2020高中数学---特殊值法解决二项式展开系数问题
高中数学二项式中系数问题的求解策略
高中数学二项式中系数问题的求解策略二项式中的系数和二项式系数比较容易混淆,二项式系数有具体的规律,解决比较容易,而关于系数的求解是二项式中的重点和难点。
这类题型的解题方法比较灵活,对观察力的要求也很高。
现在就此类问题的解答技巧,谈几种常见的方法。
一应用通项和组合,直接求解。
例题1求展开式中的系数解法一:故展开式中含的项为故展开式中的系数为240解法二:要使指数为1,只有才有可能,即故的系数为解法三:由多项式的乘法法则,从以上5个括号中,一个括号内出现,其它四个括号出现常数项,则积为的一次项,此时系数为剖析:此类问题通常有两个解法:化三项为二项,乘法法则及排列、组合知识的综合应用二巧妙赋值,灵活求解。
例题2若(1-2x)2009=a0+a1x+…+a2009x2009(x∈R),则a12+a222+…+a200922009的值为()A.2B.0C.-1 D.-2解析:.(1-2x)2009=a0+a1x+…+a2009x2009,令x=12,则(1-2×12)2009=a0+a12+a222+…+a200922009=0,其中a0=1,所以a12+a222+…+a200922009=-1. 选C例题3已知f(x)=(1+x)m+(1+2x)n(m,n∈N*)的展开式中x的系数为11.(1)求x2的系数取最小值时n的值.(2)当x2的系数取得最小值时,求f(x)展开式中x的奇次幂项的系数之和.解析:(1)由已知Cm1+2Cn1=11,∴m+2n=11,x2的系数为Cm2+22Cn2=m(m-1)2+2n(n-1)=m2-m2+(11-m)(11-m2-1)=(m-214)2+35116.∵m∈N*,∴m=5时,x2的系数取得最小值22,此时n=3.(2)由(1)知,当x2的系数取得最小值时,m=5,n=3,∴f(x)=(1+x)5+(1+2x)3.设这时f(x)的展开式为f(x)=a0+a1x+a2x2+…+a5x5,令x=1,a0+a1+a2+a3+a4+a5=25+33,令x=-1,a0-a1+a2-a3+a4-a5=-1,两式相减得2(a1+a3+a5)=60,故展开式中x的奇次幂项的系数之和为30.剖析:在对二项式进行赋值时,主要考虑如何赋值能得到所需要的系数,通常赋值有0、1、-1、12等不同的数值。
二项式定理11种题型解题技巧
二项式定理知识点及11种答题技巧【知识点及公式】1.二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈,2.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项r n rr n C a b -叫做二项式展开式的通项。
用1r n r rr nT C a b -+=表示。
3.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()n a b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
4.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈5.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =, (1)k k n n C C -= ②二项式系数和:令1a b ==,则二项式系数的和为0122rnn n n n n n C C C C C ++++++=,变形式1221r nn n n n n C C C C +++++=-。
高中数学之二项式定理应用基本方法三大方法总结到位
高中数学之二项式定理应用基本方法三大方法总结到位二项式定理是高中数学中的重要内容,主要用于解决与二项式有关的问题。
以下是二项式定理应用的三大基本方法:
1. 展开式应用:利用二项式定理将二项式展开,可以得到其展开式。
对于形如 (a+b)^n 的二项式,其展开式中的每一项都可以根据二项式定理计算出来。
2. 系数提取:在解决某些问题时,可以通过提取二项式中的系数来简化问题。
例如,在求(a+b)^n 的展开式中某一项的系数时,可以通过提取适当的因
子来简化计算。
3. 等价转换:在解决与二项式有关的问题时,有时可以将问题等价转换为其他形式,从而利用二项式定理或其他已知公式进行求解。
例如,在求
(a+b)^n 的展开式中某一项的系数时,可以将问题等价转换为组合数问题,利用组合数的性质进行计算。
以上是二项式定理应用的三大基本方法,熟练掌握这些方法可以有效地解决与二项式有关的问题。
同时,要注意不断总结经验,探索更多应用二项式定理的技巧和方法。
高中数学 二项式定理 知识点与常见题型解法
《二项式定理》知识点与常见题型解法一.知识梳理1.二项式定理:(a +b )n =C 0n a n +C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *)这个公式所表示的定理叫二项式定理,右边的多项式叫(a +b )n 的二项展开式.其中的系数C r n (r =0,1,…,n )叫二项式系数. 式中的r rn r n b a C -叫二项展开式的通项,用1r +T 表示,即通项1r +T =r rn rn b aC -.2.二项展开式形式上的特点(1)项数为n +1.(2)各项的次数都等于二项式的幂指数n ,即a 与b 的指数的和为n .(3)字母a 按降幂排列,从第一项开始,次数由n 逐项减1直到零;字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .(4)二项式的系数0n C ,C 1n ,...,C n -1n ,nn C .3.二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等.即(2)增减性与最大值:二项式系数C k n ,当k <n +12时,二项式系数逐渐增大.由对称性知它的后半部分是逐渐减小的;当n 是偶数时,中间一项2nnC 取得最大值;当n 是奇数时,中间两项2121+-=n nn nCC取得最大值.(3)各二项式系数和:C 0n +C 1n +C 2n +…+C r n +…+C n n=2n ; C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=12-n (奇数项与偶数项的二项式系数和相等).一个防范运用二项式定理一定要牢记通项1r +T =r rn rn b aC -,注意(a +b )n 与(b +a )n 虽然相同,但具体到它们展开式的某一项时是不同的,一定要注意顺序问题,另外二项展开式的二项式系数与该项的(字母)系数是两个不同的概念,前者只指C r n ,而后者是字母外的部分.前者只与n 和r 有关,恒为正,后者还与a ,b 有关,可正可负.一个定理二项式定理可利用数学归纳法证明,也可根据次数,项数和系数利用排列组合的知识推导二项式定理.因此二项式定理是排列组合知识的发展和延续.两种应用(1)通项的应用:利用二项展开式的通项可求指定的项或指定项的系数等.(2)展开式的应用:利用展开式①可证明与二项式系数有关的等式;②可证明不等式;③可证明整除问题;④可做近似计算等.三条性质(1)对称性;(2)增减性;(3)各项二项式系数的和;二.常见题型【题型一】求展开特定项例1:(1+3x)n(其中n∈N*且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.9例2:(2014·大纲)8⎪⎪⎭⎫⎝⎛-xyyx的展开式中x2y2的系数为________.(用数字作答)【题型二】求展开特定项例3:在(1-x)5+(1-x)6+(1-x)7+(1-x)8的展开式中,含x3的项的系数是()A.74 B.121 C.-74 D.-121【题型三】求展开特定项例4:已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=()A.-4B.-3C.-2D.-1例5:在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=()A.45 B.60 C.120 D.210例6:已知数列是等差数列,且,则在的展开式中,的系数为_______.【题型四】求展开特定项例7:求5212⎪⎭⎫⎝⎛++xx(x>0)的展开式经整理后的常数项.例8:若将展开为多项式,经过合并同类项后它的项数为().A.11B.33C.55D.66 例9:(x2+x+y)5的展开式中,x5y2的系数为()A.10 B.20 C.30 D.60【题型五】二项式展开逆向问题例10:若C1n+3C2n+32C3n+…+3n-2C n-1n+3n-1=85,则n的值为()A.3B.4C.5D.6【题型六】赋值法求系数(和)问题例11:已知(1-2x )7=a 0+a 1x +a 2x 2+…+a 7x 7.求:(1)a 1+a 2+…+a 7; (2)a 1+a 3+a 5+a 7;(3)a 0+a 2+a 4+a 6; (4)||a 0+||a 1+||a 2+…+||a 7.例12:设nx 222⎪⎪⎭⎫⎝⎛+=a 0+a 1x +a 2x 2+…+a 2n x 2n ,则(a 0+a 2+a 4+…+a 2n )2-(a 1+a 3+a 5+…+a 2n -1)2=_______________________.例13:已知(x +1)2(x +2)2014=a 0+a 1(x +2)+a 2(x +2)2+…+a 2016(x +2)2016,则a 12+a 222+a 323+…+a 201622016的值为______.【题型七】平移后系数问题例14:若将函数f (x )=x 5表示为f (x )=a 0+a 1(1+x )+a 2(1+x )2+…+a 5(1+x )5, 其中a 0,a 1,a 2,…,a 5为实数,则a 3=____________.【题型八】二项式系数、系数最大值问题例15:nx x ⎪⎭⎫ ⎝⎛+21的展开式中第五项和第六项的二项式系数最大,则第四项为________.例16:把(1-x )9的展开式按x 的升幂排列,系数最大的项是第________项A .4B .5C .6D .7例17:(1+2x )n 的展开式中第6项与第7项的系数相等,求展开式中二项式系数最大的项和系数最大的项.【题型九】两边求导法求特定数列和例18:若(2x -3)5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 1+2a 2+3a 3+4a 4+5a 5=________.