高中数学必修5-必修2公式大全
高中数学公式大全表
高中数学公式大全表1. 代数公式:方程的根:设方程ax² + bx + c = 0的根为x₁和x₂,则有:x₁ + x₂ = -b/ax₁ × x₂ = c/a二次方程的解:对于方程ax² + bx + c = 0,解可以用以下公式表示:x = (-b ± √(b² - 4ac)) / 2a二次函数的顶点坐标:设二次函数的表达式为y = ax² + bx + c,顶点坐标可以通过以下公式计算:x = -b / 2ay = c - b² / 4a二次函数的平移变换:设原二次函数的表达式为y = ax² + bx + c,经过平移变换后的函数的表达式为y = a(x - h)² + k。
其中(h, k)为平移的距离,代表二次函数的顶点坐标。
2. 几何公式:三角函数:常用的三角函数包括正弦函数(sin)、余弦函数(cos)和正切函数(tan)。
它们的定义如下:sinθ = 对边 / 斜边cosθ = 邻边 / 斜边tanθ = 对边 / 邻边勾股定理:对于一直角三角形,较长的边称为斜边,其余两边称为直角边。
勾股定理可以表示为:斜边² = 直角边₁² + 直角边₂²正弦定理:对于任意三角形ABC,边长的比值与角度的正弦的比值之间有以下关系:a / sinA =b / sinB =c / sinC余弦定理:对于任意三角形ABC,边长的平方与另外两条边长的乘积和它们的夹角的余弦的乘积之间有以下关系:a² = b² + c² - 2bc cosA3. 概率公式:事件概率的计算:对于一个随机试验,事件A发生的概率可以用以下公式表示:P(A) = n(A) / n(S)其中,n(A)表示事件A发生的次数,n(S)表示随机试验的总次数。
加法原理:如果A和B是两个互不相容的事件,即A和B不能同时发生,那么A或B发生的概率可以用以下公式计算:P(A或B) = P(A) + P(B)乘法原理:如果A和B是两个相互独立的事件,即事件A发生与否不会影响事件B发生的概率,那么A和B同时发生的概率可以用以下公式计算:P(A和B) = P(A) × P(B|A)条件概率:对于事件A和B,条件概率可以表示为:P(B|A) = P(A和B) / P(A)4. 统计学公式:均值:一组数据的均值可以用以下公式计算:mean = (x₁ + x₂ + ... + xn) / n其中,x₁、x₂、...、xn为每个数据点的值,n为数据点的个数。
高中数学常用公式及知识点总结
高中数学常用公式及知识点总结高中数学是一门重要的学科,也是一门需要深入理解和记忆大量公式和知识点的科目。
下面将对高中数学常用的公式和知识点进行总结,方便同学们复习和记忆。
一、代数知识点和常用公式1. 平方差公式:(a+b)(a-b)=a²-b²2. 二次方程求根公式:对于ax²+bx+c=0,若Δ=b²-4ac>0,则方程有两个不相等实根;若Δ=0,则方程有一个重根;若Δ<0,则方程无实根。
3. 高中数学中常见的一元二次方程:ax²+bx+c=0,其中a≠0。
4. 因式分解公式:a²-b²=(a+b)(a-b)5. 一次函数方程 y=ax+b,其中a为斜率,b为截距。
6. 二次函数方程 y=ax²+bx+c,其中a为抛物线开口方向和形状,b为对称轴方向上的平移,c为抛物线的位置偏移量。
7. 幂函数方程y=axⁿ,其中a为比例系数,n为指数。
8. 对数函数方程y=logₐx,其中a为底数,x为真数,y为对数。
二、几何知识点和常用公式1. 直角三角形的勾股定理:直角三角形的两个直角边的平方和等于斜边的平方。
即a²+b²=c²(a,b为两边,c为斜边)。
2. 等腰三角形的两底角相等,两腰相等。
3. 正弦定理:对于任意三角形ABC,设边长为a、b、c,角A、B、C的对边分别为a、b、c,则有sinA/a=sinB/b=sinC/c。
4. 余弦定理:对任意三角形ABC,设边长为a、b、c,角A、B、C的对边分别为a、b、c,则有c²=a²+b²-2abcosC。
5. 计算圆的面积公式:πr²,其中r为圆的半径。
6. 计算圆的周长公式:2πr,其中r为圆的半径。
7. 计算椭圆的面积公式:πab,其中a、b为椭圆的半长轴和半短轴。
8. 计算长方体的体积公式:V=lwh,其中l、w、h为长方体的长、宽、高。
高中数学公式大全(完整版)
高中数学公式大全(完整版)高中数学公式大全(完整版)精选1、两角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA)cot(A-B)=(cotAcotB+1)/(cotB-cotA)2、乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)3、三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|4、正弦定理 a/sinA=b/sinB=c/sinC=2R 注:其中 R 表示三角形的外接圆半径。
5、余弦定理 b^2=a^2+c^2-2accosB 注:角B是边a和边c的夹角。
6、圆的标准方程 (x-a)^2+(y-b)^2=^r2 注:(a,b)是圆心坐标。
7、圆的一般方程 x^2+y^2+Dx+Ey+F=0 注:D^2+E^2-4F>0。
8、倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^29、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))10、某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1) 51^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3高中数学的学习方法1、养成演算、校核的好习惯,提高计算能力。
高中数学所有公式大总结
高中数学所有公式大总结高中数学涉及的公式很多,不同的章节和知识点都有对应的公式,掌握这些公式是解题的基础。
下面将对高中数学中常用的各个章节的公式进行总结。
1. 代数基本公式:- 二次方程的根公式:对于二次方程ax^2+bx+c=0,根的公式为x=(-b±√(b^2-4ac))/(2a)。
- 一次方程求解公式:对于一次方程ax+b=0,解为x=-b/a。
- 直线的斜率公式:对于直线y=kx+b,其斜率为k。
- 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。
- 等比数列通项公式:对于等比数列an=a1*r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。
2. 平面几何公式:- 长方形面积公式:面积为长乘以宽,即A=lw。
- 正方形面积公式:面积为边长的平方,即A=s^2。
- 三角形面积公式:面积为底乘以高的一半,即A=1/2bh。
- 三角形海伦公式:对于已知三角形三边长a、b、c,其面积可以由海伦公式计算:A=√(s(s-a)(s-b)(s-c)),其中s为半周长(s=(a+b+c)/2)。
