低功耗发射芯片MAX1472(应用说明)

合集下载

PCS-9691-CN_X_说明书_南瑞继保备自投

PCS-9691-CN_X_说明书_南瑞继保备自投
特别注意,一些通用的工作于高压带电设备的工作规则必须遵守。如果不遵守可能导致严重的 人身伤亡或设备损坏。
危险!
在一次系统带电运行时,绝对不允许将与装置连接的电流互感器二次开路。该回路开路可能会 产生极端危险的高压。
警告!
曝露端子 在装置带电时不要触碰曝露的端子等,因为可能会产生危险的高电压。
残余电压 在装置电源关闭后,直流回路中仍然可能存在危险的电压。这些电压需在数秒钟后才会消失。
本手册中将会用到以下指示标记和标准定义:
危险! 意味着如果安全预防措施被忽视,则会导致人员死亡,严重的人身伤害,或严重 的设备损坏。
警告! 意味着如果安全预防措施被忽视,则可能导致人员死亡,严重的人身伤害,或严 重的设备损坏。
警示! 意味着如果安全预防措施被忽视,则可能导致轻微的人身伤害或设备损坏。本条 特别适用于对装置的损坏及可能对被保护设备的损坏。
P/N:ZL_PCS-9691-CN_X_说明书_国内中文_国内标准版_X
购买产品,请联系: 电话:025-87178911 传真:025-52100511、025-52100512
版本:R1.01
ii

前言.................................................................................................................................................... i 目录.................................................................................................................................................. iii 第 1 章 概述...................................................................................................................................... 1

丰田混合动力汽车线控换挡系统的分析

丰田混合动力汽车线控换挡系统的分析

丰田混合动力汽车线控换挡系统的分析2009年04月15日 09:26 来源:SAE论文集网字号:大中小打印系统配置线控换挡系统包括如下主要部分:换挡选择模块、混合动力ECU、停车控制ECU、电源ECU、停车执行机构、混合动力系统和挡位位置指示灯。

挡位选择模块人机交互界面(HMI)可以是使驾驶员以更加舒适方式的换挡,它包括换挡操纵杆和停车开关。

混合动力ECU 其主要的功能是控制混合动力系统,此外,由于它的控制逻辑会影响换挡控制,所以它在线控换挡系统中有重要作用。

这个ECU把指令发送给停车控制ECU,实现前进挡、倒挡和空挡的切换。

混合动力ECU可以直接控制混合动力电机。

停车控制ECU 根据混合动力ECU发出的换挡指令,控制停车执行机构。

停车执行机构包括一个磁阻开关电机和一个减速机构,执行机构控制传动轴上的停车机构。

电源ECU 控制供电。

挡位指示灯显示当前挡位。

挡位选择模式挡位选择模式使驾驶员能直接感受到这个系统改善了舒适性。

通过最大限度的自由设计系统提供的换挡模式,过去无法达到的舒适性水平现在可以通过模拟人工程学来实现,因此一个独特的换挡模式被开发出来。

线控换挡系统最重要的特性是换挡操纵力和换挡模式,换挡操纵是一种瞬态,驾驶员的手从操纵杆放开后,操纵杆返回到预定位置上。

因此,不必为了使操纵杆保持在某位置上而增加一种锁止机构。

换挡操纵力的大小要优先于换挡时的感觉,不能大幅度的减小换挡操纵力,如图1所示。

另外,设计换挡模式时考虑了很多其它因素,可以使驾驶员容易记住各个挡位。

换挡模式的特点如下(见图2):a.要选择所需的挡位,驾驶员只需操作换挡杆,而无需考虑挡位的当前位置,因为所有的换挡操作都是从同一位置开始,换挡模式也是一样的。

b.换挡时,换挡杆总产生正向的锁止,驾驶员无需试图去使操纵杆停在中间位置,或担心超出预定位置,这样可以减小换挡操纵力;c.挂上前进挡或倒挡都会涉及到双向动作,使驾驶员意识到进行了换挡操作d.停车换挡,系统提供了一个停车机构,驾驶员只需按一下即可,使用简便。

SH366006 标准版用户手册_V1.0

SH366006 标准版用户手册_V1.0
5.1 工作状态 .......................................................................................................................................................................................... 5 5.2 参数测量 .......................................................................................................................................................................................... 5 5.3 电量计量 .......................................................................................................................................................................................... 5 5.4 JEITA 温度范围 ............................................................................................................................................................................. 5 5.5 充电管理 .......................................................................................................................................................................................... 6

常用无线射频芯片

常用无线射频芯片

常用无线射频芯片集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR 射频收发器CC2420ZRTCR 射频收发器CC2430F128RTCR ZigBee芯片CC2430ZF128RTCR ZigBee芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR 处理器CC2500RTKR 射频收发器CC2510F16RSPR 无线电收发器CC2510F32RSPR 无线电收发器CC2510F8RSPR 无线电收发器CC2511F16RSPR 无线电收发器CC2511F32RSPR 无线电收发器CC2511F8RSPR 无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR 发送器CC2590RGVR 射频前端芯片CC2591RGVR 射频前端芯片CCZACC06A1RTCR ZigBee芯片TRF7900APWR 27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发ICADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7 ISM无线收发IC ADF7021-NBCPZ-RL7 ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7 ISM无线发射IC ADF7011BRUZ-RL7 ISM无线发射IC ADF7012BRUZ-RL7 UHF无线发射IC ADF7901BRUZ-RL7 ISM无线发射ICA7121(A71C21AQF) 射频收发器A7122(A71C22AQF) 射频收发器A7102(A71C02AQF) 射频收发ICA7103(A71C03AUF) 射频收发ICA7201(A72C01AUF) 射频接收ICA7202(A72C02AUF) 射频接收ICA7302(A73C02AMF) 射频发射ICA7105(A71X05AQF) 射频收发ICA7125(A71X25AQF) 射频收发ICA7325(A73X25AQF) 射频发射ICA7303A(A73C03AQF) FM发射芯片A7303A(A73C03AUF) FM发射芯片A7303B(A73C03BUF) FM发射芯片A7303B(A73C03BQF) FM发射芯片A7282(A72N82AQF) GPS接收芯片A7531B(A75C31BQF) GPS开关芯片A7532(A75C32AQF) GPS开关芯片A7533(A75X33AQF) GPS开关芯片A7533(A75X33BQF) GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发ICAT86RF211SAHW-R 射频收发IC AT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY 射频发送IC ATA5428-PLQW 宽带收发ICATR2406-PNQG 射频收发ICT5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee芯片EM260-RTR ZigBee芯片EM250-RTR ZigBee芯片EM351-RTR ZigBee芯片EM357-RTR ZigBee芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发IC MC13191FCR2 射频收发IC MC13192FCR2 射频收发IC MC13193FCR2 射频收发IC MC13201FCR2 射频收发IC MC13202FCR2 射频收发IC MC13203FCR2 射频收发IC MC13211R2 射频收发ICMC13212R2 射频收发IC MC13213R2 射频收发IC MC13214R2 射频收发IC TDA5200 ASK接收器TDA5201 ASK接收器TDA5210 ASK/FSK接收器TDA5211 ASK/FSK接收器TDA5212 ASK/FSK接收器TDA5220 ASK/FSK接收器TDA5221 ASK/FSK接收器TDA7200 ASK/FSK接收器TDA7210 ASK/FSK接收器TDA5230 ASK/FSK接收器TDA5231 ASK/FSK接收器TDK5100 ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101 ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102 ASK/FSK发射器TDK5103A ASK发射器TDK5110 ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111 ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105 ASK/FSK发射器PMA7106 ASK/FSK发射器PMA7107 ASK/FSK发射器PMA7110 ASK/FSK发射器TDA5250 ASK/FSK收发器TDA5251 ASK/FSK收发器TDA5252 ASK/FSK收发器TDA5255 ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发IC MAX7032ATJ+T 无线收发IC MAX7033ETJ+T 无线接收ICMAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收IC MLX71122ELQ 射频接收IC TH71071EDC 射频接收ICTH71072EDC 射频接收ICTH7107EFC 射频接收ICTH71081EDC 射频接收ICTH71082EDC 射频接收ICTH7108EFC 射频接收ICTH71101ENE 射频接收ICTH71102ENE 射频接收ICTH71111ENE 射频接收ICTH71112ENE 射频接收ICTH71221ELQ 射频接收ICTH7122ENE 射频收发ICTH72001KDC 射频发射ICTH72002KDC 射频发射ICTH72005KLD 射频发射ICTH72006KLD 射频发射ICTH72011KDC 射频发射ICTH72012KDC 射频发射ICTH72015KLD 射频发射IC TH72016KLD 射频发射IC TH72031KDC 射频发射IC TH72032KDC 射频发射IC TH72035KLD 射频发射IC TH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM 射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频IC MICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG 收发器ICnRF24AP1 收发器ICnRF24E1G 收发器ICnRF24E2G 发射器ICnRF24L01+ 收发器ICnRF24LE1 收发器ICnRF24LU1 收发器ICnRF24Z1 收发器ICNRF905 430 928MHz收发器NRF9E5 430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器IC PN5120A0HN1/C1 收发器ICPN5310A3HN/C203 NFC控制器IC PN1000 GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48 ZigBee单芯片MG2450-B72 ZigBee单芯片MG2455-F48 ZigBee单芯片AP1092 功率放大器ICAP1098 功率放大器ICAP1110 功率放大器ICAP1091 功率放大器ICAP1093 功率放大器ICAP1280 PA/LNA功率放大器AP1213 射频前端模块AP1290 功率放大器ICAP1291 功率放大器ICAP1294 功率放大器ICAP1045 功率放大器ICAP1046 功率放大器ICAP2085 功率放大器ICAP2010C 功率放大器ICAP3011 功率放大器ICAP3013 功率放大器ICAP3014 功率放大器ICAP3015 功率放大器ICAP3211 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FM(IA4230) 无线发射IC Si4231-A0-FM(IA4231) 无线发射IC Si4232-A0-FM(IA4232) 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FM(IA4330) 无线接收ICSI4420-D1-FT 射频收发ICSI4421-A1-FT(IA4421) 无线收发IC SI4430-A0-FM(IA4430) 无线收发IC SI4431-A0-FM(IA4431) 无线收发IC SI4432-V2-FM(IA4432) 无线收发IC TM1001 功率放大器ICTM1006 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTM4001 FM发射ICUW2453 无线网络ICUZ2400 ZigBee芯片UP2206 功率放大器UP2268 功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。

