等腰三角形的性质导学案
等腰三角形的性质 导学案

等腰三角形的性质 导学案
日期: 第 页 姓名:
一、等腰三角形的性质
1、性质引入
已知:AB=AC ,点D 是BC 的中点,你还可以得到那些关于AD 的性质。
假如将“点D 是BC 的中点”换成AD ⊥BC ,得到那些关于AD 的性质
假如将“点D 是BC 的中点”换成AD 平分BAC ∠,得到那些关于AD 的性质
总结:三线合一: 、 、 三线合一。
请做出等腰三角形ABC 腰上的高BD 、CE 。
你能说出BD 、CE 的数量关系吗?
总结:等腰三角形的性质有:
B C
A C B
二、等腰直角三角形的性质
1、性质推导
已知:等腰Rt ABC ∆中,AD 是斜边上的高,
请说出图中相等的角:
相等的线段:
三、应用
1、已知:如图,△ABC 是等腰三角形,AB=AC ,∠1=∠2.求证:OA 平分∠BAC .
2、如图,在等腰直角△ABC 中,AD 为斜边上的高,以D 为端点任作两条互相垂直的射线与两腰相交于E 、F ,连接EF 与AD 相交于G ,则∠AED 与∠AGF 的关系为( )
下,上述结论是否成立?若成立,请
给予
证明
;若不成立,DEF S ∆、CEF S ∆、ABC S ∆又有怎样的数量关系?请写出你的猜想,不需证明.
C B A。
1.1等腰三角形的性质和判定导学案

CAB1.1 等腰三角形的性质和判定班级 姓名 学号 家长签字 完成时间45分钟 【学习目标】1.能证明等腰三角形的性质定理和判定定理.2.了解分析的思考方法.3.经历思考、猜想,并对操作活动的合理性进行证明过程,不断感受证明的必要性、感受合情推 理和演绎推理都是人们认识事物的重要途径.【重点、难点】了解分析的思考方法;合理添加辅助线. 【新知预习】1.以前,我们曾经学习过等腰三角形,你还记得等腰三角形的一些性质吗?不妨我们来回忆一下. 等腰三角形的性质:①等腰三角形的 角相等.(简称“ ”) ②等腰三角形的 、 、 互相重合.(简称“ ”) ③等腰三角形是 对称图形,它的对称轴是: .2.你能用刻度尺画一个等腰三角形,并用作垂线的方法画出它的顶角的平分线吗?若能,请画出并加以证明.【导学过程】活动一:证明:等腰三角形的两个底角相等. 已知:如图,在△ABC 中,AB=AC. 求证:∠B=∠C活动二:证明:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合.思考:如何证明文字命题的正确性?活动三:如何证明“等腰三角形的两个底角相等”的逆命题是正确的? 要求:(1)写出它的逆命题: .(2)画出图形,写出已知、求证,并进行证明.例1.已知:如图∠EAC 是△ABC 的外角,AD 平分∠EAC,且AD∥BC . 求证:AB =AC2.拓展:在上图中,如果AB =AC ,AD∥BC,那么AD 平分∠EAC 吗?为什么?【反馈练习】1.完成第7页《练习》第1、2、3题.2.等腰三角形的一个角为50°,那么它的一个底角为______.3.在平面直角坐标系xOy 中,已知点P (2,2),点Q 在y 轴上,△PQO 是等腰三角形,则满足条件的点Q 共有______个.4.已知:如图,锐角△ABC 的两条高BE 、CD 相交于点O ,且OB=OC. 求证:△ABC 是等腰三角形.☆5.如图,等腰三角形ABC 中,AB=AC ,一腰上的中线BD•将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.【作业布置】1.1习题 第2、3、4、题.AB C D E2011-2012学年度第二学期八年级数学校本作业(41)1.1 等腰三角形的性质和判定 编写:宋爱霞 审阅:张元国班级 姓名 学号 家长签字 完成时间40分钟 1.