- 直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。
3. 解析几何公式:- 两点之间的距离公式:对于平面上两点的坐标分别为(x1, y1)和(x2, y2),两点之间的距离为d=√((x2-x1)^2+(y2-y1)^2)。
- 点到直线的距离公式:对于直线Ax+By+C=0和平面上的点P(x0, y0),点P 到直线的距离为d=|Ax0+By0+C|/√(A^2+B^2)。
- 两直线夹角的余弦公式:对于直线y=k1x+b1和直线y=k2x+b2,两直线夹角的余弦为cosθ=(k1k2+1)/√((k1^2+1)(k2^2+1))。
4. 概率与统计公式:- 事件的概率公式:对于事件A,其概率表示为P(A)。
高中数学必修二公式
公式一:设α为任意角,终边一样的角的同一三角函数的值相等:sin〔2kπ+α〕=sinαcos〔2kπ+α〕=cosαtan〔2kπ+α〕=tanαcot〔2kπ+α〕=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin〔π+α〕=-sinαcos〔π+α〕=-cosαtan〔π+α〕=tanαcot〔π+α〕=cotα公式三:任意角α与-α的三角函数值之间的关系:sin〔-α〕=-sinαcos〔-α〕=cosαtan〔-α〕=-tanαcot〔-α〕=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin〔π-α〕=sinαcos〔π-α〕=-cosαtan〔π-α〕=-tanαcot〔π-α〕=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin〔2π-α〕=-sinαcos〔2π-α〕=cosαtan〔2π-α〕=-tanαcot〔2π-α〕=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin〔π/2+α〕=cosαcos〔π/2+α〕=-sinαtan〔π/2+α〕=-cotαcot〔π/2+α〕=-tanαsin〔π/2-α〕=cosαcos〔π/2-α〕=sinαtan〔π/2-α〕=cotαcot〔π/2-α〕=tanαsin〔3π/2+α〕=-cosαcos〔3π/2+α〕=sinαtan〔3π/2+α〕=-cotαcot〔3π/2+α〕=-tanαsin〔3π/2-α〕=-cosαcos〔3π/2-α〕=-sinαtan〔3π/2-α〕=cotαcot〔3π/2-α〕=tanα(以上k∈Z)诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.〔奇变偶不变〕然后在前面加上把α看成锐角时原函数值的符号。
高中数学公式知识归纳总结
高中数学公式知识归纳总结在高中数学学习过程中,我们不可避免地会接触到各种各样的数学公式。
这些公式在解决数学问题时起着重要的作用,掌握它们对我们的学习和考试至关重要。
本文将对高中数学常见的公式进行归纳总结,以便日后复习和应用。
一、代数公式1. 平方差公式对于任意实数a、b,有:(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²这个公式在解决平方和、平方差问题时经常用到。
利用平方差公式,我们可以方便地计算方程的展开式。
2. 二次根式公式(√a ±√b)² = a ± 2√ab + b(a ± b)(a ∓ b) = a² - b²这个公式在二次根式的加减、乘除中非常常见。
掌握这些公式可以简化计算过程,提高解题效率。
3. 比例公式设a/b = c/d,且b ≠ 0,则称a、b、c、d满足比例公式。
利用比例公式,我们可以求解未知量或者构建等式,解决实际问题。
4. 勾股定理对于直角三角形,设两直角边长分别为a、b,斜边长为c,则有:a² + b² = c²这是直角三角形中最基本的定理,广泛应用于解决与直角三角形相关的问题。
5. 三角函数公式正弦定理:a/sinA = b/sinB = c/sinC余弦定理:a² = b² + c² - 2bc*cosA正切定理:tanA = sinA/cosA这些公式是解决三角函数和三角关系问题的重要工具,对于理解三角学的概念和计算角度、边长等具有重要意义。
二、几何公式1. 等腰三角形的高设等腰三角形边长为a,底边长为b,则高h满足:h = √(a² - (b/2)²)2. 圆的周长和面积设圆的半径为r,则圆的周长C和面积S分别为:C = 2πrS = πr²这些公式是求解圆的周长和面积时经常用到的基本公式。
高一数学必修二所有公式归纳
高一数学必修二所有公式归纳1.二次函数-顶点坐标:函数的顶点坐标为(h,k),其中h=-b/(2a),k=f(h)。
-对称轴方程:x=h。
- 判别式:D = b²-4ac。
- 二次函数的解析式:f(x) = ax² + bx + c。
2.三角函数-三角函数周期性公式:1) sin(x+2π) = sinx2) cos(x+2π) = cosx3) tan(x+π) = tanx-三角函数和余弦函数的关系:1) sin(x) = cos(π/2 - x)2) cos(x) = sin(π/2 - x)-和差化积公式:1) sin(x±y) = sinxcosy ± cosxsiny2) cos(x±y) = cosxcosy ∓ sinxsiny3.平面向量-点积(内积):a·b = ,a,b,cosθ-向量的模:a,=√(a₁²+a₂²-平面向量的几何运算:1)加法:a+b=(a₁+b₁,a₂+b₂)2)减法:a-b=(a₁-b₁,a₂-b₂)3) 数乘:k·a = (ka₁, ka₂)-向量共线:若 a//b,则 a = kb,其中 k 为实数。
4.解直角三角形-边长与角度之间的关系:1) sinA = a/c2) cosA = b/c3) tanA = a/b4) sinB = b/c5) cosB = a/c6) tanB = b/a5.平面解析几何-平面方程的一般形式:Ax+By+C=0-点到直线的距离公式:d=,Ax0+By0+C,/√(A²+B²)-直线的斜率公式:k=-A/B-直线的点斜式方程:y-y0=k(x-x0)6.空间解析几何-点积(内积):a·b = ,a,b,cosθ-向量的模:a,=√(a₁²+a₂²+a₃²-空间向量的坐标运算:1)加法:a+b=(a₁+b₁,a₂+b₂,a₃+b₃)2)减法:a-b=(a₁-b₁,a₂-b₂,a₃-b₃)3) 数乘:k·a = (ka₁, ka₂, ka₃)7.概率与统计-频率:f=n/N,其中n表示事件发生的次数,N表示试验的总次数。
高中数学必修5全册知识点总结(理科)
