2020年山东省枣庄市市中区中考数学模拟试卷(4月份)(有答案解析)
2020山东省枣庄市中考数学试题(word解析版)
2020年山东省枣庄市中考数学试卷(含答案解析)2020.07.23编辑整理一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.(3分)﹣的绝对值是()A.﹣B.﹣2C.D.22.(3分)一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.(3分)计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.(3分)实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.(3分)不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.(3分)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A.8B.11C.16D.177.(3分)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.(3分)如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.(3分)对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.(3分)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.(3分)如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B 恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.612.(3分)如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.(4分)若a+b=3,a2+b2=7,则ab=.14.(4分)已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.15.(4分)如图,AB是⊙O的直径,P A切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P=36°,则∠B=.16.(4分)人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.(4分)如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.(4分)各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.(8分)解不等式组并求它的所有整数解的和.20.(8分)欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.(8分)2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.(8分)如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO 的面积.23.(8分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.(10分)在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.(10分)如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.答案解析一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.【解答】解:﹣的绝对值为.故选:C.2.【解答】解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.【解答】解:﹣﹣(﹣)==﹣.故选:A.4.【解答】解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.【解答】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.【解答】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.【解答】解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.【解答】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.【解答】解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.【解答】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.【解答】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.【解答】解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.【解答】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.【解答】解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.【解答】解:∵P A切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.【解答】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.【解答】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.【解答】解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.【解答】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.【解答】解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.【解答】解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.【解答】解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
山东省枣庄市2019-2020学年中考数学第四次调研试卷含解析
山东省枣庄市2019-2020学年中考数学第四次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x 的一元二次方程x 2-2x -k =0没有实数根,则k 的取值范围是( )A .k >-1B .k≥-1C .k <-1D .k≤-1 2.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD 的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .3.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )A .4B .5C .6D .74.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC=30°,弦EF ∥AB ,则EF 的长度为( )A .2B .3C 3D .25.如图,已知AB 、CD 、EF 都与BD 垂直,垂足分别是B 、D 、F ,且AB =1,CD =3,那么EF 的长是( )A .13B .23C .34D .456.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm 7.若关于x 的方程 ()2m 110x mx -+-= 是一元二次方程,则m 的取值范围是( )A .m 1≠.B .m 1=.C .m 1≥D . m 0≠.8.如图,平行四边形ABCD 中,点A 在反比例函数y=k x(k≠0)的图象上,点D 在y 轴上,点B 、点C 在x 轴上.若平行四边形ABCD 的面积为10,则k 的值是( )A .﹣10B .﹣5C .5D .109.下列二次根式,最简二次根式是( )A .8B .12C .13D .0.110.如图,已知AB 是⊙O 的直径,弦CD ⊥AB 于E ,连接BC 、BD 、AC ,下列结论中不一定正确的是( )A .∠ACB=90°B .OE=BEC .BD=BCD .»»AD AC =11.如图,直线a ∥b ,直线c 与直线a 、b 分别交于点A 、点B ,AC ⊥AB 于点A ,交直线b 于点C .如果∠1=34°,那么∠2的度数为()A.34°B.56°C.66°D.146°12.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,扇形OAB的圆心角为30°,半径为1,将它沿箭头方向无滑动滚动到O′A′B′的位置时,则点O 到点O′所经过的路径长为_____.14.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD 于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF=92EMNSV;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是_____.15.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.16.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为_________元.17.如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O,A),过P,O两点的二次函数y1和过P,A两点的二次函数y2的图象开口均向下,它们的顶点分别为B,C,射线OB与射线AC相交于点D.当△ODA是等边三角形时,这两个二次函数的最大值之和等于__.18.一组数据1,4,4,3,4,3,4的众数是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C 的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点 B 的坐标;(2)把△ABC 绕坐标原点O 顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O 为位似中心,相似比为2,把△A1B1C1 放大为原来的2 倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;请在x 轴上求作一点P,使△PBB1 的周长最小,并写出点P 的坐标.20.(6分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是;(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.21.(6分)如图,在平面直角坐标系中,抛物线y=-x2+bx+c与x轴交于点A(-1,0),点B(3,0),与y轴交于点C,线段BC与抛物线的对称轴交于点E、P为线段BC上的一点(不与点B、C重合),过点P作PF∥y轴交抛物线于点F,连结DF.设点P的横坐标为m.(1)求此抛物线所对应的函数表达式.(2)求PF的长度,用含m的代数式表示.(3)当四边形PEDF为平行四边形时,求m的值.22.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,过点D作⊙O的切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AB=25,DE=10,弧DC的长为a,求DE、EC和弧DC围成的部分的面积S.(用含字母a的式子表示).23.(8分)阅读下列材料:题目:如图,在△ABC中,已知∠A(∠A<45°),∠C=90°,AB=1,请用sinA、cosA表示sin2A.24.(10分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.25.(10分)《杨辉算法》中有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多几何?”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多了多少步?26.(12分)当前,“精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要“建档立卡”.某初级中学七年级共有四个班,已“建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.求七年级已“建档立卡”的贫困家庭的学生总人数;将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.27.(12分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:由题意可得根的判别式,即可得到关于k的不等式,解出即可.由题意得,解得故选C.考点:一元二次方程的根的判别式点评:解答本题的关键是熟练掌握一元二次方程,当时,方程有两个不相等实数根;当时,方程的两个相等的实数根;当时,方程没有实数根.2.C【解析】【分析】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,根据矩形的面积公式可求出.【详解】由函数图象可知AB=2×2=4,BC=(6-2) ×2=8,∴矩形ABCD的面积为4×8=32,故选:C.【点睛】本题考查动点运动问题、矩形面积等知识,根据图形理解△ABP面积变化情况是解题的关键,属于中考常考题型.3.C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1.故选C.4.B【解析】本题考查的圆与直线的位置关系中的相切.连接OC,EC所以∠EOC=2∠D=60°,所以△ECO为等边三角形.又因为弦EF∥AB所以OC垂直EF故∠OEF=30°所以5.C【解析】【分析】易证△DEF∽△DAB,△BEF∽△BCD,根据相似三角形的性质可得EFAB=DFDB,EFCD=BFBD,从而可得EF AB +EFCD=DFDB+BFBD=1.然后把AB=1,CD=3代入即可求出EF的值.【详解】∵AB、CD、EF都与BD垂直,∴AB∥CD∥EF,∴△DEF∽△DAB,△BEF∽△BCD,∴EFAB=DFDB,EFCD=BFBD,∴EF AB +EF CD =DF DB +BF BD =BD BD=1. ∵AB=1,CD=3, ∴1EF +3EF =1, ∴EF=34. 故选C.【点睛】本题考查了相似三角形的判定及性质定理,熟练掌握性质定理是解题的关键.6.C【解析】试题分析:已知,△ABE 向右平移2cm 得到△DCF ,根据平移的性质得到EF=AD=2cm ,AE=DF ,又因△ABE 的周长为16cm ,所以AB+BC+AC=16cm ,则四边形ABFD 的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C .考点:平移的性质.7.A【解析】【分析】根据一元二次方程的定义可得m ﹣1≠0,再解即可.【详解】由题意得:m ﹣1≠0,解得:m≠1,故选A .【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.8.A【解析】【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|−k|,利用反比例函数图象得到.【详解】作AE ⊥BC 于E ,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.9.C【解析】【分析】根据最简二次根式的定义逐个判断即可.【详解】A82=B 1222=,不是最简二次根式,故本选项不符合题意;C13D100.110=,不是最简二次根式,故本选项不符合题意.故选C.【点睛】本题考查了最简二次根式的定义,能熟记最简二次根式的定义是解答此题的关键.10.B【解析】【分析】根据垂径定理及圆周角定理进行解答即可.【详解】∵AB 是⊙O 的直径,∴∠ACB=90°,故A 正确;∵点E 不一定是OB 的中点,∴OE 与BE 的关系不能确定,故B 错误;∵AB ⊥CD ,AB 是⊙O 的直径,∴»»BDBC =, ∴BD=BC ,故C 正确;∴AD AC =u u u r u u u r,故D 正确.故选B .【点睛】本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键. 11.B【解析】分析:先根据平行线的性质得出∠2+∠BAD=180°,再根据垂直的定义求出∠2的度数.详解:∵直线a ∥b ,∴∠2+∠BAD=180°.∵AC ⊥AB 于点A ,∠1=34°,∴∠2=180°﹣90°﹣34°=56°.故选B .点睛:本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补,此题难度不大.12.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A 既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B 不是中心对称图形,是轴对称图形,故本选项错误;选项C 既是中心对称图形,也是轴对称图形,故本选项错误;选项D 既是中心对称图形,也是轴对称图形,故本选项错误.故选A .考点:中心对称图形;轴对称图形.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7 6π【解析】【分析】点O到点O′所经过的路径长分三段,先以A为圆心,1为半径,圆心角为90度的弧长,再平移了AB弧的长,最后以B为圆心,1为半径,圆心角为90度的弧长.根据弧长公式计算即可.【详解】解:∵扇形OAB的圆心角为30°,半径为1,∴AB弧长=30π1π, 1806⋅⋅=∴点O到点O′所经过的路径长=90π1π72π. 18066⋅⋅⨯+=故答案为:7π. 6【点睛】本题考查了弧长公式:π180n Rl⋅⋅=.也考查了旋转的性质和圆的性质.14.①③④【解析】【分析】由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.【详解】解:∵•ƒM、N是BD的三等分点,∴DN=NM=BM,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴△BEM∽△CDM,∴,∴BE=CD,∴BE=AB,故①正确;∵AB∥CD,∴△DFN∽△BEN,∴=,∴DF=BE,∴DF=AB=CD,∴CF=3DF,故②错误;∵BM=MN,CM=2EM,∴△BEM=S△EMN=S△CBE,∵BE=CD,CF=CD,∴=,∴S△EFC=S△CBE=S△MNE,∴S△ECF=,故③正确;∵BM=NM,EM⊥BD,∴EB=EN,∴∠ENB=∠EBN,∵CD∥AB,∴∠ABN=∠CDB,∵∠DNF=∠BNE,∴∠CDN=∠DNF,∴△DFN是等腰三角形,故④正确;故答案为①③④.【点睛】考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.15.1 3【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.16.1【解析】试题分析:设该商品每件的进价为x元,则150×80%-10-x=x×10%,解得x=1.即该商品每件的进价为1元.故答案为1.点睛:此题主要考查了一元一次方程的应用,解决本题的关键是得到商品售价的等量关系.17.23【解析】【分析】连接PB、PC,根据二次函数的对称性可知OB=PB,PC=AC,从而判断出△POB和△ACP是等边三角形,再根据等边三角形的性质求解即可.【详解】解:如图,连接PB、PC,由二次函数的性质,OB=PB,PC=AC,∵△ODA是等边三角形,∴∠AOD=∠OAD=60°,∴△POB和△ACP是等边三角形,∵A(4,0),∴OA=4,∴点B、C的纵坐标之和为:OB×sin60°+PC×sin60°=4×32=23,即两个二次函数的最大值之和等于23.故答案为23.【点睛】本题考查了二次函数的最值问题,等边三角形的判定与性质,解直角三角形,作辅助线构造出等边三角形并利用等边三角形的知识求解是解题的关键.18.1【解析】【分析】本题考查了统计的有关知识,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】在这一组数据中1是出现次数最多的,故众数是1.故答案为1.【点睛】本题为统计题,考查了众数的定义,是基础题型.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(﹣4,1);(2)(1,4);(3)见解析;(4)P(﹣3,0).【解析】【分析】(1)先建立平面直角坐标系,再确定B的坐标;(2)根据旋转要求画出△A1B1C1,再写出点B1的坐标;(3)根据位似的要求,作出△A2B2C2;(4)作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求.【详解】解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).【点睛】本题考核知识点:位似,轴对称,旋转. 解题关键点:理解位似,轴对称,旋转的意义.20.(1)14;(2)14【解析】【分析】(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.【详解】解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,∴甲投放了一袋是餐厨垃圾的概率是14,故答案为:14;(2)记这四类垃圾分别为A、B、C、D,画树状图如下:由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,所以投放的两袋垃圾同类的概率为416=14.【点睛】本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)y=-x2+2x+1;(2)-m2+1m.(1)2.【解析】【分析】(1)根据待定系数法,可得函数解析式;(2)根据自变量与函数值的对应关系,可得C点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得答案;(1)根据自变量与函数值的对应关系,可得F点坐标,根据平行于y轴的直线上两点之间的距离是较大的纵坐标减较的纵坐标,可得DE的长,根据平行四边形的对边相等,可得关于m的方程,根据解方程,可得m的值.【详解】解:(1)∵点A(-1,0),点B(1,0)在抛物线y=-x2+bx+c上,∴10{930b cb c-++=-++=,解得23bc=⎧⎨=⎩,此抛物线所对应的函数表达式y=-x2+2x+1;(2)∵此抛物线所对应的函数表达式y=-x2+2x+1,∴C(0,1).设BC 所在的直线的函数解析式为y=kx+b ,将B 、C 点的坐标代入函数解析式,得303k b b +=⎧⎨=⎩,解得1{3k b =-=, 即BC 的函数解析式为y=-x+1.由P 在BC 上,F 在抛物线上,得P (m ,-m+1),F (m ,-m 2+2m+1).PF=-m 2+2m+1-(-m+1)=-m 2+1m .(1)如图,∵此抛物线所对应的函数表达式y=-x 2+2x+1,∴D (1,4).∵线段BC 与抛物线的对称轴交于点E ,当x=1时,y=-x+1=2,∴E (1,2),∴DE=4-2=2.由四边形PEDF 为平行四边形,得PF=DE ,即-m 2+1m=2,解得m 1=1,m 2=2.当m=1时,线段PF 与DE 重合,m=1(不符合题意,舍).当m=2时,四边形PEDF 为平行四边形.考点:二次函数综合题.22.(1)见解析;(2)75﹣154a. 【解析】【分析】(1)连接CD ,求出∠ADC=90°,根据切线长定理求出DE=EC ,即可求出答案;(2)连接CD 、OD 、OE ,求出扇形DOC 的面积,分别求出△ODE 和△OCE 的面积,即可求出答案【详解】(1)证明:连接DC ,∵BC是⊙O直径,∴∠BDC=90°,∴∠ADC=90°,∵∠C=90°,BC为直径,∴AC切⊙O于C,∵过点D作⊙O的切线DE交AC于点E,∴DE=CE,∴∠EDC=∠ECD,∵∠ACB=∠ADC=90°,∴∠A+∠ACD=90°,∠ADE+∠EDC=90°,∴∠A=∠ADE;(2)解:连接CD、OD、OE,∵DE=10,DE=CE,∴CE=10,∵∠A=∠ADE,∴AE=DE=10,∴AC=20,∵∠ACB=90°,AB=25,∴由勾股定理得:BC===15,∴CO=OD=,∵的长度是a,∴扇形DOC 的面积是×a×=a,∴DE、EC和弧DC围成的部分的面积S=××10+×10﹣a=75﹣a.【点睛】本题考查了圆周角定理,切线的性质,切线长定理,等腰三角形的性质和判定,勾股定理,扇形的面积,三角形的面积等知识点,能综合运用知识点进行推理和计算是解此题的关键.23.sin2A=2cosAsinA【解析】【分析】先作出直角三角形的斜边的中线,进而求出12CE=,∠CED=2∠A,最后用三角函数的定义即可得出结论【详解】解:如图,作Rt△ABC的斜边AB上的中线CE,则1122CE AB AE===,∴∠CED=2∠A,过点C作CD⊥AB于D,在Rt△ACD中,CD=ACsinA,在Rt△ABC中,AC=ABcosA=cosA在Rt△CED中,sin2A=sin∠CED=sin12CD AC ACE⋅== 2ACsinA=2cosAsinA【点睛】此题主要解直角三角形,锐角三角函数的定义,直角三角形的斜边的中线等于斜边的一半,构造出直角三角形和∠CED=2∠A是解本题的关键.24.(1)证明见解析;(2)35.【解析】【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35考点:相似三角形的判定25.12【解析】【分析】设矩形的长为x步,则宽为(60﹣x)步,根据题意列出方程,求出方程的解即可得到结果.【详解】解:设矩形的长为x步,则宽为(60﹣x)步,依题意得:x(60﹣x)=864,整理得:x2﹣60x+864=0,解得:x=36或x=24(不合题意,舍去),∴60﹣x=60﹣36=24(步),∴36﹣24=12(步),则该矩形的长比宽多12步.【点睛】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.26.(1)15人;(2)补图见解析.(3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已“建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.27.(1);(2)5π;(3)PB的值为或.【解析】【分析】(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【点睛】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.。
2020年山东省枣庄市中考数学模拟试卷(2)
两点,则 k 的值为
.
18.( 3 分)如图,菱形 OABC 的顶点 O 在坐标原点,顶点 A 在 x 轴上,∠ B= 120°, OA
= 1,将菱形 OABC 绕原点顺时针旋转 105°至 OA'B′C'的位置,则点 B'的坐标为
.
三.解答题(共 7 小题)
19.先化简,再求值:
??2-2??+1 ( ??2-??
7.( 3 分)如图,已知点 A 是反比例函数 y= 1??(x> 0)的图象上的一个动点,连接
⊥ OA,且 OB= 2OA,那么经过点 B 的反比例函数图象的表达式为(
)
OA,OB
A .y= -
2 ??
B .y=
2 ??
C. y=
-
4 ??
D.y=
4 ??
【解答】 解:过 A 作 AC⊥y 轴, BD ⊥ y 轴,可得∠ ACO =∠ BDO = 90°,
3
=
-
??6 8??3
【解答】 解: A、(﹣ a3)2= a6,此选项错误;
B、 2a2+3a2= 5a2,此选项错误;
C、 2a2?a3= 2a5,此选项错误;
2
6
D 、(-
?? ) 3 = 2??
?? 8??3
,此选项正确;
故选: D .
2.( 3 分)如图所示为某一物体的主视图,下面是这个物体的是(
OA =
√10, tanAOC=
1 ,点 3
B
的坐标
3 为( , m)
2
( 1)求该反比例函数的解析式和点 D 的坐标;
( 2)点 M 在射线 CA 上,且 MA= 2AC,求△ MOB 的面积.