美信MAX1472:300MHz至450MHz-低功耗-基于晶振的ASK发送器

美信MAX1472:300MHz至450MHz-低功耗-基于晶振的ASK发送器

美信MAX1472:300MHz至450MHz/低功耗/基于晶
振的ASK发送器
概述
MAX1472是一款以晶振为基准的锁相环(PLL)VHF/UHF发送器,设计用于在300MHz至450MHz频段发送OOK/ASK数据。

MAX1472
支持高达100kbps的数据速率,可调节的输出功率最高可超过+10dBm (至50Ω负载)。

MAX1472基于晶振的结构调制深度更大,频率稳定更快,发送频率的容差更大,并且温度依赖性较低,避免了许多SAW发送器中常见的问题。

当配合使用MAX1470或MAX1473超外差接收器时,以上这些改进使得总体接收性能得到显着提升。

MAX1472采用3mm x 3mm的8引脚SOT23封装,额定工作于汽车级温度范围(-40度C至+125度C)。

MAX1472备有评估板。

如需了解更多信息,请与Maxim Integrated联系。

关键特性
2.1V至3.6V单电源供电。

MAX7221的原理与应用

MAX7221的原理与应用

X
X
X
D7
X

X
1
X

X

X

X

X

X

X
X
X
X
0000
1111110
0001
0110000
0010
1101101
0011
1111001
0100
0110011
0 1 0 1小1 0 1 1 0 1 1
0 1 1 0数1 0 1 1 1 1 1
0 1 1
1 0 0
1 0 0
1 0 1
点 位
1 1 1
第 17 卷 第 1 期 2004 年 3 月
漳州师范学院学报(自然科学版)
Journal of Zhangzhou Teachers College(Nat.Sci.)
Vol.17 No.1 Mar. 2004
MAX7221 的原理与应用
张华林
(漳州师范学院 物理系 ,福建 漳州 363000)
2.3.2 省电模式 MAX7221 允许工作在省电模式(显示关闭,见表 3),在该模式下,供电电流可降低到 150uA.
器件在这种模式下上电时,250us 内即可进入正常工作模式.在测试状态下,省电模式被屏蔽.
表 3
模式
地 址
D7
D6
D5
寄存器数据
D4 D3
D2
D1
D0
省电模式 XC X
X
X
X
收稿日期:2003-11-20
作者简介:张华林(1973-),男,福建诏安县人,讲师,学士.
44
漳州师范学院学报(自然科学版)

16f630中文数据手册【Word版】9p (2)

16f630中文数据手册【Word版】9p (2)

P I C16F630/676数据手册14 引脚闪存8 位CMOS 单片机2004 Microchip Technology Inc.DS40039C_CN请注意以下有关 Microchip 器件代码保护功能的要点:· · · Microchip 的产品均达到 Microchip 数据手册中所述的技术指标。

Microchip 确信:在正常使用的情况下, Microchip 系列产品是当今市场上同类产品中最安全的产品之一。

目前,仍存在着恶意、甚至是非法破坏代码保护功能的行为。

就我们所知,所有这些行为都不是以 Microchip 数据手册中规定的操 代码保护功能处于持续发展中。

Microchip 承诺将不断改进产品的代码保护功能。

任何试图破坏 Microchip 代码保护功能的行为均可视 为违反了《数字器件千年版权法案(Digital Millennium Copyright Act )》。

如果这种行为导致他人在未经授权的情况下,能访问您的软 件或其它受版权保护的成果,您有权依据该法案提起诉讼,从而制止这种行为。

本出版物中所述的器件应用信息及其它类似内容仅为您提供便 利,它们可能由更新之信息所替代。

确保应用符合技术规范, 是您自身应负的责任。

Microchip 对这些信息不作任何明示或 暗示、书面或口头的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。

Microchip 对因这些信息及使用这些信息而引起的后果不承担任何责任。

未经 Microchip 书面批准,不得将 Microchip 的产品用作生命维持系统中的关键组件。

在 Microchip 知识产权保护下,不得暗中或以其它方式转让任何许可证。

DS40039C_CN 第 ii 页商标 Microchip 的名称和徽标组合、 Microchip 徽标、 Accuron 、 dsPIC 、 KL 、 microID 、 MPLAB 、 PIC 、 PICmicro 、PICSTART 、 PRO MATE 、 PowerSmart 、 rfPIC 和SmartShunt 均为Microchip Technology Inc .在美国和其它国家或地区的注册商标。

常用无线射频芯片

常用无线射频芯片

常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR 射频收发器CC2420ZRTCR 射频收发器CC2430F128RTCR ZigBee芯片CC2430ZF128RTCR ZigBee芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR 处理器CC2500RTKR 射频收发器CC2510F16RSPR 无线电收发器CC2510F32RSPR 无线电收发器CC2510F8RSPR 无线电收发器CC2511F16RSPR 无线电收发器CC2511F32RSPR 无线电收发器CC2511F8RSPR 无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR 发送器CC2590RGVR 射频前端芯片CC2591RGVR 射频前端芯片CCZACC06A1RTCR ZigBee芯片TRF7900APWR 27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发IC ADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7 ISM无线收发IC ADF7021-NBCPZ-RL7 ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7 ISM无线发射IC ADF7011BRUZ-RL7 ISM无线发射IC ADF7012BRUZ-RL7 UHF无线发射IC ADF7901BRUZ-RL7 ISM无线发射ICA7121(A71C21AQF) 射频收发器A7122(A71C22AQF) 射频收发器A7102(A71C02AQF) 射频收发ICA7103(A71C03AUF) 射频收发ICA7201(A72C01AUF) 射频接收ICA7202(A72C02AUF) 射频接收ICA7302(A73C02AMF) 射频发射ICA7105(A71X05AQF) 射频收发ICA7125(A71X25AQF) 射频收发ICA7325(A73X25AQF) 射频发射ICA7303A(A73C03AQF) FM发射芯片A7303A(A73C03AUF) FM发射芯片A7303B(A73C03BUF) FM发射芯片A7303B(A73C03BQF) FM发射芯片A7282(A72N82AQF) GPS接收芯片A7531B(A75C31BQF) GPS开关芯片A7532(A75C32AQF) GPS开关芯片A7533(A75X33AQF) GPS开关芯片A7533(A75X33BQF) GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发IC AT86RF211SAHW-R 射频收发IC AT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY 射频发送IC ATA5428-PLQW 宽带收发ICATR2406-PNQG 射频收发ICT5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee芯片EM260-RTR ZigBee芯片EM250-RTR ZigBee芯片EM351-RTR ZigBee芯片EM357-RTR ZigBee芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发IC MC13191FCR2 射频收发IC MC13192FCR2 射频收发IC MC13193FCR2 射频收发IC MC13201FCR2 射频收发IC MC13202FCR2 射频收发IC MC13203FCR2 射频收发IC MC13211R2 射频收发ICMC13212R2 射频收发IC MC13213R2 射频收发IC MC13214R2 射频收发IC TDA5200 ASK接收器TDA5201 ASK接收器TDA5210 ASK/FSK接收器TDA5211 ASK/FSK接收器TDA5212 ASK/FSK接收器TDA5220 ASK/FSK接收器TDA5221 ASK/FSK接收器TDA7200 ASK/FSK接收器TDA7210 ASK/FSK接收器TDA5230 ASK/FSK接收器TDA5231 ASK/FSK接收器TDK5100 ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101 ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102 ASK/FSK发射器TDK5103A ASK发射器TDK5110 ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111 ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105 ASK/FSK发射器PMA7106 ASK/FSK发射器PMA7107 ASK/FSK发射器PMA7110 ASK/FSK发射器TDA5250 ASK/FSK收发器TDA5251 ASK/FSK收发器TDA5252 ASK/FSK收发器TDA5255 ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发IC MAX7032ATJ+T 无线收发IC MAX7033ETJ+T 无线接收ICMAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收IC MLX71122ELQ 射频接收IC TH71071EDC 射频接收IC TH71072EDC 射频接收IC TH7107EFC 射频接收IC TH71081EDC 射频接收IC TH71082EDC 射频接收IC TH7108EFC 射频接收IC TH71101ENE 射频接收IC TH71102ENE 射频接收IC TH71111ENE 射频接收IC TH71112ENE 射频接收IC TH71221ELQ 射频接收IC TH7122ENE 射频收发IC TH72001KDC 射频发射IC TH72002KDC 射频发射IC TH72005KLD 射频发射IC TH72006KLD 射频发射IC TH72011KDC 射频发射IC TH72012KDC 射频发射ICTH72015KLD 射频发射IC TH72016KLD 射频发射IC TH72031KDC 射频发射IC TH72032KDC 射频发射IC TH72035KLD 射频发射IC TH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM 射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频IC MICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG 收发器ICnRF24AP1 收发器ICnRF24E1G 收发器ICnRF24E2G 发射器ICnRF24L01+ 收发器ICnRF24LE1 收发器ICnRF24LU1 收发器ICnRF24Z1 收发器ICNRF905 430 928MHz收发器NRF9E5 430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器ICPN5120A0HN1/C1 收发器ICPN5310A3HN/C203 NFC控制器IC PN1000 GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48 ZigBee单芯片MG2450-B72 ZigBee单芯片MG2455-F48 ZigBee单芯片AP1092 功率放大器ICAP1098 功率放大器ICAP1110 功率放大器ICAP1091 功率放大器ICAP1093 功率放大器ICAP1280 PA/LNA功率放大器AP1213 射频前端模块AP1290 功率放大器ICAP1291 功率放大器ICAP1294 功率放大器ICAP1045 功率放大器ICAP1046 功率放大器ICAP2085 功率放大器ICAP2010C 功率放大器ICAP3011 功率放大器ICAP3013 功率放大器ICAP3014 功率放大器ICAP3015 功率放大器ICAP3211 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FM(IA4230) 无线发射IC Si4231-A0-FM(IA4231) 无线发射IC Si4232-A0-FM(IA4232) 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FM(IA4330) 无线接收ICSI4420-D1-FT 射频收发ICSI4421-A1-FT(IA4421) 无线收发IC SI4430-A0-FM(IA4430) 无线收发IC SI4431-A0-FM(IA4431) 无线收发IC SI4432-V2-FM(IA4432) 无线收发IC TM1001 功率放大器ICTM1006 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTM4001 FM发射ICUW2453 无线网络ICUZ2400 ZigBee芯片UP2206 功率放大器UP2268 功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。