高中数学必修5知识点第一章解三角形(一)解三角形:1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,,则有2sin sin sin a b c RC ===A B (R 为C ∆AB 的外接圆的半径)2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;②sin 2a R A =,sin 2b R B =,sin 2c C R=;③::sin :sin :sin a b c C =A B ;3、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆A B =A ==B .4、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,推论:222cos 2b c abc+-A =第二章数列1、数列中n a 与n S 之间的关系:11,(1),(2).n n n S n a S S n -=⎧=⎨-≥⎩注意通项能否合并。
2、等差数列:⑴定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即n a -1-n a =d ,(n≥2,n∈N +),那么这个数列就叫做等差数列。
⑵等差中项:若三数a A b 、、成等差数列2a bA +⇔=⑶通项公式:1(1)()n m a a n d a n m d=+-=+-或(n a pn q p q =+、是常数).⑷前n 项和公式:()()11122n n n n n a a S na d -+=+=⑸常用性质:①若()+∈ +=+N q p n m q p n m ,,,,则q p n m a a a a +=+;②下标为等差数列的项() ,,,2m k m k k a a a ++,仍组成等差数列;③数列{}b a n +λ(b ,λ为常数)仍为等差数列;④若{}n a 、{}n b 是等差数列,则{}n ka 、{}n n ka pb +(k 、p 是非零常数)、*{}(,)p nq a p q N +∈、,…也成等差数列。
高中数学公式大全完整版
高中数学公式大全完整版1.代数公式:a)二次方程求根公式:对于二次方程ax²+bx+c=0,其解为:x = (-b±√(b²-4ac))/(2a)b)平方差公式:(a+b)² = a² + 2ab + b²(a-b)² = a² - 2ab + b²c)三次方差公式:(a+b)(a²-ab+b²) = a³+b³d)和差化积公式:sin(A±B) = sinAcosB ± cosAsinBcos(A±B) = cosAcosB ∓ sinAsinBtan(A±B) = (tanA± tanB)/(1 ∓ tanAtanB) e)二项式定理:(a+b)ⁿ=nC₀aⁿb⁰+nC₁aⁿ⁻¹b¹+nC₂aⁿ⁻²b²+...+nCₙa⁰bⁿ2.几何公式:a)三角形:面积公式:S=1/2*底边*高正弦定理:sinA/a = sinB/b = sinC/c余弦定理:c² = a² + b² - 2abcosCb)圆:周长公式:C=2πr面积公式:A=πr²弧长公式:L=2πr(θ/360)c)立体图形:容积公式:立方体:V=a³正方体:V=a³圆柱体:V=πr²h圆锥体:V=1/3πr²h球体:V=4/3πr³d)平移、旋转、缩放公式:平移:(x,y)→(x+a,y+b)旋转:逆时针旋转θ度:(x,y) → (xcosθ - ysinθ, xsinθ + ycosθ)缩放:横向缩放k倍,纵向缩放k倍:(x,y) → (kx, ky)3.概率公式:a)排列组合公式:排列:A(n,m)=n!/(n-m)!组合:C(n,m)=n!/(m!(n-m)!)b)期望公式:对于离散型随机变量X,期望值E(X)=Σ(x*p(x)),其中x为X的可能取值,p(x)为对应x的概率对于连续型随机变量X,期望值E(X) = ∫(x*f(x))dx,其中f(x)表示X的概率密度函数c)标准差公式:方差σ²=Σ(x-μ)²*p(x),其中μ为随机变量X的期望值标准差σ=√σ²d)独立事件公式:P(A∩B)=P(A)P(B)4.数列与级数公式:a)等差数列通项公式:aₙ=a₁+(n-1)db)等比数列通项公式:aₙ=a₁*r^(n-1)c)等差数列求和公式:Sn=(n/2)(a₁+aₙ)d)等比数列求和公式:Sn=a₁*(rⁿ-1)/(r-1)以上是高中数学公式的一个完整版,涵盖了代数、几何、概率、数列与级数等多个方面的公式。
高一数学必修二公式大全
高一数学必修二公式大全高一数学必修二主要学习了函数与方程、平面向量、三角函数等内容。
下面将为您整理一份高一数学必修二的公式大全:一、函数与方程1. 一次函数的标准方程:y = kx + b2. 一次函数的一般方程:ax + by + c = 03. 二次函数的标准方程:y = ax² + bx + c4. 二次函数的顶点坐标:(h, k) ,其中 h = -b/2a , k = f(h)5. 二次函数的根:x = (-b ± √(b² - 4ac)) / 2a6. 绝对值函数的图像:y = |x|7. 指数函数的性质:aⁿ * aᵐ= aⁿ⁺ᵐ,(aⁿ)ᵐ= aⁿᵐ,(ab)ⁿ= aⁿbⁿ8. 对数函数的性质:logₐ (mn) = logₐ m + logₐ n ,logₐ (m/n) = logₐ m - logₐ n ,logₐ (mⁿ) = nlogₐ m二、平面向量1. 向量的模长:|a| = √(x² + y²)2. 向量的方向角:tanθ = y/x ,其中θ ∈ [-π, π]3. 两个向量的数量积:a·b = |a| |b| cosθ ,其中θ为a、b之间夹角4. 两个向量的叉积:a × b = |a| |b| sinθ n ,其中θ为a、b之间夹角,n为互相垂直的单位向量5. 向量的共线条件:a 和 b 共线,当且仅当存在λ ,使得a = λ b6. 两个向量的夹角公式:cosθ = a·b / (|a| |b|) ,其中θ为a、b之间夹角三、三角函数1. 弧度与角度的关系:θ(弧度) = πθ/180° ,θ(角度) = 180°θ/π2. 各三角函数的定义:sinθ = y/r ,cosθ = x/r ,tanθ = y/x3. 各三角函数的相关性质:sin²θ + cos²θ = 1 ,tanθ = sinθ / cosθ4. 三角函数的周期性:sin(θ + 2π) = sinθ ,cos(θ + 2π) = cosθ ,tan(θ + π) = tanθ5. 三角函数的基本关系:sin(-θ) = -sinθ ,cos(-θ) = cosθ ,tan(-θ) = -tanθ6. 三角函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ ,cos(α ± β) = cosαcosβ ∓ sinαsinβ7. 三角函数对应的图像:y = A sin(Bx + C) + D ,y = A cos(Bx + C) + D这些是高一数学必修二的一些重要公式。
高考数学必修公式大全
数学必修1-5常用公式及结论必修1: 一、集合1、含义与表示:(1)集合中元素的特征:确定性,互异性,无序性 (2)集合的分类;有限集,无限集(3)集合的表示法:列举法,描述法,图示法2、集合间的关系:子集:对任意x A ∈,都有 x B ∈,则称A 是B 的子集。