山东省枣庄市2020年中考数学试题及详解(WORD版)
第一部分2020年枣庄市初中学业水平考试数学试题(1-8)第二部分2020年枣庄市初中学业水平考试数学试题详解(9-19) 注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分. 1.12- 的绝对值是( ) A. -2 B. 12- C. 2 D. 12 2.一副直角三角板如图放置,点C 在FD 的延长线上,AB//CF ,∠F=∠ACB=90°,则∠DBC 的度数为( ) A. 10°B. 15°C. 18°D. 30° 3.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A . 12-B. 12C. 56-D. 56 4.实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A. ||1a <B. 0ab >C. 0a b +>D. 11a -> 5.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是( )A. 49B. 29C. 23D. 136.如图,在△ABC 中,AB 的垂直平分线交AB 于点D ,交BC 于点E ,若BC=6,AC=5,则△ACE 的周长为( )A. 8B. 11C. 16D. 177. 图(1)是一个长为2a ,宽为2b (a >b )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是A. B. ()2a b - C. D.8.在下图的四个三角形中,不能由ABC 经过旋转或平移得到的是( )A. B. C. D.9.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--.则方程()2214⊗-=--x x 的解是( ) A. 4x =B. 5x =C. 6x =D. 7x = 10.如图,平面直角坐标系中,点B 在第一象限,点A 在x 轴的正半轴上,30AOB B ∠=∠=︒,2OA =,将AOB ∆绕点O 逆时针旋转90︒,点B 的对应点B '的坐标是( )A. (1,23-+B. ()3,3C. (3,23-+D. (3-11.如图,在矩形纸片ABCD 中,AB=3,点E 在边BC 上,将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,若∠EAC=∠ECA ,则AC 的长是( )A. 33B. 6C. 4D. 512.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①0ac <; ②240b ac ->; ③20a b -=; ④0a b c -+=.其中,正确的结论有( )A. 1个B. 2个C. 3个D. 4个第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a +b =3,a 2+b 2=7,则ab =_____.14.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为_______. 15.如图,AB 是O 的直径,P A 切O 于点A ,线段PO 交O 于点C .连接BC ,若36P ∠=︒,则B ∠=________.16.如图,人字梯AB ,AC 的长都为2米.当50a =︒时,人字梯顶端高地面的高度AD 是____米(结果精确到0.1m .参考依据:sin500.77︒≈,cos500.64︒≈,tan50 1.19︒≈)17.如图,E ,F 是正方形ABCD 的对角线AC 上的两点,8AC =,2AE CF ==,则四边形BEDF 的周长是_____.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式112S a b =+-(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick )定理”.如图给出了一个格点五边形,则该五边形的面积S =________.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组4(1)713843x x x x +≤+⎧⎪-⎨-<⎪⎩,并求它的所有整数解的和.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数(Vertex)、棱数E(Edge)、面数F(Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V 4 6 8棱数E 6 12面数F 4 5 8(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:____________________________.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2 1.6x< ax<121.62.02.0 2.4x< bx<102.4 2.8学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________;(2)样本成绩的中位数落在________范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4 2.8x<范围内的有多少人?22.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.23.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且2BAC CBF ∠=∠.(1)求证:BF 是O 的切线; (2)若O 的直径为4,6CF =,求tan CBF ∠.24.在ABC 中,90ACB ∠=︒,CD 是中线,AC BC =,一个以点D 为顶点的45°角绕点D 旋转,使角的两边分别与AC 、BC 的延长线相交,交点分别为点E 、F ,DF 与AE 交于点M ,DE 与BC 交于点N . (1)如图1,若CE CF =,求证:DE DF =;(2)如图2,在EDF ∠绕点D 旋转的过程中,试证明2CD CE CF =⋅恒成立;(3)若2CD =,2CF =DN 的长.25.如图,抛物线24y ax bx =++交x 轴于(3,0)A -,(4,0)B 两点,与y 轴交于点C ,AC ,BC .M 为线段OB 上的一个动点,过点M 作PM x ⊥轴,交抛物线于点P ,交BC 于点Q .(1)求抛物线的表达式;(2)过点P 作PN BC ⊥,垂足为点N .设M 点的坐标为(,0)M m ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点M 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标;若不存在,请说明理由.2020年枣庄市初中学业水平考试数学试题详解注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号.考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1、解:12-的绝对值是12. 故选:D .2、由题意可得:∠EDF=45°,∠ABC=30°,∵AB ∥CF ,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选B.3、解:2121413136366662⎛⎫---=-+=-+=-=- ⎪⎝⎭, 故选:A .4、解:由数轴上a 与1的位置可知:||1a >,故选项A 错误;因为a <0,b >0,所以0ab <,故选项B 错误;因为a <0,b >0,所以0a b +<,故选项C 错误;因为a <0,则11a ->,故选项D 正确;故选:D .5、解:画树状图得:则共有9种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为49. 故选A .6、解:∵DE 垂直平分AB ,∴AE=BE ,∴△ACE 的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选B .7、由题意可得,正方形的边长为a b +,故正方形的面积为()2a b +.又∵原矩形的面积为2a 2b 4ab ⋅=,∴中间空的部分的面积=()()22a b 4ab a b +-=-. 故选C .8、A 、可由△ABC 逆时针旋转一个角度得到;B 、可由△ABC 翻折得到;C 、可由△ABC 逆时针旋转一个角度得到;D 、可由△ABC 逆时针旋转一个角度得到.故选B .9、解:211(2)(2)4x x x ⊗-==--- ∴方程表达为:12144x x =--- 解得:5x =, 经检验,5x =是原方程的解,故选:B .10、如图,作B H y '⊥轴于H .由题意:2OA A B '''==,60B A H ''∠=︒,∴30A B H ''∠=︒,∴112AH A B '''==,B H '= ∴3OH =,∴()B ',故选B .11、∵将△ABE 沿直线AE 折叠,点B 恰好落在对角线AC 上的点F 处,∴AF=AB ,∠AFE=∠B=90°,∴EF ⊥AC ,∵∠EAC=∠ECA ,∴AE=CE ,∴AF=CF ,∴AC=2AB=6,故选B .12、解:∵抛物线开口向下,则a <0,∵抛物线交于y 轴的正半轴,则c >0,∴ac <0,故①正确;∵抛物线与x轴有两个交点,∴240b ac ->,故②正确;∵抛物线的对称轴为直线1x =,则12b a-=,即2a=-b , ∴2a+b=0,故③错误;∵抛物线经过点(3,0),且对称轴为直线1x =,∴抛物线经过点(-1,0),则0a b c -+=,故④正确;∴正确的有①②④,共3个,故选:C .第Ⅱ卷(非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13、(a +b )2=32=9,(a +b )2=a 2+b 2+2ab =9.∵a 2+b 2=7,∴2ab =2,ab =1,故答案为1.14、0x =代入方程得:210a -=解得:1a =±∵22(1)210a x x a --+-=是关于x 的一元二次方程∴10,1a a -≠≠∴1a =-故答案为-115、如图,连接AC ,AB 是O 的直径,∴90ACB ∠=︒,∴90B BAC ∠+∠=︒,∵P A 切O 于点A ,∴90BAP ∠=︒,∴B PAC ∠=∠,∵ACO P PAC ∠=∠+∠,90ACO BCO ACO B ∠+∠=∠+∠=︒,∴9036B B ︒-∠=∠+︒,解得27B ∠=︒,故答案为:27︒.16、在Rt ADC ∆中,∵2AC =,50ACD ∠=︒, ∴sin 50AD AC︒=, ∴sin5020.77 1.5AD AC =⨯︒=⨯≈.故答案为1.5.17、如图,连接BD 交AC 于点O ,∵四边形ABCD 为正方形,∴BD AC ⊥,OD OB OA OC ===,∵2AE CF ==,∴OA AE OC CF -=-,即OE OF =,∴四边形BEDF 为平行四边形,且BD EF ⊥,∴四边形BEDF 为菱形,∴DE DF BE BF ===,∵8AC BD ==,8422OE OF -===, 由勾股定理得:22224225DE OD OE =+=+=,∴四边形BEDF 的周长442585DE ==⨯=, 故答案为85.18、由图可知:五边形内部格点有4个,故4a =五边形边上格点有6个,故6b =∴112S a b =+-=146162+⨯-= 故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19、解不等式4(1)713x x ++,得3x -;解不等式843x x --<,得2x <. 所以,不等式组的解集为32x -<.该不等式组的所有整数解为-3,-2,-1,0,1.所以,该不等式组的所有整数解的和为(3)(2)(1)015-+-+-++=-.20、解:(1)填表如下:名称三棱锥 三棱柱 正方体 正八面体图形顶点数V 4 6 8 6棱数E 6 9 12 12面数F4 5 6 8(2)据上表中的数据规律发现,多面体的顶点数V 、棱数E 、面数F 之间存在关系式:2V F E +-=.21、解(1)由统计图可得8a =,508121020b =---=;(2)有50名学生进行测试,第25和26名的成绩和的平均数为中位数∴样本成绩的中位数落在2.0 2.4x <范围内;(3)由(1)知,20b =,补全的频数分布直方图如右图所示;学生立定跳远测试成绩的频数分布直方图(4)10120024050⨯=(人), 答:估计该学校学生立定跳远成绩在2.4 2.8x <范围内有240人.22、(1)由题意:联立直线方程1522y x y x⎧=+⎪⎨⎪=-⎩,可得24x y =-⎧⎨=⎩,故A 点坐标为(-2,4)将A(-2,4)代入反比例函数表达式kyx=,有42k=-,∴8k=-故反比例函数的表达式为8yx=-(2)联立直线152y x=+与反比例函数8yx=-,1528xy xy⎧=+⎪⎪⎨⎪=-⎪⎩解得122,8x x=-=-,当8x=-时,1y=,故B(-8,1)如图,过A,B两点分别作x轴的垂线,交x轴于M、N两点,由模型可知S梯形AMNB=S△AOB,∴S梯形AMNB=S△AOB=12121()()2y y x x+-⨯=1(14)[(2)(8)]2+⨯---⨯=156152⨯⨯= 23、(1)(1)证明:如图,连接AE.∵AB是O的直径,∴90AEB=︒∠,1290∠+∠=︒.∵AB AC=,∴21BAC∠=∠.∵2BAC CBF ∠=∠,∴1CBF ∠=∠.∴290CBF ∠+∠=︒,即90ABF ∠=︒.∵AB 是O 的直径,∴直线BF 是O 的切线. (2)解:过点C 作CH BF ⊥于点H .∵AB AC =,O 的直径为4, ∴4AC =.∵6CF =,90ABF ∠=︒, ∴2222104221AF AB BF -=-==.∵CHF ABF ∠=∠,F F ∠=∠,∴CHF ABF ∽△△.∴CH CF AB AF =,即6446CH =+. ∴125CH =,222212621655HF CF CH ⎛⎫=-=-= ⎪⎝⎭. ∴621421221BH BF HF =-=-=. ∴12215tan 7421CH CBF BH ∠===.24、(1)证明:∵90ACB ∠=︒,AC BC =,CD 是中线,∴45BCD ACD ∠=∠=︒,90BCE ACF ∠=∠=︒,∴135DCE DCF ∠=∠=︒.在DCE 与DCF 中,CE CF DCE DCF CD CD =⎧⎪∠=∠⎨⎪=⎩,∴DCE DCF ≌△△.∴DE DF =;(2)证明:∵135DCF DCE ∠=∠=︒,∴18013545CDF F ∠+∠=︒-︒=︒∵45CDF CDE ∠+∠=︒,∴F CDE ∠=∠.∴CDF CED △∽△. ∴CD CF CE CD=,即2CD CE CF =⋅. (3)如图,过D 作DG BC ⊥于点G ,则90DGN ECN ∠=∠=︒,CG DG =.当2CD =,CF =由2CD CE CF =⋅,得CE =在Rt DCG 中,sin 2sin 45CG DG CD DCG ==⋅∠=⨯︒=∵ECN DGN ∠=∠,ENC DNG ∠=∠,∴CEN GDN △∽△.∴2CN CE GN DG ===,∴11333GN CG ===.∴DN ===25、解:(1)将(3,0)A -,(4,0)B 代入24y ax bx =++,得934016440a b a b -+=⎧⎨++=⎩,解之,得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩. 所以,抛物线的表达式为211433y x x =-++. (2)由211433y x x =-++,得(0,4)C . 将点(4,0)B 、(0,4)C 代入y kx b =+,得404k b b +=⎧⎨=⎩,解之,得14k b =-⎧⎨=⎩. 所以,直线BC 的表达式为:4y x =-+.由(,0)M m ,得211,433P m m m ⎛⎫-++ ⎪⎝⎭,4(),Q m m -+. ∴221114443333PQ m m m m m =-+++-=-+ ∵OB OC =,∴45ABC OCB ∠=∠=︒.∴45PQN BQM ∠=∠=︒.∴22214222sin 4533PN PQ m m ⎫=︒=-+=⎪⎝⎭. 222(2)63m =--+. ∵206-< ∴当2m =时,PN 有最大值,最大值为223. (3)存在,理由如下:由点(3,0)A -,(0,4)C ,知5AC =.①当AC CQ =时,过Q 作QE y ⊥轴于点E ,易得222222[4(4)]2CQ EQ CE m m m =+=+--+=, 由2225m =,得152m =,252m =(舍) 此时,点5285222Q ⎛- ⎝⎭;②当AC AQ =时,则5AQ AC ==.在Rt AMQ △中,由勾股定理,得22[(3)](4)25m m --+-+=.解之,得1m =或0m =(舍)此时,点()1,3Q ;③当CQ AQ =时,由2222[(3)](4)m m m =--+-+,得252m =(舍). 综上知所述,可知满足条件的点Q 有两个,坐标分别为:()1,3Q ,5285222Q ⎛-⎝⎭.。
山东省枣庄市市中区2023-2024学年八年级下学期4月期中考试数学试卷(含答案)
八年级数学试题温馨提示:请将试题的正确答案填涂或书写在答题纸上,在本试卷上答题无效。
一、精心选一选,你一定能选对!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在答题纸上.)1.已知,下列四个不等式中不正确的是()A.B.C.D.2.下面四幅图是我国一些博物馆的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.3.关于的一元一次不等式组的解集如图所示,则它的解集是()第3题图A.B.C.D.4.如图,已知的坐标分别为,,将沿轴正方向平移,使平移到点,得到,若,则点的坐标为()第4题图A.B.C.D.5.某种药品说明书上,贴有如图所示的标签,则一次服用这种药品的剂量范围是,则的值分别为()(第5题图)A.B.C.D.6.已知直角三角形两边的长为3和5,则此三角形的周长为()A.12B.C.12或D.以上都不对7.已知中,,求证:,下面写出运用反证法证明这个命题的四个步骤:①因此假设不成立.②,这与三角形内角和为矛盾③假设在中,④由,得,即.这四个步骤正确的顺序应是()A.④③①②B.①②③④C.③④②①D.③④①②8.在平面直角坐标系中,点在第三象限,则的取值范围是()A.B.C.D.9.如图,是等边的边上的中线,以点为圆心,长为半径画弧交的延长线于点,则等于()第9题图A.B.C.D.10.如图,正方形的边长为1,其面积为,以为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积记为,按此规律继续下去,则的值为()第10题图A.B.C.D.二、认真填一填,相信你能填对!(每小题3分,共18分.)11.在平面直角坐标系中,已知线段是由线段经过右移4个单位长度,下移1个单位长度得到的,那么点的对应点为的坐标为______.12.若不等式组的解集为,那么的值等于______.13.一个等腰三角形一腰上的高与另一腰夹角为,则顶角的度数为______.14.如图,在中,,,的周长为5,则的周长是______.第14题图15.如图,矩形中,,,将矩形沿折叠,点落在点处,则重叠部分的面积为______.第15题图16.如图,将绕点逆时针旋转角得到,点的对应点恰好落在边上,若,,则旋转角的度数是______.第16题图三、解答题:(本题共8小题,满分72分.解答应写出必要的文字说明或演算步骤.)17.(本题满分9分)解关于的不等式组:,把解集在数轴上表示出来,并求出它所有非负整数解的和.18.(本题满分8分)一个快递公司打算在两交叉公路间建一个菜鸟驿站,以便于两条公路上的物流车快件卸后存放,又要方便两处居民区的居民取件。
2020年山东省枣庄市中考数学试卷 (解析版)
2020年山东省枣庄市中考数学试卷一、选择题(共12小题).1.﹣的绝对值是()A.﹣B.﹣2C.D.22.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°3.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>15.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8B.11C.16D.177.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b28.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=710.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.612.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a+b=3,a2+b2=7,则ab=.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组并求它的所有整数解的和.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468棱数E612面数F458(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=,b=;(2)样本成绩的中位数落在范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.25.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.参考答案一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均计零分.1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.解:﹣的绝对值为.故选:C.2.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,则∠DBC的度数为()A.10°B.15°C.18°D.30°【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD=60°,进而得出答案.解:由题意可得:∠EDF=45°,∠ABC=30°,∵AB∥CF,∴∠ABD=∠EDF=45°,∴∠DBC=45°﹣30°=15°.故选:B.3.计算﹣﹣(﹣)的结果为()A.﹣B.C.﹣D.【分析】根据有理数的减法法则计算即可.解:﹣﹣(﹣)==﹣.故选:A.4.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1﹣a>1【分析】直接利用a,b在数轴上位置进而分别分析得出答案.解:A、|a|>1,故本选项错误;B、∵a<0,b>0,∴ab<0,故本选项错误;C、a+b<0,故本选项错误;D、∵a<0,∴1﹣a>1,故本选项正确;故选:D.5.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A.B.C.D.【分析】列举出所有可能出现的结果,进而求出“两次都是白球”的概率.解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=,故选:A.6.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为()A.8B.11C.16D.17【分析】在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC =6,AC=5,则△ACE的周长为解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.7.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的部分的面积是()A.ab B.(a+b)2C.(a﹣b)2D.a2﹣b2【分析】中间部分的四边形是正方形,表示出边长,则面积可以求得.解:中间部分的四边形是正方形,边长是a+b﹣2b=a﹣b,则面积是(a﹣b)2.故选:C.8.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.【分析】根据平移,旋转的性质判断即可.解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=,这里等式右边是实数运算.例如:1⊗3=.则方程x⊗(﹣2)=﹣1的解是()A.x=4B.x=5C.x=6D.x=7【分析】所求方程利用题中的新定义化简,求出解即可.解:根据题意,得=﹣1,去分母得:1=2﹣(x﹣4),解得:x=5,经检验x=5是分式方程的解.故选:B.10.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB =∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()A.(﹣,3)B.(﹣3,)C.(﹣,2+)D.(﹣1,2+)【分析】如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=,∴OH=2+1=3,∴B′(﹣,3),故选:A.11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A.3B.4C.5D.6【分析】根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF=CF,于是得到结论.解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.12.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2﹣4ac>0;③2a﹣b=0;④a﹣b+c=0.其中,正确的结论有()A.1个B.2个C.3个D.4个【分析】根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.解:抛物线开口向下,a<0,对称轴为x=﹣=1,因此b>0,与y轴交于正半轴,因此c>0,于是有:ac<0,因此①正确;由x=﹣=1,得2a+b=0,因此③不正确,抛物线与x轴有两个不同交点,因此b2﹣4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(﹣1,0),因此a﹣b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分.13.若a+b=3,a2+b2=7,则ab=1.【分析】根据完全平方公式,可得答案.解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.14.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a=﹣1.【分析】根据一元二次方程的解的定义把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.解:把x=0代入(a﹣1)x2﹣2x+a2﹣1=0得a2﹣1=0,解得a=±1,∵a﹣1≠0,∴a=﹣1.故答案为﹣1.15.如图,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C.连接BC,若∠P =36°,则∠B=27°.【分析】直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP =54°,结合圆周角定理得出答案.解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∴∠B=∠AOP=27°.故答案为:27°.16.人字梯为现代家庭常用的工具(如图).若AB,AC的长都为2m,当α=50°时,人字梯顶端离地面的高度AD是 1.5m.(结果精确到0.1m,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)【分析】在Rt△ADC中,求出AD即可.解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC•sin50°=2×0.77≈1.5(m),故答案为1.5.17.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE===2,∴四边形BEDF的周长=4DE=4×=8,故答案为:8.18.各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S可用公式S=a+b﹣1(a是多边形内的格点数,b是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S=6.