Skyworks 低功耗数字隔离器产品说明书

Skyworks 低功耗数字隔离器产品说明书

Si8410/20/21 (5 kV) Si8422/23/24/25/26 (2.5 & 5 kV) Data SheetLow-Power, Single and Dual-Channel Digital IsolatorsSkyworks' family of ultra-low-power digital isolators are CMOS devices offering substan-tial data rate, propagation delay, power, size, reliability, and external BOM advantageswhen compared to legacy isolation technologies. The operating parameters of theseproducts remain stable across wide temperature ranges and throughout device servicelife for ease of design and highly uniform performance. All device versions have Schmitttrigger inputs for high noise immunity and only require V DD bypass capacitors.Data rates up to 150 Mbps are supported, and all devices achieve worst-case propaga-tion delays of less than 10 ns. Ordering options include a choice of isolation ratings (upto 5 kV) and a selectable fail-safe operating mode to control the default output stateduring power loss. All products are safety certified by UL, CSA, and VDE, and productsin wide-body packages support reinforced insulation withstanding up to 5 kV RMS.Applications•Industrial automation systems •Medical electronics•Hybrid electric vehicles •Isolated switch mode supplies •Isolated ADC, DAC •Motor control•Power inverters •Communication systemsSafety Regulatory Approvals•UL 1577 recognized•Up to 5000 V RMS for 1 minute •CSA component notice 5A approval •IEC 60950-1, 61010-1, 60601-1(reinforced insulation)•VDE certification conformity•IEC 60747-5-5 (VDE0884 Part 5)•EN60950-1 (reinforced insulation)KEY FEATURES•High-speed operation•DC to 150 Mbps•No start-up initialization required•Wide Operating Supply Voltage:•2.6 – 5.5 V•Up to 5000 V RMS isolation•High electromagnetic immunity•Ultra low power (typical)•5 V Operation:•< 2.6 mA/channel at 1 Mbps•< 6.8 mA/channel at 100 Mbps•2.70 V Operation:•< 2.3 mA/channel at 1 Mbps•< 4.6 mA/channel at 100 Mbps•Schmitt trigger inputs•Selectable fail-safe mode•Default high or low output•Precise timing (typical)•11 ns propagation delay max•1.5 ns pulse width distortion•0.5 ns channel-channel skew•2 ns propagation delay skew•5 ns minimum pulse width•Transient immunity 45 kV/µs•AEC-Q100 qualification•Wide temperature range•–40 to 125 °C at 150 Mbps•RoHS compliant packages•SOIC-16 wide body•SOIC-8 narrow body1. Features List•High-speed operation•DC to 150 Mbps•No start-up initialization required •Wide Operating Supply Voltage:• 2.6 – 5.5 V•Up to 5000 V RMS isolation•High electromagnetic immunity •Ultra low power (typical)• 5 V Operation:•< 2.6 mA/channel at 1 Mbps•< 6.8 mA/channel at 100 Mbps • 2.70 V Operation:•< 2.3 mA/channel at 1 Mbps•< 4.6 mA/channel at 100 Mbps •Schmitt trigger inputs •Selectable fail-safe mode•Default high or low output •Precise timing (typical)•11 ns propagation delay max • 1.5 ns pulse width distortion•0.5 ns channel-channel skew • 2 ns propagation delay skew• 5 ns minimum pulse width •Transient immunity 45 kV/µs •AEC-Q100 qualification •Wide temperature range•–40 to 125 °C at 150 Mbps •RoHS compliant packages•SOIC-16 wide body•SOIC-8 narrow body2. Ordering GuideTable 2.1. Ordering Guide1,2,33. Functional Description3.1 Theory of OperationThe operation of an Si84xx channel is analogous to that of an opto coupler, except an RF carrier is modulated instead of light. This simple architecture provides a robust isolated data path and requires no special considerations or initialization at start-up. A simplified block diagram for a single Si84xx channel is shown in the figure below.A BFigure 3.1. Simplified Channel DiagramA channel consists of an RF Transmitter and RF Receiver separated by a semiconductor-based isolation barrier. Referring to the Transmitter, input A modulates the carrier provided by an RF oscillator using on/off keying. The Receiver contains a demodulator that decodes the input state according to its RF energy content and applies the result to outputB via the output driver. This RF on/off keying scheme is superior to pulse code schemes as it provides best-in-class noise immunity, low power consumption, and better immunity to magnetic fields. See the figure below for more details.Input SignalModulation SignalOutput SignalFigure 3.2. Modulation Scheme3.2 Eye DiagramThe figure below illustrates an eye-diagram taken on an Si8422. For the data source, the test used an Anritsu (MP1763C) Pulse Pattern Generator set to 1000 ns/div. The output of the generator's clock and data from an Si8422 were captured on an oscilloscope. The results illustrate that data integrity was maintained even at the high data rate of 150 Mbps. The results also show that 2 ns pulse width distortion and 350 ps peak jitter were exhibited.Figure 3.3. Eye Diagram4. Device OperationDevice behavior during start-up, normal operation, and shutdown is shown in Figure 4.1 Device Behavior during Normal Operation on page 7, where UVLO+ and UVLO- are the positive-going and negative-going thresholds respectively. Refer to the table below to determine outputs when power supply (V DD) is not present.Table 4.1. Si84xx Logic Operation Table4.1 Device StartupOutputs are held low during powerup until V DD is above the UVLO threshold for time period tSTART. Following this, the outputs follow the states of inputs.4.2 Under Voltage LockoutUnder Voltage Lockout (UVLO) is provided to prevent erroneous operation during device startup and shutdown or when V DD is below its specified operating circuits range. Both Side A and Side B each have their own undervoltage lockout monitors. Each side can enter or exit UVLO independently. For example, Side A unconditionally enters UVLO when V DD1 falls below V DD1(UVLO–) and exits UVLO when V DD1 rises above V DD1(UVLO+). Side B operates the same as Side A with respect to its V DD2 supply.VVFigure 4.1. Device Behavior during Normal Operation4.3 Layout RecommendationsTo ensure safety in the end user application, high voltage circuits (i.e., circuits with >30 V AC) must be physically separated from the safety extra-low voltage circuits (SELV is a circuit with <30 V AC) by a certain distance (creepage/clearance). If a component, such as a digital isolator, straddles this isolation barrier, it must meet those creepage/clearance requirements and also provide a sufficiently large high-voltage breakdown protection rating (commonly referred to as working voltage protection). Table 5.5 Regulatory Information1 on page 22and Table 5.6 Insulation and Safety-Related Specifications on page 23detail the working voltage and creepage/clearance capabilities of the Si84xx. These tables also detail the component standards (UL1577, IEC60747, CSA 5A), which are readily accepted by certification bodies to provide proof for end-system specifications requirements. Refer to the end-system specification (61010-1, 60950-1, 60601-1, etc.) requirements before starting any design that uses a digital isolator.4.3.1 Supply BypassThe Si841x/2x family requires a 0.1 μF bypass capacitor between V DD1and GND1 and V DD2and GND2. The capacitor should be placed as close as possible to the package. To enhance the robustness of a design, it is further recommended that the user also add 1μF bypass capacitors and include 100 Ω resistors in series with the inputs and outputs if the system is excessively noisy.4.3.2 Pin ConnectionsNo connect pins are not internally connected. They can be left floating, tied to V DD, or tied to GND.4.3.3 Output Pin TerminationThe nominal output impedance of an isolator driver channel is approximately 50 Ω, ±40%, which is a combination of the value of the on-chip series termination resistor and channel resistance of the output driver FET. When driving loads where transmission line effects will be a factor, output pins should be appropriately terminated with controlled impedance PCB traces.4.4 Fail-Safe Operating ModeSi84xx devices feature a selectable (by ordering option) mode whereby the default output state (when the input supply is unpowered) can either be a logic high or logic low when the output supply is powered. See Table 4.1 Si84xx Logic Operation Table on page 6 and Section 2. Ordering Guide for more information.4.5 Typical Performance CharacteristicsThe typical performance characteristics depicted in the following diagrams are for information purposes only. Refer to Table 5.2 Electri-cal Characteristics on page 10 through Table 5.4 Electrical Characteristics 1 on page 19for actual specification limits.0510152025300102030405060708090100110120130140150C u r r e n t (m A )Data Rate (Mbps)Figure 4.2. Si8410 Typical V DD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation Figure 4.3. Si8420 Typical V DD1 Supply Currentvs. Data Rate 5, 3.3, and 2.70 V OperationFigure 4.4. Si8421 Typical V DD1 or V DD2 Supply Current vs.Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)Figure 4.5. Si8410 Typical V DD2 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation(15 pF Load)Figure 4.6. Si8420 Typical V DD2 Supply Current vs. Data Rate5, 3.3, and 2.70 V Operation(15 pF Load)Figure 4.7. Si8422 Typical V DD1 or V DD2 Supply Current vs.Data Rate 5, 3.3, and 2.70 V Operation (15 pF Load)Figure 4.8. Si8423 Typical V DD1 Supply Current vs. Data Rate 5, 3.3, and 2.70 V Operation Figure 4.9. Si8423 Typical V DD2 Supply Current vs. Data Rate5, 3.3, and 2.70 V Operation(15 pF Load) Figure 4.10. Propagation Delayvs. TemperatureSi8410/20/21 (5 kV) Si8422/23/24/25/26 (2.5 & 5 kV) Data Sheet • Electrical Specifications5. Electrical SpecificationsTable 5.1. Recommended Operating ConditionsTable 5.2. Electrical Characteristics(V DD1 = 5 V ±10%, V DD2 = 5 V ±10%, T A = –40 to 125 °C)TypicalOutputFigure 5.1. Propagation Delay TimingTable 5.3. Electrical Characteristics (V DD1 = 3.3 V ±10%, V DD2 = 3.3 V ±10%, T A = –40 to 125 °C)Table 5.4. Electrical Characteristics1 (V DD1 = 2.70 V, V DD2 = 2.70 V, T A = –40 to 125 °C)Table 5.5. Regulatory Information1CSAThe Si84xx is certified under CSA Component Acceptance Notice 5A. For more details, see File 232873.61010-1: Up to 600 V RMS reinforced insulation working voltage; up to 600 V RMS basic insulation working voltage.60950-1: Up to 600 V RMS reinforced insulation working voltage; up to 1000 V RMS basic insulation working voltage.60601-1: Up to 125 V RMS reinforced insulation working voltage; up to 380 V RMS basic insulation working voltage.VDEThe Si84xx is certified according to IEC 60747-5-5. For more details, see File 5006301-4880-0001.60747-5-5: Up to 891 V peak for basic insulation working voltage.60950-1: Up to 600 V RMS reinforced insulation working voltage; up to 1000 V RMS basic insulation working voltage.ULThe Si84xx is certified under UL1577 component recognition program. For more details, see File E257455.Rated up to 5000 V RMS isolation voltage for basic insulation.Note:1.Regulatory Certifications apply to2.5 kV RMS rated devices which are production tested to3.0 kV RMS for 1 sec. RegulatoryCertifications apply to 5.0 kV RMS rated devices which are production tested to 6.0 kV RMS for 1 sec.For more information, see Section 2. Ordering Guide.Table 5.6. Insulation and Safety-Related SpecificationsTable 5.7. IEC 60747-5-5 Insulation Characteristics for Si84xxxx1Table 5.8. IEC Safety Limiting Values1Table 5.9. Thermal Characteristics200150********2501250Case Temperature (ºC)S a f e t y -L i m i t i n g V a l u es (m A )375Figure 5.2. (WB SOIC-16) Thermal Derating Curve, Dependence of Safety Limiting Valueswith Case Temperature per DIN EN 60747-5-5200150********2001000Case Temperature (ºC)S a f e t y -L i m i t i n g V a l ue s (m A )300Figure 5.3. (NB SOIC-8) Thermal Derating Curve, Dependence of Safety Limiting Valueswith Case Temperature per DIN EN 60747-5-5Table 5.10. Absolute Maximum Ratings16. Pin Descriptions6.1 Pin Descriptions (Wide-Body SOIC)VVVVFigure 6.1. Wide-Body SOICTable 6.1. Pin Descriptions6.2 Pin Descriptions (Narrow-Body SOIC)V DD2V DD2V DD2 Figure 6.2. Narrow-Body SOIC7. Package Outlines7.1 Package Outline (16-Pin Wide Body SOIC)The figure below illustrates the package details for the Si84xx Digital Isolator. The table below lists the values for the dimensions shown in the illustration.Figure 7.1. 16-Pin Wide Body SOICTable 7.1. Package Diagram Dimensions7.2 Package Outline (8-Pin Narrow Body SOIC)The figure below illustrates the package details for the Si84xx. The table below lists the values for the dimensions shown in the illustration.Figure 7.2. 8-pin Small Outline Integrated Circuit (SOIC) PackageTable 7.2. Package Diagram Dimensions8. Land Patterns8.1 Land Pattern (16-Pin Wide-Body SOIC)The figure below illustrates the recommended land pattern details for the Si84xx in a 16-pin wide-body SOIC. The table below lists the values for the dimensions shown in the illustration.Figure 8.1. 16-Pin SOIC Land PatternTable 8.1. 16-Pin Wide Body SOIC Land Pattern Dimensions8.2 Land Pattern (8-Pin Narrow Body SOIC)The figure below illustrates the recommended land pattern details for the Si84xx in an 8-pin narrow-body SOIC. The table below lists the values for the dimensions shown in the illustration.Figure 8.2. PCB Land Pattern: 8-Pin Narrow Body SOICTable 8.2. PCM Land Pattern Dimensions (8-Pin Narrow Body SOIC)9. Top Markings9.1 Top Marking (16-Pin Wide Body SOIC)Figure 9.1. Isolator Top MarkingTable 9.1. Top Marking ExplanationLine 1 Marking:Base Part NumberOrdering Options(See 2. Ordering Guide for more information).Si84 = Isolator product seriesXY = Channel ConfigurationX = # of data channels (2, 1)Y = # of reverse channels (1, 0)1,2S = Speed GradeA = 1 MbpsB = 150 MbpsV = Insulation ratingA = 1 kV;B = 2.5 kV;C = 3.75 kV;D = 5 kVLine 2 Marking:YY = YearWW = Workweek Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date.TTTTTT = Mfg Code Manufacturing code from assembly house. Line 3 Marking:Circle = 1.7 mm Diameter(Center-Justified)“e4” Pb-Free Symbol.Country of Origin ISO Code Abbreviation TW = Taiwan.Notes:1.The Si8422 has one reverse channel.2.The Si8423 has zero reverse channels.9.2 Top Marking (8-Pin Narrow-Body SOIC)Figure 9.2. Isolator Top MarkingTable 9.2. Top Marking ExplanationLine 1 Marking:Base Part NumberOrdering Options(See 2. Ordering Guide for more information).Si84 = Isolator product seriesXY = Channel ConfigurationX = # of data channels (2, 1)Y = Channel configuration (0, 1, 2, 3, 4, 5, 6)1, S = Speed GradeA = 1 MbpsB = 150 MbpsV = Insulation ratingA = 1 kV;B = 2.5 kV;C = 3.75 kV;D = 5 kVLine 2 Marking:YY = YearWW = Workweek Assigned by assembly subcontractor. Corresponds to the year and workweek of the mold date.R = Product (OPN) Revision F = Wafer FabLine 3 Marking:Circle = 1.1 mm DiameterLeft-Justified “e3” Pb-Free Symbol.First two characters of the manufacturing code.A = Assembly SiteI = Internal CodeXX = Serial Lot NumberLast four characters of the manufacturing code.Notes:1.See section 6.2 Pin Descriptions (Narrow-Body SOIC) for pinout description and section2. Ordering Guide for default outputstate.10. Revision HistoryRevision 1.4August 2020•Updated data sheet format.•Added new OPNs.•Updated Revision History format.Revision 1.3•Added references to AEC-Q100 qualified throughout.•Changed all 60747-5-2 references to 60747-5-5.•Updated Table 2.1 Ordering Guide1,2,3 on page 3.•Added table notes 1 and 2.•Removed references to moisture sensitivity levels.•Added Revision D ordering information.•Removed older revisions.•Updated Section 9.1 Top Marking (16-Pin Wide Body SOIC).Revision 1.2•Updated Timing Characteristics in Table 5.2 Electrical Characteristics on page 10 through Table 5.4 Electrical Characteristics1 on page 19.Revision 1.1•Numerous text edits.•Added table notes to Table 9.1 Top Marking Explanation on page 34 and Table 9.2 Top Marking Explanation on page 35.Revision 1.0•Updated features list.•Updated transient immunity.•Removed block diagram from front page.•Added chip graphics on front page.•Added Peak Eye Diagram jitter in Table 5.2 Electrical Characteristics on page 10 through Table 5.4 Electrical Characteristics1 on page 19.•Updated transient immunity•Moved Table 4.1 Si84xx Logic Operation Table on page 6 to Section 4. Device Operation.•Added Section 4. Device Operation.•Added Section 4.4 Fail-Safe Operating Mode.•Moved Section 4.5 Typical Performance Characteristics.•Deleted RF Radiated Emissions section.•Deleted RF Magnetic and Common-Mode Transient Immunity section.•Updated MSL rating to MSL2A.Revision 0.1•Initial release.Table of Contents1. Features List (2)2. Ordering Guide (3)3. Functional Description (4)3.1 Theory of Operation (4)3.2 Eye Diagram (5)4. Device Operation (6)4.1 Device Startup (6)4.2 Under Voltage Lockout (7)4.3 Layout Recommendations (7)4.3.1 Supply Bypass (7)4.3.2 Pin Connections (7)4.3.3 Output Pin Termination (7)4.4 Fail-Safe Operating Mode (7)4.5 Typical Performance Characteristics (8)5. Electrical Specifications (10)6. Pin Descriptions (27)6.1 Pin Descriptions (Wide-Body SOIC) (27)6.2 Pin Descriptions (Narrow-Body SOIC) (28)7. Package Outlines (29)7.1 Package Outline (16-Pin Wide Body SOIC) (29)7.2 Package Outline (8-Pin Narrow Body SOIC) (30)8. Land Patterns (32)8.1 Land Pattern (16-Pin Wide-Body SOIC) (32)8.2 Land Pattern (8-Pin Narrow Body SOIC) (33)9. Top Markings (34)9.1 Top Marking (16-Pin Wide Body SOIC) (34)9.2 Top Marking (8-Pin Narrow-Body SOIC) (35)10. Revision History (36)Copyright © 2021 Skyworks Solutions, Inc. All Rights Reserved.Information in this document is provided in connection with Skyworks Solutions, Inc. (“Skyworks”) products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks’ Terms and Conditions of Sale.THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of Skyworks’ published specifications or parameters.Skyworks, the Skyworks symbol, Sky5®, SkyOne ®, SkyBlue™, Skyworks Green™, Clockbuilder ®, DSPLL ®, ISOmodem ®, ProSLIC ®, and SiPHY ® are trademarks or registered trademarks of Skyworks Solutions, Inc. or its subsidiaries in the United States and other countries. Third-party brands and names are for identification purposes only and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at , are incorporated by reference.PortfolioQuality/qualitySupport & Resources/support。