【题型十】整除问题例19:设a ∈Z ,且0≤a <13,若512 012+a 能被13整除,则a =( )A .0B .1C .11D .12例20:已知m 是一个给定的正整数,如果两个整数a ,b 除以m 所得的余数相同,则称a 与b 对模m 同余,记作a ≡b (mod m ),例如:5≡13(mod 4).若22015≡r (mod 7),则r 可能等于( )A.2013B.2014C.2015D.2016答案解析例1:解析 由条件得C 5n 35=C 6n 36,∴n !5!(n -5)!=n !6!(n -6)!×3, ∴3(n -5)=6,n =7.故选B.例2:解析 8⎪⎪⎭⎫ ⎝⎛-x y y x 展开式的通项公式为T r +1=C r 8rrx y y x ⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-8=()42323881---r r r r y xC , 令8-32r =2,解得r =4,此时32r -4=2,所以展开式中x 2y 2的系数为(-1)4C 48=70.故填70. 例3:解析 展开式中含x 3项的系数为C 35(-1)3+C 36(-1)3+C 37(-1)3+C 38(-1)3=-121. 例4:解析 (1+ax )(1+x )5的展开式中x 2项为C 25x 2+ax ·C 15x =10x 2+5ax 2=(10+5a )x 2.∵x 2的系数为5, ∴10+5a =5,a =-1.故选D.例5:解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n 的系数为C n 4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,所以f (3,0)+f (2,1)+f (1,2)+f (0,3)=120,故选C. 例6:解析的系数为。
特殊值法解决二项式展开系数问题
特殊值法解决二项式展开系数问题一、基础知识:1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。
所以通常可对变量赋予特殊值得到一些特殊的等式或性质2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式3、常用赋值举例:(1 )设(a +b)n =C:a n+C;a讥弋討箭协I +C;a n」b Fl| +C;b n, ①令a=b=1,可得:2n =C n0+cn + 川+c n ②令a=1,b = -1,可得:0=C:-c n +C2-C3 川+ (-1)n c n,即:c:+c2+iii+cn=c;+c3+)||+c:」(假设n为偶数),再结合①可得:C:+C2+ 川+c n 虫1+C3+ =2^(2)设 f (X )= (2x+1 )n=ao+呼+a2X2+HI中a n X n①令X =1,则有:a。
8七 2 +IH+ a n =(2x1中1 )n = f (1),即展开式系数和② 令x=0,则有:ao=(2x O+1)n =f (0 ),即常数项③ 令X = -1,设n为偶数,则有:a。
-印+a2 -&3 +川+ a n = (-1咒2 + 1亍=f (-1)=(a。
p +川怜)-(耳pt川+可4 )= f (-1 ),即偶次项系数和与奇次项系数和的差由①③即可求出(ao+a2+|H+a n湘(七3中川七心)的值二、典型例题:8 ■ r »例1 :已知(3x T ) = a。
+盼+ a2X2+川+ a8x8,贝J aj + a3 + a5 + av的值为思路:观察发现展开式中奇数项对应的x 指数幕为奇数,所以考虑令x=1,x=—1,则偶数项相同,奇数项相反,两式相减即可得到a<Ha^a<ha 7的值解:令x=1可得:2^a 0 +印+川+ 38①令x=-1可得:48=a o -a 1+a 2-川七8②①-②可得:28 -48 =2® +a 3 乜 5 +a7)1 8 8二 a1 +a3 +a5 + a ^-(2 -4 )2答案:丄(28-48 )2* *例2 :已知(X 2+1Xa1 + 82+1( +a 的值为(D. -2思路:本题虽然恒等式左侧复杂, 但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令 x=2,得到a o + 4中川中a 11 = 0,只 需再求出a o 即可。
二项式定理高考常见题型及其解法
第二讲 二项式定理高考常见题型及解法二项式定理的问题相对较独立,题型繁多,虽解法灵活但较易掌握.二项式定理既是排列组合的直接应用,又与概率理论中的三大概率分布之一的二项分布有着密切联系.二项式定理在每年的高考中基本上都有考查,题型多为选择题,填空题,偶尔也会有大题出现. 本讲将针对高考试题中常见的二项式定理题目类型一一分析如下,希望能够起到抛砖引玉的作用. 【知识要点】1、二项式定理:∑=-∈=+nk kkn k nnn b aCb a 0*)()(N2、二项展开式的通项: )0(1n r b a C T r r n r n r ≤≤=-+它是展开式的第r +1项.3、二项式系数:).0(n r C r n ≤≤4、二项式系数的性质: ⑴ ).0(n k C C k n n k n ≤≤=-⑵ ).10(111-≤≤+=---n k C C C k n k n k n ⑶ 若n 是偶数,有n nn nn n nn C CC C C >>><<<-1210,即中间一项的二项式系数2nn C 最大.若n 是奇数,有n nn nn n n n nnC C C C C C >>>=<<<-+-1212110 ,即中项二项的二项式系数212+n n nn C C 和相等且最大.⑷ 各二项式系数和:0122n r nn n n n n C C C C C =++++++⑸在二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和即:021312n n n n n C C C C -++=++=【典型考题】一、求二项展开式:1.“(a +b )n”型的展开式例1.求4)13(x x +的展开式.解:原式=4)13(xx +=24)13(xx +=])3()3()3()3([14434224314442CCCCC x x x x x ++++=)112548481(12342++++x x x x x=54112848122++++xxx x小结:这类题目直接考查二项式定理掌握,高考一般不会考到,但是题目解决过程中的这种“先化简再展开”的思想在高考题目中会有体现的. 2. “(a -b )n ”型的展开式例2.求4)13(xx -的展开式.分析:解决此题,只需要把4)13(x x -改写成4)]1(3[xx -+的形式然后按照二项展开式的格式展开即可.本题主要考察了学生的“问题转化”能力. 3.二项式展开式的“逆用”例3.计算cC C C n nnnn n n 3)1( (279313)21-++-+-;解:原式=nnnn n n n n C C C C C )2()31()3(....)3()3()3(3332211-=-=-++-+-+-+小结:公式的变形应用,正逆应用,有利于深刻理解数学公式,把握公式本质. 二、通项公式的应用:1.确定二项式中的有关元素 例4.已知9)2(x xa -的展开式中x 3的系数为49,常数a 的值为解:9239299912)1()2()(----+⋅⋅⋅-=-=r rr rr rr r r x aC x x aC T令3923=-r ,即8=r ,依题意,得492)1(894889=⋅⋅---aC ,解得1-=a2.确定二项展开式的常数项例5.103)1(x x -展开式中的常数项是解:rr rr rr r xCxx C T 65510310101)1()1()(--+⋅-=-= ,令0655=-r ,即6=r .所以常数项是210)1(6106=-C小结:可以讲2011陕西高考题—例1⑴ 3.求单一二项式指定幂的系数 例6.(03全国)92)21(xx -展开式中x 9的系数是 .解:29191()()2rr rr T x xC -+=-=182911()()2rr r r x xC --=18391()2rr x x C --令,9318=-x 则3=r ,从而可以得到9x 的系数为:339121()22C -=-,∴填212-三、求几个二项式的和(积)的展开式中的条件项的系数例7.5432)1()1()1()1()1(-+---+---x x x x x 的展开式中,x 2的系数等于 解:2x 的系数是四个二项展开式中4个含2x 的,则有20)()1()1()1()1(35241302335224113002-=+++-=-+---+--C C C C C C C C例8.(02全国)72)2)(1-+x x (的展开式中,x 3项的系数是 . 解:在展开式中,3x 的来源有:⑴第一个因式中取出2x ,则第二个因式必出x ,其系数为667)2(-C ; ⑵第一个因式中取出1,则第二个因式中必出3x ,其系数为447)2(-C3x ∴的系数应为:∴=-+-,1008)2()2(447667C C 填1008.四、利用二项式定理的性质解题 1、求中间项例9.求101的展开式的中间项;解:,)1()(310101r r r r xx T C -=-+ ∴展开式的中间项为5555610(252x C =-.小结: 当n 为奇数时,nb a )(+的展开式的中间项是212121-+-n n n n baC 和212121+-+n n n n baC ;当n 为偶数时,nb a )(+的展开式的中间项是222nnnnb a C . 2、求有理项 例10.求103)1(xx -的展开式中有理项共有 项;解:341010310101)1()1()(r rr rrr r xxr T CC--+-=-=∴当9,6,3,0=r 时,所对应的项是有理项.故展开式中有理项有4项.小结:⑴当一个代数式各个字母的指数都是整数时,那么这个代数式是有理式;⑵当一个代数式中各个字母的指数不都是整数(或说是不可约分数)时,那么这个代数式是无理式.3、求系数最大或最小项 ⑴ 特殊的系数最大或最小问题例11.(2000上海)在二项式(x -1)11的展开式中,系数最小的项的系数是 . 解:rrr r xT C)1(11111-=-+∴要使项的系数最小,则r 必为奇数,且使C r11为最大,由此得5=r ,从而可知最小项的系数为5511(1)462C-=- ⑵一般的系数最大或最小问题例12.