神经递质与受体
神经递质和受体(课堂PPT)
++++++ +++++++++ +++++ -------- ------------ -a---b---
g
IONOTROPIC .
METABOTROPIC 14
Ionotropic Receptor
Channel
NT neurotransmitter
.
15
Ionotropic Receptor
A
R
C
G
ATP
GTP
cAMP
PK
.
24
G protein: Protein Phosphorylation
A
R
C
G
ATP
GTP
P
cAMP
PK
.
Pore
25
周围神经系统的递质和受体
-胆碱能纤维 -肾上腺素能纤维
.
26
乙酰胆碱及其受体
Acetylcholine is the first discovery neurotransmitter
NT
Pore
.
16
G protein: direct control
R
G
GDP
.
20
G protein: direct control
R
G
GTP
Pore
.
21
G protein: Protein Phosphorylation
A
R
C
G
GDP
PK
.
23
神经递质与神经递质受体的关系研究
神经递质与神经递质受体的关系研究神经递质是指在神经元之间传递信号的化学物质,通过神经递质受体与靶细胞相互作用,实现神经系统内信息的传递和调节。
神经递质和神经递质受体之间的关系对于我们理解神经传递的机制以及相关疾病的发生和治疗具有重要意义。
本文将探讨神经递质与神经递质受体的关系研究的进展和意义。
一、神经递质的概念和分类神经递质是神经系统内传递信息的分子信号,可分为多种类型,包括乙酰胆碱、多巴胺、谷氨酸、丙酮酸、5-羟色胺等。
它们在神经元末梢的突触间隙中释放,并与靶细胞上的神经递质受体结合,触发相应的信号传递。
二、神经递质受体的类型和功能神经递质受体是位于神经元表面的蛋白质结构,可以与特定的神经递质结合,传递信号并调节细胞功能。
根据结构和功能的不同,神经递质受体可以分为两大类:离子通道受体(即离子门控受体)和G蛋白偶联受体。
1. 离子通道受体离子通道受体由蛋白质亚单位组成,受体活化时会改变通道的打开状态,从而使特定离子进入或离开细胞内。
这类受体主要包括离子门控受体,如NMDA受体、GABA受体和乙酰胆碱受体等。
离子通道受体的功能非常快速和直接,能迅速改变神经细胞的膜电位,产生兴奋或抑制效应。
2. G蛋白偶联受体G蛋白偶联受体是广泛存在于细胞膜上的蛋白质受体,与G蛋白结合后,能够通过细胞内第二信使的产生和信号转导途径,调节细胞内的生物化学反应。
这类受体包括α和βγ亚单位,可以激活或抑制特定的酶系统,介导多种生物效应的产生。
三、神经递质与神经递质受体的相互作用神经递质与神经递质受体之间的相互作用是神经传递的基础。
在突触间隙中,神经递质释放到神经元末梢,通过扩散或再摄取作用与神经递质受体结合。
神经递质受体的结构决定了它与特定神经递质结合的亲和力和特异性。
当神经递质与受体结合时,会触发受体的构象变化,并激活相应的信号转导通路。
这些信号转导通路可以通过调节离子通道或启动细胞内的第二信使系统,最终改变细胞的功能和活性。
神经递质和受体的分类和作用机制
神经递质和受体的分类和作用机制神经递质和受体是神经系统中重要的组成部分,它们与神经元之间进行信息传递,调节睡眠、情绪、记忆、运动等生理过程。
本文将介绍神经递质和受体的分类和作用机制。