常用无线射频芯片

常用无线射频芯片

常用无线射频芯片目录CC1000PWR 超低功率射频收发器CC1010PAGR 射频收发器和微控制器CC1020RSSR 射频收发器CC1021RSSR 射频收发器CC1050PWR 超低功率射频发送器CC1070RSQR 射频发送器CC1100RTKR 多通道射频收发器CC1101RTKR 低于1GHz射频收发器CC1110F16RSPR 射频收发片上系统CC1110F32RSPR 射频收发片上系统CC1110F8RSPR 射频收发片上系统CC1111F16RSPR 射频收发片上系统CC1111F32RSPR 射频收发片上系统CC1111F8RSPR 射频收发片上系统CC1150RSTR 多通道射频发送器CC2400RSUR 多通道射频发送器CC2420RTCR2.4GHz射频收发器CC2420ZRTCR2.4GHz射频收发器CC2430F128RTCR ZigBee?芯片CC2430ZF128RTCR ZigBee?芯片CC2431RTCR 无线传感器网络芯片CC2431ZRTCR 无线传感器网络芯片CC2480A1RTCR2.4GHzZigBee处理器CC2500RTKR2.4GHz射频收发器?CC2510F16RSPR2.4GHz无线电收发器CC2510F32RSPR2.4GHz无线电收发器CC2510F8RSPR2.4GHz无线电收发器CC2511F16RSPR2.4GHz无线电收发器CC2511F32RSPR2.4GHz无线电收发器CC2511F8RSPR2.4GHz无线电收发器CC2520RHDR 射频收发器CC2530F128RHAR 射频收发器CC2530F256RHAR 射频收发器CC2530F64RHAR 射频收发器CC2550RSTR2.4GHz发送器CC2590RGVR2.4GHz射频前端芯片CC2591RGVR2.4GHz射频前端芯片CCZACC06A1RTCR2.4GHZ ZigBee芯片TRF7900APWR27MHz双路接收器TRF6900APT 射频收发器TRF6901PTG4 射频收发器TRF6901PTRG4 射频收发器TRF6903PTG4 射频收发器TRF6903PTRG4 射频收发器ADF7020-1BCPZ-RL7 射频收发IC ADF7020BCPZ-RL7 射频收发ICADF7021BCPZ-RL7ISM无线收发IC ADF7021-NBCPZ-RL7ISM无线收发IC ADF7025BCPZ-RL7 射频收发ICADF7010BRUZ-REEL7ISM无线发射IC ADF7011BRUZ-RL7ISM无线发射IC ADF7012BRUZ-RL7UHF无线发射IC ADF7901BRUZ-RL7ISM无线发射ICA7121(A71C21AQF)2.4GHz射频收发器A7122(A71C22AQF)2.4GHz射频收发器A7102(A71C02AQF) 射频收发ICA7103(A71C03AUF) 射频收发ICA7201(A72C01AUF) 射频接收ICA7202(A72C02AUF) 射频接收ICA7302(A73C02AMF) 射频发射ICA7105(A71X05AQF)2.4GHz射频收发IC A7125(A71X25AQF)2.4GHz射频收发IC A7325(A73X25AQF)2.4GHz射频发射ICA7303A(A73C03AQF)FM发射芯片A7303A(A73C03AUF)FM发射芯片A7303B(A73C03BUF)FM发射芯片A7303B(A73C03BQF)FM发射芯片A7282(A72N82AQF)GPS接收芯片A7531B(A75C31BQF)GPS开关芯片A7532(A75C32AQF)GPS开关芯片A7533(A75X33AQF)GPS开关芯片A7533(A75X33BQF)GPS开关芯片AS3931 低功耗无线接收芯片AS3932BTSW 低功耗无线接收芯片AS3932BQFW 低功耗无线接收芯片AS3977BQFT FSK发射芯片AT86RF211DAI-R 射频收发ICAT86RF211SAHW-R 射频收发IC AT86RF212-ZU 射频收发ICAT86RF230-ZU 射频收发ICAT86RF231-ZU 射频收发ICATA2745M-TCQY射频发送IC ATA5428-PLQW宽带收发ICATR2406-PNQG2.4GHz射频收发IC T5750-6AQ 无线发射ICT5753-6AQ 无线发射ICT5754-6AQ 无线发射ICT7024-PGPM 前端收发器U2741B-NFB 无线发射ICAX5051 射频收发器ICAX5042 射频收发器ICAX5031 射频收发器ICAX50424 射频收发器ICAX6042 射频收发器ICCYRF6936-40LFXC 无线USB芯片CYRF7936-40LFXC 无线收发器芯片CYWUSB6932-28SEC 无线USB芯片CYWUSB6934-28SEC 无线USB芯片CYWUSB6934-48LFXC 无线USB芯片CYWUSB6935-28SEI 无线USB芯片CYWUSB6935-48LFI 无线USB芯片CYWUSB6935-48LFXC 无线USB芯片CYWUSB6935-48LFXI 无线USB芯片CYRF69103-40LFXC 无线射频芯片CYRF69213-40LFXC 无线射频芯片CYWUSB6953-48LFXC 无线USB芯片EM2420-RTR ZigBee?芯片EM260-RTR ZigBee?芯片EM250-RTR ZigBee?芯片EM351-RTR ZigBee?芯片EM357-RTR ZigBee?芯片PA5305 射频功率放大器PA2420 射频功率放大器PA2421 射频功率放大器PA2432 射频功率放大器FM2422 射频前端模块FM2422U 射频前端模块FM2427 射频前端模块FM2429 射频前端模块FM2429U 射频前端模块FM2446 射频前端模块FM7705 射频前端模块FM7707 射频前端模块MC13190FCR2 射频收发IC MC13191FCR2 射频收发IC MC13192FCR2 射频收发IC MC13193FCR2 射频收发IC MC13201FCR2 射频收发IC MC13202FCR2 射频收发IC MC13203FCR2 射频收发IC MC13211R2 射频收发ICMC13212R2 射频收发ICMC13213R2 射频收发ICMC13214R2 射频收发ICMC13224V802.15.4/ZigBee芯片TDA5200ASK接收器TDA5201ASK接收器TDA5210ASK/FSK接收器TDA5211ASK/FSK接收器TDA5212ASK/FSK接收器TDA5220ASK/FSK接收器TDA5221ASK/FSK接收器TDA7200ASK/FSK接收器TDA7210ASK/FSK接收器TDA5230ASK/FSK接收器TDA5231ASK/FSK接收器TDK5100ASK/FSK发射器TDK5100F ASK/FSK发射器TDK5101ASK/FSK发射器TDK5101F ASK/FSK发射器TDK5102ASK/FSK发射器TDK5103A ASK发射器TDK5110ASK/FSK发射器TDK5110F ASK/FSK发射器TDK5111ASK/FSK发射器TDK5111F ASK/FSK发射器TDA7116F ASK/FSK发射器PMA7105ASK/FSK发射器PMA7106ASK/FSK发射器PMA7107ASK/FSK发射器PMA7110ASK/FSK发射器TDA5250ASK/FSK收发器TDA5251ASK/FSK收发器TDA5252ASK/FSK收发器TDA5255ASK/FSK收发器MAX1470EUI+T 无线接收IC MAX1471ATJ+T 无线接收IC MAX1472AKA+T 无线发射IC MAX1473EUI+T 无线接收IC MAX1479ATE+T 无线发射IC MAX7030HATJ+T 无线收发IC MAX7030LATJ+T 无线收发IC MAX7031LATJ+T 无线收发IC MAX7031MATJ50+T 无线收发IC MAX7032ATJ+T 无线收发ICMAX7033ETJ+T 无线接收IC MAX7044AKA+T 无线发射IC MAX7058ATG+T 无线发射IC MLX71121ELQ 射频接收IC MLX71122ELQ 射频接收IC TH71071EDC 射频接收IC TH71072EDC 射频接收IC TH7107EFC 射频接收ICTH71081EDC 射频接收IC TH71082EDC 射频接收IC TH7108EFC 射频接收ICTH71101ENE 射频接收IC TH71102ENE 射频接收IC TH71111ENE 射频接收IC TH71112ENE 射频接收IC TH71221ELQ 射频接收IC TH7122ENE 射频收发ICTH72001KDC 射频发射IC TH72002KDC 射频发射IC TH72005KLD 射频发射IC TH72006KLD 射频发射IC TH72011KDC 射频发射ICTH72012KDC 射频发射IC TH72015KLD 射频发射IC TH72016KLD 射频发射IC TH72031KDC 射频发射IC TH72032KDC 射频发射IC TH72035KLD 射频发射IC TH72036KLD 射频发射IC MICRF102BM 无线发射IC MICRF112YMM 无线发射IC MICRF113YM6 无线发射IC MICRF302YML 射频编码器MICRF405YML 射频发射IC MICRF505BML 射频收发IC MICRF506BML 射频收发IC MICRF002YM射频接收器MICRF005YM 无线接收IC MICRF007BM UHF接收器MICRF008BM 无线接收IC MICRF009BM UHF接收IC MICRF010BM UHF接收IC MICRF011BM 射频IC MICRF211AYQS 射频接收器MRF24J40-I/ML ZigBee芯片MRF24J40T-I/ML ZigBee芯片MCP2030-I/P 免钥登录芯片MCP2030-I/SL 免钥登录芯片MCP2030-I/ST 免钥登录芯片MCP2030T-I/SL 免钥登录芯片MCP2030T-I/ST 免钥登录芯片nRF2401AG2.4GHz收发器IC nRF24AP12.4GHz收发器IC nRF24E1G2.4GHz收发器IC nRF24E2G2.4GHz发射器IC nRF24L01+2.4GHz收发器IC nRF24LE12.4GHz收发器IC nRF24LU12.4GHz收发器IC nRF24Z12.4GHz收发器IC NRF905430928MHz收发器NRF9E5430-928MHz收发器MFRC50001T/0FE,112 阅读器IC MFRC53001T/0FE,112 阅读器IC MFRC53101T/0FE,112 阅读器IC MFRC52301HN1 阅读器ICPN5110A0HN1/C2 收发器ICPN5120A0HN1/C1 收发器ICPN5310A3HN/C203NFC控制器IC PN1000GPS RF接收ICRX3400 射频接收ICRX3930 射频接收ICRX3140 射频接收ICRX3310A 射频接收ICRX3361 射频接收ICRX3408 射频接收ICPT4301 射频接收ICPT4316 射频接收ICPT4450 射频发射ICTX4915 射频发射ICTX4930 射频发射ICPA2460 功率放大器ICPA2464 功率放大器ICFS8107E 锁相环ICFS8108 锁相环ICFS8160 锁相环ICFS8170 锁相环ICFS8308 锁相环ICMG2400-F48ZigBee单芯片MG2450-B72ZigBee单芯片MG2455-F48ZigBee单芯片AP1092 AP1098 AP1110 AP1091 AP1093功率放大器IC 功率放大器IC 功率放大器IC 功率放大器IC 功率放大器ICAP1280PA/LNA功率放大器AP1213 射频前端模块AP1290 AP1291功率放大器IC 功率放大器ICAP1294 功率放大器ICAP1045 AP1046功率放大器IC 功率放大器ICAP2085 功率放大器IC AP2010C 功率放大器ICAP3011 AP3013 AP3014 AP3015 AP3211功率放大器IC 功率放大器IC 功率放大器IC 功率放大器IC 功率放大器ICSX1211I084TRT 单芯片收发器SX1441I077TRLF 系统蓝牙芯片XE1203FI063TRLF 射频收发芯片XE1205I074TRLF 射频收发芯片XE1283I076TRLF 射频收发芯片XM1203FC433XE1 射频收发芯片XM1203FC868XE1 射频收发芯片XM1203FC915XE1 射频收发芯片SX1223I073TRT 射频发射芯片SI3400-E1-GM 以太网电源ICSI3401-E1-GM 以太网电源ICSI3460-D01-GM 以太网电源ICSI4020-I1-FT 射频发射ICSI4021-A1-FT 射频发射ICSI4022-A1-FT 射频发射ICSI4030-A0-FM 射频发射ICSI4031-A0-FM 射频发射ICSI4032-V2-FM 射频发射ICSi4230-A0-FM(IA4230) 无线发射IC Si4231-A0-FM(IA4231) 无线发射IC Si4232-A0-FM(IA4232) 无线发射IC Si4320-J1-FT 无线接收ICSi4322-A1-FT 无线接收ICSi4330-V2-FM(IA4330) 无线接收IC SI4420-D1-FT 射频收发ICSI4421-A1-FT(IA4421) 无线收发IC SI4430-A0-FM(IA4430) 无线收发IC SI4431-A0-FM(IA4431) 无线收发ICSS4432-V2-FM(IA4432) 无线收发IC TM1001 功率放大器ICTT1006 功率放大器ICTM1008 射频晶体管TM3001 射频开关ICTM3002 射频开关ICTT4001FM发射ICUU2453 无线网络ICUZ2400ZigBee?芯片UP22062.4GHz功率放大器UP22682.4GHz功率放大器UA2707 射频信号放大器UA2709 射频信号放大器UA2711 射频信号放大器UA2712 射频信号放大器UA2715 射频信号放大器UA2716 射频信号放大器UA2725 射频信号放大器UA2731 射频信号放大器UA2732 射频信号放大器W2805 无线视频ICW2801 无线音频IC。