求84)21(xx +展开式中系数最大的项;解:记第r 项系数为r T ,设第k 项系数最大,则有 ⎩⎨⎧≥≥+-11k kk k T T T T 又1182.+--=r r r CT ,那么有⎪⎩⎪⎨⎧≥≥-+--+--+--k k k k k k k k C C C C 2.2.2.2.8118228118即8!8!2(1)!.(9)!(2)!.(10)!8!8!2(1)!.(9)!!(8)!k k k k k k k k ⎧≥⨯⎪----⎪⎨⎪⨯≥⎪---⎩1212219k k k k ⎧≥⎪⎪--⇒⎨⎪≥⎪-⎩,解得43≤≤k ,故系数最大的项为第3项2537x T =和第4项2747x T =. ⑶系数绝对值最大的项例13.在(x -y )7的展开式中,系数绝对值最大项是 .解:求系数绝对最大问题都可以将“n b a )(-”型转化为")("n b a +型来处理, 故此答案为第4项4347y x C ,和第5项5257y x C -.五、利用“赋值法”求部分项系数,二项式系数和(参考例题2) 例14.若443322104)32(x a x a x a x a a x ++++=+,则2312420)()(a a a a a +-++的值为 . 解: 443322104)32(x a x a x a x a a x ++++=+令1=x ,有432104)32(a a a a a ++++=+, 令1-=x ,有)()()32(314204a a a a a +-++=+-故原式=)]()).[((3142043210a a a a a a a a a a +-++++++=44)32.()32(+-+=1)1(4=-小结:在用“赋值法”求值时,要找准待求代数式与已知条件的联系,一般而言:0,1,1-特殊值在解题过程中考虑的比较多.例15.设0155666...)12(a x a x a x a x ++++=-,则=++++6210...a a a a .分析:解题过程分两步走;第一步确定所给绝对值符号内的数的符号;第二步是用赋值法求的化简后的代数式的值. 解:rrr r x T C)1()2(661-=-+∴65432106210...a a a a a a a a a a a +-+-+-=++++=)()(5316420a a a a a a a ++-+++=0六、利用二项式定理求近似值例16.求0.9986的近似值,使误差小于0.001;分析:因为6998.0=6)002.01(-,故可以用二项式定理展开计算.解:6998.0=6)002.01(-=621)002.0(...)002.0.(15)002.0.(61-++-+-+001.000006.0)002.0(15)002.0.(22263<=-⨯=-=C T ,且第3项以后的绝对值都小于001.0,∴从第3项起,以后的项都可以忽略不计.∴6998.0=6)002.01(-)002.0(61-⨯+≈=988.0012.01=-小结:由122(1)1...nn n n n n x x x x C C C +=++++,当x 的绝对值与1相比很小且n 很大时,n x x x ,....,32等项的绝对值都很小,因此在精确度允许的范围内可以忽略不计,因此可以用近似计算公式:nx x n+≈+1)1(,在使用这个公式时,要注意按问题对精确度的要求,来确定对展开式中各项的取舍,若精确度要求较高,则可以使用更精确的公式:22)1(1)1(x n n nx x n -++≈+.利用二项式定理求近似值在近几年的高考没有出现题目,但是按照新课标要求,对高中学生的计算能力是有一定的要求,其中比较重要的一个能力就是估算能力.所以有必要掌握利用二项式定理来求近似值. 七、利用二项式定理证明整除问题 例17.求证:5151-1能被7整除. 证明:15151- =1)249(51-+=12.2.49.....2.49.2.49.49515151505051249251501515151-+++++C C C C C=49P +1251-(*∈N P ) 又 1)2(1217351-=-=(7+1)171-=01216171716151717171717.7.7.7.....71C C C C C +++++- =7Q (Q *∈N ))(77715151Q P Q P +=+=-∴15151-∴能被7整除.小结:在利用二项式定理处理整除问题时,要巧妙地将非标准的二项式问题化归到二项式定理的情境上来,变形要有一定的目的性,要凑 出相关的因数. 八、知识交汇型在知识点的交汇处命题,已成为新高考命题的一个趋势.二项式定理可以与组合、数列极限、杨辉三角等知识进行综合,而设计出新题. 例18 如图,在由二项式系数所构成的杨 辉三角形中,第_____行中从左至右第14 与第15个数的比为2:3.分析:本题是杨辉三角与二项式定理的交汇题,而本题的解题关键在于将表格语言转化为组合数语言. 解:设所求的行数为n ,将条件转换为组合数语言,得 131423n nC C =,即142133n =-,解得n =34.第0行 1 第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 …… …… ……二项式定理中的五大热点二项式定理有关知识是每年高考必考内容之一,本文总结出了近年高考中的五大热点题型,供参考. 一、通项运用型凡涉及到展开式的项及其系数(如常数项,x 3项的系数等)及有理项,无理项,或逆向问题,常是先写出其通项公式1r T +=r n r r n C a b -,然后再据题意进行求解,有时需建立方程才能得以解决. 例1 9)12(xx -的展开式中,常数项为 .(用数字作答).解:由99921991(2)(1)2rrr r rr r r r T C x C x ----+⎛⎫=-=-∙∙∙ ⎝. 令9-r -2r =0,得r =6.故常数项为63679(1)2672T C =-∙∙=.故填672.练习:1.10112x ⎛⎫+ ⎪⎝⎭的二项展开式中x 3的系数为_______.[15]2.(x -1)-(x -1)2+(x -1)3-(x -1)4-(x -1)5的展开式中,x 2的系数是_______.[-20]3.9a x ⎛-⎝展开式中x 3的系数为94,常数a =______.[4] 二、系数配对型是指求两个二项式的积或可化两个二项式的积的展开式中某项的系数问题,通常转化为乘法分配律问题来解决.例2 (x 2+1)(x -2)7的展开式中x 3项的系数是______.解: 由x 3项的系数分别来自两个二项式的展开式中两项乘积的系数,应为如下表搭配:因此,x 3项的系数是()4472C -+()6672C -=1008.练习:(x +2)10(x 2-1)的展开式中x 10的系数为____________(用数字作答).[179]三、系数和差型是指求二项展开式系数的和或差等问题,常可用赋值法加以解决. 例3 若2004220040122004...(12)x a a x a x a x -=++++(x ∈R ),则=++++++++)(...)()()(20040302010a a a a a a a a (用数字作答).解:取x =0,得a 0=1;取x =1,得a 0+a 1+a 2+…+a 2004=(1-2)2004=1.故010********...()()()()a a a a a a a a ++++++++ =2003a 0+(a 0+a 1+a 2+…+a 2004)=2003+1=2004.评注:若f (x )=a 0+a 1x +a 2x 2+…+a n x n.则有①a 0=f (0),②a 0+a 1+a 2+…+a n =f (1);③a 0-a 1+a 2-…=f (-1);④a 0+a 2+a 4+…=(1)(1)2f f +-;a 1+a 3+a 5+…=(1)(1)2f f --.练习:若(),32443322104x a x a x a x a a x ++++=+则()()2312420a a a a a +-++的值为_________.[1]四、综合应用型应用意识是数学的归宿,二项式定理主要应用于近似计算、证明整除、证明不等式、证明组合数恒等式、求组合数及求余数等问题.例4 9192除以100的余数是_______. 解:9192=(90+1) 92=0929290C +1919290C +…+9029290C +919290C +9292C=M ×102+92×90+1(M 为整数) =100M +82×100+81. ∴ 9192除以100的余数是81.练习:⑴求0.9986近似值(精确到0.001).[0.998]⑵设*∈N n ,则=++++-12321666n n n n n n C C C C _________.[1(71)6n-]五、知识交汇型在知识点的交汇处命题,已成为新高考命题的一个趋势.二项式定理可以与组合、数列极限、杨辉三角等知识进行综合,而设计出新题.例5 如图,在由二项式系数所构成的杨 辉三角形中,第_____行中从左至右第14 与第15个数的比为2:3.分析:本题是杨辉三角与二项式定理的交汇题,而本题的解题关键在于将表格语言转化为组合数语言. 解:设所求的行数为n ,将条件转换为组合数语言,得第0行 1第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1 第5行 1 5 10 10 5 1 …… …… ……131423n nC C =,即142133n =-,解得n =34.练习:若(1-2x )9展开式的第3项为288,则2111lim ()nx xxx→∞+++的值是_________.[2]。
二项式定理的常见题型解析
● ●
划 要 求 :新 桥 BC 与 河 岸 AB 垂 直 ;保 护 区 的 边 界 为 圆 心 M 在线段 0A上并与 BC相切 的圆.且古桥 两端 0和 A到该 圆 上任 意一点 的距 离均不少于 80 m.经测量 ,点A位 于点 O正 北 方向 60 in处 ,点 c位于点 0正东方 向 170 m处(OC为河
一 、 求 特 定 项 特定项 是指含指定幂的项 、常 数项 、中间项 、有 理项 、系 数最 大的项等 ,这类 题 常利用 二项式 展开 式 的通项 公式 来 求解 .
例1 (1)若(√ 展开式中前三项系数成等差
数列 ,求展 开式 中所有 的有理项. 思路导析 通过第一 、二 、三项系数成等差数列可求 出
Cl  ̄o
,
相加得
2S=10·2 即
S=5·2 ,所以
E anb2 =
∑nCi'o+∑c =5·2 +2 一1=6 143.
四 、整 除 问题 利 用二项式展开式来 解决整 除 问题很 方便 ,关键是 如 何 拆 分 成 二 项 的 和 .
