1)下置式凸轮轴优点:凸轮轴与曲轴距离近,传动方便。
缺点:传动距离远,传动组件多,惯性大,加剧了零件的震动和磨损。
2)上置式凸轮轴优点:凸轮直接作用于摇臂,省去了挺柱和顶杆缺点:曲轴到凸轮轴传动机构复杂。
3)顶置式凸轮轴优点:凸轮轴直接驱动气阀,无惯性载荷的作用。
缺点:气阀杆受侧推力的作用磨损大。
曲轴列凸轮轴传动复杂,,拆装气缸盖也较麻烦。
3.气阀数及布置1)每气缸两个气阀的布置•每缸两阀,总是采用较大的气阀道路面积,且进气阀直径大于排气阀直径。
配气机构毕业设计
摘要配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。
随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。
配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。
模拟计算和实验研究是内燃机配气机构研究两种重要手段。
关键词:内燃机;配气机构;凸轮型线;ABSTRACTThe valve train is one of the most important mechanisms in a internal combustion engine, whether the performances are good or bad, that affecting the power performance, economic performance, emissions performance of the engine, as well as affecting the reliability and wear performances of the whole engine. Along with the requests of the engine’s high power, super-speed, people demand a higher index. That is, when the engine runs under a high speed, it can still work steadily and dependably, which demand that the valve train system should have a high performance. Cam profile is the hard core of the valve train, which design is one of the important ways to carry out valve train optimal design. Simulation calculation and experimentation research are two important ways to carry out research and development on valve train of internal-combustion engine.Key words:Internal combustion engine; Valve train; Cam profile;目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 概述 (1)1.2 配气机构的研究历程 (2)1.3配气机构优化设计的目的及意义 (2)1.4配气机构采用的新技术 (3)1.4.1顶置凸轮轴技术 (3)1.4.2 多气门技术 (4)1.4.3 可变气门正时配气机构 (5)1.5本章小结 (5)第2章配气机构的总体布置 (6)2.1 气门的布置形式 (6)2.2 凸轮轴的布置形式 (6)2.3 凸轮轴的传动方式 (6)2.4 每缸气门数及其排列方式 (6)2.5 气门间隙 (7)2.6 本章小结 (7)第3章配气正时的工作原理 (8)3.1配气正时的介绍 (8)3.2工作原理 (8)3.3本章小结 (9)第4章配气机构的零件及组件 (10)4.1 气门组 (10)4.1.1 气门 (10)4.1.2 气门座圈 (15)4.1.3 气门导管 (15)4.1.4 弹簧设计计算 (16)4.2 气门传动组 (21)4.2.1 凸轮轴 (21)4.2.2 凸轮型线设计 (21)4.2.3 缓冲段设计 (23)4.2.4 凸轮轴进排气凸轮角度设计 (24)4.2.5 基本段设计 (24)4.2.6 曲轴正时链轮与凸轮轴正时链轮 (26)4.2.7 挺柱 (26)第5章正时链设计方法 (27)5.1汽车链服役条件及失效形式 (27)5.1.1汽车链的服役条件 (27)5.1.2汽车链的失效形式 (27)5.2汽车链的选择 (28)5.3汽车链传动系统设计 (29)5.4本章小结 (33)结论 (33)致谢 (34)参考文献 (35)附录三维建模过程及部分渲染图片 (37)第1章绪论1.1 概述配气机构是发动机的重要组成部分。