max1452的编程及应用

max1452的编程及应用

max1452的编程及应用标签:MAX1452编程校准变送器信号调理目前对MAX1452的应用和开发有一个阶段了。

总体感觉这个芯片还不错,当然优点和缺点都很突出。

我先讲讲有点,这些都是我个人的理解,不一定全对。

优点:1.单芯片集成放大器,FLASH存储器,数字接口,另外更是集成了一个自由运算放大器。

集成度很高。

2.单线uart接口,校准操作很方便。

3.自由放大器可以做两线4~20ma的V/I。

很灵活,也可以作为后级放大器再放大信号。

4.具有内部温度传感器,也就是所谓的温度索引指针,这个是个温度传感器驱动的一个查表指针。

可以查找校准数据。

5.16位可编程的校准精细度。

6.具有轨到轨的输出能力。

7,放大,校准,温度补偿功能。

150us的快速阶跃响应。

缺点:1.pga放大级增益有些小,最适合的传感器就是扩散硅传感器。

2.内部集成的并非手册所言的eeprom,而是FLASH,这个在操作内部flash的时候能切身体会到不方便的,不明白MAXIM这么大的半导体公司竟然也在乱讲概念。

3.数据接口指令混乱,刚开始看,你非得让他把你绕死,而且每个命令都是半字节,如果要操作编程,你不得不把一个字节拆开在合并,很麻烦,这点不想TI类似的芯片PGA309/PGA308,协议看起来很简单,操作很容易。

4.内部参数一致性比较差。

温度传感器不能指定为外部温度传感器,只能使用MAX1452自身的温度,这一点不好,会出现传感器和1452不同温度场的状态。

5.芯片温漂很大,如果不温补基本不能用。

6.内部没有基准源,所有的参考都是以电源电压为参考,所以外围电路成本较高。

7.技术支持很差,我能打5~6次电话到美信的技术支持中心,接待我的工程师甚至不清楚1452的功能,简单记录后说回复,但是到现在没有恢复过。

8.EMC能力较弱。

这个是相比较而言,我们用过TI的pga308和pga309比较之后得出的结论。

典型应用电路:内部flash的地址分布:通过内部flash的分布可以看出他的flash的分布也很乱,前面的页是操作擦除的最小单位,也就是说你要修改呢一个字节,必须把这个页全部读出来在内存中修改好后在写进去。

可编程快速充电管理芯片MAX712MAX713及其应用概要

可编程快速充电管理芯片MAX712MAX713及其应用概要

可编程快速充电管理芯片MAX712/MAX713及其应用1.引言MAX712/MAX713系列是MAXIM公司生产的快速充电管理芯片,MAX712/MAX713芯片适合1~16节镍氢电池或镍镉电池的充电需要,同时根据不同的应用提供了PlasticDIP、NarrowSO和DICE几种可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。

MAX712/MAX713可通过简单的管脚电压配置进行编程,实现对充电电池支数和最大充电时间的控制,内部集成的电压梯度检测器、温度比较器、定时器等控制1. 引言MAX712/ MAX713系列是MAXIM公司生产的快速充电管理芯片,MAX712/ MAX713芯片适合1~16节镍氢电池或镍镉电池的充电需要,同时根据不同的应用提供了Plastic DIP、Narrow SO和DICE几种可选封装形式,利用该芯片设计的充电器外围电路及其简单,非常适合便携式电子产品的紧凑设计需要。

MAX712/ MAX713可通过简单的管脚电压配置进行编程,实现对充电电池支数和最大充电时间的控制,内部集成的电压梯度检测器、温度比较器、定时器等控制电路,根据电压梯度、电池温度或充电时间的检测结果,自动控制充电状态,从涓流充电转到快速充电(低温时)或从快速充电转到涓流充电,以确保电池不受损害。

充电状态识别可由输出的LED指示灯或与主控器接口实现,具有自动从快速充电转为涓流充电、低功耗睡眠等特性。

快速充电速率从C/4 to 4C可设定,涓流充电速率为C/16。

2. 功能特性MAX712/ MAX713的特性相似,差别在于MAX712在检测到dv/dt变为零时终止快速充电模式,而MAX713是在检测到dv/dt变为负时终止快速充电模式;MAX712/ MAX713都能充电1~16节,具有线性或开关模式功率控制,对于线性模式,在蓄电池充电时能同时给蓄电池的负载供电;具有根据电压梯度、温度或时间三种方式截止快速充电,并自动从快速充电转到涓流充电;当不充电时在蓄电池上的最大漏电流仅5mA。

信号线性转换芯片MAX1452(中文)

信号线性转换芯片MAX1452(中文)
Junction Temperature ......................................................+150°C Storage Temperature.........................................-65°C to +150°C Lead Temperature (soldering, 10s) ................................ +300°C
MAX1452
低价位精密传感器 信号调理器
ABSOLUTE MAXIMUM RATINGS
Supply Voltage, VDD to VSS.........................................-0.3V, +6V All Other Pins ...................................(VSS - 0.3V) to (VDD + 0.3V) Short-Circuit Duration, FSOTC, OUT, BDR,
91
102
143
157
0.02
V
0.100 0.20
V
4.87
V
0.1

1.05 1.20
V/V
2 _______________________________________________________________________________________
MAX1452
低价位精密传感器 信号调理器
Operating Temperature: MAX1452CAE/MAX1452C/D ...............................0°C to +70°C MAX1452EAE ...................................................-40°C to +85°C MAX1452AAE .................................................-40°C to +125°C

助听器的介绍和设计要点说明

助听器的介绍和设计要点说明

设计指南4691助听器介绍及其设计要点John DiCristina摘要:这篇应用笔记将介绍助听器的类型,包括耳背式(BTE)、耳内式(ITE)、耳道式(ITC)和完全耳道式(CIC),并简单总结助听器所用的模拟和数字技术,讨论音频处理的重要性,以及关键电子元器件的功能和选型。

概述电子助听器是置于耳内或耳附近用以提高听觉障碍患者听力的小型设备。

助听器的基本单元包括麦克风、信号调理电路、接收器(也称为扬声器)、以及电池。

麦克风将声信号转换成电信号,信号调理单元则可简可繁,简单的仅将音频信号按固定比例放大,复杂的则需利用数字信号处理器进行均衡。

扬声器将电信号转换成声信号,而电池则为电子元器件提供电源。

类型目前市场上主要有4种类型的助听器,体积从大到小依次是包括耳背式(BTE)、耳内式(ITE)、耳道式(ITC)和完全耳道式(CIC)。

BTE位于耳后,用一个软管连接耳内的耳模发声。

由BTE还发展出来一种开放式(OTE)助听器,耳模被一个小耳塞代替,给人耳一种更开放的感受。

其它的变型还包括用导线替代软管,并将扬声器从耳后移到耳内。

ITE将助听器放入外耳,和耳模成为一体,这种助听器几乎将外耳填满,看起来是一大块。

ITC将助听器填入耳道内,减小了占用外耳的空间,但还是容易被看见。

CIC是各类型中最小的,助听器被完全置入耳道内,从外面几乎看不见。

耳背式(BTE)、耳内式(ITE)、耳道式(ITC)和完全耳道式(CIC)助听器,Starkey Laboratories, Inc.授权照片。

技术演进助听器在技术上基本分为两类,模拟助听器和数字助听器。

首先诞生的是模拟助听器,仅在模拟域处理电声信号,而最近才诞生的数字助听器则在数字域处理电声信号。

最早的模拟助听器既放大语音也放大噪音,而且需要先测试患者对特定频率的敏感程度后专门定制。

后来的一些模拟助听器可以在试戴过程中编程,另一些助听器佩戴者可利用一个按键自己选择预设的几种不同频响。

数字对讲机核心技术大揭秘

数字对讲机核心技术大揭秘

拓朋数字对讲机是采用数字技术进行设计的数字对讲机。

数字对讲机则是将语音信号数字化要以数字编码形式传播,也就是说对讲机传输频率上的全部调制均为数字。

只有直接采用数字信号处理器的对讲机才是真正意义上的数字对讲机,而采用数字控制信号的对讲机。

如集群系统的对讲机则不属于数字对讲机。

数字对讲机有许多优点,首先是可以更好地利用频谱资源,与蜂窝数字技术相似数字对讲机可以在一条指定的信道上如25KHZ装载更多用户,提高频谱利用率,这是一种解决频率拥挤的解决方案。