(下转 121页 )
酸学 学 习 与 研 究 2018.3
● ●
●
解 题 技 巧 与 方 法
·
·
●
孽●、 或 定理的常驰题 解橱
◎杨 丙华 (江苏省如 东县丰利 中学 ,江苏 南通 226408)
二项式定 理在高 考 中经常 考查 ,其 内容是初 中所学 多 项式乘法 的继 续 ,它所 研究 的是 一种 特殊 的 多项 式—— 二 项式乘方 的展 开式 ,是培 养观察 、归 纳 能力 的好题 材.在 高 中数学 中二 项式 定 理 主要有 以下 几种 题 型 :求 特 定项 、系 数 、求 值等问题 ;证 明整 除 问题 ;证 明等式 和不 等式 成立 问 题 .下面就这几种题 型加 以阐述 .
二项式定理求解技巧和方法
二项式定理求解技巧和方法二项式定理是高中数学中一个很重要的概念,它描述了一个二次多项式的展开式中,每一项的系数和指数的关系。
在解题过程中,我们可以利用二项式定理来求解一些复杂的多项式表达式。
下面我将介绍一些二项式定理求解的技巧和方法。
1. 使用二项式定理展开二项式定理可以表达为:$ (a+b)^n = C_n^0a^n + C_n^1a^{n-1}b + C_n^2a^{n-2}b^2 + \\ldots + C_n^na^0b^n $。
这个定理可以帮助我们将一个二元系数的多项式展开为单项式的和。
我们可以利用这个定理来求解一些复杂的多项式表达式,例如 $(x+1)^n$ 或者 $(2x+3y)^n$。
2. 利用二项式系数的性质二项式系数$C_n^k$ 的计算公式为:$C_n^k = \\frac{n!}{k!(n-k)!}$。
在计算二项式系数时,我们可以利用其性质来简化计算。
例如,对于$C_n^k$ 来说,如果$k>n-k$,我们可以使用$C_n^k = C_n^{n-k}$ 来简化计算。
另外,由于$C_n^k = C_n^{n-k}$,我们也可以利用对称性简化计算。
3. 利用二项式定理求解系数和指数在一些问题中,我们需要求解多项式展开式中某一项的系数和指数。
对于二项式定理,可以通过将多项式展开式中各项的系数和指数与二项式系数进行配对,来求解。
例如,对于$(a+b)^7$ 的展开式,我们要求解其中系数为 35 的项的指数是多少,可以使用二项式系数的计算公式,得到 $C_7^k = 35$,然后求解 $k$ 的值。
4. 应用二项式定理进行变形有时候,在解决实际问题时,我们需要对给定的表达式进行变形,以便更好地应用二项式定理。
在变形过程中,我们可以使用二项式定理的展开式,将表达式转化为二项式定理的形式。
例如,对于表达式 $(x+y)^4 - (x-y)^4$,我们可以将其变形为$(u+v)^4 - (u-v)^4$ 的形式,然后应用二项式定理进行展开。
高中数学求展开式中的特定项
高中数学求展开式中的特定项1.二项式定理⑴二项式定理()()011222...n n n n n n n n n n a b C a C a b C a b C b n --*+=++++∈N这个公式表示的定理叫做二项式定理.⑵二项式系数、二项式的通项011222...n n n n n n n n n C a C a b C a b C b --++++叫做()na b +的二项展开式,其中的系数()0,1,2,...,r n C r n =叫做二项式系数,式中的r n r r n C a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项:1r n r r r n T C a b -+=.⑶二项式展开式的各项幂指数二项式()na b +的展开式项数为1n +项,各项的幂指数状况是①各项的次数都等于二项式的幂指数n .②字母a 的按降幂排列,从第一项开始,次数由n 逐项减1直到零,字母b 按升幂排列,从第一项起,次数由零逐项增1直到n .⑷几点注意①通项1r n r r r n T C a b -+=是()n a b +的展开式的第1r +项,这里0,1,2,...,r n =. ②二项式()n a b +的1r +项和()nb a +的展开式的第1r +项r n r r n C b a -是有区别的,应用二项式定理时,其中的a 和b 是不能随便交换的.③注意二项式系数(r n C )与展开式中对应项的系数不一定相等,二项式系数一定为正,而项的系数有时可为负.④通项公式是()n a b +这个标准形式下而言的,如()n a b -的二项展开式的通项公式是()11rr n r r r n T C a b -+=-(只须把b -看成b 代入二项式定理)这与1r n r r r nT C a b -+=是不同的,在这里对应项的二项式系数是相等的都是r n C ,但项的系数一个是()1rr n C -,一个是r n C ,可看出,二项式系数与项的系数是不同的概念.知识内容⑤设1,a b x ==,则得公式:()12211......nr r n n n n x C x C x C x x +=++++++. ⑥通项是1r T +=r n r r n C a b -()0,1,2,...,r n =中含有1,,,,r T a b n r +五个元素,只要知道其中四个即可求第五个元素.⑦当n 不是很大,x 比较小时可以用展开式的前几项求(1)n x +的近似值.2.二项式系数的性质⑴杨辉三角形:对于n 是较小的正整数时,可以直接写出各项系数而不去套用二项式定理,二项式系数也可以直接用杨辉三角计算.杨辉三角有如下规律:“左、右两边斜行各数都是1.其余各数都等于它肩上两个数字的和.”⑵二项式系数的性质:()n a b +展开式的二项式系数是:012,,,...,n n n n n C C C C ,从函数的角度看r n C 可以看成是r 为自变量的函数()f r ,其定义域是:{}0,1,2,3,...,n .当6n =时,()f r 的图象为下图:这样我们利用“杨辉三角”和6n =时()f r 的图象的直观来帮助我们研究二项式系数的性质.①对称性:与首末两端“等距离”的两个二项式系数相等.事实上,这一性质可直接由公式m n m n n C C -=得到.②增减性与最大值如果二项式的幂指数是偶数,中间一项的二项式系数最大;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大.由于展开式各项的二项式系数顺次是()01211,,112n n n n n n C C C -===⋅,()()312123n n n n C --=⋅⋅,...,()()()()112...2123....1k n n n n n k C k ----+=⋅⋅⋅⋅-,()()()()()12...21123...1k n n n n n k n k C k k ---+-+=⋅⋅⋅-,...,1n n C =.其中,后一个二项式系数的分子是前一个二项式系数的分子乘以逐次减小1的数(如,1,2,...n n n --),分母是乘以逐次增大的数(如1,2,3,…).因为,一个自然数乘以一个大于1的数则变大,而乘以一个小于1的数则变小,从而当k 依次取1,2,3,…等值时,r n C 的值转化为不递增而递减了.又因为与首末两端“等距离”的两项的式系数相等,所以二项式系数增大到某一项时就逐渐减小,且二项式系数最大的项必在中间.当n 是偶数时,1n +是奇数,展开式共有1n +项,所以展开式有中间一项,并且这一项的二项式系数最大,最大为2n n C .当n 是奇数时,1n +是偶数,展开式共有1n +项,所以有中间两项.这两项的二项式系数相等并且最大,最大为1122n n n n C C -+=.③二项式系数的和为2n ,即012......2r n n nn n n n C C C C C ++++++=. ④奇数项的二项式系数的和等于偶数项的二项式系数的和,即0241351......2n n n n n n n C C C C C C -+++=+++=.常见题型有:求展开式的某些特定项、项数、系数,二项式定理的逆用,赋值用,简单的组合数式问题.二项展开式2求展开式中的特定项(常数项,有理项,系数最大项等.)常数项【例1】 在()2043x +展开式中,系数为有理数的项共有 项.【例2】 1003(23)的展开式中共有_____项是有理项.典例分析【例3】 61034(1)(1)x x ++展开式中的常数项为_______(用数字作答).【例4】 ()6211x x x x ⎛⎫++- ⎪⎝⎭的展开式中的常数项为_________.【例5】 二项式42x +x ⎛⎫ ⎪⎝⎭的展开式中的常数项为_____________,展开式中各项系数和为 .(用数字作答)【例6】 若123a x x ⎛⎫+ ⎪⎝⎭的展开式中的常数项为220-,则实数a =___________.【例7】 在二项式52a x x ⎛⎫- ⎪⎝⎭的展开式中,x 的系数是10-,则实数a 的值为 .【例8】 在621x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项是______.(结果用数值表示)【例9】 如果1nx x ⎛⎫+ ⎪⎝⎭展开式中,第四项与第六项的系数相等,则n = ,展开式中的常数项的值等于 .【例10】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例11】 若1()n x x+展开式的二项式系数之和为64,则展开式的常数项为_______(用数字作答).【例12】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【例13】 在2)n x的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例14】 21()n x x-的展开式中,常数项为15,则n = .【例15】 已知231(1)()n x x x x+++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例16】 12(x -展开式中的常数项为_______(用数字作答).【例17】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例18】 已知10()n n ∈N ≤,若n xx )1(23-的展开式中含有常数项,则这样的n 有( ) A .3个 B .2 C .1 D .0【例19】 610(1(1++展开式中的常数项为_______(用数字作答).【例20】 51(2x x+的展开式中整理后的常数项为 (用数字作答).