配气机构结构及工作原理
配气机构结构及工作原理配气机构,这个名字听起来就像个高大上的东西,其实说白了就是机器里面用来控制气体进出的部件。
想象一下,你的汽车发动机,它可不是简单地一转就能工作的,里面有一套复杂的配气机构在忙活。
这个机构的主要任务就是让空气和燃料在恰当的时机进入发动机,给它提供动力。
说到这里,大家是不是有点好奇了,配气机构是怎么一回事呢?咱们先来聊聊它的构造。
配气机构通常包括气门、凸轮轴、摇臂等等。
气门就像个守门员,专门负责打开和关闭,让空气和燃料能够顺利通过。
你要知道,如果气门不听话,发动机就得“闹脾气”,运转得很费劲。
凸轮轴的作用也很重要,它控制气门的开合,就像一个调皮的小孩,不时地来一下。
摇臂则是传递力量的“小帮手”,把凸轮轴的动作转化成气门的开关动作。
这样一来,整个配气机构就形成了一套默契的团队,缺一不可。
咱们聊聊它的工作原理。
发动机在工作时,活塞往下运动,形成负压,这时候气门就会打开,空气和燃油就顺利进来了。
然后,活塞往上运动,气门关上,空气和燃油混合物在气缸内被压缩。
等到压缩到一定程度,火花塞一发火,轰的一声,能量瞬间释放,发动机就“启动”了!听起来是不是很刺激?不过,这一切的顺利进行都离不开配气机构的“默默奉献”,它的每一次开合都是为了让发动机能高效运转。
配气机构也不是永远不出问题的。
气门可能会卡住,或者凸轮轴磨损得厉害。
这时候,发动机就会发出奇怪的声音,甚至动力下降。
就像人一样,长时间不运动,身体也会“跟不上”,所以定期检查配气机构就显得特别重要。
大家要记得,保养得当,才能让你的“机器小子”跑得飞快。
说到这里,很多人可能会觉得,配气机构的工作原理其实挺简单的。
是的,原理简单,但要想把它做得好,可就得花不少心思了。
汽车制造商在设计配气机构的时候,得考虑到很多因素,比如发动机的排量、转速,甚至是车主的驾驶习惯。
这些细节决定了配气机构的性能,直接影响到汽车的动力和油耗。
谁不想在开车时,既能享受速度,又能省油呢?此外,现代汽车越来越智能,配气机构也在不断进化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(b) 同名气门排成两列分置曲轴轴线两侧平行方向:气道 通畅,流动性能较好,缸盖热负荷较均匀,气缸盖中 央便于布置预燃室;但要采用两根凸轮轴或用一根凸 轮轴并采用复杂的气门驱动机构。
1、缓冲段设计
缓冲段设计包括缓冲段升程h0、所占凸轮转角φ0和缓冲段 函数的选择。h0必须保证大于气门间隙和配气机构的弹性变形 量之和;φ0必须依据h0确定。常用的缓冲段曲线型式有等加 速—等速型、余弦函数型、等加速型等。 以等加速—等速型为例,其方程式为:
C 2
hT
式
a)顶置凸轮轴摆臂驱动气门
顶 置
b)顶置凸轮轴摇臂驱动气门
凸 轮
c)顶置凸轮轴直接驱动气门
轴 式
典型的气门凸轮机构
2、每缸气门数及布置 (1)每缸气门数
现代内燃机绝大多数仍采用每缸一进气门、一排气门的方案, 但多气门技术仍是发展趋势
对车用汽油机:D>80mm时,每缸2进、2排可得最大的进气通流面 积;
(c)二冲程直流扫气发动机用 (d)进排气阀分置曲轴中心线两侧,气阀中心线可以同气缸中心
线布置成一倾斜角度,从而可以增大气阀直径;但此方案气门 驱动机构较复杂,采用顶置凸轮轴时,须通过摇臂驱动
②每缸4气门布置方案
(a) 同名气门排成两列,并与曲轴轴线方向垂直:气门驱 动结构简单;但由于同名气门位于同一气道中前后串
(c) 同名气门同曲轴轴线成斜线两列布置:两个进气门有 单独的气道,有利于组织进气涡流,对于两个同气道 的排气门易于采取措施改善排气门及缸盖热负荷的均 匀性
3、凸轮轴的布置及传动 (1)下置式凸轮轴:齿轮传动 (2)顶置式凸轮轴:链条或齿带传动