【分析】分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+b ﹣1,即可得出格点多边形的面积.解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+×6﹣1=6,故答案为:6.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤.19.解不等式组并求它的所有整数解的和.【分析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可.解:,由①得,x≥﹣3,由②得,x<2,所以,不等式组的解集是﹣3≤x<2,所以,它的整数解为:﹣3,﹣2,﹣1,0,1,所以,所有整数解的和为﹣5.20.欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V (Vertex)、棱数E(Edge)、面数F(Flatsurface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)分析表中的数据,你能发现V、E、F之间有什么关系吗?请写出关系式:V+F ﹣E=2.【分析】(1)根据图形数出顶点数,棱数,面数,填入表格即可;(2)根据表格数据,顶点数与面数的和减去棱数等于2进行解答.解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F4568(2)∵4+4﹣6=2,6+5﹣9=2,8+6﹣12=2,6+8﹣12=2,…,∴V+F﹣E=2.即V、E、F之间的关系式为:V+F﹣E=2.故答案为:6,9,12,6,V+F﹣E=2.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=8,b=20;(2)样本成绩的中位数落在 2.0≤x<2.4范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?【分析】(1)由频数分布直方图可得a=8,由频数之和为50求出b的值;(2)根据中位数的意义,找出第25、26位的两个数落在哪个范围即可;(3)求出b的值,就可以补全频数分布直方图;(4)样本估计总体,样本中立定跳远成绩在2.4≤x<2.8范围内的占,因此估计总体1200人的是立定跳远成绩在2.4≤x<2.8范围内的人数.解:(1)由统计图得,a=8,b=50﹣8﹣12﹣10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x<2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.22.如图,在平面直角坐标系中,一次函数y=x+5和y=﹣2x的图象相交于点A,反比例函数y=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=x+5的图象与反比例函数y=的图象的另一个交点为B,OB,求△ABO的面积.【分析】(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),进而求解;(2)S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN,即可求解.解:(1)联立y=x+5①和y=﹣2x并解得:,故点A(﹣2.4),将点A的坐标代入反比例函数表达式得:4=,解得:k=﹣8,故反比例函数表达式为:y=﹣②;(2)联立①②并解得:x=﹣2或﹣8,当x=﹣8时,y=x+5=1,故点B(﹣8,1),设y=x+5交x轴于点C(﹣10,0),过点A、B分别作x轴的垂线交于点M、N,则S△AOB=S△AOC﹣S△BOC=OC•AM OC•BN=.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.【分析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°,于是得到结论;(2)过C作CH⊥BF于H,根据勾股定理得到BF===2,根据相似三角形的性质得到CH=,根据三角函数的定义即可得到结论.【解答】(1)证明:连接AE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠1+∠2=90°.∵AB=AC,∴2∠1=∠CAB.∵∠BAC=2∠CBF,∴∠1=∠CBF∴∠CBF+∠2=90°即∠ABF=90°∵AB是⊙O的直径,∴直线BF是⊙O的切线;(2)解:过C作CH⊥BF于H,∵AB=AC,⊙O的直径为4,∴AC=4,∵CF=6,∠ABF=90°,∴BF===2,∵∠CHF=∠ABF,∠F=∠F,∴△CHF∽△ABF,∴=,∴=,∴CH=,∴HF===,∴BH=BF﹣HF=2﹣=,∴tan∠CBF===.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC 交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE•CF恒成立;(3)若CD=2,CF=,求DN的长.【分析】(1)根据等腰直角三角形的性质得到∠ACD=∠BCD=45°,证明△DCF≌△DCE,根据全等三角形的对应边相等证明结论;(2)证明△FCD∽△DCE,根据相似三角形的性质列出比例式,整理即可证明结论;(3)作DG⊥BC,根据等腰直角三角形的性质求出DG,由(2)的结论求出CE,证明△ENC∽△DNG,根据相似三角形的性质求出NG,根据勾股定理计算,得到答案.【解答】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴=,∴CD2=CE•CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=CD=,由(2)可知,CD2=CE•CF,∴CE==2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴=,即=,解得,NG=,由勾股定理得,DN==.25.如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC 于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,即可求解;(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.解:(1)将点A、B的坐标代入抛物线表达式得,解得,故抛物线的表达式为:y=﹣x2+x+4;(2)由抛物线的表达式知,点C(0,4),由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;设点M(m,0),则点P(m,﹣m2+m+4),点Q(m,﹣m+4),∴PQ=﹣m2+m+4+m﹣4=﹣m2+m,∵OB=OC,故∠ABC=∠OCB=45°,∴∠PQN=∠BQM=45°,∴PN=PQ sin45°=(﹣m2+m)=﹣(m﹣2)2+,∵﹣<0,故当m=2时,PN有最大值为;(3)存在,理由:点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,①当AC=CQ时,过点Q作QE⊥y轴于点E,则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,解得:m=±(舍去负值),故点Q(,);②当AC=AQ时,则AQ=AC=5,在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),故点Q(1,3);③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=(舍去);综上,点Q的坐标为(1,3)或(,).。
山东省枣庄市市中区2023-2024学年九年级上学期期中数学试题(含答案)
2023—2024学年第一学期期中联合教研质量监测九年级数学试题温馨提示:请将试题的正确答案填涂或书写在答题纸上,在本试卷上答题无效.一、精心选一选,你一定能选对!(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是正确的,请把正确选项的代号填在答题纸上.)1.下列关于的方程中,是一元二次方程的是( )A .B .C .D.2.下列各组线段的长度成比例的是( )A .1,2,3,4B .2,3,4,6C .3,4,5,6D .5,10,15,203.如图,菱形中,连接AC ,BD ,若,则的度数为()(第3题图)A .B .C .D .4.一个口袋中有红球、白球共10个,这些球除颜色外都相同.将口袋中的球搅拌均匀,从中随机摸出一个球,记下它的颜色后再放回口袋中,不断重复这一过程,共摸了100次球,发现有40次摸到白球.请你估计这个口袋中有( )个红球.A .2B .3C .6D .85.已知,则的值为( )A .B .C .D .6.枣庄市要组织一次中学生篮球联赛,赛制为单循环形式(每两队之间都只赛一场),计划安排15场比赛.如果设邀请个球队参加比赛,那么根据题意可以列方程为( )A .B .C .D .7.如图,在中,D ,E ,F 分别是边AB ,AC ,BC 上的点,,,且,那么的值为( )x 220x x +=10x +=2ax bx c ++=211x =ABCD 120∠=︒2∠20︒60︒70︒80︒323x y y +=yx311-3113737-x 215x =(1)15x x +=(1)15x x -=(1)152x x -=ABC △DE BC ∥EF AB ∥:2:3AD DB =:CF BF第7题图A .4:3B .3:2C .3:4D .2:48.关于的一元二次方程有一根为0,则的值为( )A .2B .C .2或D.9.如图,下列条件不能判定的是()第9题图A .B .C .D .10.如图,已知正方形的边长为3,点是对角线BD 上的一点,于点于点,连接PC ,当时,则PC 等于( )第10题图AB .2CD .二、认真填一填,相信你能填对!(每小题3分,共18分.)11.写出以0和1为根且二次项系数为1的一元二次方程是______.12.如图,为估算某河的宽度,在河对岸选定一个目标点,在近岸取B ,C ,D 三点,使得,,点在BC 上,并且点A ,E ,D 在同一条直线上,若测得,则河的宽度为______.第12题图x 22(2)40m x x m +++-=m 2-2-12ADB ABC △△∽ABD ACB ∠=∠ADB ABC ∠=∠2AB AD AC=⋅AD ABAB BC=ABCD P PF AD ⊥,F PE AB ⊥E :1:2PE PF =52A AB BC ⊥CD BC ⊥E 20m,10m,20m BE CE CD ===13.若是关于的一元二次方程的解,则______.14.琪琪准备完成题目:解一元二次方程.若“”表示一个字母,且一元二次方程有实数根,则“”的最大值为,此时方程的解为______.15.如图,菱形ABCD 的对角线AC 、BD 相交于点,过点作于点,连接,若菱形ABCD 的面积为,则CD 的长为______.第15题图16.如图,在矩形ABCD 中,E 是AD 边的中点,于点F ,则下列结论:①;②;③.其中正确结论的个数是______.第16题图三、解答题:(本题共7小题,满分72分.解答应写出必要的文字说明或演算步骤.)17.(本小题满分10分)用适当的方法解下列方程:(1);(2).18.(本小题满分10分)如图,点A 的坐标为,点B 的坐标为,点C 的坐标.(1)求出的面积;(2)请以点O 为位似中心作一个与位似的,使得的面积为18.1x =x 230x mx n ++=62m n +=260x x -+=□□260x x -+=□□O D DH AB ⊥H ,2OH OH =BE AC ⊥AEF CAB △△∽2BF EF =CD AD =23(3)12x -=2210x x --=()3,1-()1,1-()0,1-ABC △ABC △111A B C △111A B C △19.(本小题满分10分)如图,在中,,,,将沿着图示中的虚线剪开,使剪下的小三角形与相似,下面有四种不同的剪法.第19题① ② ③ ④(1)其中正确的剪法有中______(填序号);(2)请选择其中一种剪法,并写出所选中两个三角形相似的证明过程.20.(本小题满分10分)人工智能是数字经济高质量发展的引擎,也是新一轮科技革命和产业变革的重要驱动.人工智能市场分为决策类人工智能,人工智能机器人,语音类人工智能,视觉类人工智能四大类型,将四个类型的图标依次制成A ,B ,C ,D 四张卡片(卡片背面完全相同),将四张卡片背面朝上洗匀放置在桌面上.A .决策类人工智能B .人工智能机器人C .语音类人工智能D .视觉类人工智能.(1)随机抽取一张,抽到决策类人工智能的卡片的概率为______;(2)从中随机抽取一张,记录卡片的内容后放回洗匀,再随机抽取一张,请用列表或树状图的方法求抽取到的两张卡片内容一致的概率.21.(本小题满分10分)公安交警部门提醒市民,骑车由行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少10个,为使月销售利润达到10000元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?22.(本小题满分10分)阅读下面的材料,回答问题:方程一个一元四次方程,ABC △72A ∠=︒4AB =6AC =ABC △ABC △()()22215140x x ---+=我们可以将看成一个整体,设,则原方程可化为①,解①得,.当时,当时,.原方程的解为(1)在由原方程得到方程(1)的过程中,是利用换元法达到_____的目的(填“降次”或“消元”),体现了数学的转化思想;(2)仿照上面的方法,解方程.23.(本小题满分12分)如图,已知:在四边形ABFC 中,的垂直平分线EF 交BC 于点,交AB 于点,且.第23题(1)求证:四边形BECF 是菱形;(2)当______°时,四边形BECF 是正方形;.(3)在(2)的条件下,若,求四边形ABFC 的面积.2023—2024学年第一学期期中联合教研质量监测九年级数学试题参考答案及评分标准一、选择题二、填空题(每题3分)11.(答案不唯一)12.40m 13.14.9;15.416.317.(1);题目12345678910答案ABCCDDBADC21x -21x y -=2540y y -+=11y =24y =1y =211,x x -==4y =214,x x -==∴1234x x x x ====()()2224120x xx x ----=90,ACB BC ∠=︒D E CF AE ∥A ∠=4AC =20x x -=2-123x x ==125,1x x ==(2)1211x x =+=18.(1)解:(1)的面积;(2)如图,或为所作.19.解:(1)①③;(2)(答案丕唯一)(1),,;(3),.20.解:(1)共有4张卡片,从中随机抽取一张,抽到决策类人工智能的卡片的概率为;故答案为:;(2)解:根据题意画图如下:共有16种等可能的结果数,其中抽取到的两张卡片内容一致的结果数为4,所以抽取到的两张卡片内容一致的概率为.21.解:(1)设该品牌头盔销售量的月增长率为,依题意,得:,解得:(不合题意,舍去).答:该品牌头盔销售量的月增长率为.(2)设该品牌头盔的实际售价为元,依题意,得:,整理,得:,ABC △12222=⨯⨯=111A B C △A B C '''△72CDE A ∠=∠=︒ C C ∠=∠CDE CAB ∴△△∽A A ∠=∠ 4136364242AD AC AE AB -=====-CDE CAB ∴∽△△ ∴141441164=x 2150(1)216x +=120.220%, 2.2x x ===-20%y ()()30600104010000y y ⎡⎤---=⎣⎦213040000y y -+=解得:(不合题意,舍去),,答:该品牌头盔的实际售价应定为50元.22.解:(1)降次(2)设,原方程化为,解得,①当时,,解得,②当时,,,,此方程无解,所以原方程的解为.23.(1)证明:垂直平分BC ,,,,,,,,,,.,∴四边形BECF 是菱形;(2)解:当时,四边形BECF 是正方形;(3)解:由(2)知,四边形BECF 是正方形,,四边形ABFC.180y =250y =2y x x =-24120y y --=126,2y y ==-16y =26x x -=123,2x x ==-22y =-22x x -=-220x x ∴-+=141270∆=-⨯⨯=-< ∴123,2x x ==-EF BF FC ∴=BE EC =FCB FBC ∴∠=∠CF AE ∥FCB CBE ∴∠=∠FBC CBE ∴∠=∠90FDB EDB ∠=∠=︒ BD BD =(ASA)FDB EDB ∴≌△△BF BE ∴=BE EC FC BF ∴===45A ∠=︒AE BE CE ===∴12=。
2024年山东省枣庄市中考数学真题试卷(含答案)
2024年枣庄市初中学业水平考试数学本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.1.下列实数中,平方最大的数是()A.3 B.12 C.1- D.2-2.用一个平面截正方体,可以得到以下截面图形,其中既是轴对称图形又是中心对称图形的是()A. B. C. D.3.2023年山东省扎实落实民生实事,全年新增城乡公益性岗位61.9万个,将61.9万用科学记数法表示应为()A .30.61910⨯ B.461.910⨯ C.56.1910⨯ D.66.1910⨯4.下列几何体中,主视图是如图的是()A. B. C. D.5.下列运算正确的是()A .437a a a += B.()2211a a -=-C.()2332ab a b = D.()2212a a a a+=+6.为提高生产效率,某工厂将生产线进行升级改造,改造后比改造前每天多生产100件,改造后生产600件的时间与改造前生产400件的时间相同,则改造后每天生产的产品件数为()A.200 B.300 C.400 D.5007.如图,已知AB ,BC ,CD 是正n 边形的三条边,在同一平面内,以BC 为边在该正n 边形的外部作正方形BCMN .若120ABN ∠=︒,则n 的值为()A.12B.10C.8D.68.某校课外活动期间开展跳绳、踢毽子、韵律操三项活动,甲、乙两位同学各自任选其中一项参加,则他们选择同一项活动的概率是()A.19 B.29 C.13 D.239.如图,点E 为ABCD Y 的对角线AC 上一点,5AC =,1CE =,连接DE 并延长至点F ,使得EF DE =,连接BF ,则BF 为()A.52 B.3 C.72 D.410.根据以下对话,给出下列三个结论:①1班学生的最高身高为180cm ;②1班学生的最低身高小于150cm ;③2班学生的最高身高大于或等于170cm .上述结论中,所有正确结论的序号是()A .①② B.①③C.②③D.①②③二、填空题:本题共6小题,每小题3分,共18分.11.因式分解:22x y xy +=________.12.写出满足不等式组21215x x +≥⎧⎨-<⎩的一个整数解________.13.若关于x 的方程2420x x m -+=有两个相等的实数根,则m 的值为________.14.如图,ABC 是O 的内接三角形,若OA CB ∥,25ACB ∠=︒,则CAB ∠=________.15.如图,已知MAN ∠,以点A 为圆心,以适当长为半径作弧,分别与AM 、AN 相交于点B ,C ;分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧在MAN ∠内部相交于点P ,作射线AP .分别以A ,B 为圆心,以大于12AB 的长为半径作弧,两弧相交于点D ,E ,作直线DE 分别与AB ,AP 相交于点F ,Q .若4AB =,67.5PQE ∠=︒,则F 到AN 的距离为________.16.任取一个正整数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次运算后,必进入循环圈1→4→2→1,这就是“冰雹猜想”.在平面直角坐标系xOy 中,将点(),x y 中的x ,y 分别按照“冰雹猜想”同步进行运算得到新的点的横、纵坐标,其中x ,y 均为正整数.例如,点()6,3经过第1次运算得到点()3,10,经过第2次运算得到点()10,5,以此类推.则点()1,4经过2024次运算后得到点________.三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.(1)计算:1122-⎛⎫+-- ⎪⎝⎭;(2)先化简,再求值:212139a a a +⎛⎫-÷ ⎪+-⎝⎭,其中1a =.18.【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.19.某学校开展了“校园科技节”活动,活动包含模型设计、科技小论文两个项目.为了解学生的模型设计水平,从全校学生的模型设计成绩中随机抽取部分学生的模型设计成绩(成绩为百分制,用x 表示),并将其分成如下四组:6070x ≤<,7080x ≤<,8090x ≤<,90100x ≤≤.下面给出了部分信息:8090x ≤<的成绩为:81,81,82,82,83,83,84,84,84,85,86,86,86,87,88,88,88,89,89,89.根据以上信息解决下列问题:(1)请补全频数分布直方图;(2)所抽取学生的模型设计成绩的中位数是________分;(3)请估计全校1000名学生的模型设计成绩不低于80分的人数;(4)根据活动要求,学校将模型设计成绩、科技小论文成绩按3:2的比例确定这次活动各人的综合成绩.某班甲、乙两位学生的模型设计成绩与科技小论文成绩(单位:分)如下:模型设计科技小论文甲的成绩9490乙的成绩9095通过计算,甲、乙哪位学生的综合成绩更高?20.列表法、表达式法、图像法是三种表示函数的方法,它们从不同角度反映了自变量与函数值之间的对应关系.下表是函数2y x b =+与k y x=部分自变量与函数值的对应关系:x 72-a12x b +a 1________kx ________________7(1)求a 、b 的值,并补全表格;(2)结合表格,当2y x b =+的图像在k y x=的图像上方时,直接写出x 的取值范围.21.如图,在四边形ABCD 中,AD BC ∥,60DAB ∠=︒,22AB BC AD ===.以点A 为圆心,以AD 为半径作DE交AB 于点E ,以点B 为圆心,以BE 为半径作 EF 所交BC 于点F ,连接FD 交 EF 于另一点G ,连接CG .(1)求证:CG 为 EF所在圆的切线;(2)求图中阴影部分面积.(结果保留π)22.一副三角板分别记作ABC 和DEF ,其中90ABC DEF ∠=∠=︒,45BAC ∠=︒,30EDF ∠=︒,AC DE =.作BM AC ⊥于点M ,EN DF ⊥于点N ,如图1.(1)求证:BM EN =;(2)在同一平面内,将图1中的两个三角形按如图2所示的方式放置,点C 与点E 重合记为C ,点A 与点D 重合,将图2中的DCF 绕C 按顺时针方向旋转α后,延长BM 交直线DF 于点P .①当30α=︒时,如图3,求证:四边形CNPM 为正方形;②当3060α︒<<︒时,写出线段MP ,DP ,CD 的数量关系,并证明;当60120α︒<<︒时,直接写出线段MP ,DP ,CD 的数量关系.23.在平面直角坐标系xOy 中,点()2,3P -在二次函数()230y ax bx a =+->的图像上,记该二次函数图像的对称轴为直线x m =.(1)求m 的值;(2)若点(),4Q m -在23y ax bx =+-的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+-的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <-<,求a 的取值范围.2024年枣庄市初中学业水平考试数学本试卷共8页.满分120分.考试用时120分钟.考试结束后,将本试卷和答题卡一并交回.注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号和座号填写在答题卡规定的位置上,并在本页上方空白处写上姓名和准考证号.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.3.非选择题必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.一、选择题:本题共10小题,每小题3分,共30分.每小题只有一个选项符合题目要求.【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】C【4题答案】【答案】D【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】C【9题答案】【答案】B【答案】C二、填空题:本题共6小题,每小题3分,共18分.【11题答案】【答案】()2xy x +【12题答案】【答案】1-(答案不唯一)【13题答案】【答案】14##0.25【14题答案】【答案】40︒##40度【15题答案】【答案】【16题答案】【答案】()2,1三、解答题:本题共7小题,共72分.解答应写出文字说明、证明过程或演算步骤.【17题答案】【答案】(1)3(2)3a -2-【18题答案】【答案】(1)A ,P 两点间的距离为89.8米;(2)②【19题答案】【答案】(1)画图见解析(2)83(3)600人(4)甲的综合成绩比乙高.【20题答案】【答案】(1)25a b =-⎧⎨=⎩,补全表格见解析(2)x 的取值范围为702x -<<或1x >;【答案】(1)见解析(23π-【22题答案】【答案】(1)证明见解析(2)①证明见解析;②当3060α︒<<︒时,线段MP ,DP ,CD 的数量关系为DP MP CD +=;当60120α︒<<︒时,线段MP ,DP ,CD 的数量关系为MP DP CD -=;【23题答案】【答案】(1)1m =(2)新的二次函数的最大值与最小值的和为11;(3)318a <<。
【精选3份合集】山东省枣庄市2020年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h解析:C【解析】甲的速度是:20÷4=5km/h;乙的速度是:20÷1=20km/h;由图象知,甲出发1小时后乙才出发,乙到2小时后甲才到,故选C.2.一、单选题在反比例函数4yx的图象中,阴影部分的面积不等于4的是()A. B.C. D.解析:B【解析】【分析】根据反比例函数kyx=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、图形面积为|k|=1;B、阴影是梯形,面积为6;C、D面积均为两个三角形面积之和,为2×(12|k|)=1.故选B.【点睛】主要考查了反比例函数kyx=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.3.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.112解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解. 【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况, ∴两次都摸到白球的概率是:21126=. 故答案为C .【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.4.如图,AOB V 是直角三角形,90AOB ∠=o ,2OB OA =,点A 在反比例函数1y x =的图象上.若点B 在反比例函数k y x=的图象上,则k 的值为( )A .2B .-2C .4D .-4解析:D【解析】【分析】 要求函数的解析式只要求出B 点的坐标就可以,过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,根据条件得到ACO ODB ~V V,得到:2BD OD OB OC AC OA===,然后用待定系数法即可. 【详解】 过点A 、B 作AC x ⊥轴,BD x ⊥轴,分别于C 、D ,设点A的坐标是(),m n,则AC n=,OC m=,Q90AOB∠=︒,∴90AOC BOD∠+∠=︒,Q90DBO BOD∠+∠=︒,∴DBO AOC∠=∠,Q90BDO ACO∠=∠=︒,∴BDO OCA~V V,∴BD OD OB OC AC OA==,Q2OB OA=,∴2BD m=,2OD n=,因为点A在反比例函数1yx=的图象上,则1mn=,Q点B在反比例函数kyx=的图象上,B点的坐标是()2,2n m-,∴2244k n m mn=-⋅=-=-.故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定与性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.5.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③解析:A【解析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.6.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31解析:C【解析】【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为12n(n+1)和12(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【详解】∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.【点睛】此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.7.cos30°=()A.12B.22C3D3解析:C【解析】【分析】直接根据特殊角的锐角三角函数值求解即可. 【详解】。