【例21】 281(12)()x x x+-的展开式中常数项为 (用数字作答)【例22】 已知312nx x ⎛⎫+ ⎪⎝⎭的展开式的常数项是第7项,则n 的值为( ) A .7B .8C .9D .10【例23】 在2)n x的二项展开式中,若常数项为60,则n 等于 (用数字作答)【例24】 21()n x x-的展开式中,常数项为15,则n = .【例25】 12(x -展开式中的常数项为_______(用数字作答).【例26】 已知2(n x的展开式中第三项与第五项的系数之比为314-,其中21i =-,则展开式中常数项是 (用数字作答)【例27】 已知10()n n ∈N ≤,若n x x )1(23-的展开式中含有常数项,则这样的n 有()A .3个B .2C .1D .0【例28】 12x ⎛- ⎝展开式中的常数项为( )A .1320-B .1320C .220-D .220【例29】 求612x x ⎛⎫++ ⎪⎝⎭展开式中的常数项.【例30】 6122x x ⎛⎫- ⎪⎝⎭的展开式的常数项是 (用数字作答)【例31】 在2nx ⎫+⎪⎭的二项展开式中,若常数项为60,则n 等于( ) A.3 B.6 C.9 D.12【例32】 1nx x ⎛⎫- ⎪⎝⎭的展开式中的第5项为常数项,那么正整数n 的值是 .【例33】 若nx x ⎪⎪⎭⎫ ⎝⎛+31的展开式中存在常数项,则n 的值可以是( ) A .10 B .11 C .12 D .14【例34】 在261(2)x x -的展开式中常数项是 ,中间项是________.【例35】 已知231(1)()n x x x x +++的展开式中没有常数项,n ∈*N ,且28n ≤≤,则n =______.【例36】 若3(2n x的展开式中含有常数项,则最小的正整数n 等于 .【例37】 已知2nx⎛- ⎝的展开式中第三项与第五项的系数之比为314,则展开式中常数项是( ) A .1- B .1 C .45- D .45【例38】 若21nx x ⎛⎫+ ⎪⎝⎭展开式中的二项式系数和为512,则n 等于________;该展开式中的常数项为_________.【例39】 若921ax x ⎛⎫- ⎪⎝⎭的展开式中常数项为84,则a =_____,其展开式中二项式系数之和为_________.【例40】 若1nx x ⎛⎫+ ⎪⎝⎭展开式的二项式系数之和为64,则展开式的常数项为( ) A .10 B .20 C .30 D .120有理项【例41】 求二项式15的展开式中: ⑴常数项;⑵有几个有理项(只需求出个数即可);⑶有几个整式项(只需求出个数即可).【例42】100的展开式中共有_______项是有理项.【例43】二项式15的展开式中:⑴求常数项;⑵有几个有理项;⑶有几个整式项.【例44】已知在n的展开式中,前三项的系数成等差数列①求n;②求展开式中的有理项.【例45】二项展开式15中,有理项的项数是()A.3B.4C.5D.6【例46】在(1132的展开式中任取一项,设所取项为有理项的概率为p,则1px dx=⎰A.1 B.67C.76D.1113【例47】12的展开式中,含x的正整数次幂的项共有()A.4项B.3项C.2项D.1项【例48】若(51a+=+a,b为有理数),则a b+=()A.45B.55C.70D.80系数最大的项【例49】已知(nx+的展开式中前三项的系数成等差数列.⑴求n的值;⑵求展开式中系数最大的项.【例50】20(23)x+展开式中系数最大的项是第几项?【例51】已知(13)nx+的展开式中,末三项的二项式系数的和等于121,求展开式中系数最大的项.【例52】在132nxx-⎛⎫-⎪⎝⎭的展开式中,只有第5项的二项式系数最大,则展开式中常数项是____.A.7-B.7C.28-D.28【例53】已知lg8(2)xx x+的展开式中,二项式系数最大的项的值等于1120,求x.【例54】求10的展开式中,系数绝对值最大的项以及系数最大的项.【例55】已知n展开式中的倒数第三项的系数为45,求:⑴含3x的项;⑵系数最大的项.【例56】 设m n +∈N ,,1m n ,≥,()(1)(1)m n f x x x =+++的展开式中,x 的系数为19.⑴求()f x 展开式中2x 的系数的最大、最小值;⑵对于使()f x 中2x 的系数取最小值时的m 、n 的值,求7x 的系数.【例57】 已知:223(3)n x x +的展开式中,各项系数和比它的二项式系数和大992. ⑴求展开式中二项式系数最大的项;⑵求展开式中系数最大的项.【例58】20(23)x +展开式中系数最大的项是第几项?【例59】 关于二项式2005(1)x -有下列命题:①该二项展开式中非常数项的系数和是1:②该二项展开式中第六项为619992005C x; ③该二项展开式中系数最大的项是第1003项与第1004项;④当2006x =时,2005(1)x -除以2006的余数是2005.其中正确命题的序号是__________.(注:把你认为正确的命题序号都填上)【例60】 在2nx ⎛ ⎝的展开式,只有第5项的二项式系数最大,则展开式中常数项为 .(用数字作答)【例61】 设)()21*4n n +∈N 的整数部分和小数部分分别为n M 与n m ,则()n n n m M m +的值为 .【例62】 12()m n ax bx +中,a b ,为正实数,且200m n mn +=≠,,它的展开式中系数最大的项是常数项,求a b的取值范围.【例63】 二项式(1sin )n x +的展开式中,末尾两项的系数之和为7,且二项式系数最大的一项的值为52,则x 在(0,2π)内的值为___________.【例64】 如果232(3)n x x -的展开式中含有非零常数项,则正整数n 的最小值为_______(用数字作答).【例65】 在二项式()1n x +的展开式中,存在着系数之比为57∶的相邻两项,则指数()*n n ∈N 的最小值为 .。
(人教版)备战2020年高考数学大一轮复习 热点聚焦与扩展 专题60 特殊值法解决二项式展开式系数问题
专题60 特殊值法解决二项式展开式系数问题【热点聚焦与扩展】纵观近几年的高考试题,本节内容考题比较灵活,热点是通项公式的应用,利用通项公式求特定项或特定的项的系数,或已知某项,求指数n ,求参数的值等,难度控制在中等或中等以下.对于二项式系数问题,往往利用“赋值法”.本专题在分析研究近几年高考题及各地模拟题的基础上,举例说明.1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立.所以通常可对变量赋予特殊值得到一些特殊的等式或性质2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式3、常用赋值举例:(1)设()011222nnn n r n r rn nn n n n n a b C a C ab C a b C a b C b ---+=++++++,①令1a b ==,可得:012n nn n n C C C =+++②令1,1a b ==-,可得: ()012301nnn n n nnC C C C C =-+-+-,即: 02131n n n n n n n n C C C C C C -+++=+++(假设n 为偶数),再结合①可得: 0213112n n n n n n n n n C C C C C C --+++=+++=(2)设()()201221nn n f x x a a x a x a x =+=++++① 令1x =,则有:()()0122111nn a a a a f ++++=⨯+=,即展开式系数和② 令0x =,则有:()()02010na f =⨯+=,即常数项 ③ 令1x =-,设n 为偶数,则有:()()01231211nn a a a a a f -+-++=-⨯+=-()()()021311n n a a a a a a f -⇒+++-+++=-,即偶次项系数和与奇次项系数和的差由①③即可求出()02n a a a +++和()131n a a a -+++的值.【经典例题】例1.【山东省2019年普通高校招生(春季)考试】在的展开式中,所有项的系数之和等于( )A. 32B. -32C. 1D. -1 【答案】D【解析】分析:令x=y=1,则得所有项的系数之和.详解:令x=y=1,则得所有项的系数之和为,选D.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法, 只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.例2.【2019年【衡水金卷】(四)】在二项式8ax⎛+ ⎝的展开式中,所有项的系数之和记为S ,第r 项的系数记为r P ,若893S P =,则ab的值为( ) A. 2 B. 4- C. 2或2- D. 2或4- 【答案】D例3.已知()()()()()921120121112111x x a a x a x a x +-=+-+-++-,则1211a a a +++的值为( )A. 0B. 2C. 255D. 2- 【答案】B【解析】:本题虽然恒等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2x =,得到01110a a a +++=,只需再求出0a 即可.令1x =可得02a =-,所以12112a a a +++=答案:B例4.设(4234012342x a a x a x a x a x +=++++,则()()2202413a a a a a ++-+的值为( )A. 16B. 16-C. 1D. 1- 【答案】A【解析】思路:所求()()()()22024130123401234a a a a a a a a a a a a a a a ++-+=++++-+-+,在恒等式中令1x =可得:(4012342a a a a a ++++=+,令1x =-时(4012342a a a a a -+-+=-,所以()()((4422024132216a a a a a ++-+=+-=答案:A例5. 【2019届河南省郑州市一模】在x⎛ ⎝的展开式中,各项系数和与二项式系数和之比为3:2,则2x 的系数为( )A. 50B. 70C. 90D. 120 【答案】C令2r =得222235390T C x x ==.所以2x 的系数为90.选C .例6.在n的展开式中,所有奇数项二项式系数之和等于1024,则中间项的二项式系数是( ) A. 462 B. 330 C. 682 D. 792 【答案】A【解析】n的展开式中,所有奇数项二项式系数之和等于12102411n n -=∴=,则中间项的二项式系数是561111462C C ==.