一、神经递质的分类神经递质是指在神经元之间传递信息的化学物质。
根据化学性质和功能,神经递质可以分为以下几类:1.单胺类神经递质单胺类神经递质主要包括:去甲肾上腺素、多巴胺、5-羟色胺等。
它们分别由去甲肾上腺素能神经元、多巴胺能神经元和5-羟色胺能神经元释放,作用于相应的受体。
2.乙酰胆碱类神经递质乙酰胆碱是一种重要的神经递质,在神经系统中的作用非常广泛,如调节肌肉收缩、促进记忆和学习等。
乙酰胆碱主要由乙酰胆碱能神经元释放,作用于乙酰胆碱受体。
3.氨基酸类神经递质氨基酸类神经递质包括:谷氨酸、γ-氨基丁酸(GABA)、甘氨酸等。
谷氨酸和甘氨酸主要作为兴奋性神经递质,而GABA则是一种抑制性神经递质。
它们分别由谷氨酸能神经元、GABA能神经元和甘氨酸能神经元释放,作用于相应的受体。
4.肽类神经递质肽类神经递质是由多肽合成酶合成的,如神经肽Y、降钙素、神经酰胺等。
它们分别由相应的神经元释放,作用于相应的受体。
二、受体的分类受体是神经递质作用的靶点,分为离子通道型受体和G蛋白偶联型受体两种。
1.离子通道型受体离子通道型受体分为硬膜下蛋白质受体、离子型谷氨酸受体、非NMDA型谷氨酸受体、GABA受体等。
它们是由蛋白质组成的离子通道,受体激活后,离子通道打开,离子流入或流出神经元,从而改变神经元的兴奋性或抑制性。
2.G蛋白偶联型受体G蛋白偶联型受体是膜上七次跨膜的蛋白质,由三部分组成:外部受体结构、七次跨膜蛋白和内部酶或离子通道。
激活这种受体的神经递质结合外部受体结构后,激活内部酶或离子通道,从而改变神经元的兴奋性或抑制性。
三、作用机制神经递质和受体的作用机制有以下两种:1.兴奋性或抑制性神经递质的作用兴奋性神经递质的作用机制是通过打开或关闭离子通道,增加或减少神经元膜的通透性,使离子流入或流出神经元,提高神经元兴奋性。
神经递质与神经递质受体的相互作用
神经递质与神经递质受体的相互作用神经递质是指神经系统中能够传导神经信号的化学物质。
神经递质在神经元之间传递信号,调节身体的各种生理功能。
常见的神经递质包括多巴胺、去甲肾上腺素、肾上腺素、乙酰胆碱等。
神经递质的作用是通过与神经递质受体结合来实现的。
神经递质受体是指位于神经元表面的蛋白质,能够与神经递质结合并触发细胞内的相应信号转导途径,促进或抑制神经递质的释放。
神经递质受体分为离子通道受体和信号转导型受体两类。
离子通道受体又称为离子门控受体,主要包括乙酰胆碱受体、谷氨酸受体、GABA受体等。
这类受体是一种离子通道,当神经递质结合受体时,通道会打开或关闭,使特定离子自由通过细胞膜,从而触发神经递质的相应效应。
信号转导型受体是指神经递质与受体结合后通过一系列的蛋白质信号转导途径,最终影响细胞内的生化代谢或基因表达。
典型的信号转导型受体包括G蛋白偶联型受体、钛蛋白酶受体、酪氨酸激酶受体等。
这类受体是一种跨膜蛋白,神经递质结合受体后会引发细胞内的相应蛋白激酶的激活,并使特定的细胞内信号通路被激活,从而引发细胞内的生理反应。
这个过程可以看作是一种化学信号到细胞内的物理响应的转换过程。
神经递质与神经递质受体的相互作用具有非常重要的生理意义。
神经递质受体的不同种类和分布不仅体现了神经递质的多样性和复杂性,也是不同类型的神经元和神经递质在神经系统中具有不同的功能和作用的原因之一。
此外,许多神经递质的循环水平也能够受到其受体的反馈调节,以维持神经递质水平的平衡,从而保证神经系统的正常功能。