若等腰三角形的周长为12,一边长为5,那么另两边长分别为 . 2.若等腰三角形有两边长为2和5,那么周长 为 .3.若等腰三角形有一个外角等于50°,那么另两个角为 .4.若等腰三角形有一个角等于120°,那么另两个角为 . ★5.若等腰三角形一腰上的高与另一腰的夹角等于30°,那么这个等腰三角形的顶角为 . ★6.若等腰三角形的周长等于12cm ,那么腰长x 的取值范围是 .7.如图在△ABC 中,AB =AC ,∠A=50°,BD 为∠ABC 的平分线,则∠BDC=_ ____°. 8.如图在△ABC 中,AB =AC ,D 为AC 边上一点,且BD =BC =AD .•则∠A 等于 ( )A .30° B.36° C.45° D.72°9.已知:如图,AB=AC .(1)若CE=BD ,求证:GE=GD ;(2)若CE=mBD (m 为正数),试猜想GE 与GD 有何关系(只写结论,不证明).10.如图,在△ABC 中,点O 在AC 上,过点O 作MN ∥BC ,CE与MN 分别交于E 、F ,求证:OE=OF.11.已知△ABC 中,AB =AC ,过△ABC 的一个顶点的一条直线,把△ABC 分成两个小三角形,使得这两个小三角形也是等腰三角形.试画出所有符合条件的图形,并写出被分成的两个小等腰三角形中相等的线段及△ABC 各内角的度数.第9题图 第7题图 第8题图。
八年级数学《等腰三角形1》导学案

12.3等腰三角形(一)【学习目标】1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.学习重点.等腰三角形的概念及性质.学习难点.等腰三角形性质的应用.【方法导航】通过对等腰三角形的叠合操作,得出等腰三角形的轴对称性,知道等腰三角形的性质(1)、(2),这里“等边对等角”是今后证明两角相等常用方法之一,而等腰三角形的“三线合一”是今后证明两条线段相等、两个角相等及两条直线互相垂直的重要依据。
利用等腰三角形的性质解题时要充分应用分类思想解题。
一、[课前热身]1、我回顾,我反思(回顾复习)1、三角形全等的判定方法2、什么是等腰三角形?什么是等腰三角形的腰和底边?什么是等腰三角形的顶角、底角?[头脑风暴]动手做一做,定有新收获!用剪刀按照49页介绍的方法,把一张长方形纸片按图中的虚线对折,并剪去阴影部分,再把它展 开,得△ABC, AC 和AB 有什么关系?这个三角形有什么特点?[追根溯源](一)我自学,我探索(自学课本第49-50页,然后独立解决1——4题,5分钟后举手展示你的学习成果,比一比,看谁最先完成)1.等腰三角形的 (简写成“ ”);2.等腰三角形的 相互重合。
3.你能证明这两个命题吗?4.填空:如图1,在△ABC 中○1∵AB=AC ,∠BAD=∠CAD ∴BD = , ⊥ 。
○2∵AB=AC ,BD=CD ∴∠BAD= , ⊥ . ○3∵AB=AC ,AD ⊥BC ∴∠BAD= , BD= . [学用结合](一)基础闯关(要仔细审题哦!完成后同桌之间可以交换评价) 1、如果等腰三角形的顶角是36度,那么它的底角的度数是 。
2、在△ABC 中,AB=AC, ∠BAD=90,AD 是BC 边上的高,则∠BAD= ,BD=3、如图2,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD,求△ABC 的度数。
4、已知一个等腰三角形两个内角的度数之比为1:4,则这个等腰三角形顶角的度数为 。
等腰三角形的性质导学案

授课教师:杨 桢
授课时间:20XX 年 10 月 22 号
课型:新授课
课题:
教 学 目 标
教学 重点 教学 难点 教具资 料准备