记作A B ⊆ 真子集:若A 是B 的子集,且在B 中至少存在一个元素不属于A ,则A 是B 的真子集, 记作A ≠⊂B 集合相等:若:,A B B A ⊆⊆,则A B =3. 元素与集合的关系:属于∈ 不属于:∉ 空集:φ4、集合的运算:并集:由属于集合A 或属于集合B 的元素组成的集合叫并集,记为 A B U交集:由集合A 和集合B 中的公共元素组成的集合叫交集,记为A B I补集:在全集U 中,由所有不属于集合A 的元素组成的集合叫补集,记为U C A 5.集合12{,,,}n a a a L 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个; 6.常用数集:自然数集:N 正整数集:*N 整数集:Z 有理数集:Q 实数集:R 二、函数的奇偶性1、定义: 奇函数 <=>f (– x ) = – f ( x ),偶函数 <=>f (–x ) = f ( x )(注意定义域)2、性质:(1)奇函数的图象关于原点成中心对称图形; (2)偶函数的图象关于y 轴成轴对称图形;(3)如果一个函数的图象关于原点对称,那么这个函数是奇函数; (4)如果一个函数的图象关于y 轴对称,那么这个函数是偶函数. 二、函数的单调性1、定义:对于定义域为D 的函数f (x ),若任意的x 1, x 2∈D ,且x 1< x 2① f ( x 1) < f ( x 2) <=> f ( x 1) – f ( x 2) < 0<=>f (x )是增函数 ② f ( x 1) > f ( x 2) <=> f ( x 1) – f ( x 2) > 0<=>f (x )是减函数 2、复合函数的单调性:同增异减三、二次函数y =ax 2 +bx +c (0a ≠)的性质1、顶点坐标公式:⎪⎪⎭⎫ ⎝⎛−−a b ac a b 44,22, 对称轴:a bx 2−=,最大(小)值:a b ac 442−2.二次函数的解析式的三种形式(1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =−+≠; (3)两根式12()()()(0)f x a x x x x a =−−≠. 四、指数与指数函数 1、幂的运算法则:(1)a m • a n =a m + n ,(2)n m n m a a a −=÷,(3)(a m )n =a m n (4)(ab )n = a n • b n(5) n n nb a b a =⎪⎭⎫⎝⎛(6)a 0 = 1 ( a ≠0)(7)n n a a 1=− (8)m n m n a a =(9)m n m naa 1=−2、根式的性质(2)当na =; 当n ,0||,0a a a a a ≥⎧==⎨−<⎩.4、指数函数y = a x (a > 0且a ≠1)的性质:(1)定义域:R ; 值域:( 0 , +∞) (2)图象过定点(0,1)5.指数式与对数式的互化: log b a N b a N =⇔=(0,1,0)a a N >≠>. 五、对数与对数函数 1对数的运算法则:(1)a b = N <=> b = log a N (2)log a 1 = 0(3)log a a = 1(4)log a a b = b (5)a log a N = N(6)log a (MN) = log a M + log a N (7)log a (N M) = log a M -- log a N(8)log a N b = b log a N (9)换底公式:log a N =aNb b log log (10)推论 log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). (11)log a N =aN log 1(12)常用对数:lg N = log 10 N (13)自然对数:ln A = log e A (其中 e = 2.71828…) 2、对数函数y = log a x (a > 0且a ≠1)的性质:(1)定义域:( 0 , +∞) ; 值域:R (2)图象过定点(1,0)六、幂函数y = x a 的图象:(1) 根据 a例如:y = x 221x x y == 11−==x xy七.图象平移:若将函数)(x f y =的图象右移a 、上移b 个单位, 得到函数b a x f y +−=)(的图象; 规律:左加右减,上加下减 八. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+. 九、函数的零点:1.定义:对于()y f x =,把使()0f x =的X 叫()y f x =的零点。
数学必修二公式定理
数学必修二公式定理1.二次函数:- 一般式:y = ax^2 + bx + c-顶点坐标:(-b/(2a),f(-b/(2a)))- 判别式:Δ = b^2 - 4ac-根的公式:x=(-b±√Δ)/(2a)-平移变换公式:f(x)→f(x-h)+k2.三角函数:- 正弦定理:a/sinA = b/sinB = c/sinC- 余弦定理:c^2 = a^2 + b^2 - 2abcosC- 正切函数:tanθ = sinθ/cosθ3.指数与对数:- 指数运算法则:a^m * a^n = a^(m+n),(a^m)^n = a^(mn)- 对数运算法则:loga(xy) = logax + logay,loga(x/y) = logax - logay,loga(x^n) = nlogax4.几何与三角:-相似三角形:-三角形相似的判定条件:AA判定、SAS判定、SSS判定-相似三角形的性质:对应角相等,对应边成比例-勾股定理:a^2+b^2=c^2-角平分线定理:在一个三角形内,角平分线所分的两个小角的正弦值、余弦值、正切值相等5.平面几何:-重心坐标公式:(x,y)=((x1+x2+x3)/3,(y1+y2+y3)/3)-曲率半径公式:R=(1/k)6.概率与统计:-事件的概率:P(A)=n(A)/n(S)-加法定理:P(A∪B)=P(A)+P(B)-P(A∩B)-乘法定理:P(A∩B)=P(A)*P(B,A)这些公式和定理是数学必修二中的核心内容,掌握这些公式和定理对于理解和解决数学问题非常重要。
在学习过程中,还需要注意灵活运用这些公式和定理,并结合具体的问题进行分析和解决。
通过不断的练习和巩固,可以使自己对这些公式和定理有更深入的理解和掌握。
高一数学必修二公式总结大全