2020年山东省枣庄市中考数学模拟试卷
2020年山东省枣庄市中考数学模拟试卷一、选择题:本大题共12小题,36分,每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.(3分)下列运算正确的是()A.(﹣a3)2=﹣a6B.2a2+3a2=6a2C.2a2•a3=2a6D.2.(3分)某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有()A.3个B.5个C.7个D.9个3.(3分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2C.3D.44.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3B.m≤3且m≠2C.m<3D.m<3且m≠2 5.(3分)如图,三角形纸片ABC,AB=AC,∠BAC=90°,点E为AB中点.沿过点E 的直线折叠,使点B与点A重合,折痕EF交BC于点F.已知EF=,则BC的长是()A.B.C.3D.6.(3分)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm7.(3分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=8.(3分)如图,点A,B,C,D都在半径为2的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A.4B.2C.D.29.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,分析下列四个结论:①abc<0;②b2﹣4ac>0;③3a+c>0;④(a+c)2<b2,其中正确的结论有()A.1个B.2个C.3个D.4个10.(3分)已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A.x B.C.x D.011.(3分)如图,在菱形ABCD中,AC=6,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6B.3C.2D.4.512.(3分)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则P A的最小值为()A.3B.2C.D.二、填空题:本大题共6个小题,满分24分.13.(3分)化简(﹣1)0+()﹣2﹣+=.14.(3分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE =16°,则∠B为度.15.(3分)如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5,则BC的长为.16.(3分)若关于x的一元一次不等式组有2个负整数解,则a的取值范围是.17.(3分)在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC 中点,反比例函数y=(k是常数,k≠0)的图象经过点M,交AC于点N,则MN的长度是.18.(3分)如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为.三、解答题:(本大题共7个小题,满分60分.解答时,要写出必要文字说明、证明过程或演算步骤).19.先化简,再求值÷﹣(+1),其中x是不等式组的整数解.20.为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,已知成绩x(单位:分)均满足“50≤x <100”.根据图中信息回答下列问题:(1)图中a的值为;(2)若要绘制该样本的扇形统计图,则成绩x在“70≤x<80”所对应扇形的圆心角度数为度;(3)此次比赛共有300名学生参加,若将“x≥80”的成绩记为“优秀”,则获得“优秀“的学生大约有人:(4)在这些抽查的样本中,小明的成绩为92分,若从成绩在“50≤x<60”和“90≤x <100”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.21.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,……,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同(如图),这样图1中黑点个数是6×1=6个;图2中黑点个数是6×2=12个:图3中黑点个数是6×3=18个;……;所以容易求出图10、图n中黑点的个数分别是、.请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:(1)第5个点阵中有个圆圈;第n个点阵中有个圆圈.(2)小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.22.如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k ≠0)的图象交于A、B两点,与x轴交于点C,过点A作AH⊥x轴于点H,点O是线段CH的中点,AC=4,cos∠ACH=,点B的坐标为(4,n).(1)求该反比例函数和一次函数的解析式;(2)求△BCH的面积.23.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.24.如图所示,以△ABC的边AB为直径作⊙O,点C在⊙O上,BD是⊙O的弦,∠A=∠CBD,过点C作CF⊥AB于点F,交BD于点G,过C作CE∥BD交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)求证:CG=BG;(3)若∠DBA=30°,CG=4,求BE的长.25.如图,二次函数y=﹣x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)P为抛物线上一点,它关于直线BC的对称点为Q①当四边形PBQC为菱形时,求点P的坐标;②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.2020年山东省枣庄市中考数学模拟试卷参考答案一、选择题:本大题共12小题,36分,每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.【解答】解:A、(﹣a3)2=a6,此选项错误;B、2a2+3a2=5a2,此选项错误;C、2a2•a3=2a5,此选项错误;D、,此选项正确;故选:D.2.【解答】解:由主视图和左视图可确定所需正方体个数最少时俯视图为:则组成这个几何体的小正方体最少有5个.故选:B.3.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.4.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.5.【解答】解:∵沿过点E的直线折叠,使点B与点A重合,∴∠B=∠EAF=45°,∴∠AFB=90°,∵点E为AB中点,∴EF=AB,EF=,∴AB=AC=3,∵∠BAC=90°,∴BC==3,故选:B.6.【解答】解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.7.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.8.【解答】解:∵OA⊥BC,∴CH=BH,=,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=,∴BC=2BH=2,故选:D.9.【解答】解:①由开口向下,可得a<0,又由抛物线与y轴交于正半轴,可得c>0,然后由对称轴在y轴左侧,得到b与a同号,则可得b<0,abc>0,故①错误;②由抛物线与x轴有两个交点,可得b2﹣4ac>0,故②正确;③当x=﹣3,y<0时,即9a﹣3b+c<0 (1)当x=1时,y<0,即a+b+c<0 (2)(1)+(2)×3得:12a+4c<0,即4(3a+c)<0又∵4>0,∴3a+c<0.故③错误;④∵x=1时,y=a+b+c<0,x=﹣1时,y=a﹣b+c>0,∴(a+b+c)(a﹣b+c)<0,即[(a+c)+b][(a+c)﹣b]=(a+c)2﹣b2<0,∴(a+c)2<b2,故④正确.综上所述,正确的结论有2个.故选:B.10.【解答】解:把(,m)代入y1=kx+1,可得m=k+1,解得k=m﹣2,∴y1=(m﹣2)x+1,令y3=mx﹣2,则当y3<y1时,mx﹣2<(m﹣2)x+1,解得x<;当kx+1<mx时,(m﹣2)x+1<mx,解得x>,∴不等式组mx﹣2<kx+1<mx的解集为,故选:B.11.【解答】解:如图,作点E关于AC的对称点E′,过点E′作E′M⊥AB于点M,交AC于点P,则点P、M即为使PE+PM取得最小值,其PE+PM=PE′+PM=E′M,∵四边形ABCD是菱形,∴点E′在CD上,∵AC=6,BD=6,∴AB==3,由S菱形ABCD=AC•BD=AB•E′M得×6×6=3•E′M,解得:E′M=2,即PE+PM的最小值是2,故选:C.12.【解答】解:如图,直线y=x+2与x轴交于点C,与y轴交于点D,作OH⊥CD 于H,当x=0时,y=x+2=2,则D(0,2),当y=0时,x+2=0,解得x=﹣2,则C(﹣2,0),∴CD==4,∵OH•CD=OC•OD,∴OH==,连接OA,如图,∵P A为⊙O的切线,∴OA⊥P A,∴P A==,当OP的值最小时,P A的值最小,而OP的最小值为OH的长,∴P A的最小值为=.故选:D.二、填空题:本大题共6个小题,满分24分.13.【解答】解:原式=1+4﹣3﹣3=﹣1.故答案为:﹣1.14.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.【解答】解:连接AD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5.∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB===10.∵AC=6,∴BC===8.故答案为:8.16.【解答】解:∵解不等式①得:x>a,解不等式②得:x<2,又∵关于x的一元一次不等式组有2个负整数解,∴﹣3≤a<﹣2,故答案为:﹣3≤a<﹣2.17.【解答】解:由四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,得M(8,3),N点的纵坐标是6.将M点坐标代入函数解析式,得k=8×3=24,反比例函数的解析是为y=,当y=6时,=6,解得x=4,N(4,6),NC=8﹣4=4,CM=6﹣3=3,MN===5,故答案为:5.18.【解答】解:作B′H⊥x轴于H点,连结OB,OB′,如图,∵四边形OABC为菱形,∴OB平分∠AOC,∴∠COB=30°,∵菱形OABC绕原点O顺时针旋转75°至第四象限OA′B′C′的位置,∴∠BOB′=75°,OB′=OB=2,∴∠COB′=∠BOB′﹣∠COB=45°,∴△OB′H为等腰直角三角形,∴OH=B′H=OB′=,∴点B′的坐标为(,﹣).故答案为:(,﹣).三、解答题:(本大题共7个小题,满分60分.解答时,要写出必要文字说明、证明过程或演算步骤).19.【解答】解:原式=•﹣=﹣=,不等式组解得:3<x<5,即整数解x=4,则原式=.20.【解答】解:(1)a=30﹣(2+12+8+2)=6,故答案为:6;(2)成绩x在“70≤x<80”所对应扇形的圆心角度数为360°×=144°,故答案为:144;(3)获得“优秀“的学生大约有300×=100人,故答案为:100;(4)50≤x<60的两名同学用A、B表示,90≤x<100的两名同学用C、D表示(小明用C表示),画树状图为:共有12种等可能的结果数,其中有C的结果数为6,所以小明被选中的概率为=.21.【解答】解:图10中黑点个数是6×10=60个;图n中黑点个数是6n个,故答案为:60个,6n个;(1)如图所示:第1个点阵中有:1个,第2个点阵中有:2×3+1=7个,第3个点阵中有:3×6+1=19个,第4个点阵中有:4×9+1=37个,第5个点阵中有:5×12+1=61个,…第n个点阵中有:n×3(n﹣1)+1=3n2﹣3n+1,故答案为:61,3n2﹣3n+1;(2)3n2﹣3n+1=271,n2﹣n﹣90=0,(n﹣10)(n+9)=0,n1=10,n2=﹣9(舍),∴小圆圈的个数会等于271,它是第10个点阵.22.【解答】解:(1)∵AH⊥x轴于点H,AC=4,cos∠ACH=,∴==,解得:HC=4,∵点O是线段CH的中点,∴HO=CO=2,∴AH==8,∴A(﹣2,8),∴反比例函数解析式为:y=﹣,∴B(4,﹣4),∴设一次函数解析式为:y=kx+b,则,解得:,∴一次函数解析式为:y=﹣2x+4;(2)由(1)得:△BCH的面积为:×4×4=8.23.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.24.【解答】(1)证明:连接OC,∵∠A=∠CBD,∴=,∴OC⊥BD,∵CE∥BD,∴OC⊥CE,∴CE是⊙O的切线;(2)证明:∵AB为直径,∴∠ACB=90°,∵CF⊥AB,∴∠ACB=∠CFB=90°,∵∠ABC=∠CBF,∴∠A=∠BCF,∵∠A=∠CBD,∴∠BCF=∠CBD,∴CG=BG;(3)解:连接AD,∵AB为直径,∴∠ADB=90°,∵∠DBA=30°,∴∠BAD=60°,∵=,∴∠DAC=∠BAC=∠BAD=30°,∴=tan30°=,∵CE∥BD,∴∠E=∠DBA=30°,∴AC=CE,∴=,∵∠A=∠BCF=∠CBD=30°,∴∠BCE=30°,∴BE=BC,∴△CGB∽△CBE,∴==,∵CG=4,∴BC=4,∴BE=4.25.【解答】解:(1)将B(4,0)代入y=﹣x2+3x+m,解得,m=4,∴二次函数解析式为y=﹣x2+3x+4,令x=0,得y=4,∴C(0,4),(2)存在,理由:∵B(4,0),C(0,4),∴直线BC解析式为y=﹣x+4,当直线BC向上平移b单位后和抛物线只有一个公共点时,△MBC面积最大,∴,∴x2﹣4x+b=0,∴△=16﹣4b=0,∴b=4,∴,∴M(2,6),(3)①如图,∵点P在抛物线上,∴设P(m,﹣m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,∵B(4,0),C(0,4)知识像烛光,能照亮一个人,也能照亮无数的人。
2020年山东省枣庄市中考数学试卷(有详细解析)
2020年山东省枣庄市中考数学试卷姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共36.0分)1.−12的绝对值是()A. −12B. 12C. −2D. 22.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为()A. 10°B. 15°C. 18°D. 30°3.计算−23−(−16)的结果为()A. −12B. 12C. −56D. 564.实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A. |a|<1B. ab>0C. a+b>0D. 1−a>15.不透明布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出一个球,两次都摸出白球的概率是()A. 49B. 29C. 23D. 136.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为()A. 8B. 11C. 16D. 177.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是()A. abB. (a+b)2C. (a−b)2D. a2−b28.如图的四个三角形中,不能由△ABC经过旋转或平移得到的是()A.B.C.D.9.对于实数a、b,定义一种新运算“⊗”为:a⊗b=1a−b2,这里等式右边是实数运算.例如:1⊗3=11−32=−18.则方程x⊗(−2)=2x−4−1的解是()A. x=4B. x=5C. x=6D. x=710.如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠AOB=∠B=30°,OA=2.将△AOB绕点O逆时针旋转90°,点B的对应点B′的坐标是()A. (−√3,3)B. (−3,√3)C. (−√3,2+√3)D. (−1,2+√3)11.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是()A. 3√3B. 4C. 5D. 612.如图,已知抛物线y=ax2+bx+c的对称轴为直线x=1.给出下列结论:①ac<0;②b2−4ac>0;③2a−b=0;④a−b+c=0.其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24.0分)13. 若a +b =3,a 2+b 2=7,则ab =______.14. 已知关于x 的一元二次方程(a −1)x 2−2x +a 2−1=0有一个根为x =0,则a =______.15. 如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,线段PO 交⊙O 于点C.连接BC ,若∠P =36°,则∠B =______.16. 人字梯为现代家庭常用的工具(如图).若AB ,AC 的长都为2m ,当α=50°时,人字梯顶端离地面的高度AD 是______m.(结果精确到0.1m ,参考依据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)17. 如图,E ,F 是正方形ABCD 的对角线AC 上的两点,AC =8,AE =CF =2,则四边形BEDF 的周长是______.18. 各顶点都在方格纸的格点(横竖格子线的交错点)上的多边形称为格点多边形,它的面积S 可用公式S =a +12b −1(a 是多边形内的格点数,b 是多边形边界上的格点数)计算,这个公式称为“皮克(Pick)定理”.如图给出了一个格点五边形,则该五边形的面积S =______.三、解答题(本大题共7小题,共60.0分)19. 解不等式组{4(x +1)≤7x +13,x −4<x−83,并求它的所有整数解的和.20. 欧拉(Euler,1707年~1783年)为世界著名的数学家、自然科学家,他在数学、物理、建筑、航海等领域都做出了杰出的贡献.他对多面体做过研究,发现多面体的顶点数V(Vertex)、棱数E(Edge)、面数F(Flat surface)之间存在一定的数量关系,给出了著名的欧拉公式.(1)观察下列多面体,并把下表补充完整:名称三棱锥三棱柱正方体正八面体图形顶点数V468______棱数E6______ 12______面数F45______ 8.21.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表分组频数1.2≤x<1.6a1.6≤x<2.0122.0≤x<2.4b2.4≤x<2.810请根据图表中所提供的信息,完成下列问题:(1)表中a=______,b=______;(2)样本成绩的中位数落在______范围内;(3)请把频数分布直方图补充完整;(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4≤x<2.8范围内的有多少人?22.如图,在平面直角坐标系中,一次函数y=12x+5和y=−2x的图象相交于点A,反比例函数y=kx的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数y=12x+5的图象与反比例函数y=kx的图象的另一个交点为B,OB,求△ABO的面积.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠BAC=2∠CBF.(1)求证:BF是⊙O的切线;(2)若⊙O的直径为4,CF=6,求tan∠CBF.24.在△ABC中,∠ACB=90°,CD是中线,AC=BC,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF 与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF;(2)如图2,在∠EDF绕点D旋转的过程中,试证明CD2=CE⋅CF恒成立;(3)若CD=2,CF=√2,求DN的长.25.如图,抛物线y=ax2+bx+4交x轴于A(−3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)求抛物线的表达式;(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:−12的绝对值为12.故选:B .根据绝对值的定义直接计算即可解答.本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 2.【答案】B【解析】【解答】解:由题意可得:∠EDF =45°,∠ABC =30°, ∵AB//CF ,∴∠ABD =∠EDF =45°, ∴∠DBC =45°−30°=15°. 故选:B . 【分析】直接利用三角板的特点,结合平行线的性质得出∠ABD =45°,进而得出答案. 此题主要考查了平行线的性质,根据题意得出∠ABD 的度数是解题关键. 3.【答案】A【解析】解:−23−(−16)=−23+16=−12.故选:A .根据有理数的减法法则计算即可.本题主要考查了有理数的减法,熟记运算法则是解答本题的关键.减去一个数,等于加上这个数的相反数. 4.【答案】D【解析】解:A 、|a|>1,故本选项错误;B 、∵a <0,b >0,∴ab <0,故本选项错误;C 、a +b <0,故本选项错误;D 、∵a <0,∴1−a >1,故本选项正确; 故选:D .直接利用a ,b 在数轴上位置进而分别分析得出答案.此题主要考查了实数与数轴,正确结合数轴分析是解题关键. 5.【答案】A【解析】解:用列表法表示所有可能出现的情况如下:共有9种可能出现的结果,其中两次都是白球的有4种,∴P(两次都是白球)=49,故选:A.列举出所有可能出现的结果,进而求出“两次都是白球”的概率.本题考查列表法或树状图法求随机事件发生的概率,列举出所有可能出现的结果数是正确解答的关键.6.【答案】B【解析】解:∵DE垂直平分AB,∴AE=BE,∴△ACE的周长=AC+CE+AE=AC+CE+BE=AC+BC=5+6=11.故选:B.在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=6,AC=5,则△ACE的周长为本题考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等.7.【答案】C【解析】解:中间部分的四边形是正方形,边长是a+b−2b=a−b,则面积是(a−b)2.故选:C.中间部分的四边形是正方形,表示出边长,则面积可以求得.本题考查了列代数式,正确表示出小正方形的边长是关键.8.【答案】B【解析】解:由题意,选项A,C,D可以通过平移,旋转得到,选项B可以通过翻折,平移,旋转得到.故选:B.根据平移,旋转的性质判断即可.本题考查利用旋转,平移设计图案,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】B【解析】解:根据题意,得1x−4=2x−4−1,去分母得:1=2−(x−4),解得:x=5,经检验x=5是分式方程的解.故选:B.所求方程利用题中的新定义化简,求出解即可.此题考查了解分式方程,弄清题中的新定义是解本题的关键.10.【答案】A【解析】解:如图,过点B′作B′H⊥y轴于H.在Rt△A′B′H中,∵A′B′=2,∠B′A′H=60°,∴A′H=A′B′cos60°=1,B′H=A′B′sin60°=√3,∴OH=2+1=3,∴B′(−√3,3),故选:A.如图,过点B′作B′H⊥y轴于H.解直角三角形求出′H,B′H即可.本题考查坐标与图形变化−旋转,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.【答案】D【解析】解:∵将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,∴AF=AB,∠AFE=∠B=90°,∴EF⊥AC,∵∠EAC=∠ECA,∴AE=CE,∴AF=CF,∴AC=2AB=6,故选:D.根据折叠的性质得到AF=AB,∠AFE=∠B=90°,根据等腰三角形的性质得到AF= CF,于是得到结论.本题考查了翻折变换的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.12.【答案】C=1,因此b>0,与y轴交【解析】解:抛物线开口向下,a<0,对称轴为x=−b2a于正半轴,因此c>0,于是有:ac<0,因此①正确;=1,得2a+b=0,因此③不正确,由x=−b2a抛物线与x轴有两个不同交点,因此b2−4ac>0,②正确,由对称轴x=1,抛物线与x轴的一个交点为(3,0),对称性可知另一个交点为(−1,0),因此a−b+c=0,故④正确,综上所述,正确的结论有①②④,故选:C.根据抛物线的开口方向、对称轴、与x轴、y轴的交点,综合进行判断即可.本题考查二次函数的图象和性质,理解二次函数的图象与系数的关系是正确判断的前提.13.【答案】1【解析】解:(a+b)2=32=9,(a+b)2=a2+b2+2ab=9.∵a2+b2=7,∴2ab=2,ab=1,故答案为:1.根据完全平方公式,可得答案.本题考查了完全平方公式,利用完全平方公式是解题关键.14.【答案】−1【解析】解:把x=0代入(a−1)x2−2x+a2−1=0得a2−1=0,解得a=±1,∵a−1≠0,∴a=−1.故答案为−1.根据一元二次方程的解的定义把x=0代入原方程得到关于a的一元二次方程,解得a=±1,然后根据一元二次方程的定义确定a的值.本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根.也考查了一元二次方程的定义.15.【答案】27°【解析】解:∵PA切⊙O于点A,∴∠OAP=90°,∵∠P=36°,∴∠AOP=54°,∠AOP=27°.∴∠B=12故答案为:27°.直接利用切线的性质得出∠OAP=90°,再利用三角形内角和定理得出∠AOP=54°,结合圆周角定理得出答案.此题主要考查了切线的性质以及圆周角定理,正确得出∠AOP的度数是解题关键.16.【答案】1.5【解析】解:∵AB=AC=2m,AD⊥BC,∴∠ADC=90°,∴AD=AC⋅sin50°=2×0.77≈1.5(m),故答案为1.5.在Rt△ADC中,求出AD即可.本题考查解直角三角形的应用,看解题的关键是理解题意,灵活运用所学知识解决问题.17.【答案】8√5【解析】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA−AE=OC−CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF=8−42=2,由勾股定理得:DE=√OD2+OE2=√42+22=2√5,∴四边形BEDF的周长=4DE=4×2√5=8√5,故答案为:8√5.连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.18.【答案】6【解析】解:∵a表示多边形内部的格点数,b表示多边形边界上的格点数,S表示多边形的面积,∴a=4,b=6,∴该五边形的面积S=4+12×6−1=6,故答案为:6.分别统计出多边形内部的格点数a和边界上的格点数b,再代入公式S=a+12b−1,即可得出格点多边形的面积.本题考查格点多边形面积的计算,解题的关键是根据图形正确统计出a,b的值.19.