§8-2 凸轮型线设计
一、凸轮设计要求: (1)保证获得尽可能大的时间断面值,即气门开启和关闭得快,
第八章 配气机构
8-1 概 述 一、配气机构设计要求
1、保证发动机气缸的换气质量:排气尽量干净,进气尽量充分,因 此要求气门的通过能力足够;
气门 通过 能力
时间-断面值(角度-断面值) 流量系数
(1)气门时面值(角面值)
任意气门升程h时刻气门的通 过断面为:f Nhomakorabeah
2
(d
d
h
)
(h cos
2
)
[(d h
2
h cos
sin
)
dh
]
h
cos
(dh
1 2
h sin
2
)
式中:h-任意时刻气门升程 γ-气门锥角 dh-气门喉口直径
气门的时间-断面值(角度-断面值)为
t2 f (t)dt
( 2 f ()d )
t可1 用下图表示
1
气门通过能力还可以用时间-断面丰满系数表示:
f fm / fmax
fm-气门平均通过截面, fmax-气门最大通过截面:
流量系数反映了气门处的流动阻力特性。阻力的影
响可通过马赫指数Z考核:
Z
平进均气流马量赫系数数=
D dh
2
vm
ma
a kRT
式中:a-气门座处的音速
k-绝热指数
R-气体常数
T-气门处气体绝对温度
μm-平均流量系数 D-气缸直径
实验表明:进气门的Z>0.6时,充气系数就大幅下降,设 计时一般Z值在0.5以下。现代发动机最大扭矩时Z=0.4- 0.45;最大功率时Z=0.65-0.75,相应的充气系数在0.8 左右。马赫指数与充气系数的关系如下图所示:
f max
H
cos
(d h
1 2
H
sin
2
)
如右图所示,实际的丰满系数 因为有气门的提前开启、推迟 关闭比上式的计算值大。
可见,气门时面值和丰满系 数取决于dh、γ、H、气门升程 变化规律和配气相位。
(2)流量系数μm 平均流量系数μm需在不同气门升程下作稳流实验,
由实测流量与计算得出的理论流量之比,绘出曲线求 平均值。
2、具有良好的动力性,工作平稳,振动噪声小; 3、布置紧凑; 4、磨损小,使用寿命长; 5、结构简单,便于调节。
二、结构型式与布置
1、结构型式:有顶置凸轮轴式(overhead camshaft,OHC) 和下置凸轮轴式两类。
a)下置凸轮轴侧置气门
下 置
b)下置凸轮轴顶置一列气门
凸 轮
c)下置凸轮轴顶置两列气门 轴
缺点:气缸盖结构复杂,制造困难;气门 驱动机构复杂;零件数量增加。
(2)气门布置 ①每缸2气门布置方案
(a)相邻两缸可以共用进气道,可使进气道结构简化,并可获得 较大的通道
(b)进排气阀交替配置,气道单独布置,冷却效果好,气缸盖温 度场均匀,热变形小,适合热负荷较大发动机;对采用螺旋进 气道的高速柴油机必须采用此方案
以保证在尽可能大的凸轮转角内气门接近全开位置; (2)保证配气机构各零件所受的冲击和跳动尽可能小,即正负加
速度尽可能小且不产生突变,以保证配气机构的可靠性和寿 命。 二、分类 按工作段曲线型式,发动机上采用两类配气凸轮: 1、几何凸轮 先选定凸轮的几何形状和气门驱动形式,计算挺柱(
或气门)的运动规律,然后校核所设计凸轮的几何形 状是否满足设计要求。典型的几何凸轮如组合圆弧凸 轮
D<80mm时,每缸4气门火花塞不易布置,可采用 3进、2排方案;
对排量1.5L以下的4缸小型轿车发动机采用每缸2进、 1排方案,可保证性能、且结构简单
高速柴油机:一般D>120mm时采用每缸2进、2排方案,现 代D=80~90mm的直喷柴油机上亦开始采用4阀 方案
采用多气门技术的优点:气缸充量更换彻底;气门组尺寸小、 质 量轻,更适应高速运转;排气门 热负荷小,工作可靠性易于保证; 喷油器或火花塞可以布置在燃烧室 中心位置,便于燃烧过程的组织。
2、函数凸轮 从发动机性能对配气机构、气门通过能力等的性能 要求出发,先拟出挺柱(或气门)的运动规律,然 后求出凸轮外形。典型的函数凸轮如高次方凸轮 。
三、凸轮型线设计
如图所示,发动机配气凸轮由三部分组成:基圆段、缓冲(过渡) 段、工作段。
缓冲段作用:控制气门的开始升起和落座速度,缓和气门开闭时对 气门座的冲击,降低噪声,并确保时面值。为克服配 气机构的热变形,保证气门在任何工况下都能闭合, 必须留有气门间隙;为克服配气机构的弹性变形,保 证时面值,必须留有缓冲段。设计的缓冲段升程h0应 保证大于两者所需凸轮升程之和。