高一数学必修二公式总结大全1500字高一数学必修二公式总结大全1. 二次函数相关公式:- 顶点坐标:顶点的横坐标为:x = -b/(2a),纵坐标为:y = f(x) = -Δ/(4a)- 判别式:Δ = b^2 - 4ac- 判别式与根的关系:若Δ > 0,则方程有两个不相等的实根;若Δ = 0,则方程有两个相等的实根;若Δ < 0,则方程无实根- 对称轴:过顶点的直线- 单调性:当a > 0时,开口向上,函数递增;当a < 0时,开口向下,函数递减2. 三角函数相关公式:- 正弦函数的周期:T = 2π- 余弦函数的周期:T = 2π- 正切函数的周期:T = π- 正弦函数的图像特点:在[0, 2π]的区间内,函数的取值范围为[-1, 1],在[0, π]和[π, 2π]上分别是上升和下降的,对称轴为y = 0- 余弦函数的图像特点:在[0, 2π]的区间内,函数的取值范围为[-1, 1],在[0, π/2]和[3π/2, 2π]上分别是上升和下降的,对称轴为y = 1/2- 正切函数的图像特点:在[0, π/2]的区间内,函数的取值范围为(-∞, +∞)- 三角函数的基本关系:- cos^2θ + sin^2θ = 1- 1 + tan^2θ = sec^2θ- 1 + cot^2θ = cosec^2θ3. 平面向量相关公式:- 向量的模:|AB| = √((x2 - x1)^2 + (y2 - y1)^2)- 向量的加法:A + B = (x1 + x2, y1 + y2)- 向量的减法:A - B = (x1 - x2, y1 - y2)- 数乘:kA = (kx, ky)- 内积:A · B = |A|*|B|*cosθ- 夹角公式:cosθ = (A · B)/(|A|*|B|)- 向量的投影公式:A在B上的投影为:P = (A · B/|B|)*(B/|B|)4. 解析几何相关公式:- 点到直线的距离公式:d = |Ax + By + C|/√(A^2 + B^2)- 直线的一般方程:Ax + By + C = 0- 直线斜截式方程:y = kx + b- 直线截距式方程:x/a + y/b = 1- 圆的标准方程:(x-a)^2 + (y-b)^2 = r^2,中心坐标为(a,b),半径为r - 直线与圆的位置关系:- 相切:直线与圆有且仅有一个相切点,此时直线的斜率与半径的弧度相等 - 相离:直线与圆没有交点- 相交:直线与圆有两个交点,此时直线的斜率在半径的弧度之间5. 概率统计相关公式:- 排列:A(n, m) = n!/(n-m)!- 组合:C(n, m) = n!/(m!(n-m)!)- 乘法原理:如果某个实验由m个步骤完成,第一步有k1种可能结果,第二步有k2种可能结果,依此类推,第m步有km种可能结果,那么实验的总结果数为k1 * k2 * ... * km- 加法原理:如果某个实验由两个步骤执行,第一个步骤有k1种可能结果,第二个步骤有k2种可能结果,那么实验的总结果数为k1 + k2- 条件概率:P(A|B) = P(A∩B)/P(B)- 乘法公式:P(A∩B) = P(B|A) * P(A) = P(A|B) * P(B)- 全概率公式:P(A) = P(A∩B1) + P(A∩B2) + ... + P(A∩Bn) = P(A|B1) * P(B1) +P(A|B2) * P(B2) + ... + P(A|Bn) * P(Bn)- 贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi)/P(A),其中P(Bi)称为先验概率,P(Bi|A)称为后验概率这些公式涵盖了高一数学必修二的重要内容,可以帮助学生更好地理解和掌握相关知识。
高中数学必修五公式大全
高中数学必修五公式第一章 三角函数一.正弦定理:2(sin sin sin a b cR R A B C===为三角形外接圆半径)变形:2sin (sin )22sin (sin )22sin (sin )2a a R A A R b b R B B R c c R C C R ⎧==⎪⎪⎪==⎨⎪⎪==⎪⎩推论:::sin :sin :sin a b c A B C =二.余弦定理:三.三角形面积公式:111sin sin sin ,222ABC S bc A ac B ab C ∆===第二章 数列一.等差数列: 1.定义:a n+1-a n =d (常数)2.通项公式:()d n a a n •-+=11或()d m n a a m n •-+=3.求和公式:()()d n n n n a a a S n n 21211-+=+=4.重要性质(1)a a a a q p n m q p n m +=+⇒+=+ (2) m,2m,32m m m S S S S S --仍成等差数列二.等比数列:1.定义:)0(1≠=+q q a a nn 2.通项公式:q a a n n 11-•=或q a a mn m n -•=3.求和公式: )(1q ,1==na S n)(1q 11)1(11≠--=--=qq a a q q a S n n n2222222222cos 2cos 2cos a b c bc Ab ac ac B c a b ab C =+-=+-=+-222222222cos 2cos 2cos 2b c a A bca cb B aca b c C ab+-=+-=+-=4.重要性质(1)a a a a q p n m q p n m =⇒+=+(2)()m,2m,32q 1m m m m S S S S S --≠-仍成等比数列或为奇数三.数列求和方法总结:1.等差等比数列求和可采用求和公式(公式法).2.非等差等比数列可考虑(分组求和法) ,(错位相减法)等转化为等差或等比数列再求和, 若不能转化为等差或等比数列则采用(拆项相消法)求和.注意(1):若数列的通项可分成两项之和(或三项之和)则可用(分组求和法)。
高一二高三数学公式定律大全
高一二高三数学公式定律大全1. 二项式定理:$(a+b)^n = \sum_{k=0}^{n}\binom{n}{k}a^{n-k}b^k$2. 三角函数和平面几何定理:$sin(A\pm B) = sin A cos B \pm cos A sin B$,$cos(A\pm B) = cos A cos B \mp sin A sin B$3. 平方根公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$ (用于求解一元二次方程)4. 圆锥曲线方程:椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,双曲线方程$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$5. 求导法则:常数法则、幂法则、指数法则、乘积法则、商规则、链式法则等等6. 积分法则:换元法、分部积分法、分式积分法、一些特殊函数的积分法等等7. 三角函数和反三角函数的导数:$D(sin x) = cos x$,$D(cos x) = -sin x$,$D(tan x) = sec^2 x$,反三角函数的导数请参考表格或公式册8. 数列和级数公式:等差数列的通项公式、等差数列的前n项和公式、等比数列的通项公式、等比数列的前n项和公式,等等9. 三角函数的和差化积公式:$sin(A\pm B) = sin A cos B \pm cos A sin B$,$cos(A\pm B) = cos A cos B \mp sin A sin B$10. 三角恒等式:$1+ tan^2 x = sec^2 x$,$1+cot^2 x = csc^2 x$,$sin^2 x + cos^2 x =1$,等等以上仅是一些高一高二高三数学中常见的公式和定律,不完整且可能有遗漏。
建议您参考教材或高中数学辅导资料以获得更全面的数学公式和定律大全。