13.3.1 等腰三角形
备课人: 杨 桢
审核人:
基础知识: 基本技能: 基本思想 方法: 情感与态度
认识等腰三角形的性质,感受等腰三角形“三线合一”的意义 观察、试验,探索等腰三角形的性质 数形结合与类比的数学思想 培养学生合情据理意识感悟等腰三 角形的实用价值,激发他们的求知欲
称“三线合一”)
3.如图在等腰三角形△ABC中,如果AB=AC,求证: ∠B=∠C
(提示:构造两个全试用其他的方法证明
三、 巩固学习,解决问题 1.例题解析
如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,根据题意求: 1、图中有哪几个等腰三角形?2、有哪些相等的角?3、这两组相等的角之 间还有什么关系?4. 求△ABC各个角的度数。
A
D
B
C
2.知识拓展和拔高训练
如图:△ABC中,AB=AC,AD和BE是高,它们相交于点H,且AE=BE 求证:AH=2BD
A
四、归纳总结与活动经验
1.等腰三角形的性质 2.等腰三角形的轴对称联系
五、作业布置:P82 4,6 题
板书设计
12.3 等腰三角形 性质 1 性质 2
课后反思
H B
E C
理解等腰三角形的判定
等腰三角形判定和性质的区别,对命题的证明
教师准备:书 尺子 练习册
学生准备:书 尺子 练习本
教
学
过
程
教学内容
学习笔记
【学习过程】
八年级上数学《等腰三角形的性质》导学案 【完整版】

《13.3.1等腰三角形的性质》导学案 班级姓名座号 课时安排:2课时第1课时课型:新授课 一、学习目标1.知识与技能:理解等腰三角形“腰、顶角、底角”的概念,掌握等腰三角形的性质及应用.(难点)2.过程与方法:经历几何直观、探索发现等腰三角形性质的过程,体会运用动态的变换方法研究静态的几何图形属性的方法。
3.情感态度与价值观:在探究等腰三角形性质的过程中体会用数学知识解决数学问题的成就感。
二、预习指导【自学课本p78—p80完成下列问题】 1、(A 层)知识点1:等腰三角形的有关概念如图:已知△ABC 为等腰三角形,AB=AC ,那么AB 和AC 叫做,BC 叫做。
∠A 叫做,∠B 和∠C 叫做。
2、(A 层)知识点2:等腰三角形的性质: 性质1:等腰三角形的两条腰相等;等腰三角形是一个轴对称图形,它有一条对称轴;性质2:等腰三角形的两底角;(等边对等角)性质3:等腰三角形、及互相重合.(“三线合一”)3.【我是小翻译】请将等腰三角形的性质(文字语言)“翻译”成数学语言。
预习检测1、某等腰三角形的两条边长分别为3cm 和6cm ,则它的周长为___cm 。
2、若等腰三角形的顶角为80°,则它的一个底角度数为_________.三、学习过程 探究1:求证:等腰三角形的两个底角相等。
已知:求证:证明:探究2:等腰三角形的性质的应用 例1:已知:在△ABC 中,AB=AC,∠B=80°.求∠C 和∠A 的度数。
例2:如图,在△ABC 中,AB=AC,D 是BC 边上的中点,∠B=30°.求∠ADC 和∠1的度数。
四、当堂达标1、(A 层)如果等腰三角形的一个底角为50º,那么其余两角为。
2、(B 层)如果等腰三角形的一个角为40º,那么其余两角为。
3、(B 层)如图,点E 在BC 上,AE ∥DC ,AB =AE.求证:∠B=∠C. 五、4、(C 层)如图,AB =AC,∠B =40°,点D 在BC 上,且∠DAC =50°.求证:BD=CD. 六、 七、 八、 九、 十、作业布置 (A 层)等腰三角形的周长为16,其中一边的长是6,求另两条边的长。
等腰三角形导学案

《等腰三角形》第一课时学案青州市东夏初级中学高春燕学习目标: 1.了解等腰三角形概念,理解等腰三角形的性质;2.运用等腰三角形的概念及性质解决相关问题。