随着神经递质和神经递质受体在神经系统中作用的生理意义和分子机制的深入研究,神经递质受体在药物的研发和治疗方面也具有非常重要的作用。
许多精神疾病和神经系统疾病的发生和发展与神经递质受体的异常表达和调控有关,如多动症、帕金森病、阿尔茨海默病等。
通过开发靶向特定神经递质受体的药物,能够调节神经递质水平,从而改变神经系统的生理和病理状态,从而实现治疗目的。
神经递质和受体
• 激动剂和拮抗剂都能与受体特异性结合,叫做配体 • • 特异性 受体与配体结合特性 饱和性 可逆性
受体亚型 胆碱能受体
毒蕈碱受体(M)
N1 烟碱受体(N)
N2
• •
肾上腺素能
α1
α
α2 β
1 2 3
突触前受体:位于突触前膜,被激动后,调节突触前末梢递质释放,是 一种负反馈调节
受体调节:膜受体蛋白数量与递质亲和力在不同情况下均可改变 递质分泌不足,受体数量增加,亲和力上升,受体上调
• • • • • • •
以Ach为递质的神经元/神经纤维称为胆碱能神经元/胆碱能纤维 胆碱能纤维有: 1.交感神经节前纤维 2.支配汗腺交感神经节后纤维 3.支配骨骼肌舒血管交感节后纤维 4.副交感节前节后纤维 5.躯体运动神经纤维
• M受体 • M1~M5 • 分布:在外周,M受体分布于大多数副交感节后纤维支配 的效应细胞,交感节后纤维支配的汗腺和骨骼肌血管的平 滑肌细胞膜上。 • M效应:M受体激活时的效应包括心脏活动抑制,支气管 平滑肌、胃肠平滑肌、膀胱逼尿肌、虹膜环形肌收缩,消 化腺、汗腺分泌增加和骨骼肌血管舒张 • 拮抗剂:阿托品
神经递质和受体
• 神经递质:是指由突触前神经元合成并在末梢处释放,能特 异性作用于突触后神经元或效应细胞的受体,并使突触后 神经元或效应细胞产生一定效应的信息传递物质。
• 神经调质:神经元还能合成和释放一些化学物质,它们并不 在神经元之间直接起信息传递作用,而是增强和削弱递质 的信息传递效率,这类对递质信息传递起调节作用的物质 称为神经调质。 • 递质共存:有两种或两种以上的递质(包括调质)共存于同 一神经元内,这种现象称为递质共存。 • 意义:在于协调某些生理功能活动。
生理学课件神经系统2神经递质和受体
② N受体亚型 神经元型、肌肉型两个亚型。
神经元型烟碱受体(N1型烟碱受体) 分布于中枢神经系统和自主神经节 节后神经元的细胞膜上;
肌肉型烟碱受体(N2型烟碱受体) 分布于骨骼肌终板膜
③ N受体的阻断剂是筒箭毒碱 (Tubocurarine);
神经元型烟碱受体的阻断剂: 六烃季铵 (Hexamethnium);
⑷肽类Peptides:
① 下丘脑调节肽,7种 ② 阿片肽 ③ 脑-肠肽 ④ 其他:血管紧张素Ⅱ
血管升压素(VP) 缩宫素(OXT), 心房钠尿肽等
⑸ 嘌呤类(Purine):
腺苷(adenosine)、 ATP
⑹ 脂类(Lipid):
花生四烯酸及其衍生物:前列腺素(PG) 神经活性类固醇
⑺ 气体类:
NO; CO;
5.神经递质的共存 ⑴ 戴尔原则(Dale principle):
一个神经元的全部神经末梢均释放 同一种神经递质。
⑵ 递质共存现象:
一个神经元内可以存在两种或两种以上 的神经递质或调质,末梢可同时释放两种或 两种以上的递质 。
递质共存的意义:
① 协调某些生理过程: 如:支配猫唾液腺的副交感神经 ACh:分泌唾液 VIP: 增加唾液腺血供, 增强受体对ACh的亲和力
毒蕈碱样作用(M样作用)
腺体分泌增加:消化腺,汗腺 平滑肌收缩:支气管,胃肠平滑肌,膀胱逼尿肌 抑制心血管活动的、血管舒张,血压下降 瞳孔缩小等。