【答案】解:{4(x+1)≤7x+13 ①x−4<x−83 ②,由①得,x≥−3,由②得,x<2,所以,不等式组的解集是−3≤x<2,所以,它的整数解为:−3,−2,−1,0,1,所以,所有整数解的和为−5.【解析】先求出两个不等式的解集,再求其公共解,然后找出整数求和即可.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).20.【答案】6 9 12 6 V+F−E=2【解析】解:(1)填表如下:名称三棱锥三棱柱正方体正八面体图形顶点数V4686棱数E691212面数F45686+5−9=2,8+6−12=2,6+8−12=2,…,∴V+F−E=2.即V、E、F之间的关系式为:V+F−E=2.故答案为:6,9,12,6,V+F−E=2.(1)根据图形数出顶点数,棱数,面数,填入表格即可;(2)根据表格数据,顶点数与面数的和减去棱数等于2进行解答.本题是对欧拉公式的考查,观察图形准确数出各图形的顶点数、面数、棱数是解题的关键.21.【答案】8 20 2.0≤x<2.4【解析】解:(1)由统计图得,a=8,b=50−8−12−10=20,故答案为:8,20;(2)由中位数的意义可得,50个数据从小到大排列处在中间位置的两个数在2.0≤x< 2.4组内,故答案为:2.0≤x<2.4;(3)补全频数分布直方图如图所示:(4)1200×1050=240(人),答:该校1200名学生中立定跳远成绩在2.4≤x<2.8范围内的有240人.(1)由频数分布直方图可得a=8,由频数之和为50求出b的值;(2)根据中位数的意义,找出第25、26位的两个数落在哪个范围即可;(3)求出b的值,就可以补全频数分布直方图;(4)样本估计总体,样本中立定跳远成绩在2.4≤x<2.8范围内的占1050,因此估计总体1200人的1050是立定跳远成绩在2.4≤x<2.8范围内的人数.本题考查频数分布表、频数分布直方图的意义和制作方法,理解各个数量之间的关系是正确解答的关键.22.【答案】解:(1)联立y=12x+5①和y=−2x并解得:{x=−2y=4,故点A(−2.4),将点A的坐标代入反比例函数表达式得:4=k−2,解得:k=−8,故反比例函数表达式为:y=−8x②;(2)联立①②并解得:x=−2或−8,当x=−8时,y=12x+5=1,故点B(−8,1),设y =12x +5交x 轴于点C(−10,0),过点A 、B 分别作x 轴的垂线交于点M 、N ,则S △AOB =S △AOC −S △BOC =12×OC ⋅AM −12OC ⋅BN =12×4×10−12×10×1=15.【解析】(1)联立y =12x +5①和y =−2x 并解得:{x =−2y =4,故点A(−2.4),进而求解;(2)S △AOB =S △AOC −S △BOC =12×OC ⋅AM −12OC ⋅BN ,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强. 23.【答案】(1)证明:连接AE , ∵AB 是⊙O 的直径, ∴∠AEB =90°, ∴∠1+∠2=90°. ∵AB =AC , ∴2∠1=∠CAB . ∵∠BAC =2∠CBF ,∴∠1=∠CBF∴∠CBF +∠2=90°即∠ABF =90°∵AB 是⊙O 的直径,∴直线BF 是⊙O 的切线;(2)解:过C 作CH ⊥BF 于H , ∵AB =AC ,⊙O 的直径为4, ∴AC =4,∵CF =6,∠ABF =90°,∴BF =√AF 2−AB 2=√102−42=2√21, ∵∠CHF =∠ABF ,∠F =∠F , ∴△CHF∽△ABF , ∴CHAB =CFAF , ∴CH 4=64+6,∴CH =125,∴HF =√CF 2−CH 2=√62−(125)2=6√215,∴BH =BF −HF =2√21−6√215=4√215,∴tan∠CBF=CHBH =1254√215=√217.【解析】(1)连接AE,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明∠ABF=90°,于是得到结论;(2)过C作CH⊥BF于H,根据勾股定理得到BF=√AF2−AB2=√102−42=2√21,根据相似三角形的性质得到CH=125,根据三角函数的定义即可得到结论.本题考查了切线的判定与性质、勾股定理、直角所对的圆周角是直角、相似三角形的判定和性质、解直角三角形等知识点、正确的作出辅助线是解题的关键.24.【答案】(1)证明:∵∠ACB=90°,AC=BC,CD是中线,∴∠ACD=∠BCD=45°,∠ACF=∠BCE=90°,∴∠DCF=∠DCE=135°,在△DCF和△DCE中,{CF=CE∠DCF=∠DCE DC=DC,∴△DCF≌△DCE(SAS)∴DE=DF;(2)证明:∵∠DCF=135°,∴∠F+∠CDF=45°,∵∠FDE=45°,∴∠CDE+∠CDF=45°,∴∠F=∠CDE,∵∠DCF=∠DCE,∠F=∠CDE,∴△FCD∽△DCE,∴CFCD =CDCE,∴CD2=CE⋅CF;(3)解:过点D作DG⊥BC于G,∵∠DCB=45°,∴GC=GD=√22CD=√2,由(2)可知,CD2=CE⋅CF,∴CE=CD2CF=2√2,∵∠ECN=∠DGN,∠ENC=∠DNG,∴△ENC∽△DNG,∴CNNG =CEDG,即√2−NGNG=√2√2,解得,NG=√23,由勾股定理得,DN=√DG2+NG2=2√53.【解析】(1)根据等腰直角三角形的性质得到∠ACD=∠BCD=45°,证明△DCF≌△DCE,根据全等三角形的对应边相等证明结论;(2)证明△FCD∽△DCE,根据相似三角形的性质列出比例式,整理即可证明结论;(3)作DG ⊥BC ,根据等腰直角三角形的性质求出DG ,由(2)的结论求出CE ,证明△ENC∽△DNG ,根据相似三角形的性质求出NG ,根据勾股定理计算,得到答案. 本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.【答案】解:(1)将点A 、B 的坐标代入抛物线表达式得{9a −3b +4=016a +4b +4=0,解得{a =−13b =13, 故抛物线的表达式为:y =−13x 2+13x +4;(2)由抛物线的表达式知,点C(0,4),由点B 、C 的坐标得,直线BC 的表达式为:y =−x +4; 设点M(m,0),则点P(m,−13m 2+13m +4),点Q(m,−m +4), ∴PQ =−13m 2+13m +4+m −4=−13m 2+43m ,∵OB =OC ,故∠ABC =∠OCB =45°,∴∠PQN =∠BQM =45°, ∴PN =PQsin45°=√22(−13m 2+43m)=−√26(m −2)2+2√23, ∵−√26<0,故当m =2时,PN 有最大值为2√23;(3)存在,理由:点A 、C 的坐标分别为(−3,0)、(0,4),则AC =5, ①当AC =CQ 时,过点Q 作QE ⊥y 轴于点E ,则CQ 2=CE 2+EQ 2,即m 2+[4−(−m +4)]2=25, 解得:m =±5√22(舍去负值), 故点Q(5√22,8−5√22); ②当AC =AQ 时,则AQ =AC =5,在Rt △AMQ 中,由勾股定理得:[m −(−3)]2+(−m +4)2=25,解得:m =1或0(舍去0),故点Q(1,3);③当CQ =AQ 时,则2m 2=[m =(−3)]2+(−m +4)2,解得:m =252(舍去);综上,点Q的坐标为(1,3)或(5√22,8−5√22).【解析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)PN=PQsin45°=√22(−13m2+43m)=−√26(m−2)2+2√23,即可求解;(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、解直角三角形、等腰三角形的性质等,其中(3),要注意分类求解,避免遗漏.。
2020年山东省枣庄中考数学模拟试卷解析版
中考数学模拟试卷题号一二三四总分得分一、选择题(本大题共12小题,共36.0分)1.下列计算,正确的是( )A.-= B. |-2|=- C. =2 D. ()-1=22.随着高铁的发展,预计2020年济南西客站客流量将达到2150万人,数字2150用科学记数法表示为( )A. 0.215×104B. 2.15×103C. 2.15×104D. 21.5×1023.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是( )A. 35°B. 30°C. 25°D. 20°4.一个几何体的三视图如图所示,则这个几何体是( )A.B.C.D.5.化简÷的结果是( )A.B. C. D. 2x +26.如图,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )A.米 B. 米C. 6•cos52°米D.7.已知P 1(-2,y 1),P 2(-1,y 2),P 3(2,y 3)是反比例函数的图象上的三点,则y 1,y 2,y 3的大小关系是( )A. y 3<y 2<y 1 B. y 1<y 2<y 3 C. y 2<y 1<y 3 D. 以上都不对8.如图,若一次函数y =-2x +b 的图象交y 轴于点A (0,3),则不等式-2x +b >0的解集为( )A. x >B. x >3C. x <D. x <39.已知关于x 的方程x 2-(2k -1)x +k 2=0有两个不相等的实数根,那么k 的最大整数值是( )A. -2B. -1C. 0D. 110.如图所示,在四边形ABCD 中,AD ∥BC ,要使四边形ABCD 成为平行四边形还需要条件( )A. AB =DC B. ∠1=∠2 C. AB =AD D. ∠D =∠B11.如图所示,⊙O 是△ABC 的外接圆,已知∠ABO =20°,则∠C 的度数为( )A. 45°B. 60°C. 70°D. 90°12.如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:①abc<0;②a+b=0;③4a+2b+c<0;④若(0,y1),(1,y2)是抛物线上的两点,则y1=y2.上述说法正确的是( )A. ①②④B. ③④C. ①③④D. ①②二、填空题(本大题共6小题,共24.0分)13.把a3+ab2-2a2b分解因式的结果是______ .14.函数的自变量x的取值范围是______.15.在一个不透明的袋子里装有2个白色乒乓球和若干个黄色乒乓球,若从这个袋子里随机摸出一个乒乓球,恰好是白球的概率为,则袋子内黄色乒乓球的个数为______.16.济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,≈1.7,结果精确到1m,则该楼的高度CD为______.17.如图,在平行四边形ABCD中,AB=12,AD=8,∠ABC的平分线交CD于点F,交AD的延长线于点E,CG⊥BE,垂足为G,若EF=2,则线段CG的长为____.18.如图,半径为2的⊙O在第一象限与直线y=x交于点A,反比例函数y=(k>0)的图象过点A,则k= ______ .三、计算题(本大题共1小题,共8.0分)19.先化简,再求值:,其中a是方程2x2+x-3=0的解.四、解答题(本大题共6小题,共52.0分)20.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是______;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是______;(3)△A2B2C2的面积是______平方单位.21.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如图两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______ ;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数.22.如图,已知平行四边形ABCD中,F、G是AB边上的两个点,且FC平分∠BCD,GD平分∠ADC,FC与GD相交于点E,求证:AF=GB.23.如图,反比例函数图象在第一象限的分支上有一点C(1,3),过点C的直线y=kx+b〔k<0〕与x轴交于点A.(1)求反比例函数的解析式;(2)当直线与反比例函数的图象在第一象限内的另一交点的横坐标为3时,求△COD的面积.24.如图,在平面直角坐标系中,直线分别与x轴交于点A,与y轴交于点B,∠OAB的平分线交y轴于点E,点C在线段AB上,以CA为直径的⊙D经过点E.(1)判断⊙D与y轴的位置关系,并说明理由;(2)求点C的坐标.25.如图,已知关于x的二次函数y=-x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.答案和解析1.【答案】D【解析】解:-=2-=,A错误;|-2|=,B错误;=2,C错误;()-1=2,D正确,故选:D.根据立方根的概念、二次根式的加减运算法则、绝对值的性质、负整数指数幂的运算法则计算,即可判断.本题考查的是立方根、二次根式的加减、绝对值的性质、负整数指数幂,掌握相关的概念和法则是解题的关键.2.【答案】B【解析】解:2150=2.15×103,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°-15°=30°,故选:B.根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.4.【答案】C【解析】解:由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为四边形,只有C符合条件;故选:C.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.本题考查由三视图想象立体图形.做这类题时要借助三种视图表示物体的特点,从主视图上弄清物体的上下和左右形状;从俯视图上弄清物体的左右和前后形状;从左视图上弄清楚物体的上下和前后形状,综合分析,合理猜想,结合生活经验描绘出草图后,再检验是否符合题意.5.【答案】A【解析】解:原式=•(x-1)=,故选:A.原式利用除法法则变形,约分即可得到结果.此题考查了分式的乘除法,熟练掌握运算法则是解本题的关键.6.【答案】D【解析】解:∵cos∠ACB===cos52°,∴AC=米.故选:D.根据三角函数的定义解答.本题是一道实际问题,要将其转化为解直角三角形的问题,用三角函数解答.7.【答案】C【解析】【分析】此题可以把点A、B、C的横坐标代入函数解析式求出各纵坐标后再比较大小.本题考查了反比例函数图象上点的坐标特征,把点的坐标代入函数解析式求函数值较为简单.【解答】解:当x=-2时,y1=-1,当x=-1时,y2=-2,当x=2时,y3=1,∴y2<y1<y3,故选C.8.【答案】C【解析】解:∵一次函数y=-2x+b的图象交y轴于点A(0,3),∴b=3,令y=-2x+3中y=0,则-2x+3=0,解得:x=,∴点B(,0).观察函数图象,发现:当x<时,一次函数图象在x轴上方,∴不等式-2x+b>0的解集为x<.故选:C.根据点A的坐标找出b值,令一次函数解析式中y=0求出x值,从而找出点B的坐标,观察函数图象,找出在x轴上方的函数图象,由此即可得出结论.本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.9.【答案】C【解析】解:∵a=1,b=-(2k-1),c=k2,方程有两个不相等的实数根∴△=b2-4ac=(2k-1)2-4k2=1-4k>0∴k<∴k的最大整数为0.故选:C.根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.10.【答案】D【解析】解:A、符合条件AD∥BC,AB=DC,可能是等腰梯形,故A选项错误;B、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故B选项错误;C、根据AB=AD和AD∥BC不能推出平行四边形,故C选项错误;D、∵AD∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故D选项正确.故选:D.根据等腰梯形的定义判断A;根据平行线的性质可以判断B;根据平行四边形的判定可判断C;根据平行线的性质和三角形的内角和定理求出∠BAC=∠DCA,推出AB∥CD即可.本题主要考查对平行四边形的判定,等腰梯形的性质,三角形的内角和定理,平行线的性质和判定等知识点的理解和掌握,能综合运用性质进行推理是解此题的关键.11.【答案】C【解析】解:连接OA,∵OA=OB,∴∠BAO=∠ABO=20°,∴∠AOB=180°-∠ABO-∠BAO=140°,∴∠C=∠AOB=70°.故选:C.首先连接OA,由OA=OB,根据等边对等角的知识,即可求得∠BAO的度数,然后由三角形内角和定理,可求得∠AOB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得∠C的度数.此题考查了圆周角定理、等腰三角形的性质以及三角形内角和定理.此题难度不大,解题的关键是准确作出辅助线,掌握在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半定理的应用.12.【答案】A【解析】解:①∵二次函数的图象开口向下,∴a<0,∵二次函数的图象交y轴的正半轴于一点,∴c>0,∵对称轴是直线x=,∴-,∴b=-a>0,∴abc<0.故①正确;②∵由①中知b=-a,∴a+b=0,故②正确;③把x=2代入y=ax2+bx+c得:y=4a+2b+c,∵抛物线经过点(2,0),∴当x=2时,y=0,即4a+2b+c=0.故③错误;④∵(0,y1)关于直线x=的对称点的坐标是(1,y1),∴y1=y2.故④正确;综上所述,正确的结论是①②④.故选:A.①根据抛物线开口方向、对称轴位置、抛物线与y轴交点位置求得a、b、c的符号;②根据对称轴求出b=-a;③把x=2代入函数关系式,结合图象判断函数值与0的大小关系;④求出点(0,y1)关于直线x=的对称点的坐标,根据对称轴即可判断y1和y2的大小.本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.13.【答案】a(a-b)2【解析】解:a3+ab2-2a2b,=a(a2+b2-2ab),=a(a-b)2.先提取公因式a,再利用完全平方公式继续进行二次因式分解.本题主要考查提公因式法分解因式和完全平方公式分解因式,进行二次因式分解是解本题的关键.14.【答案】x≥0且x≠1【解析】解:由题意得,x≥0且x-1≠0,解得x≥0且x≠1.故答案为:x≥0且x≠1.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.【答案】3【解析】解:设袋子内黄色乒乓球的个数为x,由题意得:=,解得:x=3,经检验,x=3是原方程的解.故答案为:3.设袋子内黄色乒乓球的个数为x,利用概率公式可得=,解出x的值,可得黄球数量即可.此题主要考查了概率公式,关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数与总情况数之比..16.【答案】51m【解析】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC-∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30≈51(m).故答案为:51m.由题意易得:∠A=30°,∠DBC=60°,DC⊥AC,即可证得△ABD是等腰三角形,然后利用三角函数,求得答案.此题考查了解直角三角形的应用-仰角俯角问题.注意证得△ABD是等腰三角形,利用特殊角的三角函数值求解是关键.17.【答案】2【解析】【分析】本题考查平行四边形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.首先证明CF=BC=12,利用相似三角形的性质求出BF,再利用勾股定理即可解决问题.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=12,AD=BC=8,AE∥BC,AB∥CD,∴∠CFB=∠FBA,∵BE平分∠ABC,∴∠ABF=∠CBF,∴∠CFB=∠CBF,∴CB=CF=8,∴DF=12-8=4,∵DE∥CB,∴△DEF∽△CBF,∴=,∴=,∴BF=4,∵CF=CB,CG⊥BF,∴BG=FG=2,在Rt△BCG中,CG===2,故答案为2.18.【答案】2【解析】解:∵半径为2的⊙O在第一象限与直线y=x交于点A,∴OA=2,∴点A的坐标为(,),把点A代入反比例函数y=(k>0)得:k==2,故答案为:2.先求出点A的坐标,再代入反比例函数y=(k>0),即可解答.本题考查了反比例函数与一次函数的交点坐标,解决本题的关键是求出点A的坐标.19.【答案】解:原式=÷[-]=÷=•=,解方程2x2+x-3=0得x1=1、x2=-,∵a-1≠0,即a≠1,所以a=-,则原式==-.【解析】先根据分式的混合运算顺序和运算法则化简原式,再解一元二次方程确定是分式有意义的a的值,代入计算可得.本题主要考查分式的混合运算和解一元二次方程,解题的关键是熟练掌握分式的混合运算顺序和运算法则.20.【答案】(1)如图所示:△A1B1C1即为所求,(2,-2)(2)如图所示:△A2B2C2即为所求;(1,0)(3)10【解析】解:(1)见答案如图所示:C1(2,-2);故答案为:(2,-2);(2)见答案如图所示:C2(1,0);故答案为:(1,0);(3)∵A 2C22=20,B2C=20,A2B2=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:×20=10平方单位.故答案为:10.(1)利用平移的性质得出平移后图象进而得出答案;(2)利用位似图形的性质得出对应点位置即可;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.此题主要考查了位似图形的性质以及平移的性质和三角形面积求法等知识,得出对应点坐标是解题关键.21.【答案】144°【解析】解:(1)360°×(1-15%-45%)=360°×40%=144°;故答案为:144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120-27-33-20=120-80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×=160人;(1)用“经常参加”所占的百分比乘以360°计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.【答案】证明:在平行四边形ABCD中,∵DG、CF分别平分∠ADC、∠BCD,∴∠ADG=∠CDG,∠DCF=∠BCF,又∵∠CDG=∠AGD,∠DCF=∠BFC,∴∠ADG=∠AGD,∠BCF=∠BFC,∴AG=AD,BF=BC,又∵AD=BC,∴AG=BF,∴AF=GB.【解析】由平行四边形的性质及角平分线的性质不难得出AG=AD,BF=BC,再由AD=BC,即可求解.本题考查了平行四边形的性质,属于基础题,注意掌握平行四边形的性质是关键.23.【答案】解:(1)∵点C(1,3)在反比例函数图象上,∴k=1×3=3,∴;(2)当x=3时,y==1,∴D(3,1).∵C(1,3)、D(3,1)在直线y=k2x+b上,∴,∴.∴y=-x+4.令y=0,则x=4,∴A(4,0),∴S△COA=×4×3=6,S△DOA=×4×1=2,∴△COD的面积=S△COA-S△DOA=6-2=4.【解析】(1)∵点C(1,3)在反比例函数图象上,∴K1=1×3=3可求反比例函数的解析式;(2)由直线与反比例函数的图象在第一象限内的另一交点的横坐标为3,易求其解析式,进而求出直线与x轴交点坐标,即可求出△COD的面积.考查反比例函数、一次函数的图象和性质.同学们只要认真读懂题意,就不易出错,此题难度中等.24.【答案】解:(1)相切,连接ED,∵∠OAB的平分线交y轴于点E,∴∠DAE=∠EAO.∵∠DEA=∠DAE,∴∠DEA=∠DAE=∠EAO,所以ED∥OA,所以ED⊥OB;(2)作CM⊥BO,CF⊥AO,易得AB=10.设C(m,n),ED=R,则DE⊥BO,∴ED∥AO,△BED∽△BOA,,,解得:R=,∴△AFC∽△AOB,∴,∴,解得:CF=6,利用勾股定理可求出AF=4.5,∴OF=1.5,所以.【解析】(1)本题须先作出辅助线连接ED,再证出ED⊥OB即可.(2)本题须设点C的坐标为(m,n),再解直角三角形得出m、n的值即可求出结果.本题主要考查了一次函数的性质,解题时要注意与圆的性质相结合.25.【答案】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得1分∴二次函数的解析式为y=-x2+2x+3;(2)∵y=-x2+2x+3=-(x-1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=-2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,-2m+6)S三角形PCD=×(-2m+6)•m=-m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正半轴上,∴∠PDC≠90°,在△PCD中,当∠DPC=90°时,当CP∥AB时,∵PD⊥AB,∴CP⊥PD,∴PD=OC=3,∴P点纵坐标为:3,代入y=-2x+6,∴x=,此时P(,3).∴线段BM上存在点P(,3)使△PCD为直角三角形.当∠P′CD′=90°时,△COD′∽△D′CP′,此时CD′2=CO•P′D′,即9+m2=3(-2m+6),∴m2+6m-9=0,解得:m=-3±3,∵1≤m<3,∴m=3(-1),∴P′(3-3,12-6)综上所述:P点坐标为:(,3),(3-3,12-6).【解析】(1)可根据OB、OC的长得出B、C两点的坐标,然后用待定系数法即可求出抛物线的解析式.(2)求出P点的坐标,据此可根据三角形的面积计算方法求出S与m的函数关系式.(3)先根据抛物线的解析式求出M的坐标,进而可得出直线BM的解析式,以及P点纵坐标,即可得出符合条件的P点的坐标.本题主要考查二次函数解析式的确定、图形的面积求法、函数图象交点、等腰三角形的判定等知识及综合应用知识、解决问题的能力.。
山东省枣庄市2020版中考数学一模试卷D卷
