2017-2018学年物理人教版选修1-1 1.5电流和电源同步练习-教师用卷

2017-2018学年物理人教版选修1-1 1.5电流和电源同步练习-教师用卷
2017-2018学年物理人教版选修1-1 1.5电流和电源同步练习-教师用卷

2017-2018学年物理人教版选修1-1 1.5电流和电源同步练习-教师用卷

一、单选题

1. 一太阳能电池对一用电器供电时,电流为40mA,则在1min时间内,通过该用电器的电荷量为

A.0.04C B.0.24C C.0.4C D.2.4C

2. 电脑的充电电池多为锂电池,假设锂电池的充电电流为500mA,则以下说法正确的是

A.1 s通过电池某一横截面的电荷量为500 C

B.1 s通过电池某一横截面的电荷量为5 C

C.充电过程把其他形式的能转化为电能

D.充电过程把电能转化为其他形式的能

3. 如图所示,电解池接入电路后,在t秒内有n个一价正离子通过溶液内某截面S,有n个一价负离子通过S,设e 为元电荷,以下说法正确的是

A.电流为零B .电流为

C .电流为

D .电流方向从

二、多选题4.

关于电流,下列说法正确的是

A .通过导线截面的电量越多,电流越大

B .单位时间内通过导体横截面的电荷量越多,则导体中电流越大

C .电流有方向,因此电流是矢量

D .通电时间越短,电流越大

5. 某金属导体中,如果在2

秒钟内共有

个电子通过某横截面,那么通过这个导体的电流是

A .0

B .

C .

D .

6. 如图所示为一磁流体发电机示意图,A 、B 是平行正对的金属板,等离子体(电离的气体,由自由电子和阳离子构成,整体呈电中性)从左侧进入,在t 时间内有n 个自由电子落在B 板上,则关于R 中的电流大小及方向判断正确的是()

A .I =

,从上向下B .I =,从上向下C .I =,从下向上D .I =,从下向上

7.

给一粗细不均匀的同种材料制成的导体通电,下列说法正确的是

A .粗的地方电流大,细的地方电流小

B .粗的地方电荷定向移动速率大,细的地方小

C .各处的电流大小相同

D .粗的地方电荷定向移动速率小,细的地方大

8. 对于有恒定电流通过的导体,下列说法正确的是

A.导体内部的电场强度为零

B.导体是个等势体

C.导体两端有恒定的电压存在

D.通过导体某个截面的电量在任意相等的时间内都相等

9. 关于闭合电路中电流的形成原因和能量转化,下列说法中正确的是

A.在整个电路中,都是恒定电场驱动自由电荷运动,形成电流

B.在整个电路中,都是非静电力驱动自由电荷运动,形成电流

C.外电路中,导体内部恒定电场的强弱都是相同的,因而电流处处相同

D.在电源的内部,非静电力克服恒定电场将电子从电源正极驱向负极,使其它形式能转化为电能

10. 半径为的橡胶圆环均匀带正电,总电荷量为,现使圆环绕垂直环所在平面且通过圆心的轴以角速度匀速转动,则由环产生的等效电

流应有()

A.若不变而使电荷量变为原来的2倍,则电流也将变为原来的2倍

B.若电荷量不变而使变为原来的2倍,则电流也将变为原来的2倍

C.若使、不变,将橡胶环拉伸,使环半径增大,电流将变大

D.若使、不变,将橡胶环拉伸,使环半径增大,电流将变小

11. 如图所示,电解池内有一价的电解液,ts内通过溶液内截面S的正离子数是,负离子数是,设元电荷为e,则以下解释中正确的是

A.正离子定向移动形成的电流方向是从,负离子定向移动形成的电流方向是

B.溶液内正、负离子向相反方向移动,电流方向相同

三、解答题C .溶液内电流方向从A 到B ,电流

D .溶液中电流方向从A 到B ,电流

12.

有一段导体,在时间秒内通过了库仑的电量,那么导体中的电流强度是多大?

13. 在某次闪电中,持续时间为,所形成的平均电流为,若闪电过程中,流过某横截面积的电荷以的电流通过电灯,可供电

灯照明多长时间?14. 有一条横截面积的铜导线,通过的电流已知铜的密度

,铜的摩尔质量,阿伏加德罗常数,电子的电量C .在这个问题中可认为导线中每个铜原子贡献一个自由电子求铜导线中自由电子定向移动的速率

结果保留三位有效数字

大学物理学下册答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?= 。故正 确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] ( A )Φ增大, B 也增大 (B )Φ不变,B 也不变 ( C )Φ增大,B 不变 ( D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ==? ,通过闭合曲面S 的磁感应强度始终为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理第11章习题解答