② M受体亚型
M1、M2、M3、M4、M5等。 M1在脑内含量丰富; M2主要在心脏 M3和 M4存在于平滑肌 M4还存在于胰腺腺泡和胰岛组织,
介导胰酶和胰岛素分泌;
胆碱能神经元:中枢神经系统中能合成Ach 的神经元。
医学神经递质和受体
去甲肾上腺素及其受体
儿茶酚胺类Catecholamine :含有邻苯二酚基本结 构的胺类
去甲肾上腺素(Noradrenaline NA, norepinephrine NE):
肾上腺素 ((Adrenaline Adr, epinephrine E) 多巴胺(Dopamine DA)
儿茶酚胺类递质合成
胆碱类: ACh 胺类:
Dopamine (DA), Noradrenaline(NA,NE), Adrenaline(Adr,E), 5-HT, histamine (HA) 氨基酸类: 兴奋性:谷氨酸(Glu), 门冬氨酸 (Asp) 抑制性:甘氨酸(Gly), γ–氨基丁酸 (GABA) 肽类: VP, OXT, 阿片肽,脑-肠肽,AngII 等 嘌呤类: 腺苷,ATP 气体: NO,CO 脂类: 花生四烯酸及其衍生物
Classes of Neurotransmitter Receptors
+
-
OUT
++ +++ +
-------- -
IN
++++++ +++++++++ +++++ -------- ------------ -a---b---
g
IONOTROPIC
METABOTROPIC
Ionotropic Receptor
外周肾上腺素能神经纤维
肾上腺素能神经纤维:以NE作为递质的神经纤维。 外周NE能纤维:交感神经节后纤维(除支配汗腺和
神经递质和受体
23
乙酰胆碱的合成与分解
胆碱 + 乙酰CoA 胆碱乙酰转移酶
Ach + CoA 胆碱酯酶
胆碱 + 乙酸 进入肝脏代谢
可被重摄取,再合成Ach 24
中枢胆碱能纤维分布
ACh及其受体广泛存在于中枢和外周神 经系统。
中枢:脊髓前角运动神经元、丘脑后腹 核特异感觉投射神经元、脑干网状结构、 纹状体、海马等。
31
M受体(毒蕈碱受体Muscarinic receptor)
G蛋白耦联受体
a.ACh与其结合所产生的效应称为毒蕈 碱样作用(M样作用)。如心脏活动 的抑制、支气管平滑肌收缩、胃肠 平滑肌收缩、消化腺分泌增加、汗 腺分泌增加、骨骼肌血管舒张等。
32
33
b.M受体又分为M1、M2、M3、M4、 M5等亚型。
25
外周胆碱能纤维分布
自主神经节前纤维(N1) 大多数副交感神经节后纤维(M) 少数交感神经节后纤维(汗腺和骨骼肌
舒血管)(M) 运动神经纤维(N2)
26
27
胆碱能受体分类
分N、两类。 N受体:即烟碱受体
Nicotinic receptor, 是配体化学门控通道。 a.ACh与其结合所产生的效应称为烟碱 样作用(N样作用)。
以受体所在部位分类
◦ 突触前受体 ◦ 突触后受体
15
作用:对递质的合成和释放进行反馈调节。
20
(三)受体的特征
受体与配体结合的特异性(specificity) 受体与配体结合的可逆性(reversibility) 受体一般有内源性配体 受体与配体结合的饱和性(saturability)
可同时释放NE和NPY(神经肽Y);有些腹 腔交感神经纤维可同时释放NE和生长 抑素;
神经递质与受体
几种神经递质的失活机制
失 神经递质
酶降解 乙酰胆碱
活方 弥散入血
式 重摄取
去甲肾上腺素