山东省枣庄市2020版中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·柘城期中) 已知a,b是有理数,若a在数轴上的对应点的位置如图所示,a+b<0,有以下结论:①b<0;②b﹣a>0;③|﹣a|>﹣b;④ .则所有正确的结论是()A . ①,④B . ①,③C . ②,③D . ②,④2. (2分) (2019七下·鼓楼期中) 若x、y、a满足方程组,则22x•4y的值为()A . 1B . 2C .D .3. (2分)(2018·河北) 图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A . l1B . l2C . l3D . l44. (2分)(2016·三门峡模拟) 如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A . 3次B . 4次C . 5次D . 6次5. (2分)如图,某立体的正视图和俯视图是长、宽分别相等的矩形,给定下列三个命题:①存在圆柱,其正视图和俯视图如图所示;②存在正三棱柱,其正视图和俯视图如图所示;③存在正四棱柱,其正视图和俯视图如图所示;其中真命题的个数是()A . 3个B . 2个C . 1个D . 0个6. (2分)已知△ABC中,∠A:∠B:∠C=2:3:5,则△ABC是()A . 直角三角形B . 锐角三角形C . 钝角三角形D . 不能确定三角形的形状7. (2分)已知y轴上的点P到原点的距离为5,则点P的坐标为()A . (5,0)B . (0,5)或(0,-5)C . (0,5)D . (5,0)或(-5,0)8. (2分)如图,PA切⊙O于A,AB⊥OP于B,若PO=8 cm,BO=2 cm,则PA的长为()A . 16cmB . 48cmC . 6 cmD . 4 cm9. (2分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A . 36B . 54C . 60D . 2710. (2分)如图,直径为10的⊙A经过点C(0,5)和点0(0,0),B是y轴右侧⊙A优弧上一点,则∠OBC 的余弦值为()A .B .C .D .二、填空题 (共6题;共6分)11. (1分)一种计算机每秒可运算4×108次,它工作3×103秒运算的次数用科学记数法表示为________次12. (1分) (2020八下·济南期末) 如图,在菱形ABCD中,点E是AB上的一点,连结DE交AC于点O,连结BO,且∠AED=50°,则∠CBO=________度.13. (1分)(2019·梧州模拟) 如图,△ABC是⊙O的内接三角形,∠C=30°,⊙O的半径是6,若点P是⊙O 上的一点,=,则PA的长为________.14. (1分)(2017·泰兴模拟) 一个圆锥的底面圆的直径为6cm,高为4cm,则它的侧面积为________ cm2 (结果保留π).15. (1分) (2018九上·平定月考) 一元二次方程x2﹣4x=0的解是________.16. (1分)在同一平面直角坐标系中,反比例函数y1=(k为常数,k≠0)的图象与正比例函数y2=ax(a 为常数,a≠0)的图象相交于A、B两点.若点A的坐标为(2,3),则点B的坐标为________ .三、解答题 (共9题;共94分)17. (5分)分解下列因式:(1)(x+y)2﹣4x2;(2)3m2n﹣12mn+12n.18. (12分)(2017·崇左) 矩形、菱形、正方形都是平行四边形,但它们都是有特殊条件的平行四边形,正方形不仅是特殊的矩形,也是特殊的菱形.因此,我们可利用矩形、菱形的性质来研究正方形的有关问题.回答下列问题:(1)将平行四边形、矩形、菱形、正方形填入它们的包含关系的下图中.(2)要证明一个四边形是正方形,可先证明四边形是矩形,再证明这个矩形的________相等;或者先证明四边形是菱形,在证明这个菱形有一个角是________.(3)某同学根据菱形面积计算公式推导出对角线长为a的正方形面积是S=0.5a2 ,对此结论,你认为是否正确?若正确,请说明理由;若不正确,请举出一个反例说明.19. (2分)计算(1)﹣ =________.(2)﹣ =________.20. (10分)(2017·福田模拟) 已知:如图,在平行四边形ABCD中,连接对角线BD,作AE⊥BD于E,CF⊥BD 于F,(1)求证:△AED≌△CFB;(2)若∠ABC=75°,∠ADB=30°,AE=3,求平行四边形ABCD的周长.21. (15分)(2018·潍坊) 为进一步提高全民“节约用水”意识,某学校组织学生进行家庭月用水量情况调查活动,小莹随机抽查了所住小区户家庭的月用水量,绘制了下面不完整的统计图.(1)求并补全条形统计图;(2)求这户家庭的月平均用水量;并估计小莹所住小区420户家庭中月用水量低于月平均用水量的家庭户数;(3)从月用水量为和的家庭中任选两户进行用水情况问卷调查,求选出的两户中月用水量为和恰好各有一户家庭的概率.22. (5分)一种饮料重约400g,罐上注有“蛋白质含量不少于0.5%”,其中蛋白质的含量至少是多少克?23. (15分)(2018·黄梅模拟) 月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售.已知生产这种电子产品的成本为4元/件,在销售过程中发现:每年的年销售量y(万件)与销售价格x(元/件)的关系如图所示,其中AB为反比例函数图象的一部分,BC 为一次函数图象的一部分.设公司销售这种电子产品的年利润为s(万元).(注:若上一年盈利,则盈利不计入下一年的年利润;若上一年亏损,则亏损计作下一年的成本.)(1)请求出y(万件)与x(元/件)之间的函数关系式;(2)求出第一年这种电子产品的年利润s(万元)与x(元/件)之间的函数关系式,并求出第一年年利润的最大值.(3)假设公司的这种电子产品第一年恰好按年利润s(万元)取得最大值时进行销售,现根据第一年的盈亏情况,决定第二年将这种电子产品每件的销售价格x(元)定在8元以上(x>8),当第二年的年利润不低于103万元时,请结合年利润s(万元)与销售价格x(元/件)的函数示意图,求销售价格x(元/件)的取值范围.24. (15分) (2017八下·临泽期末) 已知△ABC是等边三角形,D是BC边上的一个动点(点D不与B,C重合)△ADF是以AD为边的等边三角形,过点F作BC的平行线交射线AC于点E,连接BF.(1)如图1,求证:△AFB≌△ADC;(2)请判断图1中四边形BCEF的形状,并说明理由;(3)若D点在BC 边的延长线上,如图2,其它条件不变,请问(2)中结论还成立吗?如果成立,请说明理由.25. (15分) (2018九上·宁波期中) 抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.(1)若m=-3,求抛物线的解析式,并写出抛物线的对称轴;(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在抛物线对称轴左侧上有一点E,使S△ACE=S△ACD ,求E点的坐标;(3)如图2,设F(-1,-4),FG⊥y轴于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m 的取值范围;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共94分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
山东省枣庄市2020年中考数学一模试卷D卷
山东省枣庄市2020年中考数学一模试卷D卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016七上·沙坪坝期中) ﹣的相反数是()A .B . ﹣3C . 3D . ﹣2. (2分)(2020·浦口模拟) 命名为2019-nCoV的新型冠状病毒的大小约125纳米,即0.000 000 125米.用科学记数法表示0.000 000 125是().A . 125×10–7B . 1.25×10–7C . 1.25×10–6D . 125×10–93. (2分) (2019九上·上街期末) 已知点M(1﹣2m,1﹣m)关于x轴的对称点在第四象限,则m的取值范围在数轴上表示正确的是()A .B .C .D .4. (2分)小亮今年1至5月的电话费数据如下(单位:元):60,68,78,66,80,这组数据的中位数是()A . 66B . 67C . 68D . 785. (2分)关于反比例函数,下列说法不正确的是()A . 点(-2,-1)在它的图象上B . 它的图象在第一、三象限C . 当x>0时,y随x的增大而减小D . 当x<0时,y随x的增大而增大6. (2分)(2019·抚顺模拟) 下列事件中是必然事件的是()A . 抛一枚硬币反面朝上B . 明天是晴天C . 打开电视正在播放新闻D . 袋中有两个黄球,任意摸出一球是黄球7. (2分) (2020七下·宁德期末) 下列运算正确的是()A . 4a -a =3aB . a ×a=aC . (3a) =6aD . a ¸a =a8. (2分) (2020七下·丽水期中) 如图,将边长为5cm的等边△ABC沿边BC向右平移4cm得到△A'B'C',则四边形ABC'A'的周长为()A . 28cmB . 25cmC . 23cmD . 21cm9. (2分) (2019七上·宝鸡月考) 如图是由一些相同的小正方体构成几何体的三种视图,那么构成这几何体的小正方体有()A . 4个B . 5个C . 6个D . 无法确定10. (2分)(2020·宁波模拟) 如图所示,二次函数的图象与x轴负半轴相交与A、B两点,是二次函数图象上的一点,且,则的值为()A .B .C .D .二、填空题 (共5题;共5分)11. (1分)因式分解:x2(x﹣2)﹣16(x﹣2)=________ .12. (1分)已知:tanx=2,则=________13. (1分)(2019·黔东南) 如图所示,一次函数y=ax+b(a、b为常数,且a>0)的图像经过点A(4,1),则不等式ax+b<1的解集为________.14. (1分)(2020·江都模拟) 如图,把一个等腰直角三角形放在平面直角坐标系中,∠ACB=90°,点C(-1,0),点B在反比例函数的图像上,且y轴平分∠BAC,则k的值是________.15. (1分)古算趣题:“笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭.有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足.借问竿长多少数,谁人算出我佩服.”若设竿长为x尺,则可列方程为________.三、解答题 (共8题;共75分)16. (5分) (2019七上·静安期末) 先化简,再求值:,其中.17. (5分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同时打折,其余两次均按标价购买,三次购买商品A、B的数量和费用如表所示,购买商品A的数量/个购买商品B的数量/个购买总费用/元第一次购物651140第二次购物371110第三次购物981062(1)在这三次购物中,第几次购物打了折扣;(2)求出商品A、B的标价;(3)若商品A、B的折扣相同,问商店是打几折出售这两种商品的?18. (15分)(2020·河南模拟) 现如今”微信运动“被越来越多的人关注和喜爱,某数学兴趣小组随机调查了该校50名教师某日“微信运动“中的行走步数情况,并将统计的数据绘制成了如下两幅不完整的统计图表.请根据以上信息,解答下列问题:步数(x)频数频率0≤x<4000a0.164000≤x<8000150.38000≤x<12000b0.2412000≤x<1600010c16000≤x<2000030.062000≤x<240002d(1)求出a,b,c,d的值,并补全频数分布直方图.(2)本市约有58000名教师,用调查的样本数据估计日行步数超过12000步(包含12000步)的教师有多少名?(3)若在被调查的50名教师中.选取日行步数超过16000步(包含16000步)的两名教师与大家分享心得,求被选取的两名教师的日行走步数恰好都在20000步(包含20000步)以上的概率.19. (5分)如图,点B、C、E是同一直线上的三点,四边形ABCD与四边形CEFG都是正方形,连接BG、DE.(1)求证:BG=DE;(2)已知小正方形CEFG的边长为1cm,连接CF,如果将正方形CEFG绕点C逆时针旋转,当A、E两点之间的距离最小时,求线段CF所扫过的面积.20. (5分) (2017八上·独山期中) 已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,求证:BP=2PQ.21. (10分) (2018八上·如皋月考) 如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B向点B运动,设运动时间为t秒(t>0)(1) AC边上是否存在点P,使得PA=PB?若存在,求出t的值;若不存在,说明理由;(2)若点P恰好在△ABC的角平分线上,请求出t的值,说明理由.22. (15分)(2017·微山模拟) 为加快建设经济强、环境美、后劲足、群众富的实力微山,魅力微山,活力微山,幸福微山;聚力脱贫攻坚,全面完成脱贫任务,某乡镇特制定一系列帮扶甲、乙两贫困村的计划,现决定从某地运送1225箱鱼苗到甲、乙两村养殖.若用大、小货车共20辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力和其运往甲、乙两村的运费如表:车型载货能运费力(箱/辆)甲村(元/辆)乙村(元/辆)大货车70800900小货车35400600(1)求这20辆车中大、小货车各多少辆?(2)现安排其中16辆货车前往甲村,其余货车前往乙村,设前往甲村的大货车为x辆,前往甲、乙两村总费用为y元,试求出y与x的函数解析式及x的取值范围;(3)在(2)的条件下,若运往甲村的鱼苗不少于980箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23. (15分) (2019九上·邓州期中) 从三角形(不是等腰三角形)一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,BC= ,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求完美分割线CD的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共75分)16-1、17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
2020年枣庄市市中区中考数学模拟试卷含答案 (3)
山东省枣庄市市中区中考数学模拟试卷一、选择题(每小题3分,共计30分)1.下列运算正确的是()A.(a2)3=a5 B.2a﹣2=C.a6÷a2=a3D.(ab2)2=a2b42.据报道,截至2015年12月底,我区户籍人口突破90万.数据“90万”用科学记数法可表示为()A.90×104B.9×104C.9×105D.0.9×1053.如图,AB∥CD,BD=CD,若∠C=40°,则∠ABD的度数为()A.40°B.60°C.80°D.120°4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是()A.B.C.D.5.如图,正比例函数y=mx与反比例函数y=(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是()A.(﹣2,﹣4)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣4,﹣2)6.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次丁同学80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁7.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是()A.=B.=C.=D.=8.丽威办公用品工厂要生产280个书桌,计划用14天完成任务,当生产任务完成到一半时,发现以后只有每天比原来多生产21个书桌,才能恰好用14天完成任务.设原来平均每天生产x个书桌,下面所列方程正确的是()A.+=14 B.+=14C.+=14 D.+=149.如图,直线y=x﹣b与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA,则△AOB的面积为()A.1 B.C.2 D.310.小明和小亮在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②小亮出发100秒时到达了终点;③小明出发125秒时到达了终点;④小亮出发20秒时,小亮在小明前方10米.其中正确的说法为()A.①②③ B.②③④ C.①②④ D.①②③④二、填空题(每小题3分,共计30分)11.函数中自变量x的取值范围是.12.计算﹣=.13.小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是人.14.把多项式2x2y﹣12xy+18y因式分解的结果是.15.不等式组的解集为.16.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,点P是抛物线上的一个动点,连接PA、PB,当S△PAB=8时,点P的坐标为.17.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有名.18.如图,P为⊙O直径AB上的一个动点,点C,D为半圆的三等分点,若AB=12,则图中阴影部分的面积为.19.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)20.先化简,再求值:÷(1﹣),其中x=.21.如图,在▱ABCD中,点E、F分别为边AB,CD的中点,连接DE,BF,BD.(1)求证:△ADE≌△CBF;(2)若∠ADB=90°,求证:四边形BFDE为菱形.22.如图,AB是⊙O的直径,点C、G是⊙O上两点,且=,过点C的直线CD⊥BG 于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线;(2)当OF=FD时,①求∠E的度数;②如果DG=6,请直接写出图中、线段AE和CE所围成的阴影部分的面积.(结果保留π)23.为了增强人们的环境保护意识,某校若干名学生组成了“控制噪声污染”课题学习研究小组.在环保局工作人员帮助指导下,该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),并将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率1 44.5﹣﹣59.5 4 0.12 59.5﹣﹣74.5 a 0.23 74.5﹣﹣89.5 10 0.254 89.5﹣﹣104.5 b c5 104.5﹣119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)表中的c值为;(2)补全频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?24.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?25.△ABC内接于⊙O,弦BD与AC相交于点E,连接BO,且∠OBC=∠ABD.(1)如图1,求证:AC⊥BD;(2)如图2,在BE上取一点F,使EF=DE,直线CF与AB相交于点G,若∠ABC=60°.求证:BF=BO;(3)如图3,在(2)的条件下,直线OF与AB相交于点M,与BC相交于点N,若NC=2MA,OB=2,求线段AE的长.山东省枣庄市市中区中考数学模拟试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.下列运算正确的是()A.(a2)3=a5 B.2a﹣2=C.a6÷a2=a3D.(ab2)2=a2b4【考点】同底数幂的除法;幂的乘方与积的乘方;负整数指数幂.【分析】将选项中的各个式子计算出正确的结果再与选项中的答案对照即可得到正确的选项.【解答】解:∵(a2)3=a6,,a6÷a2=a4,(ab2)2=a2b4,∴选项D正确,故选D.2.据报道,截至2015年12月底,我区户籍人口突破90万.数据“90万”用科学记数法可表示为()A.90×104B.9×104C.9×105D.0.9×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90万=100000=9×105.故选C.3.如图,AB∥CD,BD=CD,若∠C=40°,则∠ABD的度数为()A.40°B.60°C.80°D.120°【考点】平行线的性质.【分析】由平行线的性质得出∠ABC=∠C=40°,由等腰三角形的性质得出∠DBC=∠C=40°,得出∠ABD=∠ABC+∠DBC=80°即可.【解答】解:∵AB∥CD,∴∠ABC=∠C=40°,∵BD=CD,∴∠DBC=∠C=40°,∴∠ABD=∠ABC+∠DBC=80°,故选:C.4.如图所示的几何体是由7个小正方体组合而成的立体图形,则它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上向下看俯视图有两行,上面一行有3个小正方形,下面一行有1个小正方形,故选:D.5.如图,正比例函数y=mx与反比例函数y=(m、n是非零常数)的图象交于A、B两点.若点A的坐标为(1,2),则点B的坐标是()A.(﹣2,﹣4)B.(﹣2,﹣1)C.(﹣1,﹣2)D.(﹣4,﹣2)【考点】反比例函数图象的对称性.【分析】此题由题意可知A、B两点关于原点对称,则根据对称性即可得到B点坐标.【解答】解:∵正比例函数y=mx与反比例函数y=的两交点A、B关于原点对称,∴点A(1,2)关于原点对称点的坐标为(﹣1,﹣2).故选C.6.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次丁同学80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【解答】解:丁同学的平均成绩为:×(80+80+90+90)=85;2=[2×(80﹣85)2+2×(90﹣85)2]=25,方差为S丁所以四个人中丙的方差最小,成绩最稳定,故选C.7.如图,在△ABC中,点D,E,F分别在边AB,AC,BC上,若DE∥BC,EF∥AB,则下面所列比例式中正确的是()A.=B.=C.=D.=【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理找准线段的对应关系,对各选项分析判断后利用排除法求解.【解答】解:∵DE∥BC,∴,BD≠BC,∴,选项A不正确;∵DE∥BC,EF∥AB,∴,EF=BD,,∵≠,∴,选项B不正确;∵EF∥AB,∴,选项C正确;∵DE∥BC,EF∥AB,∴,=,CE≠AE,∴,选项D不正确;故选:C.8.丽威办公用品工厂要生产280个书桌,计划用14天完成任务,当生产任务完成到一半时,发现以后只有每天比原来多生产21个书桌,才能恰好用14天完成任务.设原来平均每天生产x个书桌,下面所列方程正确的是()A.+=14 B.+=14C.+=14 D.+=14【考点】由实际问题抽象出分式方程.【分析】先根据工作总量=工作时间×工作效率,用实际天数+计划天数=14列出方程解答即可.【解答】解:设原来平均每天生产x个书桌,可得:,故选B9.如图,直线y=x﹣b与y轴交于点C,与x轴交于点B,与反比例函数y=的图象在第一象限交于点A(3,1),连接OA,则△AOB的面积为()A.1 B.C.2 D.3【考点】反比例函数与一次函数的交点问题.【分析】由点A(3,1)在直线AB上,可得出关于b的一元一次方程,解方程即可得出直线AB的解析式,令y=0即可得出B点的坐标,套用三角形的面积公式即可得出结论.【解答】解:∵直线y=x﹣b过点A(3,1),∴有1=3﹣b,解得b=2,∴直线的AB的解析式为y=x﹣2.令y=0,则有x﹣2=0,解得x=2,即点B的坐标为(2,0).△AOB的面积S=×2×1=1.故选A.10.小明和小亮在操场的同一条笔直的跑道上进行500米匀速跑步训练,他们从同一地点出发,先到达终点的人原地休息,已知小明先出发2秒,在跑步的过程中,小明和小亮的距离y(米)与小亮出发的时间t(秒)之间的函数关系如图所示,下列四种说法:①小明的速度是4米/秒;②小亮出发100秒时到达了终点;③小明出发125秒时到达了终点;④小亮出发20秒时,小亮在小明前方10米.其中正确的说法为()A.①②③ B.②③④ C.①②④ D.①②③④【考点】一次函数的应用.【分析】①②③正确,④错误,先求出两人的速度,以及图象中的b、c的值,由此即可判断.【解答】解:根据题意,t=0时,小明出发2秒行驶的路程为8米,所以,小明的速度=8÷2=4米/秒,故①正确,∵先到终点的人原地休息,∴100秒时,小亮先到达终点,故②正确,∴小亮的速度=500÷100=5米/秒,b=5×100﹣4×=92(米);c=100+92÷4=123(秒),∴小明出发125秒时到达了终点,故③正确,小亮出发20秒,小亮走了20×5=100米,小明走了22×4=88米,100﹣88=12米,∴小亮在小明前方12米,故④错误.故选A.二、填空题(每小题3分,共计30分)11.函数中自变量x的取值范围是x≥2.【考点】函数自变量的取值范围.【分析】根据二次根式的性质,被开方数大于等于0,就可以求解.【解答】解:依题意,得x﹣2≥0,解得:x≥2,故答案为:x≥2.12.计算﹣=.【考点】二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解:原式=3﹣=.故答案为:.13.小明根据去年4﹣10月本班同学去电影院看电影的人数,绘制了如图所示的折线统计图,图中统计数据的中位数是32人.【考点】中位数;折线统计图.【分析】将这7个数按大小顺序排列,找到最中间的数即为中位数.【解答】解:这组数据从大到小为:27,32,32,32,42,42,46,故这组数据的中位数32.故答案为:32.14.把多项式2x2y﹣12xy+18y因式分解的结果是2y(x﹣3)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取2y,再利用完全平方公式分解即可.【解答】解:原式=2y(x2﹣6x+9)=2y(x﹣3)2,故答案为:2y(x﹣3)215.不等式组的解集为x<1.【考点】解一元一次不等式组.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x﹣1<2,得:x<1,解不等式6﹣3x≥0,得:x≤2,所以不等式组的解集为x<1,故答案为:x<1.16.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,点P是抛物线上的一个动点,连接PA、PB,当S△PAB=8时,点P的坐标为(1+2,4)或(1﹣2,4)或(1,﹣4).【考点】抛物线与x轴的交点.【分析】根据待定系数法求出b,c的值,得出函数解析式,根据P点在抛物线上设出P点坐标,然后再由S△PAB=8,从而求出P点坐标.【解答】解:∵抛物线y=x2+bx+c与x轴的两个交点分别为A(﹣1,0),B(3,0)∴OA=1,OB=3,,解得:b=﹣2,c=﹣3,∴抛物线的解析式为:y=x2﹣2x﹣3;设点P的坐标为(x,y),∵AB=3+1=4,∴S△PAB=×4×|y|=8,∴|y|=4,∴y=±4,当y=4时,x2﹣2x﹣3=4,∴x1=1+2,x2=1﹣2,当y=﹣4时,x2﹣2x﹣3=﹣4,∴x=1,∴当P点的坐标分别为(1+2,4)或(1﹣2,4)或(1,﹣4)时,S△PAB=8;故答案为:(1+2,4)或(1﹣2,4)或(1,﹣4).17.在一次同学聚会上,若每两人握一次手,一共握了45次手,则参加这次聚会的同学一共有10名.【考点】一元二次方程的应用.【分析】设这次参加聚会的同学有x人,已知见面时两两握手一次,那么每人应握(x﹣1)次手,所以x人共握手x(x﹣1)次,又知共握手45次,以握手总次数作为等量关系,列出方程求解.【解答】解:设这次参加聚会的同学有x人,则每人应握(x﹣1)次手,由题意得:x(x﹣1)=45,即:x2﹣x﹣90=0,解得:x1=10,x2=﹣9(不符合题意舍去)故参加这次聚会的同学共有10人.故答案是:10.18.如图,P为⊙O直径AB上的一个动点,点C,D为半圆的三等分点,若AB=12,则图中阴影部分的面积为6π.【考点】扇形面积的计算.【分析】连接OC、OD,利用同底等高的三角形面积相等可知阴影部分的面积等于扇形OCD 的面积,然后计算扇形面积就可.【解答】解:连接OC、OD、CD.∵△COD和△CPD等底等高,∴S△COD=S△PCD.∵点C,D为半圆的三等分点,∴∠COD=180°÷3=60°,∴阴影部分的面积=S==6π.扇形COD故答案为:6π.19.如图,在Rt△ABC中,∠ACB=90°,AD平分∠BAC与BC相交于点D,若AD=4,CD=2,则AB的长是4.【考点】角平分线的性质;含30度角的直角三角形;勾股定理.【分析】先求出∠CAD=30°,求出∠BAC=60°,∠B=30°,根据勾股定理求出AC,再求出AB=2AC,代入求出即可.【解答】解:∵在Rt△ACD中,∠C=90°,CD=2,AD=4,∴∠CAD=30°,∴由勾股定理得:AC==2,∵AD平分∠BAC,∴∠BAC=60°,∴∠B=30°,∴AB=2AC=4,故答案为:4.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)20.先化简,再求值:÷(1﹣),其中x=.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:原式=÷=•=,当x==2时,原式==﹣1.21.如图,在▱ABCD中,点E、F分别为边AB,CD的中点,连接DE,BF,BD.(1)求证:△ADE≌△CBF;(2)若∠ADB=90°,求证:四边形BFDE为菱形.【考点】菱形的判定;全等三角形的判定与性质;平行四边形的性质.【分析】(1)根据平行四边形的对边相等的性质可以得到AD=BC,AB=CD,又点E、F是AB、CD中点,所以AE=CF,然后利用边角边即可证明两三角形全等;(2)先证明BE与DF平行且相等,然后根据一组对边平行且相等的四边形是平行四边形可得四边形BEDF是平行四边形;再根据直角三角形斜边上的中线等于斜边的一半可得DE=EB=AB,从而可得四边形BFDE为菱形.【解答】证明:(1)在▱ABCD中,AD=BC,AB=CD,∠A=∠C,∵E、F分别为边AB、CD的中点,∴AE=AB,CF=DC,∴AE=CF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)∵AB=CD,AE=CF,∴BE=DF,又AB∥CD,∴BE∥DF,∴四边形BEDF是平行四边形,∵∠ADB=90°,∴点E为边AB的中点,∴DE=EB=AB,∴四边形BFDE为菱形.22.如图,AB是⊙O的直径,点C、G是⊙O上两点,且=,过点C的直线CD⊥BG 于点D,交BA的延长线于点E,连接BC,交OD于点F.(1)求证:CD是⊙O的切线;(2)当OF=FD时,①求∠E的度数;②如果DG=6,请直接写出图中、线段AE和CE所围成的阴影部分的面积.(结果保留π)【考点】切线的判定;扇形面积的计算.