高中数学公式表
高中数学公式表一、代数公式1. 四则运算公式:- 加法公式:a + b = b + a- 减法公式:a - b ≠ b - a- 乘法公式:a × b = b × a- 除法公式:a ÷ b ≠ b ÷ a2. 幂运算公式:- 正整数幂公式:aⁿ × aᵐ= aⁿ⁺ᵐ- 负整数幂公式:a⁻ⁿ = 1/aⁿ- 幂的乘法公式:(aⁿ)ᵐ= aⁿᵐ- 幂的除法公式:(aⁿ)÷(aᵐ) = aⁿ⁻ᵐ3. 因式分解公式:- 平方差公式:a² - b² = (a + b)(a - b)- 完全平方公式:a² + 2ab + b² = (a + b)² - 平方和公式:a² + 2ab + b² = (a + b)²4. 根式公式:- 同底数幂相乘取根公式:√(aⁿ × bⁿ) = √(aⁿ) × √(bⁿ) = a√(b) - 同底数幂相除取根公式:√(aⁿ÷ bⁿ) = √(aⁿ) ÷ √(bⁿ) = aⁿ√(b)二、几何公式1. 平面图形公式:- 长方形的面积公式:A = l × w- 正方形的面积公式:A = a²- 三角形的面积公式:A = 1/2 × b × h- 圆的面积公式:A = πr²2. 空间图形公式:- 立方体的体积公式:V = l × w × h- 正方体的体积公式:V = a³- 圆柱体的体积公式:V = πr²h- 圆锥体的体积公式:V = 1/3 × πr²h三、三角函数公式1. 基本三角函数公式:- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数的定义:cosθ = 邻边/斜边- 正切函数的定义:tanθ = 对边/邻边2. 三角函数的基本关系:- 正弦函数与余弦函数的关系:sin²θ + cos²θ = 1- 正切函数与余切函数的关系:tanθ = 1/cotθ3. 三角函数的和差公式:- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ - 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓ sinαsinβ- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ)/(1 ∓tanαtanβ)四、概率与统计公式1. 概率公式:- 加法法则:P(A ∪ B) = P(A) + P(B) - P(A ∩ B)- 乘法法则:P(A ∩ B) = P(A) × P(B|A) = P(B) × P(A|B)2. 统计公式:- 平均值公式:平均值 = (数据之和) ÷ (数据的个数)- 方差公式:方差 = [(每个数据与平均值之差的平方之和) ÷ (数据的个数)]五、数列与数学归纳法公式1. 等差数列公式:- 第n项公式:aₙ = a₁ + (n-1)d- 前n项和公式:Sₙ = n/2(a₁ + aₙ)2. 等比数列公式:- 第n项公式:bₙ = b₁ × rⁿ⁻¹- 前n项和公式:Sₙ = b₁ × (1 - rⁿ)/(1 - r)以上是高中数学公式表的一部分,这些公式涵盖了代数、几何、三角函数、概率与统计、数列与数学归纳法等各个方面。
高中数学必修1-5公式大全_
必修2:一、直线与圆 1、斜率的计算公式:k = tanα=1212x x y y --(α ≠ 90°,x 1≠x 2)2、直线的方程(1)斜截式 y = k x + b,k 存在 ;(2)点斜式 y – y 0 = k ( x – x 0 ) ,k 存在; (3)两点式121121x x x x y y y y --=--(1212,x x y y ≠≠) ;4)截距式 1=+bya x (0,0ab ≠≠)(5)一般式0(,0Ax By c A B ++=不同时为) 3、两条直线的 位置关系:4、两点间距离公式:设P 1 ( x 1 , y 1 ) 、P 2 ( x 2 , y 2 ),则 | P 1 P 2 | =()()221221y y x x -+-5、点P ( x 0 , y 0 )到直线l :A x + B y + C = 0的距离:2200BA CBy Ax d +++=8.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =则 d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.9.直线与圆的位置关系(圆心到直线的距离为d)直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .10.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .11.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k 的圆的切线方程为y kx =±二、立体几何 (一)、线线平行判定定理:1、平行于同一条直线的两条直线互相平行。
高中数学必修五所有公式
高中数学必修五所有公式在学习数学的过程中,有许多关于几何形状、数轴、解方程等方面的公式,而高中数学必修五的公式更是应用十分广泛,这里我们就来简单介绍下这门课程中所包含的公式。
首先,三角形公式有三角形面积公式、勾股定理、余弦定理等,其中,三角形面积公式有:三角形的面积S=1/2ab*sinC,即两边的乘积乘以正切值;勾股定理 S=a*a+b*b,即长度的平方和;余弦定理c*c=a*a+b*b-2ab*cosC,即最长边的平方等于两边的平方减去两边乘以余弦值得到的积。
其次,立体几何公式有立体图形的表面积、体积公式,如三棱柱的表面积S=2l*(acosA+bcosB+acosC),即两侧面积乘以余弦值之和;三棱柱的体积V=abc*sinA,即三边长度的乘积乘以正切值。
此外,数轴上的公式有等差数列的公式、等比数列的公式,如等差数列的和公式有:等差数列的公差d,d=(b-a)/(n-1),即最大值减去最小值除以项数减一;等差数列的和S=n/2*(a+b),即项数除以二乘以最大值加最小值;等比数列的公比q,q=b/a,即后一项除以前一项;等比数列和Sn=a*(1-qn)/(1-q),即第一项乘以一减比的n次方除以一减比。
最后,解方程的公式有一元一次方程的公式、二元一次方程的公式、二元二次方程的公式等,其中,一元一次方程的解法,x=S/a,即等号右边除以等号左边的系数;二元一次方程的解法,x=(a*e-b*d)/(a*f-d*e),y=(b*f-d*c)/(a*f-d*e),即按照题中给出的方程式求得;二元二次方程的解法有二次公式,x1=(-b+Math.sqrt(b*b-4*a*c))/(2*a),x2=(-b-Math.sqrt(b*b-4*a*c))/(2*a),即先求出平方根,再除以2倍的系数即可。