故选A例7.【2019届百校联盟TOP20四月联考】已知的展开式中所有偶数项系数之和为496,则展开式中第3项的系数为_______. 【答案】270【解析】分析:利用赋值法得到两式相减即故答案为:270例8.【2019届浙江省诸暨市高三上期末】已知,则______;则__________.【答案】 1 60 【解析】令 得:1=因为 ,所以例9.【2019届衡水金卷全国大联考】已知的展开式中所有项的二项式系数之和、系数之和分别为,,则的最小值为__________. 【答案】16【解析】显然.令,得.所以.当且仅当.即时,取等号,此时的最小值为16.例10.若()5234501234523x a a x a x a x a x a x -=+++++,则0123452345a a a a a a +++++的值是( )A. 10B. 20C. 233D. 233-【答案】D令1x =可得:12345102345a a a a a =++++而在()5234501234523x a a x a x a x a x a x -=+++++中,令0x =可得:503243a =-=-0123452345233a a a a a a ∴+++++=-答案:D【精选精练】1.【2019届福建省莆田市第二次检测】若()展开式的二项式系数和为32,则其展开式的常数项为( ) A.B.C.D.【答案】B【解析】分析:首先根据二项式定理中所涉及的二项式系数和为,结合题中条件,求得,将代入二项式,将其展开式的通项写出,令幂指数为零,求得,再回代,求得结果,得到正确选项. 详解:根据二项式系数和的性质,可知,解得,所以的展开式的通项为,令,解得,所以其展开式的常数项为,故选B.2.【2019届安徽省合肥市三模】已知展开式中的系数为,则展开式中所有项的二项式系数之和为A. 64B. 32C.D.【答案】B,解得,二项式系数之和为,故选B.点睛:本题主要考查二项展开式定理的通项与系数,属于简单题. 二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项展开式定理的应用.3.【2019届四川省雅安市三诊】已知展开式的各个二项式系数的和为,则的展开式中的系数()A. B. C. D.【答案】A故选A.4.【2019届河北衡水金卷模拟一】()61231x x ⎛⎫-+ ⎪⎝⎭的展开式中剔除常数项后的各项系数和为( )A. 73-B. 61-C. 55-D. 63- 【答案】A【解析】令1x =,得()61231264x x ⎛⎫-+=-=- ⎪⎝⎭,而常数项为0166329C C -⨯+⨯=,所以展开式中剔除常数项的各项系数和为64973--=-,故选A. 5.在的展开式中,各项系数的和是__________.【答案】1. 【解析】分析:令,即可得到二项展开式的各项系数的和. 详解:由题意,令,即可得到二项展开式的各项系数的和为.点睛:本题主要考查了二项展开式各项系数的和求解,其中正确合理赋值是解答的关键,着重考查了分析问题和解答问题的能力.6.【2019届贵州省凯里市第一中学四模】二项式的展开式中奇数项的二项式系数之和为32,则展开式中的第4项为__________. 【答案】【解析】分析:先由奇数项的二项式系数之和为32确定n 值,然后根据二项展开式通项公式求出第4项即可. 详解:∵二项式的展开式中奇数项的二项式系数之和为32,∴,即展开式中的第项为故答案为:7.【2019届安徽省安庆市二模】如果1nx ⎛⎫ ⎪⎝⎭的展开式中各项系数之和为128,则展开式中41x 的系数是______.【答案】-1898.若1nx ⎛⎫ ⎪⎝⎭的展开式中所有项的系数的绝对值之和为64,则n =__________;该展开式中的常数项是__________. 【答案】 3 -27【解析】(1)因为系数的绝对值之和为64,则当1x =时,有()3164n+=,所以3n =;(2)(()33332133131kkkk k k kk T CC x x ---+-⎛⎫==⋅⋅- ⎪⎝⎭,所以1k =,常数项为()11233127C ⋅⋅-=-.9.【2019届北京市海淀区高三上期末】已知()51nx -展开式中,各项系数的和与各项二项式系数的和之比为64:1,则n =__________. 【答案】6【解析】令二项式中的x=1得到展开式中的各项系数的和4n又各项二项式系数的和为2n据题意得42642n nn ==解得n=6故答案为:610.【2019届浙江省杭州市学军中学5月模拟】设,则__________,__________.【答案】. 80.点睛:(1)本题主要考查二项式定理求值,意在考查学生对该基础知识的掌握能力和观察分析能力.(2)本题解题的关键是..11.【腾远2019年浙江红卷】已知的展开式中的系数为,则__________,此多项式的展开式中含的奇数次幂项的系数之和为__________.【答案】 -2 -32【解析】分析:由题意的,展开式中含的系数为,解得,令,分别令和,则两式相减,即可求解.详解:由题意的,展开式中含的系数为,解得,令,令,则;令,则,两式相减,则展开式中含奇次幂的系数之和为.12.【2019年天津市河西区三模】设,则__________.【答案】211。
高二数学最新教案-巧求二项展开式中某一特定项 精品
巧求二项展开式中某一特定项求二项展开式中某一特定项是《排列组合二项式定理》一章中常见题型之一.它的一般解法是应用二项展开式的通项,这已为大家所熟知.本文要介绍的是另一种解法,这种解法能使某些直接应用二项展开式的通项不易解决的问题迎刃而解.例1.求1995)(d c b a +++展开式中959008002000d c b a 项的系数.解:),())(()(1995d c b a d c b a d c b a d c b a +++++++++=+++ 一共1995个因式相乘,等号右边的积的展开式的每一项是从1995个因式的每一因式中任取一个字母的乘积.显然959008002000d c b a 项的系数应为.C C C C 959590099580017952001995例2. (1984年理科高考题)求3)21(-+xx 展开式中的常数项. 解:.)1()21(63xx x x -=-+ 展开式中第.C )1(C )1(:136)2()6(2161r r r r r rr r x x T r --+-+-=-=+项为当且仅当r =3时,T r +1为常数,所以,所求常数项为T 4=-20.例3.求62)1(x x -+展开式中的x 5项.分析:21x x -+不是完全平方式,若不用本文所给方法,则要两次应用二项式定理,若用本文所给新解法,则化繁为简.解:62)1(x x -+展开中,n m x 2+项,其中m ,n 都是自然数且m +2n 6≤,是.C C )1(266n m n m m n x +--已知m +2n =5,方程解有以下几种:1.若n =1,则m =3,得项55133660C C x x -=-;2.若n =2,则m =1,得项.60C C 552516x x =3.若n =0,则m =5,得项.6C C 550156x x =以上3种合计得项是.6660605555x x x x =++-练习题:(1992年理科高考题)求52)23(++x x 展开式中x 的系数.。
高中数学二项式系数
高中数学二项式系数高中数学二项式系数是指二项式定理中的系数,也称为二项式系数。
二项式系数是组合数的一种,表示从n个元素中选取r个元素的组合方式数目。
在数学中,组合数的计算是十分重要的,它们在概率论、统计学、计算机科学等领域都有广泛的应用。
二项式系数的计算可以使用杨辉三角,也称为帕斯卡三角。
杨辉三角是一个由数字排成的三角形,其中每个数字是它上方两个数字的和。
杨辉三角的第n行第k个数字就是C(n,k),即从n个元素中选取k个元素的组合数。
除了使用杨辉三角进行计算,我们还可以使用公式来求解二项式系数。
根据二项式定理,我们可以得到以下公式:C(n,k) = n! / (k! * (n-k)!)其中,n!表示n的阶乘,即n*(n-1)*(n-2)*...*1,k!表示k的阶乘,(n-k)!表示n-k的阶乘。
公式中的除法是整除,表示将n!除以k!和(n-k)!的积得到的商。
二项式系数在实际问题中有着广泛的应用。
例如,在概率论中,我们可以使用二项式系数来计算二项分布的概率。
二项分布是指在n 次独立的伯努利试验中,成功的次数为k的概率分布。
在统计学中,我们可以使用二项式系数来进行假设检验等方面的分析。
在计算机科学中,组合数的计算也是十分重要的,例如在图论中,我们可以使用组合数来计算图的连通性等问题。
除了二项式系数,组合数还有其他的计算方法和性质。
例如,组合恒等式(Vandermonde恒等式)是一种常见的组合恒等式,它表示两个组合数之和等于另一个组合数。
组合恒等式在计算二项式系数时有着重要的应用。
高中数学二项式系数是一个十分重要的概念,涉及到概率论、统计学、计算机科学等多个领域。
理解二项式系数的计算方法和应用,对于我们的数学学习和实际问题解决都有着重要的意义。
高考二项展开式系数问题分类例析
2020年12月1日理科考试研究•数学版• 31 •棱长都为及,各顶点都在同一个球面上,则此球的体 积为______•3结语本文充分利用空间内过不共面四点有唯一外接 球的唯一性将四棱锥的外接球问题转化为三棱锥(四面体)的外接球问题进行求解,再借助三棱锥中现有的模型简化计算,达到快速解题的目的.同时本文还从唯一性角度将静态四面体的外接球问题采用动态的方法求解,即换一个等价的四面体来求解,这是对球唯一性的巧妙应用.参考文献:[1]李海玲.四面体外接球的半径求法[J].数理化解题研究,2016(28) :22.(收稿曰期:2020-08 -03)高考二项I幵式糸教问题分类例析陈东(高台县第一中学甘肃张掖734300)摘要:本文举例说明由二项展开式的通项公式,根据题意建立方程或方程组,从而解决二项展开式中指定项系数、常数项、二项式中的参数等问题,解题过程体现了方程、转化与化归的数学思想.关键词:二项展开式;系数;通项公式;方程二项式定理是高中数学的重点内容之一,其中二项展开式系数问题是二项式定理的重要应用也是高考常考知识点.本文结合近几年高考题,对二项展开式系数问题的相关题型及解题思路进行归类分析,供大家参考.1二项展开式中指定项的系数问题例题1(2020年天津卷理)在U+%)5的展开X式中,y的系数是_____.解析因二项式U + 4)5的展开式的通项为X9rr t l =c^5-r(4)r-Q2V-3r,X由题意,令5 -3r= 2,得r= 1.则i的系数为20 = 10.2二项展开式中常数项问题例题2 (2020年全国瓜卷理)(*2+|)6的展开式中常数项是______(用数字作答).解析因二项式(V +i)6的展开式的通项为Xr r+1 =c6(x2)6-r(^y =c62r x i2~3r,由题意,令12 -3r=0,得r=4.则常数项为C〗24 =240.评注求二项展开式中指定项的系数或常数项,根据二项式定理写出二项展开式的通项公式,由题意 确定次数G即可求出指定项的系数或常数项.3二项式中的参数问题例题3 (2015年全国II卷理)(a+;〇 (1 +x)4的展开式中%的奇数次幂项的系数之和为32,则a=_______•解析因(1 + 幻4 = + C h2 + + C^4 = 1 + 4x + 6j c2 + 4a:3 +x4,则(a+;〇(l + s〇4 的展 开式中的奇数次幂项分别为4cw:,4(m:3,x,6*3,x5,其 系数之和为4a+4a + l +6 + 1 =32,解得a=3.例题4 (2〇14年安徽卷理)y个设a_0,n是大于1的自然数,(14+三)"的展开式为a。