【分析】(1)如图1,连接OC,AC,CG,由圆周角定理得到∠ABC=∠CBG,根据同圆的半径相等得到OC=OB,于是得到∠OCB=∠OBC,等量代换得到∠OCB=∠CBG,根据平行线的判定得到OC∥BG,即可得到结论;(2)①由OC∥BD,得到△OCF∽△BDF,△EOC∽△EBD,根据相似三角形的性质得到==,=,根据直角三角形的性质即可得到结论;②由①的结论得到△OAC是等边三角形,得到∠OAC=60°,根据圆内接四边形的性质得到∠DGC=60°,求得CG=2DG=12,得到AC=CG=12,根据扇形和三角形的面积公式即可得到结论.【解答】(1)证明:如图,连接OC,AC,CG,∵=,∴∠ABC=∠CBG,∵OC=OB,∴∠OCB=∠OBC,∴∠OCB=∠CBG,∴OC∥BG,∵CD⊥BG,∴OC⊥CD,∴CD是⊙O的切线;(2)解:①∵OC∥BD,∴△OCF∽△BDF,△EOC∽△EBD,∴==,∴=,∵OA=OB,∴AE=OA=OB , ∴OC=OE ,∵∠ECO=90°, ∴∠E=30°;②∵∠E=30°, ∴∠COE=60°, ∵OC=OA ,∴△OAC 是等边三角形, ∴∠OAC=60°, ∴∠DGC=60°,∵∠CDG=90°,DG=6, ∴CG=2DG=12, ∴AC=CG=12,∴OC=12,CE=12,∴S 阴影=S △OCE ﹣S 扇形AOC =×12×12﹣=72﹣24π.23.为了增强人们的环境保护意识,某校若干名学生组成了“控制噪声污染”课题学习研究小组.在环保局工作人员帮助指导下,该小组抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB ),并将调查的数据进行处理(设所测数据是正整数),得频数分布表如下: 组 别 噪声声级分组 频 数 频 率1 44.5﹣﹣59.5 4 0.12 59.5﹣﹣74.5 a 0.23 74.5﹣﹣89.5 10 0.254 89.5﹣﹣104.5 b c 5 104.5﹣119.56 0.15 合 计40 1.00 根据表中提供的信息解答下列问题: (1)表中的c 值为 0.3 ; (2)补全频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB 的测量点约有多少个?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用频率1减去已知组别所占的频率可求出c的值;(2)利用频率分布直方图中长方形的高与频数即测量点数成正比,得出a、b的数值,确定各段长方形的高,补全频数分布直方图;(3)利用样本估计总体,样本中噪声声级小于75dB的测量点的频率是0.3,乘以总数即可求解【解答】解:(1)c=1﹣0.1﹣0.2﹣0.25﹣0.15=0.3;(2)a=40×0.2=8,b=40﹣4﹣8﹣10﹣6﹣12;画图如下:(3)由样本估计总体得,200×(0.1+0.2)=60(个).答:在这一时刻噪声声级小于75dB的测量点约有60个.24.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.如表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨以下 a 0.80超过17吨但不超过30吨的部分 b 0.80超过30吨的部分 6.00 0.80(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a、b的值;(2)随着夏天的到来,用水量将增加.为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9200元,则小王家6月份最多能用水多少吨?【考点】一元一次不等式的应用;二元一次方程组的应用.【分析】(1)根据等量关系:“小王家2012年4月份用水20吨,交水费66元”;“5月份用水25吨,交水费91元”可列方程组求解即可.(2)先求出小王家六月份的用水量范围,再根据6月份的水费不超过家庭月收入的2%,列出不等式求解即可.【解答】解:(1)由题意,得:②﹣①,得5(b+0.8)=25,b=4.2,把b=4.2代入①,得17(a+0.8)+3×5=66,解得a=2.2,∴a=2.2,b=4.2.(2)当用水量为30吨时,水费为:17×3+13×5=116(元),9200×2%=184元,∵116<184,∴小王家六月份的用水量超过30吨.设小王家六月份用水量为x吨,由题意,得17×3+13×5+6.8(x﹣30)≤184,6.8(x﹣30)≤68,解得x≤40.答:小王家六月份最多能用水40吨.25.△ABC内接于⊙O,弦BD与AC相交于点E,连接BO,且∠OBC=∠ABD.(1)如图1,求证:AC⊥BD;(2)如图2,在BE上取一点F,使EF=DE,直线CF与AB相交于点G,若∠ABC=60°.求证:BF=BO;(3)如图3,在(2)的条件下,直线OF与AB相交于点M,与BC相交于点N,若NC=2MA,OB=2,求线段AE的长.【考点】圆的综合题.【分析】(1)如图1,延长BO与⊙O相交于点K,连接CK,由已知条件和圆周角定理可证明∠ABE=∠BCK=90°,即AC⊥BE;(2)延长CG与⊙O相交于点H,连接BH、OH,易证△OBH为等边三角形,由等边三角形的性质即可得到OB=BH=BF,问题得证;(3)连接AO、CO.由(2)中的证明可知△BOH为等边三角形,所以BF=BO,由已知条件和全等三角形的判定方法可分别证明△BMF≌△BON,△AMO≌△ONC,进而可得AM=ON,MO=NC,所以可设AM=ON=MF=2a,则MN=6a=BM=BN,BC=10a,AB=AM+BM=8a,再根据勾股定理和∠FBG的正弦值即可求出线段AE的长.【解答】(1)证明:如图1,延长BO与⊙O相交于点K,连接CK.∵BK为⊙O直径,∴∠BCK=90°,∵∠OBC=∠ABD,∠A=∠K,∠AEB=∠180°﹣∠ABD﹣∠A=180°﹣∠OBC﹣∠K=∠BCK,∴∠ABE=∠BCK=90°,∴AC⊥BE;(2)证明:如图2,由(1)与已知可得AC垂直平分DF,∴CD=CF,∴∠DCA=∠ACF 且∠D=∠CFD,延长CG与⊙O相交于点H,连接BH、OH.∵弧AD=弧AD,∴∠DCA=∠DBA.∵弧AH=弧AH,∴∠ACH=∠ABH,∴∠ABH=∠ABD=∠OBC,又∵∠BFH=∠CFD,∴∠BGF=∠CEF=90°=∠BGH,∴∠BHG=∠HFB,∴BH=BF,∵∠ABC=∠ABO+∠OBC=∠ABO+∠ABH=∠OBH=60°,OH=OB,∴△OBH为等边三角形,∴OB=BH=BF;(3)解:连接AO、CO,如图3,由(2)中的证明可知△BOH为等边三角形,BF=BO,∴∠BFO=∠BOF,∵∠BFO+∠BFM=180°,∠BOF+∠BON=180°∴∠BFM=∠BON,在△BMF和△BON中,,∴△BMF≌△BON,∴MF=ON,BM=BN,∵∠MBN=60°,∴△MBN是等边三角形,∴∠BMN=∠BNM=60°,∴∠AMN=∠CNM=120°,∠MAO+∠AOM=60°∵∠AOC=2∠ABC=120°,∴∠AOM+∠CON=60°,∴∠AOM=∠OCN,又∵AO=CO,在△AMO和△ONC中,,∴△AMO≌△ONC,∴AM=ON,MO=NC,设AM=ON=MF=2a,∵NC=2MA,∴MO=NC=4a,∴OF=2a,MN=6a=BM=BN,BC=10a,AB=AM+BM=8a,在Rt△MGF和Rt△BGC中,∠GMF=∠ABC=60°,∴MG=MF=a,GF=MFsin60°=a,BG=5a,在Rt△BFG中,BF2=BG2+GF2=BO2,∴(2)2=(5a)2+(a)2,∴a=1,∴AB=8,GF=,∵sin∠FBG===,在Rt△ABE中,sin∠FBG=,∴AE=AB•sin∠FBG=8×.6月10日。
2020年山东省枣庄市中考数学三模试卷(含答案解析)
2020年山东省枣庄市中考数学三模试卷一、选择题(本大题共12小题,共36.0分)1.下列运算正确的是()A. a6÷a2=a3B. 3a2b−a2b=2C. (−2a3)2=4a6D. √2+√3=√52.下列图形中,是轴对称图形但不是中心对称图形的是()A. 等边三角形B. 正六边形C. 正方形D. 圆3.实数a、b在数轴上的位置如图所示,则化简|a+2b|−|a−b|的结果为()A. 3bB. −2a−bC. 2a+bD. b4.两本书按如图所示方式叠放在一起,则图中相等的角是()A. ∠1与∠2B. ∠2与∠3C. ∠1与∠3D. 三个角都相等5.某小组5名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据的平均数和众数分别是()劳动时间(小时)3 3.54 4.5人数1121A. 3.75、4B. 3.75、2C. 3.8、4D. 3.8、4.56.如图,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P点是BD的中点,若AD=8,则CP的长为()A. 3B. 3.5C. 4D.4.57.若关于x的分式方程2x−ax−2=12的解为正数,则a的取值范围是()A. a≥1B. a>1C. a≥1且a≠4D. a>1且a≠48.如图,在四边形ABCD中,AD//BC,∠C=90°,BC=CD=8,过点B作EB⊥AB,交CD于点E.若DE=6,则AD的长为( )A. 6B. 8C. 10D. 无法确定9.已知点A,B分别在反比例函数y=2x (x>0),y=−8x(x>0)的图象上,且OA⊥OB,则tan∠ABO为()A.√2B. 12C. 1√3D. 1310.如图,在平面直角坐标系xOy中,直线y=√3x经过第一象限内一点A,且OA=4过点A作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,则点C的坐标为()A. (−√3,2)B. (−√3,1)C. (−2,√3)D. (−1,√3)11.如图,△ABC内接于⊙O,若sin∠BAC=13,BC=2√6,则⊙O的半径为()A. 3√6B. 6√6C. 4√2D. 2√212. 二次函数y =ax 2+bx +c 的图象如图所示,对称轴是直线x =1.下列结论:①abc ﹤0 ②3a +c ﹥0 ③(a +c)2−b 2﹤0 ④a +b ≤m(am +b)(m 为实数).其中结论正确的个数为( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共24.0分) 13. 计算:sin30°+2−1+√4= ______ .14. 若关于x 、y 的二元一次方程组{x −y =2m +1,x +3y =3的解满足x +y >0,则m 的取值范围是 .15. 如图,小明自制一块乒乓球拍,正面是半径为8cm 的⊙O ,劣弧AB ⌒对应圆心角为90°,弓形ACB(阴影部分)粘贴胶皮,则胶皮面积为______.16. 如图,一艘海轮位于灯塔P 的北偏东45°方向,距离灯塔80nmile 的A处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,此时B 处于灯塔的距离约为______nmile.(结果取整数,参考数据:√2=1.4,√3=1.7)17. 古希腊的几何学家海伦(约公元50年)在研究中发现:如果一个三角形的三边长分别为a ,b ,c ,那么三角形的面积S 与a ,b ,c 之间的关系式是S =√p(p −a)(p −b)(p −c),其中p =a+b+c 2.若三角形的三边长分别为4,6,8,则该三角形的面积为______. 18. 如图,在矩形ABCD 中,AB =5,AD =3,动点P 满足S △PAB =13S 矩形ABCD ,则点P 到A 、B 两点距离之和PA +PB 的最小值为______.三、计算题(本大题共1小题,共6.0分)19.先化简,再求值:2x+1−x2+1x+1,其中x=13四、解答题(本大题共6小题,共48.0分)20.△ABC在边长为l的正方形网格中如图所示.①以点C为位似中心,作出△ABC的位似图形△A1B1C,使其位似比为1:2.且△A1B1C位于点C的异侧,并表示出A1的坐标.②作出△ABC绕点C顺时针旋转90°后的图形△A2B2C.③在②的条件下求出点B经过的路径长.21.某校为了解全校学生对新闻,体育,动画,娱乐,戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中只选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.类别A B C D E节目新闻体育动画娱乐戏曲人数12304554m请你根据以上的信息,回答下列问题:(1)被调查学生的总数为____人;(2)统计表中m的值为____,统计图中n的值为____.(3)在图中,A类所对应扇形的圆心角的度数为____.(4)该校共有3000名学生,根据调查结果,估计该校最喜爱新闻节目的学生数为____.22.如图,已知一次函数y=kx+b的图象与反比例函数y=m的图x象交于点A(3,a),点B(14−2a,2).(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,求△ACD的面积.23.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.(1)求证:DF是⊙O的切线;(2)已知BD=2,CF=2,求AE和BG的长.24.如图,在△ABC中,∠BAC=90°,点O在BC上,以线段OC的长为半径的⊙O与AB相切于点D,分别交BC、AC于点E、F,连接ED并延长,交CA的延长线于点G.(1)求证:∠DOC=2∠G.(2)已知⊙O的半径为3.①若BE=2,则DA=______.②当BE=______时,四边形DOCF为菱形.25.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y轴于点C.(1)求抛物线的解析式;S△ABD?若存在请求出点D坐标;若不存(2)点D为抛物线上一点,是否存在点D使S△ABC=1625在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.-------- 答案与解析 --------1.答案:C解析:解:A、a6÷a2=a4,故此选项错误;B、3a2b−a2b=2a2b,故此选项错误;C、(−2a3)2=4a6,正确;D、√2+√3无法计算,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及积的乘方运算法则和二次根式加减运算法则分别计算得出答案.此题主要考查了同底数幂的乘除运算以及积的乘方运算和二次根式加减运算,正确掌握相关运算法则是解题关键.2.答案:A解析:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.根据轴对称图形与中心对称图形的概念求解.解:A.是轴对称图形,不是中心对称图形,故正确;B.是轴对称图形,也是中心对称图形,故错误;C.是轴对称图形,也是中心对称图形,故错误;D.是轴对称图形,也是中心对称图形,故错误.故选A.3.答案:C解析:【试题解析】本题考查绝对值和数轴,属于基础题,比较简单.由题意得到a<0,b>0,即a+2b>0,a−b<0,则答案可得.解:根据题意得:a<0,b>0,a+2b>0,a−b<0,故|a+2b|−|a−b|=a+2b+a−b=2a+b,故选C.4.答案:B解析:本题主要考查了三角形内角和定理及对顶角、邻补角的性质.根据对顶角相等,邻补角互补,以及三角形内角和定理即可求解.解:如图,在直角△DEF与直角△FMP中,∠E=∠M=90°,∠5=∠MFP,∴∠4=∠FPM,∴∠2=∠3;同理易证∠ANB=∠CAE,而∠CAE与∠4不一定相等.因而∠1与∠3不一定相等,即∠1与∠2也不一定相等.故图中相等的角是∠2与∠3.故选B.5.答案:C解析:本题考查了平均数、众数的知识,解答本题的关键是掌握各知识点的概念.根据众数和平均数的概念求解.解:这组数据中4出现的次数最多,众数为4,=3.8.平均数为:3+3.5+4×2+4.55故选C.6.答案:C解析:此题主要考查了直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.先证明BD=AD,然后再根据在直角三角形中,斜边上的中线等于斜边的一半可得CP=1BD.解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠DBA=30°,∴∠A=∠DBA,∴AD=BD=8,∵P点是BD的中点,∠ACB=90°,∴CP=1BD=4,故选C.7.答案:D解析:解:因为关于x的分式方程2x−ax−2=12的解为正数,2x−a=12(x−2),x=23(a−1)>0,a>1,23(a−1)≠2,解得a≠4,故选:D.根据解分式方程的一般步骤,可得分式方程的解,根据解为正数,可得不等式,根据解不等式,可得答案.本题考查了分式方程的解,关键是利用了解分式方程的步骤,同时注意分式有解的条件.8.答案:C解析:解:作BF⊥AD与F,∴∠AFB=∠BFD=90°,∵AD//BC,∴∠FBC=∠AFB=90°,∵∠C=∠AFB=∠BFD=∠FBC=90°.∴四边形BCDF是矩形.∵BC=CD,∴四边形BCDF是正方形,∴BC=BF=FD.∵EB⊥AB,∴∠ABE=90°=∠FBC,∴∠ABE−∠FBE=∠FBC−∠FBE,∴∠CBE=∠FBA.在△BCE和△BFA中{∠C=∠AFB BC=BF∠CBE=∠FBA,∴△BCE≌△BFA(ASA),∴CE=FA.∵CD=BC=8,DE=6,∴DF=8,CE=2,∴FA=2,∴AD=8+2=10.故选C.作BF⊥AD与F,就可以得出BF//CD,就可以得出四边形BCDF是矩形,进而得出四边形BCDF是正方形,就有BF=BC,证明△BCE≌△BFA就可以得出AF=CE,进而得出结论.本题考查了平行线的性质的运用,矩形的判定及性质的运用,正方形的判定及性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.9.答案:B解析:本题考查了反比例函数系数k的几何意义,相似三角形的判定和性质,锐角三角函数的定义,是一道反比例函数的综合题,首先过点A作AM⊥y轴于点M,过点B作BN⊥y轴于点N,然后证明△AOM∽△OBN,根据反比例函数系数k的几何意义得到S△AOM:S△BON=1:4,即可得到AO:BO=1:2,即可得到答案.解:过点A作AM⊥y轴于点M,过点B作BN⊥y轴于点N,∴∠AMO=∠BNO=90°,∴∠AOM+∠OAM=90°,∵OA⊥OB,∴∠AOM+∠BON=90°,∴∠OAM=∠BON,∴△AOM∽△OBN,∵点A,B分别在反比例函数y=2x (x>0),y=−8x(x>0)的图象上,∴S△AOM:S△BON=1:4,∴AO:BO=1:2,∴tan∠ABO=1.2故选B.10.答案:D解析:本题考查了勾股定理,坐标与图形变换−旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.解决本题的关键是旋转的性质的熟练运用.作CH⊥x轴于H点,如图,首先根据勾股定理,可得A(2,2√3),∠ABC=60°,则∠CBH=30°,然后根据含30度的直角三角形三边的关系,在Rt△CBH中计算出CH和BH,从而可得到C点坐标.解:作CH⊥x轴于H点,如图,设A(m,n)∴n=√3m,∵√OB2+AB2=OA,∴2m=4,m=2,∴OB=2,AB=2√3∵△ABO绕点B逆时针旋转60°,得到△CBD,∴BC=BA=2√3,∠ABC=60°,∴∠CBH=30°,BC=√3,BH=√BC2−CH2=3,在Rt△CBH中,CH=12∴OH=BH−OB=3−2=1,∴C点坐标为(−1,√3).故选D.11.答案:A解析:本题考查了圆周角定理,等腰三角形的性质以及三角函数的定义,正确作出辅助线是关键.连接OB,OC作OD⊥BC于D,根据同弧所对圆心角是圆周角的两倍,可得∠BOC=2∠A,根据等腰三角形的性质,可得CD=√6,∠COD=∠A,根据锐角三角函数可得圆的半径.解:如图:连接OB,OC.作OD⊥BC于D∵OB=OC,OD⊥BC∴CD=12BC,∠COD=12∠BOC又∵∠BOC=2∠A,BC=2√6∴∠COD=∠A,CD=√6∵sin∠BAC=1 3∴sin∠COD=CD OC=13∴OC=3√6故选A.12.答案:C解析:①由抛物线开口方向得到a>0,对称轴在y轴右侧,得到a与b异号,又抛物线与y轴负半轴相交,得到c<0,可得出abc>0,选项①错误;②把b=−2a代入a−b+c>0中得3a+c>0,所以②正确;③由x=1时对应的函数值<0,可得出a+b+c<0,由x=−1时对应的函数值>0,可得出a−b+c>0,于是得到(a+c+b)(a+c−b)<0,即(a+c)2−b2<0,选项③正确;④由对称轴为直线x=1,即x=1时,y有最小值,可得结论,即可得到④正确.本题考查了二次函数y=ax2+bx+c的图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左侧;当a与b异号时,对称轴在y轴右侧.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.解:①∵抛物线开口向上,∴a>0,∵抛物线的对称轴在y轴右侧,∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0,①错误;②当x=−1时,y>0,∴a−b+c>0,=1,∴b=−2a,∵−b2a把b=−2a代入a−b+c>0中得3a+c>0,所以②正确;③当x=1时,y<0,∴a+b+c<0,当x=−1时,y>0,∴a−b+c>0,∴(a+c+b)(a+c−b)<0,∴(a+c)2−b2<0,所以③正确;④∵抛物线的对称轴为直线x=1,∴x=1时,函数的最小值为a+b+c,∴a+b+c≤am2+mb+c,即a+b≤m(am+b),所以④正确.故选:C.13.答案:3解析:解:sin30°+2−1+√4=0.5+0.5+2=3故答案为:3.首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.此题主要考查了实数的运算,负整数指数幂和特殊角的三角函数值,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.14.答案:m>−2解析:本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+ y的值,再得到关于m的不等式.首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.解:{x−y=2m+1 ①x+3y=3 ②, ①+ ②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>−2.15.答案:(48π+32)cm2解析:本题主要考查了垂径定理的应用和扇形面积的计算,连接OA、OB,根据三角形的面积公式求出S△AOB,根据扇形面积公式求出扇形ACB的面积,计算即可.解:如图,连接AO,OB,作OD⊥AB于点D.∵劣弧AB对应圆心角为90∘,∴∠AOB=90∘,S扇形ACB =270360×π×82=48π(cm2).∴S弓形ACB =S扇形ACB+S△OAB=48π+12×8×8=(48π+32)cm2.故答案为(48π+32)cm2.16.答案:112解析:解:过P作PD⊥AB,在Rt△APD中,∠A=45°,∴△APD为等腰直角三角形,∴AD=PD=√22AP=40√2海里,在Rt△BPD中,∠B=30°,PB=2PD=80√2≈112海里,则此时船距灯塔的距离为112海里.过P作PD垂直于AB以D,根据题意求出AD与BD的长,由AD+DB求出AB的长即可.此题考查了解直角三角形−方向角问题,熟练掌握各自的性质是解本题的关键.17.答案:3√15解析:解:∵如果一个三角形的三边长分别为a,b,c,那么三角形的面积S与a,b,c之间的关系式是S=√p(p−a)(p−b)(p−c),其中p=a+b+c2,∴若三角形的三边长分别为4,6,8,p=4+6+82=9,∴S=√9×(9−4)×(9−6)×(9−8)=3√15,故答案为:3√15.根据如果一个三角形的三边长分别为a,b,c,那么三角形的面积S与a,b,c之间的关系式是S=√p(p−a)(p−b)(p−c),其中p=a+b+c2,可以求得题目中所求三角形的面积.本题考查二次根式的应用,解答本题的关键是明确题意,利用海伦公式解答.18.答案:√41解析:本题考查了轴对称−最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.先由S△PAB=13S矩形ABCD,得出动点P在与AB平行且与AB的距离是2的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB的最小值.解:设△ABP中AB边上的高是h,∵S△PAB=13S矩形ABCD,∴12AB×ℎ=13AB×AD,∴ℎ=23AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离,在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE=√AB2+AE2=√52+42=√41,即PA+PB的最小值为√41.故答案为√41.19.答案:解:原式=2−x2−1x+1=1−x2 x+1=−(x+1)(x−1)x+1=−(x−1) =1−x,当x =13时,原式=1−13=23.解析:先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.答案:解:①如图,△A 1B 1C 为所作,点A 1的坐标为(3,−3);②如图,△A 2B 2C 为所作;③OB =√12+42=√17,点B 经过的路径长=90⋅π⋅√17180=√172π.解析:①延长AC 到A 1使A 1C =2AC ,延长BC 到B 1使B 1C =2BC ,则△A 1B 1C 满足条件; ②利用网格特点和旋转的性质画出A 、B 的对应点A 2、B 2,从而得到△A 2B 2C .③先计算出OB 的长,然后根据弧长公式计算点B 经过的路径长.本题考查了作图−位似变换:画位似图形的一般步骤为:确定位似中心;分别连接并延长位似中心和能代表原图的关键点;③根据位似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形.也考查了旋转变换.21.答案:(1)30,20.(2)150,45,36,(3)160解析:[分析](1)用B 类别人数除以其所占百分比可得;(2)总人数减去其他类别人数即可求得戏曲的人数m ,再用D 类别人数除以总人数可得n 的值;(3)用360°乘以A 类别人数所占比例即可得;(4)用总人数乘以样本中A 类别人数所占比例.[详解]解:(1)被调查的学生总数为30÷20%=150人,故答案为:150;(2)m =150−12−30−45−54=9,n%=54÷150×100%=36%,故答案为:9,36;(3)A 类所对应扇形的圆心角的度数为360°×(12÷150)=28.8°,故答案为:28.8°;(4)估计该校最喜爱新闻节目的学生数为3000×(12÷150)=240人,故答案为:240人.[点睛] 本题考查统计表、扇形统计图、样本估计总体等知识没解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.答案:解:(1)∵点A(3,a),点B(14−2a,2)在反比例函数上,∴3×a =(14−2a)×2,解得:a =4,则m =3×4=12,故反比例函数的表达式为:y =12x ;(2)∵a =4,故点A 、B 的坐标分别为(3,4)、(6,2),设直线AB 的表达式为:y =kx +b ,则{4=3k +b 2=6k +b ,解得{k =−23b =6, 故一次函数的表达式为:y =−23x +6;当x =0时,y =6,故点C(0,6),故OC =6,而点D 为点C 关于原点O 的对称点,则CD =2OC =12,△ACD 的面积=12×CD ⋅x A =12×12×3=18.解析:(1)点A(3,a),点B(14−2a,2)在反比例函数上,则3×a =(14−2a)×2,即可求解;(2)a =4,故点A 、B 的坐标分别为(3,4)、(6,2),求出一次函数的表达式为:y =−23x +6,则点C(0,6),故OC =6,进而求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强. 23.答案:解:(1)连接OD ,AD ,∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,又∵OA=OB,∴OD//AC,∵DG⊥AC,∴OD⊥FG,∴DF是⊙O的切线;(2)连接BE,∵BD=2√5,∴CD=BD=2√5,∵CF=2,∴DF=√(2√5)2−22=4,∵AB是直径,∴∠AEB=∠CEB=90°,∴BE⊥AC,∵DF⊥AC,∴DF//BE,∴EF=FC,∴BE=2DF=8,∵cos∠C=cos∠ABC,∴CFCD =BDAB,∴2√5=2√5AB,∴AB=10,∴AE=√102−82=6,∵BE⊥AC,DF⊥AC,∴BE//GF,∴△AEB∽△AFG,∴ABAG =AEAF,∴1010+BG =62+6,∴BG=103.