具有长远的意义。

其次是提高话音质量。

由于数字通信技术拥有系统内错误校正功能和模拟对讲机相比可以在一个范围更广泛的信号环境中实现更好的语音音频质量,其接收到的音频噪音会更少些声音更清晰。

最后一点是提高和改进语音和数据集成,改变控制信号随通讯距离增加而降低的弱点,与类似集成模拟语音及数据系统相比,数字对讲机可以提供更好的数据处理及界面功能,从而使更多的数据应用可以被集成到同一个双向无线通讯基站结构中对语音和数据服务集成更完善、更加方便。

这三大特点使数字对讲机成为未来对讲机技术发展的必然趋势。

七十年代摩托罗拉率先将数字技术引入对讲机系统设计中1975年生产出数字语音加密的DVP对讲机。

1980年研制了一套数字数据通信系统,在1991年的沙漠风暴行动中使用了35000台数字对讲机。

很显然随着无线电通信技术的发展人们对无线通信质量的要求的提高以及频谱资源的日益高涨。

数字对讲机必将有着巨大的需求市场。

但不管数字对讲机有多广泛的应用,在对讲机技术上已经十分成熟的模拟技术,在很长一段时间内还将继续为对讲机的设计服务,向体积小、成本低、功能强、更商品化的方向发展,以满足通讯用户的不同需求。