学习重点:等腰三角形的概念及性质。
学习难点:等腰三角形“三线合一”性质的理解与应用学习方法:自主----合作------精讲-----巩固一.自主学习:自主预习课本P12----P13完成下列问题:(一)1、的三角形叫等腰三角形,2、相等的两边叫,另一边叫。
两腰的夹角叫,腰和底边的夹角叫。
3、如图,在△ABC中,AB=AC,标出各部分名称。
(二)等腰三角形是轴对称图形吗?试采用下图方法,探究图△ABC有什么发现?二.合作探究(各小组同学讨论,集体完成下列题目)(一)如图,在△ABC中,AB=AC,∠B AC=60°,AD是BC边上的高线,(1)求∠ADC的度数;(2)求∠ BAD 、∠B 、∠C的度数。
(二)在△ABC中,如果三角形的三边相等,你能发现什么结论?结论:1.2.。
练习:如图:点B、C、D、E、F在∠MAN的边上,∠A=15°,AB=BC=CD=DE=EF,求∠MEF的度数。
三、精讲点拨1.如图,在△ABC中,AB=AC,AD=BD=BC,则∠A多少度。
2.如图,AB=AC,BD⊥AC于D,求证:∠DBC= 1/2∠A。
四.课堂小结同学们通过这节课的学习你收获了什么?五.达标检测•1、若等腰三角形的周长为29cm,一条边长为 9cm,则这个等腰三角形的腰长为;•2、如图,在等腰三角形ABC中,AC=BC,腰AC的中垂线EF 交BC于E,交AC于F,已知△ABC的周长为11,AC=4cm,则△ABE 的周长是;A B3.一等腰三角的一个角是另一个角的2倍,则此三角形的各角的度数分别是多少?4.如图,是房梁的一部分,其中BC⊥AC,∠A=30°,AB=7.4,点D是AB的中点,DE⊥AC,垂足为E,求BC,DE的长.BDA CEA BCDEFMNCCB。
等腰三角形性质导学案

等腰三角形性质导学案学习目标:1、理解等腰三角形概念,能够判断等腰三角形。
2、通过小组合作探究,发现并理解等腰三角形的性质。
3、能够利用等腰三角形的性质解决相关题目。
重点难点:探索并发现等腰三角形的性质课前准备:准备一个等腰三角形图片学习过程一.知识回顾(1)等腰三角形是轴对称图形吗(2)有两边相等的三角形叫,相等的两边叫另一边叫,两腰的夹角叫,腰和底边的夹角叫。
(3)如图,在△ABC中 AB=AC (请在右图中标出各部分名称.)二、探究新知:等腰三角形的性质1.把你准备的等腰△ABC 对折,折痕为AD,它是轴对图形吗?2.重合的线段有:重合的角有:3.你发现了等腰三角形的那些结论?把你的发现用文字叙述出来:4.合作与讨论(1)证明:等腰三角形的两个底角相等。
已知:如图,求证:证明:等边对等角的数学符号语言:三线合一的符号语言:三、牛刀小试。
1.填空。
DAC ABD2.判断对错,并改正.(1)、等腰三角形的角平分线、高线和中线重合. ( )(2)、等腰三角形的底角只能是锐角. ( )(3)、等腰三角形是轴对称图形,对称轴是底边上的高.( )(4)、如果等腰三角形有一个角是100°,那么其余两个角一定是40.( ) 例1:已知:房屋的顶角∠BAC=100度,过屋顶A的立柱AD⊥BC,屋檐AB=AC,求:顶架上∠B, ∠C, ∠BAD, ∠CAD的度数。
例2四、当堂达标1.在△ABC中,AB=AC.若∠A=50°,则∠C= °,∠B = °;若∠C =60°,则∠A = °,∠B= °;若∠A =∠B,则∠A = °,∠C= °.2.等腰三角形的一个角是30°,则它的底角是.3.等腰三角形的周长是24 cm,一边长是6 cm,则其他两边的长分别是.4. 如图: 在△ABC中,AB=AC, BC的中点为点E,BD⊥AC,垂足为D,若∠EAD=20°,求∠ABD的度数.五.自我小结我的收获是:六.学后反思: B ADB AC DADC。