以上就是高中数学必修五所容纳的所有公式,有了这些公式就可以解出无数的数学问题,学习这些公式就是让我们更深入地了解数学,更精确地解决数学问题,真是学习数学的得力助手。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号). (3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或.74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-.75.无理不等式 (1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩.(22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或.(32()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩.76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)).(4)截距式 1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、)(5)一般式 0Ax By C ++=(其中A 、B 不同时为0).79.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠; ②1212120l l A A B B ⊥⇔+=;80.夹角公式(1)2121tan ||1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式(1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-)(2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).直线12l l ⊥时,直线l 1到l 2的角是2π. 82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是: 若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分.86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内.89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种:0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d .其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=;②斜率为k的圆的切线方程为y kx =±. 109.证明直线与直线的平行的思考途径 (1)转化为判定共面二直线无交点; (2)转化为二直线同与第三条直线平行;(3)转化为线面平行; (4)转化为线面垂直; (5)转化为面面平行.110.证明直线与平面的平行的思考途径 (1)转化为直线与平面无公共点; (2)转化为线线平行; (3)转化为面面平行.111.证明平面与平面平行的思考途径 (1)转化为判定二平面无公共点; (2)转化为线面平行; (3)转化为线面垂直.112.证明直线与直线的垂直的思考途径 (1)转化为相交垂直; (2)转化为线面垂直;(3)转化为线与另一线的射影垂直; (4)转化为线与形成射影的斜线垂直. 113.证明直线与平面垂直的思考途径(1)转化为该直线与平面内任一直线垂直; (2)转化为该直线与平面内相交二直线垂直; (3)转化为该直线与平面的一条垂线平行; (4)转化为该直线垂直于另一个平行平面; (5)转化为该直线与两个垂直平面的交线垂直. 114.证明平面与平面的垂直的思考途径 (1)转化为判断二面角是直二面角; (2)转化为线面垂直.115.空间向量的加法与数乘向量运算的运算律 (1)加法交换律:a +b =b +a .(2)加法结合律:(a +b )+c =a +(b +c ). (3)数乘分配律:λ(a +b )=λa +λb .116.平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和,等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量.117.共线向量定理对空间任意两个向量a 、b (b ≠0 ),a ∥b ⇔存在实数λ使a =λb .P A B 、、三点共线⇔||AP AB ⇔AP t AB =u u u r u u u r ⇔(1)OP t OA tOB =-+u u u r u u u r u u u r.||AB CD ⇔AB u u u r 、CD uuur 共线且AB CD 、不共线⇔AB tCD =u u u r u u u r 且AB CD 、不共线.118.共面向量定理向量p 与两个不共线的向量a 、b 共面的⇔存在实数对,x y ,使p ax by =+.推论 空间一点P 位于平面MAB 内的⇔存在有序实数对,x y ,使MP xMA yMB =+u u u r u u u r u u u r,或对空间任一定点O ,有序实数对,x y ,使OP OM xMA yMB =++u u u r u u u u r u u u r u u u r.119.对空间任一点O 和不共线的三点A 、B 、C ,满足OP xOA yOB zOC =++u u u r u u u r u u u r u u u r(x y z k ++=),则当1k =时,对于空间任一点O ,总有P 、A 、B 、C 四点共面;当1k ≠时,若O ∈平面ABC ,则P 、A 、B 、C 四点共面;若O ∉平面ABC ,则P 、A 、B 、C 四点不共面.C A B 、、、D 四点共面⇔AD u u u r 与AB u u u r 、AC u u ur 共面⇔AD x AB y AC =+u u u r u u u r u u u r ⇔ (1)OD x y OA xOB yOC =--++u u u r u u u r u u u r u u u r(O ∉平面ABC ).120.空间向量基本定理如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组x ,y ,z ,使p =x a +y b +z c .推论 设O 、A 、B 、C 是不共面的四点,则对空间任一点P ,都存在唯一的三个有序实数x ,y ,z ,使OP xOA yOB zOC =++u u u r u u u r u u u r u u u r.121.射影公式已知向量AB u u u r=a 和轴l ,e 是l 上与l 同方向的单位向量.作A 点在l 上的射影'A ,作B 点在l 上的射影'B ,则''||cos A B AB =u u u r 〈a ,e 〉=a ·e122.向量的直角坐标运算设a =123(,,)a a a ,b =123(,,)b b b 则 (1)a +b =112233(,,)a b a b a b +++; (2)a -b =112233(,,)a b a b a b ---; (3)λa =123(,,)a a a λλλ (λ∈R); (4)a ·b =112233a b a b a b ++;123.