数字对讲机在短时间内不可能代替模拟对讲机这二种对讲机将发挥各自特点共同发展。

到2010年为止许多厂家推出了自己定义通信协议的数字对讲机,但数字对讲机公开的标准是dPMR和DMR两个协议。

ad9142原理

ad9142原理

ad9142原理
AD9142 是一款高性能、低功耗的数字模拟转换器芯片。

它采用了先进的CMOS工艺,能够将模拟信号转换为数字信号,并提供高精度和高速的数据转换。

AD9142广泛应用于无线通信、雷达系统、医疗设备等领域。

AD9142的工作原理是将模拟输入信号经过采样和量化处理,然后通过数字信号处理算法将其转换为数字输出信号。

采样率是指每秒钟对模拟信号进行采样的次数,而位宽则决定了数字信号可以表示的精度。

AD9142具有较高的采样率和位宽,能够实现更精确的信号转换。

AD9142还具有低功耗的特点,这使得它在便携设备和低功耗应用中得到广泛应用。

同时,它还具有较低的时钟抖动和噪音,能够提供更高的信号质量和动态范围。

此外,AD9142还支持多种数字接口,方便与其他设备进行通信和数据传输。

AD9142是一款性能优秀、功能全面的数字模拟转换器芯片。

它具有高精度、高速、低功耗等特点,广泛应用于无线通信、雷达系统、医疗设备等领域。

通过将模拟信号转换为数字信号,AD9142能够提供更精确的数据处理和传输,为各种应用提供了可靠的解决方案。

MAXIM MAX1472 数据手册

MAXIM MAX1472 数据手册

General DescriptionThe MAX1472 is a crystal-referenced phase-locked loop (PLL) VHF/UHF transmitter designed to transmit OOK/ASK data in the 300MHz to 450MHz frequency range. The MAX1472 supports data rates up to 100kbps, and adjustable output power to more than +10dBm into a 50Ωload. The crystal-based architec-ture of the MAX1472 eliminates many of the common problems with SAW transmitters by providing greater modulation depth, faster frequency settling, higher tolerance of the transmit frequency, and reduced temperature dependence. Combined, these improve-ments enable better overall receiver performance when using a superheterodyne receiver such as the MAX1470or MAX1473.The MAX1472 is available in a 3mm x 3mm 8-pin SOT23 package and is specified for the automotive (-40°C to +125°C) temperature range. An evaluation kit is available. Contact Maxim Integrated Products for more information.ApplicationsRemote Keyless Entry RF Remote Controls Tire Pressure Monitoring Security Systems Radio-Controlled Toys Wireless Game Consoles Wireless Computer Peripherals Wireless SensorsFeatureso 2.1V to 3.6V Single-Supply Operation o Low 5.3mA Operating Supply Current*o Supports ASK with 90dB Modulation Depth o Output Power Adjustable to More than +10dBm o Uses Small Low-Cost Crystalo Small 3mm 3mm 8-Pin SOT23 Package o Fast-On Oscillator 220µs Startup TimeMAX1472300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter________________________________________________________________Maxim Integrated Products1Pin ConfigurationOrdering InformationTypical Application CircuitFor pricing, delivery, and ordering information,please contact Maxim Direct at 1-888-629-4642,or visit Maxim’s website at .+Denotes a lead(Pb)-free/RoHS-compliant package.T = Tape and reel.*At 50% duty cycle (315MHz, 2.7V supply, +10dBm output power)M A X 1472300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter 2_______________________________________________________________________________________ABSOLUTE MAXIMUM RATINGSStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.V DD to GND ..........................................................-0.3V to +4.0V All Other Pins to GND ................................-0.3V to (V DD + 0.3V)Continuous Power Dissipation (T A = +70°C)8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mWOperating Temperature Range .........................-40°C to +125°C Storage Temperature Range.............................-60°C to +150°C Lead Temperature (soldering, 10s).................................+300°C Soldering Temperature (reflow).......................................+260°CELECTRICAL CHARACTERISTICS(Typical Application Circuit , output power is referenced to 50Ω, V DD = 2.1V to 3.6V, V ENABLE = V DD , T A = -40°C to +125°C, unless otherwise noted. Typical values are at V DD = 2.7V, T A = +25°C, unless otherwise noted.) (Note 1)MAX1472300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter_______________________________________________________________________________________3ELECTRICAL CHARACTERISTICS (continued)(Typical Application Circuit , output power is referenced to 50Ω, V DD = 2.1V to 3.6V, V ENABLE = V DD , T A = -40°C to +125°C, unless otherwise noted. Typical values are at V DD = 2.7V, T A = +25°C, unless otherwise noted.) (Note 1)Note 3:Guaranteed by design and characterization, not production tested.Note 4:Generally limited by PC board layout.Note 5:Output power can be adjusted with external resistor.Note 6:Guaranteed by design and characterization at f RF = 315MHz.Note 7:V ENABLE < V IL to V ENABLE > V IH . f OFFSET is defined as the frequency deviation from the desired carrier frequency.Note 8:V ENABLE > V IH , V DATA > V IH , Efficiency = P OUT /(V DD x I DD ).Note 9:V ENABLE > V IH , DATA toggled from V IL to V IH , 10kHz, 50% duty cycle, Efficiency = P OUT /(V DD x I DD ).M A X 1472300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter 4_______________________________________________________________________________________Typical Operating Characteristics(Typical Application Circuit , V DD = 2.7V, T A = +25°C, unless otherwise noted.)SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )3.22.4 2.867891011121352.03.6SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )3.22.82.41.11.21.31.41.51.61.71.81.92.03.6SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )3.22.82.478910111213652.03.6SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (m A )3.22.82.41.21.41.61.82.02.22.03.6OUTPUT POWER vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)O U T P U T P O W E R (d B m )3.22.42.86789101112131452.03.6OUTPUT POWER vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)O U T P U T P O W E R (d B m )3.22.42.8678910111213142.03.6REFERENCE SPUR MAGNITUDEvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)R E F E R E N C ES P U R (d B c )3.22.82.4-83-81-79-77-75-73-71-69-67-65-852.03.6FREQUENCY STABILITY vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)O F F S E T F R E Q U E N C Y (p p m )3.22.82.4-3-2-1012-42.03.6TRANSMIT POWER EFFICIENCYvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)E F F I C I E N C Y (%)3.22.82.4303540455055252.03.6MAX1472300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter_______________________________________________________________________________________5TRANSMIT POWER EFFICIENCYvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)E F F I C I E N C Y (%)3.22.82.43035404550252.03.6TRANSMIT POWER EFFICIENCYvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)E F F I C I E N C Y (%)3.22.82.4202530354045502.0 3.6TRANSMIT POWER EFFICIENCYvs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)E F F I C I E N C Y (%)3.22.42.82530354045202.03.6PHASE NOISE vs. OFFSET FREQUENCYM A X 1472 t o c 13f OFFSET (Hz)P H A S E N O I S E (d B c /H z )1M100k10k 1k100-130-120-110-100-90-80-70-60-50-40-1401010M SUPPLY CURRENT AND OUTPUT POWERvs. EXTERNAL RESISTOREXTERNAL RESISTOR (Ω)O U T P U T P O W E R (d B m )1001012468101200.11000246810120SUPPLY CURRENT (mA)SUPPLY CURRENT vs. OUTPUT POWEROUTPUT POWER (dBm)S U P P L Y C U R R E N T (m A )86243456789102010FREQUENCY SETTLING TIMEMAX1472 toc1625kHz/divENABLE TRANSITION FROM LOW TO HIGHENABLE TRANSITION FROM LOW TO HIGH2.5kHz/divSTART: 0sSTART: 0s1ms1msTypical Operating Characteristics (continued)(Typical Application Circuit , V DD = 2.7V, T A = +25°C, unless otherwise noted.)AM DEMODULATION OF PA OUTPUTDATA RATE = 100kHzSTART: 0sSTOP: 20µs15%/divM A X 1472300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter 6_______________________________________________________________________________________Detailed DescriptionThe MAX1472 is a highly integrated OOK/ASK transmit-ter operating over the 300MHz to 450MHz frequency range. The IC includes a complete PLL and a highly efficient PA. The device can also be easily placed into a 5nA low-power shutdown mode.Shutdown ModeThe ENABLE pin is internally pulled down with a 15µA current source. If the pin is left unconnected or pulled low, the MAX1472 goes into shutdown mode, where the supply current drops to less than 5nA. When ENABLE is high, the IC is enabled and is ready for transmission after 220µs (frequency settles to within 50kHz).The 220µs turn-on time of the MAX1472 is mostly domi-nated by the crystal oscillator startup time. Once the oscillator is running, the 1.6MHz PLL loop bandwidth allows fast-frequency recovery during power-amplifier toggling.Phase-Locked LoopThe PLL block contains a phase detector, charge pump, integrated loop filter, VCO, 32X clock divider,and crystal oscillator. This PLL requires no external components, other than a crystal. The relationship between the carrier and crystal frequency is given by:f XTAL = f RF / 32The lock-detect circuit prevents the PA from transmit-ting until the PLL is locked. In addition, the device shuts down the PA if the reference frequency is lost.Power Amplifier (PA)The PA of the MAX1472 is a high-efficiency, open-drain,switch-mode amplifier. With proper output matching net-work, the PA can drive a wide range of impedances,including the small-loop PC board trace antenna and any 50Ωantenna. The output-matching network for a 50Ωantenna is shown in the Typical Application Circuit .The output-matching network suppresses the carrier har-monics and transforms the antenna impedance to an optimal impedance at PAOUT (pin 4), which is about 250Ω.When the output matching network is properly tuned,the PA transmits power with high efficiency. The Typical Application Circuit delivers 10.3dBm at 2.7V supply with 9.1mA of supply current. Thus, the overall efficiency is 44%. The efficiency of the PA itself is more than 52%.Applications InformationOutput Power AdjustmentIt is possible to adjust the output power down to -10dBm with the addition of a resistor. The addition of the power-adjust resistor also reduces