多巴胺
5-羟色胺
(二) 配体与受体
• 配体(ligand)凡能与受体发生特异性结合的 化学物质,都属配体。
配体可分为: • 激动剂(agonist): 凡能与受体发生特异性结
• 胆碱能受体:能与ACh结合并产生生物效应 的受体。分为:
毒蕈碱受体(muscarinic receptor, M受体): 为G-蛋白耦联受体。当M受体激活时,可改 变细胞内第二信使(cAMP或IP3和DG)的浓 度 ,产生一系列自主神经效应;
烟碱受体(nicotinic receptor, N受体):是配 体门控通道 ,小剂量ACh能兴奋N受体,而 大剂量ACh则可阻断N受体介导的突触传递。
信号产 生细胞
信号分子
离子通 道受体
胞内受体
电效应
G蛋白偶 联受体
酶偶联 受体
cAMP PKA
IP3 Ca2+释放 DAG
PKC
生化反 应、离 子通道 等
Ras
靶细胞
16
突触前膜的受体
• 自身受体 :作用于突触前膜的受体,调节 本递质或正或负的反馈调节,
• 异身受体:作用于突触前膜的受体,调节 其它递质的释放
(三)主要的递质、受体系统
(Main transmitter, receptor system)
• 1.乙酰胆碱及其受体 • 2.儿茶酚胺及其受体 • 3. 5-羟色胺及其受体 • 4. 组胺及其受体 • 5. 氨基酸类递质及其受体 • 6. 嘌呤类递质及其受体 • 7. 气体分子 • 8. 神经肽
神经递质和受体概述
主要的递质、受体系统(以外周为主)
1. 乙酰胆碱 ( acetylcholine )
(1)外周胆碱能神经纤维 (cholinergic fibers): 支配骨骼肌的纤维 交感、副交感节前纤维 大多数副交感节后纤维 少数交感节后纤维(支配汗腺、骨骼肌舒血管
纤维)
配体(ligand)
激动剂(agonist) 拮抗剂(antagonist)
配体与受体结合的特性
特异性 饱和性 可逆性
2.受体(receptor)
对受体研究的一些认识 有多个亚型
突触前受体(presynaptic receptor)
分类: 促离子型受体和促代谢型受体 受体的调节: 上调 (up regulation )
• 烟碱(N)受体 ( nicotinic receptor ):
– 分布于自主神经节节后神经元的突触后膜和 神经-肌接头的终板膜上
– 阻断剂:筒箭毒(antagonist) – 分类:神经元型烟碱受体 N1
阻断剂 :六烃季铵(antagonist) 肌肉型烟碱受体 N2 阻断剂 :十烃季铵(antagonist ) 兴奋后效应:骨骼肌收缩
平滑肌 胃肠道、支气管血管舒 较E弱
代谢 血糖↑、脂分解↑
较E弱
1.神经递质(neurotransmitter) 1) 递质条件 2) 递质和调质的种类
胆碱类、单胺类(NE、Ad、DA、5-HT…)、肽类、 AA类、其他(NO、PG、腺苷…)
3) 递质共存
Dale原则/观点
4) 递质代谢
合成---储存---释放---降解---再摄取、再合成
2.受体(receptor)
肾上腺素(E) (NE)
神经递质及其受体
一、乙酰胆碱的代谢
神经递质的代谢包括递质的合成、贮存、释 放、降解与失活等步骤。在神经递质中,不同递 质代谢的底物和酶有所不同。
.
(一)乙酰胆碱的合成酶是胆碱乙酰化酶,胆碱是合 成的限速底物
acetyl coenzyme A+choline 乙酰辅酶 A +胆碱
ChAT
Acetylcholine+CoA
.