设A 111(,,)x y z ,B 222(,,)x y z ,则 AB OB OA =-u u u r u u u r u u u r= 212121(,,)x x y y z z ---.124.空间的线线平行或垂直设111(,,)a x y z =r ,222(,,)b x y z =r,则a b r r P ⇔(0)a b b λ=≠r r r r ⇔121212x x y y z zλλλ=⎧⎪=⎨⎪=⎩;a b ⊥r r ⇔0a b ⋅=r r⇔1212120x x y y z z ++=.125.夹角公式设a =123(,,)a a a ,b =123(,,)b b b ,则 cos 〈a ,b 〉.推论 2222222112233123123()()()a b a b a b a a a b b b ++≤++++,此即三维柯西不等式.126. 四面体的对棱所成的角四面体ABCD 中, AC 与BD 所成的角为θ,则2222|()()|cos 2AB CD BC DA AC BDθ+-+=⋅.127.异面直线所成角cos |cos ,|a b θ=r r=||||||a b a b ⋅=⋅r rr r(其中θ(090θ<≤oo)为异面直线a b ,所成角,,a b r r分别表示异面直线a b ,的方向向量)128.直线AB 与平面所成角sin ||||AB m arc AB m β⋅=u u u r u ru u u r u r (m ur 为平面α的法向量). 129.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,A B 、为ABC ∆的两个内角,则2222212sin sin (sin sin )sin A B θθθ+=+.特别地,当90ACB ∠=o时,有22212sin sin sin θθθ+=.130.若ABC ∆所在平面若β与过若AB 的平面α成的角θ,另两边AC ,BC 与平面α成的角分别是1θ、2θ,''A B 、为ABO ∆的两个内角,则222'2'212tan tan (sin sin )tan A B θθθ+=+.特别地,当90AOB ∠=o时,有22212sin sin sin θθθ+=. 131.二面角l αβ--的平面角cos ||||m n arc m n θ⋅=u r r u r r 或cos ||||m narc m n π⋅-u r ru r r (m u r ,n r 为平面α,β的法向量). 132.三余弦定理设AC 是α内的任一条直线,且BC ⊥AC ,垂足为C ,又设AO 与AB 所成的角为1θ,AB 与AC 所成的角为2θ,AO 与AC 所成的角为θ.则12cos cos cos θθθ=.133. 三射线定理若夹在平面角为ϕ的二面角间的线段与二面角的两个半平面所成的角是1θ,2θ,与二面角的棱所成的角是θ,则有22221212sin sin sin sin 2sin sin cos ϕθθθθθϕ=+- ;1212||180()θθϕθθ-≤≤-+o (当且仅当90θ=o 时等号成立).134.空间两点间的距离公式 若A 111(,,)x y z ,B 222(,,)x y z ,则,A B d =||AB =u u u r = 135.点Q 到直线l 距离h =点P 在直线l 上,直线l 的方向向量a =PA uu u r ,向量b =PQ uuu r ).136.异面直线间的距离||||CD n d n ⋅=u u u r u u rr (12,l l 是两异面直线,其公垂向量为n r ,C D 、分别是12,l l 上任一点,d 为12,l l 间的距离).137.点B 到平面α的距离||||AB n d n ⋅=u u u r u u r r (n r 为平面α的法向量,AB 是经过面α的一条斜线,A α∈). 138.异面直线上两点距离公式d =.d =d =('E AA F ϕ=--).(两条异面直线a 、b 所成的角为θ,其公垂线段'AA 的长度为h.在直线a 、b 上分别取两点E 、F ,'A E m =,AF n =,EF d =). 139.三个向量和的平方公式2222()222a b c a b c a b b c c a ++=+++⋅+⋅+⋅r r r r r r r r r r r r2222||||cos ,2||||cos ,2||||cos ,a b c a b a b b c b c c a c a =+++⋅+⋅+⋅r r r r r r r r r r r r r r r140. 长度为l 的线段在三条两两互相垂直的直线上的射影长分别为123l l l 、、,夹角分别为123θθθ、、,则有2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=.(立体几何中长方体对角线长的公式是其特例).141. 面积射影定理'cos S S θ=.(平面多边形及其射影的面积分别是S 、'S ,它们所在平面所成锐二面角的为θ). 142. 斜棱柱的直截面已知斜棱柱的侧棱长是l ,侧面积和体积分别是S 斜棱柱侧和V 斜棱柱,它的直截面的周长和面积分别是1c 和1S ,则①1S c l =斜棱柱侧. ②1V S l =斜棱柱.143.作截面的依据三个平面两两相交,有三条交线,则这三条交线交于一点或互相平行. 144.棱锥的平行截面的性质如果棱锥被平行于底面的平面所截,那么所得的截面与底面相似,截面面积与底面面积的比等于顶点到截面距离与棱锥高的平方比(对应角相等,对应边对应成比例的多边形是相似多边形,相似多边形面积的比等于对应边的比的平方);相应小棱锥与小棱锥的侧面积的比等于顶点到截面距离与棱锥高的平方比.145.欧拉定理(欧拉公式)2V F E +-=(简单多面体的顶点数V 、棱数E 和面数F).(1)E =各面多边形边数和的一半.特别地,若每个面的边数为n 的多边形,则面数F 与棱数E 的关系:12E nF =; (2)若每个顶点引出的棱数为m ,则顶点数V 与棱数E 的关系:12E mV =. 146.球的半径是R ,则其体积343V R π=, 其表面积24S R π=.147.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长. (2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长, 正方体的棱切球的直径是正方体的面对角线长, 正方体的外接球的直径是正方体的体对角线长. (3) 球与正四面体的组合体:棱长为a ,. 148.柱体、锥体的体积13V Sh =柱体(S 是柱体的底面积、h 是柱体的高).13V Sh =锥体(S 是锥体的底面积、h 是锥体的高).三角函数公式 两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA) 倍角公式tan2A=2tanA/[1-(tanA)^2]cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))。