解析:本题主要考查圆的切线的判定、圆周角定理、相似三角形的判定与性质及中位线定理等知识点,熟练掌握圆周角定理和相似三角形的判定与性质是解题的关键.(1)连接OD,AD,由圆周角定理的推论可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD//AC,从而由DG⊥AC可得OD⊥FG,即可得证;(2)连接BE,利用勾股定理得到DF的值,根据直径所对的圆周角等于90°,可得∠AEB=90°,进而得到BE//GF,推出△AEB∽△AFG,可得ABAG =AEAF,由此构建方程即可解决问题.24.答案:(1)证明:∵AB为⊙O的切线,∴OD⊥AB,∴∠ODB=90°,∴∠BAC=∠ODB=90°,∴OD//CG,∴∠G=∠ODE,∵OD=OE,∴∠OED=∠ODE,∵∠DOC=∠ODE+∠OED,∴∠DOC=2∠ODE=2∠G;(2)①125;②3.解析:本题考查了切线的性质,相似三角形的判定与性质,菱形的性质等,解题的关键是能够灵活运用相似三角形的性质与菱形的性质.(1)由⊙O与AB相切于点D推出∠OBD为90°,证明OD//GC,推出∠G=∠ODE=∠OED,由三角形外角的性质即可推出结论;(2)①利用勾股定理求出BD的长,再利用△BOD与△BCA相似,即可求出AD的长;②连接DF,OA,将四边形DOCF为菱形作为条件,求出DF的长,再利用三角函数求出AF的长,进一步得到AC的长,再利用△BOD与△BCA相似即可求出BE的长.(1)见答案;(2)解:①在Rt△BOD中,OD=3,OB=OE+BE=5,∴BD=√BO2−OD2=4,由(1)知,OD//CG,∴△BOD∽△BCA,∴BOBC =BDAB,即58=44+AD,∴AD=125,故答案为:125;②如下图,连接DF,OF,当四边形DOCF 为菱形时,DF =CF =OC =OD =3,∵OF =3,∴△ODF 为等边三角形,∴∠ODF =60°,∴∠ADF =90°−∠ODF =30°,在Rt △DAF 中,DF =3,∴AF =3×12=32,∴AC =CF +AF =92, 由(2)知,∴△BOD∽△BCA ,∴OD AC=BO BC , 即392=BE+3BE+6,∴BE =3,故答案为3. 25.答案:解:(1)∵抛物线y =ax 2+bx +2经过点A(−1,0),B(4,0),∴{a −b +2=016a +4b +2=0,解得:{a =−12b =32, ∴抛物线的解析式为y =−12x 2+32x +2.(2)当x =0时,y =−12x 2+32x +2=2,∴点C(0,2).∵A(−1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=12AB⋅OC=5.∵S△ABC=1625S△ABD,∴S△ABD=12516,设点D的坐标为(x,y),∴12AB⋅|y|=12×5|y|=12516,解得:y=±258.当y=258时,有−12x2+32x+2=258,解得:x=32,∴此时点D的坐标为(32,258);当y=−258时,有−12x2+32x+2=−258,解得:x1=3−5√22,x2=3+5√22,∴此时点D的坐标为(3−5√22,−258)或(3+5√22,−258).综上可知:存在满足条件的点D,其坐标为(3−5√22,−258)或(32,258)或(3+5√22,−258).(3)∵AO=1,OC=2,OB=4,AB=5,∴AC=√AO2+OC2=√5,BC=√OC2+OB2=2√5,∴AC2+BC2=25=AB2,∴△ABC为直角三角形,即BC⊥AC.设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,如图所示.由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2√5.∵OC//MF,∴△AOC∽△AMF,∴AC AF =AO AM =OC MF =√53√5=13, ∴AM =3AO =3,MF =3OC =6,∴点F(2,6).设直线BE 的解析式为y =kx +m(k ≠0),则{2k +m =64k +m =0,解得:{k =−3m =12, ∴直线BE 的解析式为y =−3x +12.联立直线BE 和抛物线解析式得:{y =−3x +12y =−12x 2+32x +2, 解得:{x 1=4y 1=0,{x 2=5y 2=−3, ∴点E(5,−3),∴BE =√(5−4)2+(−3−0)2=√10.解析:(1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式; (2)由S △ABC =1625S △ABD 可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;(3)由勾股定理的逆定理可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF =BC ,利用相似三角形的性质可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,进而可求得BE 的长.本题考查了待定系数法求二次函数解析式、三角形的面积、二次函数图象上点的坐标特征、等腰直角三角形的性质、勾股定理逆定理、待定系数法求一次函数解析式以及相似三角形的判定与性质,在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.。
山东省枣庄市2020版数学中考一模试卷C卷
山东省枣庄市2020版数学中考一模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题(共10小题,每小题3分,计30分。
) (共10题;共29分)1. (3分)的倒数与互为相反数,那么的值是()A .B .C . 3D . -32. (3分) (2017七下·河东期末) 如图,直线a∥b,直线c与a、b相交,∠1=70°,则∠2的大小是()A . 20°B . 50°C . 70°D . 110°3. (3分) (2015九上·柘城期末) 下列运算正确的是()A . a+2a2=3a3B . (a3)2=a6C . a3•a2=a6D . a6÷a2=a34. (2分)如图,下列分子结构模型平面图中,既是轴对称图形又是中心对称图形的个数是()A . 1个B . 2个C . 3个D . 4个5. (3分)(2019·安阳模拟) 瑞安市10月份第一周每天最低气温(℃)分别为:19,19,22,24,19,20,24,则这一周最低气温的中位数是()A . 22B . 19C . 24D . 206. (3分)已知圆锥侧面积为10πcm2 ,侧面展开图的圆心角为36º,圆锥的母线长为()A . 100cmB . 10cmC . cmD . cm7. (3分)(2019·吉林模拟) 不等式组的解集是()A . ﹣1<x≤1B . ﹣1<x<1C . x>﹣1D . x≤18. (3分)(2016·兰州) 在Rt△ABC中,∠C=90°,sinA= ,BC=6,则AB=()A . 4B . 6C . 8D . 109. (3分)(2017·曹县模拟) 如图,点A是反比例函数y= 的图象上的一点,过A作▱ABCD,使点B在x 轴上,点D在y轴上,已知▱ABCD的面积为6,则k的值为()A . 3B . ﹣3C . 6D . ﹣610. (3分)二次函数y=x2+2x﹣m2+1的图像与直线y=1的公共点个数是()A . 0B . 1C . 2D . 1或2二、填空题(共4小题,每小题3分,计12分) (共4题;共12分)11. (3分)(2019·东营) 因式分解: ________.12. (3分) (2017九上·孝义期末) 如图,在△ABC中,点D是BC边上的动点(不与点B、C重合),点E 是AB边上的动点(不与点A、B重合),则当满足条件________时,△ABC与△DEB相似(写出一个即可).13. (3分)一次函数y=ax﹣b、y=bx﹣a的图象相交于一点(3,3),则函数y=(a+b)x+ab与x轴的交点坐标为________.14. (3分)如图,PA、PB切⊙O于点A、B,点C是⊙O上一点,且∠ACB=65°,则∠P=________度.三、解答题(共11小题,计78分.解答应写出过程) (共11题;共78分)15. (5分)(2018·吉林模拟) 计算:.16. (5分)(2019·莆田模拟) 解方程:﹣=0.17. (5分) (2019九下·象山月考) 定义:若一个四边形能被其中的一条对角线分割成两个相似三角形,则称这个四边形为“友谊四边形”.我们熟知的平行四边形就是“友谊四边形”,(1)如图1,在4×4的正方形网格中有一个Rt△ABC,请你在网格中找格点D,使得四边形ABCD是被AC分割成的“友谊四边形”,(要求画出点D的2种不同位置)(2)如图2,BD平分∠ABC,BD=4 ,BC=8,四边形ABCD是被BD分割成的“友谊四边形”,求AB长;(3)如图3,圆内接四边形ABCD中,∠ABC=60,点E是的中点,连结BE交CD于点F,连结AF,∠DAF =30°①求证:四边形ABCF是“友谊四边形”;②若△ABC的面积为6 ,求线段BF的长.18. (5分)证明命题:三角形的中位线平行且等于第三边的一半已知:如图,DE是△ABC的中位线求证:(用至少两种方法求解)19. (7.0分) (2020七上·合肥期末) 为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)计算被抽取的天数;(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;(3)请估计该市这一年(365天)达到“优”和“良”的总天数.20. (7分)(2017·濮阳模拟) 如图,在坡顶B处的同一水平面上有一座纪念碑CD垂直于水平面,小明在斜坡底A处测得该纪念碑顶部D的仰角为45°,然后他沿着坡比i=5:12的斜坡AB攀行了39米到达坡顶,在坡顶B 处又测得该纪念碑顶部的仰角为68°.求坡顶B到地面AE的距离和纪念碑CD的高度.(结果精确到1米,参考数据:sin68°=0.9,cos68°=0.4,tan68°=2.5)21. (7.0分)(2017·深圳模拟) “低碳生活,绿色出行”,2017年1月,某公司向深圳市场新投放共享单车640辆.(1)若1月份到4月份新投放单车数量的月平均增长率相同,3月份新投放共享单车1000辆.请问该公司4月份在深圳市新投放共享单车多少辆?(2)考虑到自行车市场需求不断增加,某商城准备用不超过70000元的资金再购进A,B两种规格的自行车100辆,已知A型的进价为500元/辆,售价为700元/辆,B型车进价为1000元/辆,售价为1300元/辆.假设所进车辆全部售完,为了使利润最大,该商城应如何进货?22. (7分)甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为﹣7,﹣1,3.乙袋中的三张卡片所标的数值为﹣2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x、y分别作为点A的横坐标和纵坐标.(1)用适当的方法写出点A(x,y)的所有情况.(2)求点A落在第三象限的概率.23. (8分)(2017·蒸湘模拟) 如图,△ABC内接于⊙O,AB是直径,直线MN过点B,且∠MBC=∠BAC.半径OD⊥BC,垂足为H,AD交BC于点G,DE⊥AB于点E,交BC于点F.(1)求证:MN是⊙O的切线;(2)求证:DE= BC;(3)若tan∠CAG= ,DG=4,求点F到直线AD的距离.24. (10分) (2017九上·台州月考) 如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y 轴于点C.(1)求抛物线C1的解析式及顶点坐标;(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;(3)若抛物线C2的对称轴存在点P,使△ PAC为等边三角形,求m的值.25. (12分)(2017·河南模拟) 如图,抛物线y=x2+bx+c与x轴交于点A,B,与y轴交于点C,其中点A 在y轴的左侧,点C在x轴的下方,且OA=OC=5.(1)求抛物线对应的函数解析式;(2)点P为抛物线对称轴上的一动点,当PB+PC的值最小时,求点P的坐标;(3)在(2)条件下,点E为抛物线的对称轴上的动点,点F为抛物线上的动点,以点P、E、F为顶点作四边形PEFM,当四边形PEFM为正方形时,请直接写出坐标为整数的点M的坐标.参考答案一、选择题(共10小题,每小题3分,计30分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省枣庄市市中区中考数学模拟试卷(4月份)一、选择题(本大题共12小题,共36.0分)1.下列运算正确的是A. B. C. D.2.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有A. 3个B. 5个C. 7个D. 9个3.如果,那么代数式的值为A. B. C. D.4.已知关于x的分式方程的解是负数,则m的取值范围是A. B. 且 C. D. 且5.如图,三角形纸片ABC,,,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕EF交BC于点已知,则BC的长是A. B. C. 3 D.6.已知的直径,AB是的弦,,垂足为M,且,则AC的长为A. B.C. 或D. 或7.如图,直角三角形的直角顶点在坐标原点,,若点A在反比例函数的图象上,则经过点B的反比例函数解析式为A.B.C.D.8.如图,点A,B,C,D都在半径为2的上,若,,则弦BC的长为A. 4B.C.D.9.已知二次函数的图象如图,分析下列四个结论:;;;,其中正确的结论有A. 1个B. 2个C. 3个D. 4个10.已知直线与直线的交点坐标为,则不等式组的解集为A. B. C. D.11.如图,在菱形ABCD中,,,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则的最小值是A. 6B.C.D.12.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为A. 3B. 2C.D.二、填空题(本大题共6小题,共18.0分)13.化简______.14.如图,中.点D在BC边上,,E为CD的中点.若,则为______度.15.如图,内接于,,的角平分线交于若,,则BC的长为______.16.若关于x的一元一次不等式组有2个负整数解,则a的取值范围是______.17.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为,M为BC中点,反比例函数是常数,的图象经过点M,交AC于点N,则MN的长度是______.18.如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C在x轴正半轴上,,若将菱形OABC绕点O顺时针旋转,得到四边形,则点B的对应点的坐标为______.三、计算题(本大题共1小题,共6.0分)19.先化简,再求值,其中x是不等式组的整数解.四、解答题(本大题共6小题,共48.0分)20.为了解某次“小学生书法比赛”的成绩情况,随机抽取了30名学生的成绩进行统计,并将统计情况绘成如图所示的频数分布直方图,已知成绩单位:分均满足“”根据图中信息回答下列问题:图中a的值为______;若要绘制该样本的扇形统计图,则成绩x在“”所对应扇形的圆心角度数为______度;此次比赛共有300名学生参加,若将“”的成绩记为“优秀”,则获得“优秀“的学生大约有______人:在这些抽查的样本中,小明的成绩为92分,若从成绩在“”和“”的学生中任选2人,请用列表或画树状图的方法,求小明被选中的概率.21.“分块计数法”:对有规律的图形进行计数时,有些题可以采用“分块计数”的方法.例如:图1有6个点,图2有12个点,图3有18个点,,按此规律,求图10、图n有多少个点?我们将每个图形分成完全相同的6块,每块黑点的个数相同如图,这样图1中黑点个数是个;图2中黑点个数是个:图3中黑点个数是个;;所以容易求出图10、图n中黑点的个数分别是______、______.请你参考以上“分块计数法”,先将下面的点阵进行分块,再完成以下问题:第5个点阵中有______个圆圈;第n个点阵中有______个圆圈.小圆圈的个数会等于271吗?如果会,请求出是第几个点阵.22.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象交于A、B两点,与x轴交于点C,过点A作轴于点H,点O是线段CH的中点,,,点B的坐标为.求该反比例函数和一次函数的解析式;求的面积.23.如图,在四边形ABCD中,,,对角线AC,BD交于点O,AC平分,过点C作交AB的延长线于点E,连接OE.求证:四边形ABCD是菱形;若,,求OE的长.24.如图所示,以的边AB为直径作,点C在上,BD是的弦,,过点C作于点F,交BD于点G,过C作交AB的延长线于点E.求证:CE是的切线;求证:;若,,求BE的长.25.如图,二次函数的图象与x轴的一个交点为,另一个交点为A,且与y轴相交于C点.求m的值及C点坐标;在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由;为抛物线上一点,它关于直线BC的对称点为Q.当四边形PBQC为菱形时,求点P的坐标;点P的横坐标为,当t为何值时,四边形PBQC的面积最大,请说明理由.-------- 答案与解析 --------1.答案:D解析:解:A、,此选项错误;B、,此选项错误;C、,此选项错误;D、,此选项正确;故选:D.分别根据幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方逐一计算即可判断.本题主要考查整式的运算,解题的关键是掌握幂的乘方、合并同类项法则、同底数幂的乘法及分式的乘方的运算法则.2.答案:B解析:解:由主视图和左视图可确定所需正方体个数最少时俯视图为:,则组成这个几何体的小正方体最少有5个.故选:B.由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.此题主要考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.3.答案:A解析:解:原式,当时,原式,故选:A.先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.4.答案:D解析:解:解得:,关于x的分式方程的解是负数,,解得:,当时,方程无解,则,故m的取值范围是:且.故选:D.直接解方程得出分式的分母为零,再利用求出答案.此题主要考查了分式方程的解,正确得出分母不为零是解题关键.5.答案:B解析:解:沿过点E的直线折叠,使点B与点A重合,,,点E为AB中点,,,,,,故选:B.由折叠的性质可知,所以可求出,再直角三角形的性质可知,所以的长可求,再利用勾股定理即可求出BC的长.本题考查了折叠的性质、等腰直角三角形的判断和性质以及勾股定理的运用,求出是解题的关键.6.答案:C解析:【分析】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.先根据题意画出图形,由于点C的位置不能确定,故应分两种情况进行讨论.【解答】解:连接AC,AO,的直径,,,,,当C点位置如图1所示时,,,,,,;当C点位置如图2所示时,同理可得,,,在中,.故选:C.7.答案:C解析:解:过点B作轴于点C,过点A作轴于点D,,,,,又,∽,,,,,经过点B的反比例函数图象在第二象限,故反比例函数解析式为:.故选:C.直接利用相似三角形的判定与性质得出,进而得出,即可得出答案.此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出是解题关键.8.答案:D解析:解:,,,,由勾股定理得:,故选:D.根据垂径定理得到,,根据圆周角定理求出,根据勾股定理列方程求出BH,计算即可.本题考查的是勾股定理,垂径定理、圆周角定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.9.答案:B解析:解:由开口向下,可得,又由抛物线与y轴交于正半轴,可得,然后由对称轴在y轴左侧,得到b与a同号,则可得,,故错误;由抛物线与x轴有两个交点,可得,故正确;当,时,即当时,,即得:,即又,.故错误;时,,时,,,即,,故正确.综上所述,正确的结论有2个.故选:B.由抛物线的开口方向,抛物线与y轴交点的位置、对称轴即可确定a、b、c的符号,即得abc的符号;由抛物线与x轴有两个交点判断即可;分别比较当时、时,y的取值,然后解不等式组可得,即;又因为,所以故错误;将代入抛物线解析式得到,再将代入抛物线解析式得到,两个不等式相乘,根据两数相乘异号得负的取符号法则及平方差公式变形后,得到,本题考查了二次函数图象与系数的关系.二次函数系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.10.答案:B解析:解:把代入,可得,解得,,令,则当时,,解得;当时,,解得,不等式组的解集为,故选:B.由,即可得到;由,即可得到,进而得出不等式组的解集为.本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数的值大于或小于的自变量x的取值范围;从函数图象的角度看,就是确定直线在x轴上或下方部分所有的点的横坐标所构成的集合.11.答案:C解析:【分析】本题主要考查轴对称最短路线问题,解题的关键是掌握菱形的性质和轴对称的性质.作点E关于AC的对称点,过点作于点M,交AC于点P,由知点P、M即为使取得最小值的点,利用求解可得答案.【解答】解:如图,作点E关于AC的对称点,过点作于点M,交AC于点P,则点P、M即为使取得最小值,其,四边形ABCD是菱形,点在CD上,,,,由得,解得:,即的最小值是,故选C.12.答案:D解析:【分析】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了一次函数的性质,如图,直线与x轴交于点C,与y轴交于点D,作于H,先利用一次解析式得到,,再利用勾股定理可计算出,则利用面积法可计算出,连接OA,如图,利用切线的性质得,则,然后利用垂线段最短求PA的最小值.【解答】解:如图,直线与x轴交于点C,与y轴交于点D,作于H,当时,,则,当时,,解得,则,,,,连接OA,如图,为的切线,,,当OP的值最小时,PA的值最小,而OP的最小值为OH的长,的最小值为.故选D.13.答案:解析:解:原式.故答案为:.直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.14.答案:37解析:解:,点E是CD中点,,,,,,,,,故答案为.先判断出,进而求出,最后用等腰三角形的外角等于底角的2倍即可得出结论.此题主要考查了等腰三角形的性质,直角三角形的性质,三角形外角的性质,求出是解本题的关键.15.答案:8解析:解:连接AD,,是的直径.的角平分线交于D,,.是的直径,是等腰直角三角形,.,.故答案为:8.连接AD,根据CD是的角平分线可知,故可得出,再由AB是的直径可知是等腰直角三角形,利用勾股定理求出AB的长,在中,利用勾股定理可得出BC的长.本题考查的是圆周角定理,熟知直径所对的圆周角是直角是解答此题的关键.16.答案:解析:解:解不等式得:,解不等式得:,又关于x的一元一次不等式组有2个负整数解,,故答案为:.先求出每个不等式的解集,再求出不等式组的解集和已知得出a的范围即可.本题考查了解一元一次不等式组和不等式组的整数解,能根据不等式的解集和已知得出关于a的不等式是解此题的关键.17.答案:5解析:解:由四边形AOBC为矩形,且点C坐标为,M为BC中点,得,N点的纵坐标是6.将M点坐标代入函数解析式,得,反比例函数的解析是为,当时,,解得,,,,,故答案为:5.根据矩形的性质,可得M点坐标,根据待定系数法,可得函数解析式,根据自变量与函数值的对应关系,可得N点坐标,根据勾股定理,可得答案.本题考查了矩形的性质,利用矩形的性质得出M点坐标是解题关键,又利用了待定系数法求函数解析式,自变量与函数值的对应关系求出N点坐标,勾股定理求MN的长.18.答案:解析:解:作轴于H点,连结OB,,如图,四边形OABC为菱形,,OB平分,,菱形OABC绕原点O顺时针旋转至第四象限的位置,,,,为等腰直角三角形,,点的坐标为故答案为:作轴于H点,连结OB,,根据菱形的性质得到,再根据旋转的性质得,,则,所以为等腰直角三角形,根据等腰直角三角形性质可计算得,然后根据第四象限内点的坐标特征写出点的坐标.本题考查了坐标与图形变化旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:,,,,.19.答案:解:原式,不等式组解得:,即整数解,则原式.解析:原式利用除法法则变形,约分后计算得到最简结果,求出x的值,代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.答案:.解析:解:,故答案为:6;成绩x在“”所对应扇形的圆心角度数为,故答案为:144;获得“优秀“的学生大约有人,故答案为:100;的两名同学用A、B表示,的两名同学用C、D表示小明用C表示,画树状图为:共有12种等可能的结果数,其中有C的结果数为6,所以小明被选中的概率为.用总人数减去其他分组的人数即可求得的人数a;用乘以成绩在的人数所占比例可得;用总人数乘以样本中优秀人数所占比例即可得;先画出树状图展示所有12种等可能的结果数,再找出有C的结果数,然后根据概率公式求解.本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了扇形统计图和频率分布直方图.21.答案:60个;6n个;61 ,;,,,,舍,小圆圈的个数会等于271,它是第10个点阵.解析:解:图10中黑点个数是个;图n中黑点个数是6n个,故答案为:60个,6n个;如图所示:第1个点阵中有:1个,第2个点阵中有:个,第3个点阵中有:个,第4个点阵中有:个,第5个点阵中有:个,第n个点阵中有:,故答案为:61,;见答案.【分析】根据规律求得图10中黑点个数是个;图n中黑点个数是6n个;第2个图中2为一块,分为3块,余1,第2个图中3为一块,分为6块,余1;按此规律得:第5个点阵中5为一块,分为12块,余1,得第n个点阵中有:,代入271,列方程,方程有解则存在这样的点阵.本题是图形类的规律题,采用“分块计数”的方法解决问题,仔细观察图形,根据图形中圆圈的个数恰当地分块是关键.22.答案:解:轴于点H,,,,解得:,点O是线段CH的中点,,,,反比例函数解析式为:,,设一次函数解析式为:,则,解得:,一次函数解析式为:;由得:的面积为:.解析:首先利用锐角三角函数关系得出HC的长,再利用勾股定理得出AH的长,即可得出A点坐标,进而求出反比例函数解析式,再求出B点坐标,即可得出一次函数解析式;利用B点坐标的纵坐标再利用HC的长即可得出的面积.此题主要考查了反比例函数与一次函数解析式求法以及三角形面积求法,正确得出A点坐标是解题关键.23.答案:解:,,为的平分线,,,,,四边形ABCD是平行四边形,,▱ABCD是菱形;四边形ABCD是菱形,,,,,,,在中,,,,.解析:先判断出,进而判断出,得出,即可得出结论;先判断出,再求出,利用勾股定理求出OA,即可得出结论.此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出是解本题的关键.24.答案:证明:连接OC,,,,,,是的切线;证明:为直径,,,,,,,,;解:连接AD,为直径,,,,,,,,,,,,,,∽,,,,.解析:连接OC,先证得,根据垂径定理得到,根据推出,即可得到结论;根据圆周角定理得出,然后根据同角的余角相等得出,即可证得,根据同角对等边即可证得结论;连接AD,根据圆周角定理得出,即可求得,根据圆周角定理得出,解直角三角形求得,然后根据三角形相似和等腰三角形的判定即可求得BE的值.本题考查了圆周角定理,垂径定理,切线的判定和性质以及三角形相似的判定和性质,作出辅助线构建直角三角形是解题的关键.25.答案:解:将代入,解得,,二次函数解析式为,令,得,;存在.理由:,,直线BC解析式为,当直线BC向上平移b单位后和抛物线只有一个公共点时,面积最大,,,,,,;如图,点P在抛物线上,设,当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,,线段BC的垂直平分线的解析式为,,,或;如图,设点,过点P作y轴的平行线l分别交直线BC,x轴于D,E点,过点C作l的垂线交l于F点,点D在直线BC上,,,,,,当时,.解析:此题是二次函数综合题,主要考查了待定系数法,最值的确定,对称性,面积的确定.用待定系数法求出抛物线解析式;先判断出面积最大时,平移直线BC的直线和抛物线只有一个交点,从而求出点M坐标;先判断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特殊性建立方程求解;先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值.第21页,共21页。