神经递质共存的现象,有3种形式: ①不同经典递质共存,如NA与ACh共存于发育中的交感神经节,5-
HT与GABA共存于中缝背核,DA与GABA共存于中脑黑质等; ②经典递质与神经肽共存,如脑内蓝斑核中的NA神经元含有神经
肽Y(NPY),中缝大核的5-HT神经元含有SP与TRH,颈上交 感神经节神经元有NA和脑啡肽共存等; ③不同神经肽共存,如下丘脑弓状核有β-内啡肽(β- EP)与ACTH 共存,下丘脑室旁核大细胞有SP与VIP的共存,降钙素基因相关 肽(CGRP)与SP共存于感觉神经节与支配心脏神经末梢等。
ห้องสมุดไป่ตู้
G蛋白偶联型受体(也称促代谢型受体) (G-protein-coupled receptor)
概念:七次跨膜蛋白,胞外结构域识别 信号分子(配体),胞内结构域与G蛋白 耦联
.
作用机理:当此受体和配体结合后,激活 偶联的G蛋白,调节相关酶活性,在细胞内 产生第二信使。
信号分子有神经递质、肽类激素(如 肾上腺素、胰高血糖素)等
ACh失活的主要方式是由乙酰胆碱酯酶(acetylcholinesterase, AChE) 酶解水解,突触前膜对ACh的重摄取数量极少,无功 能意义。
Ach 胆碱酯酶 胆碱 + 乙酸 , 并进入循环。约50%胆碱还可被神经末梢 再摄取利用。
神经递质和受体
汇报人:XX
contents
目录
• 神经递质概述 • 受体概述 • 神经递质与受体相互作用 • 常见神经递质和受体举例 • 神经递质和受体在神经系统中的作用 • 神经递质和受体相关疾病与治疗策略
01
神经递质概述
定义与分类
定义
神经递质是指由突触前神经元合 成并在突触传递中是担当“信使 ”的特定化学物质。
制下游效应器,如腺苷酸环化酶或磷脂酶C。
02
离子通道型受体途径
一些神经递质直接作用于离子通道型受体,改变其构象并开放或关闭离
子通道。例如,乙酰胆碱激活乙酰胆碱受体,导致钠离子内流和钾离子
外流,从而产生兴奋性突触后电位。
03
酶联型受体途径
某些神经递质通过激活酶联型受体来转导信号。这些受体通常具有内源
性酶活性,当神经递质与受体结合时,酶活性被激活并催化下游信号分
受体在细胞信号转导中作用
01
02
03
识别配体
受体能够特异性地识别并 结合配体,如神经递质多 巴胺、血清素等。
触发信号转导
配体与受体结合后,会触 发受体的构象变化,进而 激活或抑制细胞内的信号 转导通路。
调节细胞功能
通过信号转导通路,受体 可以调节细胞的多种生理 功能,如代谢、增殖、分 化、凋亡等。
治疗效果与副作用
乙酰胆碱酯酶抑制剂能够改善 阿尔茨海默病患者的认知功能 、日常生活能力和行为症状。 然而,长期使用可能会出现恶 心、呕吐、腹泻等副作用。
帕金森病与多巴胺能药物治疗
• 帕金森病概述:帕金森病是一种慢性进行性神经系统变性疾病,以静止性震颤 、运动迟缓、肌强直和姿势平衡障碍为主要特征。其发病机制与黑质多巴胺能 神经元显著变性丢失有关。
常见递质及受体类型
常见递质及受体类型神经递质在神经元之间的信息传递中扮演着至关重要的角色,它们是神经元之间通讯的化学信使。
常见的神经递质及其受体类型如下:1、乙酰胆碱(ACh):ACh是一种在突触传递中起重要作用的神经递质。
它主要参与乙酰胆碱能受体的信号转导。
乙酰胆碱能受体分为两种类型:M型和N 型。
M型受体主要分布在副交感神经节后纤维所支配的效应器细胞膜上,而N型受体则主要分布在自主神经节前纤维所支配的细胞膜上。