13.3.1等腰三角形的性质导学案

等腰三角形的性质导学案学习目标:1.探索并证明等腰三角形的性质.2.能利用等腰三角形的性质证明两个角相等或两条线段相等.3.结合等腰三角形性质的探索与证明过程,体会轴对称在研究几何问题中的作用.学习重点难点:探索并发现等腰三角形的性质。
学法指导:主动探索,小组合作.教学过程:一、预习引领1.活动(一)细心观察多媒体展示2.回顾等腰三角形3.活动(二)动手操作4、活动(三)有两边相等的三角形叫,相等的两边叫,另一边叫两腰的夹角叫,腰和底边的夹角叫(请在下图中标出来)3、如图,在△ABC中,AB=AC,标出各部分名称二、动手实践,探究新知1.把上面活动中剪出的△ABC 对折,找到对称轴,折痕为AD。
找出其中重合的线段和角填入下表:归纳总结:性质1等腰三角形的两个相等(简写成“”)性质2等腰三角形、、互相重合。
(简称:)三、合作交流,尝试练习(活动四)①在△ABC中∵AB=AC,AD是BC边上的中线,∴∠ BAD =∠, AD ⊥。
②在△ABC中∵AB=AC,AD是∠BAC的平分线,∴ AD ⊥, BD = 。
③在△ABC中∵AB=AC,AD是BC边上的高,∴∠ BAD =∠, BD = .四、例题讲解,变式练习例1已知,在△ABC中,AB=AC,∠A=80º,求∠C和∠B的度数。
练习:在三角形ABC中,已知AB=AC,且∠ A=50°,则∠B=()度,∠C=()度?小试牛刀:1、等腰三角形一个底角为70°,它的顶角为______.2、等腰三角形一个角为70°,它的另外两个角为 _______3、等腰三角形一个角为110°,它的另外两个角为___________.例2、如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。
五、总结与评价1这节课我们学到的知识是___________________2.接触到研究数学问题的方法有____________________3.我这节课获得的评价是 ______________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形的性质导学案
性质1: 。
小组讨论证明方法: 已知:△ABC 中,AB=AC 。
求证:∠B=∠C 。
性质2:等腰三角形的 、 和 相互重合。
小组交流,讨论,寻找证明方法。
课堂巩固练习。
1、根据等腰三角形性质2填空。
在△ABC 中, AB=AC , (1) ∵AD ⊥BC ,∴∠_____ = ∠_____,____= ____. (2) ∵AD 是中线,∴____⊥____ ,∠_____ =∠_____.
(3) ∵AD 是角平分线,∴____ ⊥____ ,_____ =_____.
2、等腰三角形一个底角为70°,它的顶角为______.
3、等腰三角形一个角为70°,它的另外两个角为__________________.
4、等腰三角形一个角为110°,它的另外两个角为___________.
能力提升:
1、如图,在△ABC 中 ,AB=AC ,点D 在AC 上,且BD=BC=AD ,求△ABC 各角的度数。
A
D
B C A B C A B C D
2、已知:如图,房屋的顶角∠BAC=100 º, 过屋顶A 的立柱AD BC , 屋椽AB=AC. 求顶架上∠B 、∠C 、∠BAD 、
∠CAD 的度数.
拓展猜想:
(1)猜想一下,等腰三角形底边中点到两腰的距离相等吗?如图将等腰三角形ABC 沿对称轴折叠,观察DE 与DF 的关系,并证明你的结论。
A B D C B D E
F A。