千题百炼——高中数学100个热点问题(三):第83炼 特殊值法解决二项式展开系数问题精编版
第83炼 特殊值法解决二项式展开系数问题一、基础知识:1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。
所以通常可对变量赋予特殊值得到一些特殊的等式或性质2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式3、常用赋值举例:(1)设()011222nnn n r n r rn nn n n n n a b C a C ab C a b C a b C b ---+=++++++,①令1a b ==,可得:012n nn n n C C C =+++②令1,1a b ==-,可得: ()012301nnn n n nnC C C C C =-+-+-,即: 02131n n n n n n n n C C C C C C -+++=+++(假设n 为偶数),再结合①可得: 0213112n n n n n n n n n C C C C C C --+++=+++=(2)设()()201221nn n f x x a a x a x a x =+=++++① 令1x =,则有:()()0122111nn a a a a f ++++=⨯+=,即展开式系数和② 令0x =,则有:()()02010na f =⨯+=,即常数项 ③ 令1x =-,设n 为偶数,则有:()()01231211nn a a a a a f -+-++=-⨯+=-()()()021311n n a a a a a a f -⇒+++-+++=-,即偶次项系数和与奇次项系数和的差 由①③即可求出()02n a a a +++和()131n a a a -+++的值二、典型例题:例1:已知()828012831x a a x a x a x -=++++,则1357a a a a +++的值为________思路:观察发现展开式中奇数项对应的x 指数幂为奇数,所以考虑令1,1x x ==-,则偶数项相同,奇数项相反,两式相减即可得到1357a a a a +++的值解:令1x =可得:80182a a a =+++ ①令1x =-可得:801284a a a a =-+-+ ②①-②可得:()881357242a a a a -=+++()8813571242a a a a ∴+++=- 答案:()881242- 例2:已知()()()()()921120121112111xx aax a x a x +-=+-+-++-,则121a a a +++的值为( ) A. 0 B. 2 C. 255 D. 2- 思路:本题虽然恒等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2x =,得到01110a a a +++=,只需再求出0a 即可。
二项式方程展开式系数规律
二项式方程展开式系数规律二项式方程是由两个项组成的多项式,其中每个项都是由常数与未知数的指数幂相乘而得。
二项式方程展开式系数规律是指在展开二项式方程时,各项的系数之间存在一定的规律。
我们来看一个简单的二项式方程展开式:(a + b)^2。
展开后的式子为:a^2 + 2ab + b^2。
观察展开后的式子,我们可以发现,系数2出现在中间一项2ab。
这是因为在展开式中,中间一项的系数总是等于二项式方程中的两个项的系数的乘积的二倍。
接下来,我们再来看一个稍复杂一些的二项式方程展开式:(a + b)^3。
展开后的式子为:a^3 + 3a^2b + 3ab^2 + b^3。
观察展开后的式子,我们可以发现,系数3出现在第二、三、四项,而且这三个系数都是相等的。
这是因为在展开式中,这三项的系数都等于二项式方程中的两个项的系数的乘积的三倍,即3倍。
继续观察更高阶的二项式方程展开式,我们可以发现一个普遍的规律:展开式中的每一项的系数都可以用组合数来表示。
组合数是指从n个不同元素中取出m个元素的组合方式的个数,用C(n, m)表示。
在二项式方程展开式中,每一项的系数都等于C(n, m),其中n 表示二项式方程中的幂次,m表示展开式中的第m项。
通过以上的观察和总结,我们可以得出二项式方程展开式系数规律的结论:展开式中每一项的系数都可以用组合数来表示,其中n表示二项式方程中的幂次,m表示展开式中的第m项。
这个规律在高中数学中有着广泛的应用。
除了上述的规律之外,二项式方程展开式还有一些其他的特点。
例如,展开式中的所有项的幂次之和都等于二项式方程的幂次。
同时,展开式中的每一项的幂次都是递减的,从左到右依次递减。
在实际应用中,二项式方程展开式系数规律可以用于计算二项式方程的展开式中各项的系数,从而快速得到展开式的具体形式。
例如,在统计学中,我们经常需要计算二项式分布的概率,而二项式分布的概率可以通过二项式方程展开式来计算。
总结起来,二项式方程展开式系数规律是指展开式中每一项的系数都可以用组合数来表示,其中n表示二项式方程中的幂次,m表示展开式中的第m项。
高中数学解题方法系列:二项式定理相关问题的方法
(1
3)n 3
1
4n 1 3
题型二:求单一二项式指定幂的系数 2、
(x 1)4 的展开式中 x2 的系数为
(A)4
(B)6 (C)10 (D)20
2
解析:由通项公式得 T3 C24 x2 6x
3(2011 天津)在
x 2
2 6 x 的二项展开式中, x2 的系数为
( x a)n Cn0a0 xn Cn1axn1 Cn2a2 xn2 Cnnan x0 an xn a2 x2 a1x1 a0
令x 1, 则a0 a1 a2 a3 an (a 1)n ①
(偶数项的系数和)
n
⑤二项式系数的最大项:如果二项式的幂指数 n 是偶数时,则中间一项的二项式系数 Cn2 取得最大值。
n1
n1
如果二项式的幂指数 n 是奇数时,则中间两项的二项式系数 Cn 2 , Cn 2 同时取得最大值。
⑥系数的最大项:求 (a bx)n 展开式中最大的项,一般采用待定系数法。设展开式中各( x 1 )10 的展开式的中间项; 3x
C C 解:Tr1
r 10
(
x )10r ( 1 )r , 展开式的中间项为 3x
5 10
(
x)5 ( 1 )5 3x
5
即: 252x 6 。
n1 n1 n1
n1 n1 n1
C C 当 n 为奇数时, (a b)n 的展开式的中间项是
高中数学解题方法系列:二项式定理相关问题的方法
1.二项式定理: (a b)n Cn0an Cn1an1b Cnr anrbr Cnnbn (n N ) , 2.基本概念: ①二项式展开式:右边的多项式叫做 (a b)n 的二项展开式。
求二项式的展开项典例精讲
求二项式展开后的某项一、基础知识:1、二项式()()na b n N *+∈展开式()011222nn n n r n r r n n n n n n n a b C a C a b C a b C a b C b ---+=++++++ ,从恒等式中我们可以发现这样几个特点(1)()na b +完全展开后的项数为()1n +(2)展开式按照a 的指数进行降幂排列,对于展开式中的每一项,,a b 的指数呈此消彼长的特点。
指数和为n(3)在二项式展开式中由于按a 的指数进行降幂排列,所以规定“+”左边的项视为a ,右边的项为b ,比如:()1nx +与()1nx +虽然恒等,但是展开式却不同,前者按x 的指数降幂排列,后者按1的指数降幂排列。
如果是()na b -,则视为()na b +-⎡⎤⎣⎦进行展开(4)二项展开式的通项公式1r n rr r n T C ab -+=(注意是第1r +项)2、二项式系数:项前面的01,,,nn n n C C C 称为二项式系数,二项式系数的和为2n二项式系数的来源:多项式乘法的理论基础是乘法的运算律(分配律,交换律,结合律),所以在展开时有这样一个特征:每个因式都必须出项,并且只能出一项,将每个因式所出的项乘在一起便成为了展开时中的某项。
对于()na b +可看作是n 个()a b +相乘,对于n rrab -意味着在这n 个()a b +中,有()n r -个式子出a ,剩下r 个式子出b ,那么这种出法一共有rn C 种。
所以二项式展开式的每一项都可看做是一个组合问题。
而二项式系数便是这个组合问题的结果。
3、系数:是指该项经过化简后项前面的数字因数注:(1)在二项式定理中要注意区分二项式系数与系数。
二项式系数是展开式通项公式中的rnC ,对于确定的一个二项式,二项式系数只由r 决定。
而系数是指展开并化简后最后项前面的因数,其构成一方面是二项式系数,同时还有项本身的系数。
高考数学《求二项式展开后的某项》基础知识与典型例题
高考数学《求二项式展开后的某项》基础知识与典型例题一、基础知识: 1、二项式()()na b n N *+∈展开式()011222nn n n r n r r n nn n n n n a b C a C a b C a b C a b C b −−−+=++++++,从恒等式中我们可以发现这样几个特点(1)()na b +完全展开后的项数为()1n +(2)展开式按照a 的指数进行降幂排列,对于展开式中的每一项,,a b 的指数呈此消彼长的特点。
指数和为n(3)在二项式展开式中由于按a 的指数进行降幂排列,所以规定“+”左边的项视为a ,右边的项为b ,比如:()1n x +与()1nx +虽然恒等,但是展开式却不同,前者按x 的指数降幂排列,后者按1的指数降幂排列。