2、谷氨酸(Glu):谷氨酸是一种兴奋性神经递质,在中枢神经系统中发挥着重要作用。
它主要参与谷氨酸受体的信号转导,谷氨酸受体分为四种类型:AMPA 型、NMDA型、Kainate型和Metabotropic型。
AMPA型和Kainate型受体属于离子型谷氨酸受体,NMDA型受体属于亲代谢型谷氨酸受体,而Metabotropic型受体则是G蛋白偶联型受体。
3、γ-氨基丁酸(GABA):GABA是一种抑制性神经递质,它在中枢神经系统中起着重要的调节作用。
它主要参与GABA受体的信号转导,GABA受体分为两种类型:GABAA型和GABAB型。
GABAA型受体是一种离子通道型受体,而GABAB型受体则是一种G蛋白偶联型受体。
4、5-羟色胺(5-HT):5-HT是一种在情绪、睡眠、食欲等方面起着重要作用的神经递质。
它主要参与5-HT受体的信号转导,5-HT受体分为多种亚型,包括5-HT1A、5-HT1B、5-HT2A、5-HT2B、5-HT3、5-HT4、5-HT5A、5-HT6和5-HT7等。
这些常见的递质及受体类型在神经系统中发挥着各种不同的功能,是维持人体正常生理活动不可或缺的成分。
如需更多关于“常见递质及受体类型”的相关信息,建议查阅相关文献或咨询生物学家获取帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 胆碱能纤维(cholinergic fiber) : 在周围神经 系统中,释放ACh作为递质的神经纤维。
包括:全部自主神经节前纤维;绝大部分副交 感神经节后纤维;少数交感神经节后纤维;躯 体运动神经纤维均属于此类。
(三)主要的递质、受体系统
(Main transmitter, receptor system)
• 1.乙酰胆碱及其受体 • 2.儿茶酚胺及其受体 • 3. 5-羟色胺及其受体 • 4. 组胺及其受体 • 5. 氨基酸类递质及其受体 • 6. 嘌呤类递质及其受体 • 7. 气体分子 • 8. 神经肽
1.递质的合成(synthesis of transmitter): 多在胞浆内进行,需要有关酶的催化。
2.在突触小泡内储存; 3.递质的释放(releasing of transmitter):当
Ap传来,突触前膜去极化,Ca2+由膜外进 入, 使突触小泡与突触前膜融合,小泡破裂, 其内递质外排,进入的Ca2+量与递质的释 放量有直接的关系。
细胞的信号系统
信号产 生细胞信号分子 Nhomakorabea离子通 道受体
胞内受体
电效应
G蛋白偶 联受体
酶偶联 受体
cAMP PKA
IP3 Ca2+释放 DAG
PKC
生化反 应、离 子通道 等
Ras
靶细胞
16
突触前膜的受体
• 自身受体 :作用于突触前膜的受体,调节 本递质或正或负的反馈调节,
• 异身受体:作用于突触前膜的受体,调节 其它递质的释放
• 一个神经元内可存在两种或两种以上递质 (包括调质)
• 一个神经元的全部神经末梢均释放相同的 递质
一个化学物质被确认为神经递质的条件
(Definition of transmitter)
1)突触前神经元内有合成递质的前体物质及相应 的酶系统,能合成该物质。
2)合成的递质贮存于囊泡内,神经冲动到来时能 释放入突触间隙。
1.什么离子通道的开放引起神经递质的释放? 2.突触后电位的变化与什么离子的运输有关?