power con-sumption. See the Supply Current and Output Power vs. E xternal Resistor and Supply Current vs. Output Power graphs in the Typical Operating Characteristics section. It is imperative to add both a low-frequency and a high-frequency decoupling capacitor as shown in the Typical Application Circuit .MAX1472300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter_______________________________________________________________________________________7Crystal OscillatorThe crystal oscillator in the MAX1472 is designed to present a capacitance of approximately 3.1pF between the XTAL1 and XTAL2 pins. If a crystal designed to oscillate with a different load capacitance is used, the crystal is pulled away from its intended operating fre-quency, thus introducing an error in the reference fre-quency. Crystals designed to operate with higher differential load capacitance always pull the reference frequency higher. For example, a 9.84375MHz crystal designed to operate with a 10pF load capacitance oscillates at 9.84688MHz with the MAX1472, causing the transmitter to be transmitting at 315.1MHz rather than 315.0MHz, an error of about 100kHz, or 320ppm.In actuality, the oscillator pulls every crystal. The crys-tal’s natural frequency is really below its specified fre-quency, but when loaded with the specified load capacitance, the crystal is pulled and oscillates at its specified frequency. This pulling is already accounted for in the specification of the load capacitance.Additional pulling can be calculated if the electrical parameters of the crystal are known. The frequency pulling is given by:where:f p is the amount the crystal frequency is pulled in ppm.C m is the motional capacitance of the crystal.C case is the case capacitance.C spec is the specified load capacitance.C load is the actual load capacitance.When the crystal is loaded as specified, i.e., C load =C spec , the frequency pulling equals zero.Output Matching to 50ΩWhen matched to a 50Ωsystem, the MAX1472 PA is capable of delivering more than +10dBm of output power at V DD = 2.7V. The output of the PA is an open-drain transistor that requires external impedance matching and pullup inductance for proper biasing.The pullup inductance from PA to V DD serves three main purposes: It resonates the capacitance of the PA output, provides biasing for the PA, and becomes a high-frequency choke to reduce the RF energy cou-pling into V DD . The recommended output-matching net-work topology is shown in the Typical Application Circuit . The matching network transforms the 50Ωload to a higher impedance at the output of the PA in addi-tion to forming a bandpass filter that provides attenua-tion for the higher order harmonics.Output Matching to PC Board LoopAntennaIn most applications, the MAX1472 PA output has to be impedance matched to a small-loop antenna. The antenna is usually fabricated out of a copper trace on a PC board in a rectangular, circular, or square pattern.The antenna has an impedance that consists of a lossy component and a radiative component. To achieve high radiating efficiency, the radiative component should be as high as possible, while minimizing the lossy component. In addition, the loop antenna has an inherent loop inductance associated with it (assuming the antenna is terminated to ground). For example, in a typical application, the radiative impedance is less than 0.5Ω, the lossy impedance is less than 0.7Ω, and the inductance is approximately 50nH to 100nH.The objective of the matching network is to match the PA output to the small loop antenna. The matching components thus transform the low radiative and resis-tive parts of the antenna into the much higher value of the PA output, which gives higher efficiency. The low radiative and lossy components of the small loop anten-na result in a higher Q matching network than the 50Ωnetwork; thus, the harmonics are lower.M A X 1472Layout ConsiderationsA properly designed PC board is an essential part of any RF/microwave circuit. On the PA output, use con-trolled-impedance lines and keep them as short as possible to minimize losses and radiation. At high fre-quencies, trace lengths that are on the order of λ/10 or longer can act as antennas.Keeping the traces short also reduces parasitic induc-tance. Generally, 1in of PC board trace adds about 20nH of parasitic inductance. The parasitic inductance can have a dramatic effect on the effective inductance.For example, a 0.5in trace connecting a 100nH induc-tor adds an extra 10nH of inductance, or 10%.To reduce the parasitic inductance, use wider traces and a solid ground or power plane below the signal traces. Using a solid ground plane can reduce the par-asitic inductance from approximately 20nH/in to 7nH/in.Also, use low-inductance connections to ground on all GND pins, and place decoupling capacitors close to all V DD connections.300MHz-to-450MHz Low-Power, Crystal-Based ASK Transmitter 8_______________________________________________________________________________________Chip InformationPROCESS: CMOSPackage InformationFor the latest package outline information and land patterns,go to /packages . Note that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.MAX1472300MHz-to-450MHz Low-Power, Crystal-Based ASK TransmitterMaxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 _____________________9©2010 Maxim Integrated ProductsMaxim is a registered trademark of Maxim Integrated Products, Inc.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Evaluates: MAX1472
DESIGNATION C11, C12
C14, C15
JU1, JU4 JU1
JU2, JU3 L1 (315MHz) L1 (433MHz) L3 (315MHz) L3 (433MHz)
R1
QTY
DESCRIPTION
220pF ±5%, 50V ceramic 2 capacitors (0603)
Johnson 142-0701-201
BAT1 Battery C1 (315MHz)
1 Battery holder MPD BA2032
1
Coin-cell battery Panasonic BR2032
15pF ±5%, 50V ceramic 1 capacitor (0603)
Murata GRM1885C1H150J
19-2907; Rev 1; 11/03
MAX1472 Evaluation Kit
Evaluates: MAX1472
General Description
The MAX1472 evaluation kit (EV kit) allows for a detailed evaluation of the MAX1472 ASK transmitter. It enables testing of the device’s RF performance and requires no additional support circuitry. The RF output uses a 50Ω matching network and an SMA connector for convenient connection to test equipment. A reversepolarity SMA is also included to connect to a 1/4 wave whip antenna. The EV kit can also directly interface to the user’s embedded design for easy data encoding.
For easy implementation into the customer’s design, the MAX1472 EV kit also features a proven PC board layout, which can be easily duplicated for quicker time-tomarket. The EV kit Gerber files are available for download at .
FAX 847-639-1469 941-561-1025 852-2498 5908 814-238-0490
Quick Start
The following procedure allows for proper device evaluation.
Required Test Equipment • Regulated power supply capable of providing +3.0V • Spectrum analyzer such as the Agilent 8562E • Optional ammeter for measuring supply current • Power meter such as the Agilent EPM-441A
C1 (433MHz)
7pF ±5%, 50V ceramic 1 capacitor (0603)
Murata GRM1885C1H7R0J
Component List
DESIGNATION C2 (315MHz)
QTY
DESCRIPTION
22pF ±5%, 50V ceramic 1 capacitor (0603)
Murata GRM1885C1H221J
12pF ±5%, 50V ceramic 2 capacitors (0603)
Murata GRM1885C1H120J
2-pin headers 2 Digi-Key S1012-36-ND
or equivalent
3
Shunts Digi-Key S9000-ND or equivalent
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at .
MAX1472 Evaluation Kit
C6 (433MHz)
10pF ±5%, 50V ceramic 1 capacitor (0603)
Murata GRM1885C1H100J
0.47µF +80% - 20%, 16V ceramic
C7
1 capacitor (0603)
Murata GRM188F51C474Z
________________________________________________________________ Maxim Integrated Products 1
not installed
433MHz 1/4 wave whip antenna Antenna (433MHz) 0 Lynx ANT-433-CW-RH,
not installed
ANTENNA_OUT
SMA connector top mount,
1
not installed Digi-Key J500-ND
3-pin headers 2 Digi-Key S1012-36-ND
or equivalent
1 27nH ±5% inductor (0603) Coilcraft 0603CS-27NXJB
1 22nH ±5% inductor (0603) Coilcraft 0603CS-22NXJB
1 22nH ±5% inductor (0603) Coilcraft 0603CS-22NXJB
Connections and Setup This section provides a step-by-step guide to operating the EV kit and testing the device’s functionality. Do not turn on the DC power until all connections are made:
Murata GRM1885C1H220J
C2 (433MHz)
12pF ±5%, 50V ceramic 1 capacitor (0603)
Murata GRM1885C1H120J
C3, C10
0.01µF ±10%, 50V ceramic 2 capacitors (0603)
Murata GRM188R71H103KA01
1
15nH ±5% inductor (0603) Coilcraft 0603CS-15NXJB
1 5kΩ potentiometer BC Components SM4W502
Component List (continued)
DESIGNATION R2 R3 R4
REF_IN
QTY
DESCRIPTION
450MHz* o Fully Assembled and Tested o Can Operate as a Stand-Alone Transmitter with
Included Battery
*Requires component changes
Ordering Information
PART MAX1472EVKIT-315 MAX1472EVKIT-433
Crystal 9.84375 MHz
1
Hong Kong Crystal SSL9843750E03FAFZ800 or
Crystek 017000
Y1 (433MHz) —
Crystal 13.56MHz
1
Hong Kong Crystal SSM1356000E03FAFZ800 or
Crystek 017001
Features
o Proven PC Board Layout o Proven Components Parts List o Multiple Test Points Provided On-Board o Available in 315MHz or 433.92MHz Optimized
Versions o Adjustable Frequency Range from 300MHz to
1) Connect a DC supply set to +3.0V, through an ammeter, to the VDD and VSS terminals on the EV kit. Do not turn on the supply.
2) Connect the RF OUT SMA connector to the spectrum analyzer. Set the analyzer to a center frequency of 315MHz (or 433.92MHz) and a span of 1MHz.
680pF ±5%, 50V ceramic
C4
1 capacitor (0603)
Murata GRM1885C1H681J
C5, C16, C18, C19 0 Not installed
相关文档
最新文档