如果是()na b −,则视为()na b +−⎡⎤⎣⎦进行展开 (4)二项展开式的通项公式1r n rr r n T C a b −+= (注意是第1r +项)2、二项式系数:项前面的01,,,n n n nC C C 称为二项式系数,二项式系数的和为2n二项式系数的来源:多项式乘法的理论基础是乘法的运算律(分配律,交换律,结合律),所以在展开时有这样一个特征:每个因式都必须出项,并且只能出一项,将每个因式所出的项乘在一起便成为了展开时中的某项。
对于()na b +可看作是n 个()a b +相乘,对于n rr ab − 意味着在这n 个()a b +中,有()n r −个式子出a ,剩下r 个式子出b ,那么这种出法一共有rn C 种。
所以二项式展开式的每一项都可看做是一个组合问题。
而二项式系数便是这个组合问题的结果。
3、系数:是指该项经过化简后项前面的数字因数注:(1)在二项式定理中要注意区分二项式系数与系数。
二项式系数是展开式通项公式中的rn C ,对于确定的一个二项式,二项式系数只由r 决定。
而系数是指展开并化简后最后项前面的因数,其构成一方面是二项式系数,同时还有项本身的系数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第83炼 特殊值法解决二项式展开系数问题一、基础知识:1、含变量的恒等式:是指无论变量在已知范围内取何值,均可使等式成立。
所以通常可对变量赋予特殊值得到一些特殊的等式或性质2、二项式展开式与原二项式呈恒等关系,所以可通过对变量赋特殊值得到有关系数(或二项式系数)的等式3、常用赋值举例:(1)设()011222nnn n r n r rn nn n n n n a b C a C ab C a b C a b C b ---+=++++++,①令1a b ==,可得:012n nn n n C C C =+++②令1,1a b ==-,可得: ()012301nnn n n nnC C C C C =-+-+-,即: 02131n n n n n n n n C C C C C C -+++=+++(假设n 为偶数),再结合①可得: 0213112n n n n n n n n n C C C C C C --+++=+++=(2)设()()201221nn n f x x a a x a x a x =+=++++① 令1x =,则有:()()0122111nn a a a a f ++++=⨯+=,即展开式系数和② 令0x =,则有:()()02010na f =⨯+=,即常数项 ③ 令1x =-,设n 为偶数,则有:()()01231211nn a a a a a f -+-++=-⨯+=-()()()021311n n a a a a a a f -⇒+++-+++=-,即偶次项系数和与奇次项系数和的差 由①③即可求出()02n a a a +++和()131n a a a -+++的值二、典型例题:例1:已知()828012831x a a x a x a x -=++++,则1357a a a a +++的值为________思路:观察发现展开式中奇数项对应的x 指数幂为奇数,所以考虑令1,1x x ==-,则偶数项相同,奇数项相反,两式相减即可得到1357a a a a +++的值解:令1x =可得:80182a a a =+++ ①令1x =-可得:801284a a a a =-+-+ ②①-②可得:()881357242a a a a -=+++()8813571242a a a a ∴+++=- 答案:()881242- 例2:已知()()()()()921120121112111xx aax a x a x +-=+-+-++-,则121a a a +++的值为( ) A. 0 B. 2 C. 255 D. 2- 思路:本题虽然恒等式左侧复杂,但仍然可通过对x 赋予特殊值得到系数的关系式,观察所求式子特点可令2x =,得到01110a a a +++=,只需再求出0a 即可。
令1x =可得02a =-,所以12112a a a +++=答案:B例3:设(4234012342x a a x a x a x a x +=++++,则()()2202413a a a a a ++-+的值为( )A. 16B. 16-C. 1D. 1-思路:所求()()()()22024130123401234a a a a a a a a a a a a a a a ++-+=++++-+-+,在恒等式中令1x =可得:(4012342a a a a a ++++=+,令1x =-时(4012342a a a a a -+-+=-,所以()()((4422024132216a a a a a ++-+=+-=答案:A 例4:若()5234501234523x a a x a x a x a x a x-=+++++,则012345a a a a a a +++++等于( ) A. 55 B. 1- C. 52 D. 52-思路:虽然()523x -展开式的系数有正有负,但()523x -与()523x +对应系数的绝对值相同,且()523x +均为正数。
所以只需计算()523x +展开的系数和即可。
令1x =,可得系数和为55,所以50123455a a a a a a +++++=答案:A 例5:若()2014201401201412x a a x a x -=+++,则()()()01020214a a a a a a ++++++=__________ 思路:所求表达式可变形为:()00120142013a a a a ++++,从而只需求出0a 和系数和即可。
令0x =可得:01a =,令1x =可得:0120141a a a +++=,所以()001201420132014a a a a ++++=答案:2014 例6:若()2622020n n C C n N ++=∈,且()20122nn n x a a x a x a x -=++++,则()0121nn a a a a -+-+-等于( )A. 81B. 27C. 243D. 729 思路:由2622020n n C C ++=可得262n n +=+或()()26220n n +++=,解得4n =,所求表达式只需令1x =-,可得()()44012412181a a a a -+-+-=--=⎡⎤⎣⎦答案:A 例7:若()()201322013012201321x a a x a x a x x R -=++++∈,则23201323201311112222a aa a a a ++++=( )A. 12013-B. 12013C. 14026-D. 14026思路:所求表达式中的项呈现2的指数幂递增的特点,与恒等式联系可发现令12x =,可得:22013012201310222a a a a ++++=,令0x =可得:01a =-,所以220131220131222a a a ++=-,所以所求表达式变形为:111111122a a a ⎛⎫+-= ⎪⎝⎭,而()()2012112013214026a x C x x =⋅⋅-=,所以14026a =,从而表达式的值为14026答案:D例8:已知()()()201111nnn x x x a a x a x ++++++=+++ ,若12129n a a a n -+++=-,则n 的值为( )A. 3B. 4C. 5D. 6 思路:在恒等式中令1x =可得系数和()20122122221n n n a a a -+++=+++=-,与条件联系可考虑先求出0,n a a ,令0x =,可得0a n =,展开式中n a 为最高次项系数,所以1n a =,1121221n n a a a n +-∴+++=---,所以122129n n n +---=-,即1232n +=,解得4n =答案:B 例9:若()5234501234523x a a x a x a x a x a x -=+++++,则01232345a a a a a a+++++的值是( ) A. 10 B. 20 C. 233 D. 233-思路:观察所求式子中i a 项的系数刚好与二项展开式中i a 所在项的次数一致,可联想到幂函数求导:()'1n n xnx-=,从而设()()523f x x =-,恒等式两边求导再令1x =可解得123452345a a a a a ++++的值,再在原恒等式中令0x =计算出0a 即可解:设()()5234501234523f x x a a x a x a x a x a x =-=+++++()()4'2341234552322345f x x a a x a x a x a x ∴=-⋅=++++令1x =可得:12345102345a a a a a =++++而在()5234501234523x a a x a x a x a x a x -=+++++中,令0x =可得:503243a =-=-0123452345233a a a a a a ∴+++++=-答案:D例10:若等式()201422014012201421x a a x a x a x -=++++对于一切实数x 都成立,则0122014111232015a a a a ++++=( )A.14030 B. 12015 C. 22015D. 0 思路:从所求表达式项的系数与展开式对应项联系起来可联想到在恒等式中两边同取不定积分。
例如:'''22311122111,,,231n n n n a x a x a x a x a x a x n +⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,再利用赋值法令1x =即可得到所求表达式的值解:()201422014012201421x a a x a x a x -=++++,两边同取不定积分可得:()201523201501220141111214030232015x C a x a x a x a x -+=++++令1x =可得:012201411114030232015C a a a a +=++++令0x =可得:11040304030C C -+=⇒=012201411112320152015a a a a ∴++++=答案:B小炼有话说:(1)本题可与例9作一个对照,都是对二项展开的恒等式进行等价变换。
是求导还是取不定积分是由所求表达式项的系数与展开式系数对照所确定的。
(2)在取不定积分时,本题有两个细节,一个是寻找()201421y x =-的原函数,要注意其原函数求导时涉及复合函数求导,所以系数要进行调整。
此类问题多是先猜函数的原型,再通过对所猜函数求导后与已知比较,调整系数;第二个是在求原函数时,要注意添加常数“C ”,再利用赋值法求出C 的值即可。