神经递质与受体 ——化学性突触传递最重要的物质基础
(一) 神经递质(Neurotransmitter)
• 神经递质:由突触前神经元合成、突触前 膜释放、经突触间隙扩散,特异性地作用 于突触后神经元或效应器细胞膜上的受体, 具有携带和传递神经信息功能的特殊的化 学物质。(直接的信息传递者)
hepar) • 被神经胶质细胞摄取(uptake by neuroglia)
几种神经递质的失活机制
失 神经递质
酶降解 乙酰胆碱
活方 弥散入血
式 重摄取
去甲肾上腺素
多巴胺
5-羟色胺
(二) 配体与受体
• 配体(ligand)凡能与受体发生特异性结合的 化学物质,都属配体。
配体可分为: • 激动剂(agonist): 凡能与受体发生特异性结
递质共存
(neurotransmitter co-existence)
• 两种或两种以上的递质(包括调质)共存于同 一神经元内,这种现象称为递质共存。
• 意义在于协调某些生理过程。
唾液腺
交感神经 去甲肾上腺素 →少量粘稠的唾液
神经肽Y
乙酰胆碱
副交感神经 血管活性肽 →大量稀薄的唾液
递质的代谢
(Metabolism of transmitter)
4.与突触后膜受体结合,发挥效应
5.递质的失活与清除(degradation & elimination of transmitter):
• 被酶降解(degradation by enzyme) • 由突触前膜重摄取(re-uptake by presynaptic
membrane) • 被血循环带走,到肝脏灭活 (inactivation by
神经递质的分类
分类 胆碱类 胺类
氨基酸 类
肽类
嘌呤类 气体 脂类
家族成员 乙酰胆碱 多巴胺、去甲肾上腺素、肾上腺素、5-羟色胺、
组胺 谷氨酸、门冬氨酸、甘氨酸、γ-氨基丁酸
下丘脑调节肽、血管升压素、催产素、阿片肽、脑 -肠肽、血管紧张素II、心房钠尿肽等
腺苷、ATP 一氧化氮、一氧化碳 花生四稀酸及其衍生物(前列腺素类)
3)能与突触后膜上相应的受体结合,产生特定的 生理效应。
4)在突触部位存在有使递质失活的酶或重回收机 制,使之作用迅速失活。
5)有特异性受体拮抗剂能阻断递质的作用。 6)有特异性受体激动剂能增强递质的作用。
神经递质的失活
通过两个途径 • 再回收抑制,即通过突触前载体的作用将
突触间隙中多余的神经递质回收至突触前 神经元并贮存于囊泡; • 酶解,在酶的作用下被代谢和失活。
1.乙酰胆碱及其受体
(Acetylcholine & its receptors)
• 乙酰胆碱(acetylcholine,ACh)是胆碱的乙 酰酯。
• 由胆碱和乙酰辅酶A在胆碱乙酰转移酶的催化 下合成。
• 合成在胞质中进行,然后被输送到末梢储存于 突触小泡内。
• 胆碱能神经元(cholinergic neuron):在中枢 神经系统中,释放ACh作为递质的神经元。
合并产生生物效应的化学物质。 • 拮抗剂(antagonist):只能与受体发生特异
性结合,并不产生生物效应的化学物质。
• 受体(receptor):是细胞表面或亚细胞组分 中的一种分子,可以识别并特异地与有生 物活性的化学信号物质(配体)结合,从 而激活或启动一系列生物化学反应,最后 导致该信号物质特定的生物效应。
2.神经调质modulator
• 神经调质(neuromodulator): 由神经元产生 的一类化学物质,能调节信息传递的效率, 增强或削弱递质的效应。起着修饰神经元 内其他递质的作用。非直接的传递信息者, 但可改变信息传递的效率。
• 神经肽
3.神经调质的分类
1)按分泌部位分:中枢神经递质和外周神 经递质 2)按化学性质分为胆碱类、胺类、氨基酸 类、肽类、嘌呤类、 脂类和气体类等
• 两个功能:1、识别特异的配体;2、把识 别和接受的信号准确无误的放大并传递到 细胞内部,产生特定的细胞反应。
受体与配体结合特性:
• 特异性 (specificity) • 饱和性 (Saturation) • 竞争性 (Competive) • 可逆性 (Reversibility)