习题11 1. 选择题 (1) 一圆形线圈在均匀磁场中作下列运动时, 哪些情况会产生感应电流( ) A. 沿垂直磁场方向平移 B. 以直径为轴转动, 轴跟磁场垂直 C. 沿平行磁场方向平移 D. 以直径为轴转动, 轴跟磁场平行 (2) 尺寸相同的铁环与铜环所包围的面积中, 通以相同变化率的磁通量, 环中( ) A. 感应电动势相同, 感应电流不同. B. 感应电动势相同, 感应电流相同. C. 感应电动势不同, 感应电流相同. D. 感应电动势不同. (3) 对于涡旋电场, 下列说法不正确的是( ) A. 涡旋电场对电荷有作用力. B. 涡旋电场由变化的磁场产生. C. 涡旋电场由电荷激发. D. 涡旋电场的电场线是闭合的. (4) 用线圈的自感系数L 来表示载流线圈磁场能量的公式2 12 m W LI =( ) A. 只适用于单匝圆线圈. B. 只适用于一个匝数很多, 且密绕的螺线环. C. 适用于自感系数L 一定的任意线圈. D. 只适用于无限长密绕螺线管. (5) 有两个长直密绕螺线管, 长度及线圈匝数均相同, 半径分别为1r 和2r . 管内充满均匀介质, 其磁导率分别为1μ和2μ. 设1212r r =, 1221μμ=, 当将两只螺线管串联在电路中通电稳定后, 其自感系数之比12L L 与磁能之比12m m W W 分别为( ) A. 1211L L =, 1211m m W W =. B. 1212L L =, 1211m m W W =. C. 1212L L =, 1212m m W W =. D. 1221L L =, 1221m m W W =. 答案:B A C D C 2. 填空题 (1) 电阻2R =Ω的闭合导体回路置于变化磁场中, 通过回路包围面的磁通量与时间的关系 为23 (582)10()m t t Wb -Φ=+-?, 则在2t s =至3t s =的时间内, 流过回路导体横截面 的感应电荷等于______________C .

大学物理第11章习题答案(供参考)

第11章 电磁感应 11.1 基本要求 1理解电动势的概念。 2掌握法拉第电磁感应定律和楞次定律,能熟练地应用它们来计算感应电动势的大小,判别感应电动势的方向。 3理解动生电动势的概念及规律,会计算一些简单问题中的动生电动势。 4理解感生电场、感生电动势的概念及规律,会计算一些简单问题中的感生电动势。 5理解自感现象和自感系数的定义及物理意义,会计算简单回路中的自感系数。 6理解互感现象和互感系数的定义及物理意义,能计算简单导体回路间的互感系数。 7理解磁能(磁场能量)和磁能密度的概念,能计算一些简单情况下的磁场能量。 8了解位移电流的概念以及麦克斯韦方程组(积分形式)的物理意义。 11.2 基本概念 1电动势ε:把单位正电荷从负极通过电源内部移到正极时,非静电力所作的功,即 W q ε= 2动生电动势:仅由导体或导体回路在磁场中的运动而产生的感应电动势。 3感生电场k E :变化的磁场在其周围所激发的电场。与静电场不同,感生电场的电 场线是闭合的,所以感生电场也称有旋电场。 4感生电动势:仅由磁场变化而产生的感应电动势。 5自感:有使回路保持原有电流不变的性质,是回路本身的“电磁惯性”的量度。 自感系数L ://m L I N I =ψ=Φ 6自感电动势L ε:当通过回路的电流发生变化时,在自身回路中所产生的感应电动势。

7互感系数M :2112 12 M I I ψψ= = 8互感电动势12ε:当线圈2的电流2I 发生变化时,在线圈1中所产生的感应电动势。 9磁场能量m W :贮存在磁场中的能量。 自感贮存磁能:212 m W LI = 磁能密度m w :单位体积中贮存的磁场能量22111 222 m B w μH HB μ=== 10位移电流:D d d I dt Φ= s d t ?=??D S ,位移电流并不表示有真实的电荷在空 间移动。但是,位移电流的量纲和在激发磁场方面的作用与传导电流是一致的。 11位移电流密度:d t ?=?D j 11.3 基本规律 1电磁感应的基本定律:描述电磁感应现象的基本规律有两条。 (1)楞次定律:感生电流的磁场所产生的磁通量总是反抗回路中原磁通量的改变。楞 次定律是判断感应电流方向的普适定则。 (2)法拉第电磁感应定律:不论什么原因使通过回路的磁通量(或磁链)发生变化,回路 中均有感应电动势产生,其大小与通过该回路的磁通量(或磁链)随时间的变化成正比,即 m i d dt εΦ=- 2动生电动势:()B B K A A i εd d ==???E l v B l ,若0i ε>,则表示电动势方向由A B →;若 0i ε<,则表示电动势方向B A → 3感生电动势:m K l s i d Φd εd d dt dt = ?=- =-? ?B E l S (对于导体回路) B K A i εd =?E l (对于一段导体) 4自感电动势:L dI εL dt =- 5互感电动势:12212d ΨdI εM dt dt =-=- 6麦克斯韦方程组

大学物理课后答案第十一章

第十一章 机械振动 一、基本要求 1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。 2. 掌握描述简谐运动的运动方程)cos( 0?ω+=t A x ,理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。能根据给出的初始条件求振幅和初位相。 3. 掌握旋转矢量法。 4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。 二、基本内容 1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。如果物体振动的位置满足)()(T t x t x +=,则该物体的运动称为周期性运动。否则称为非周期运动。但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。 一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。 2. 简谐振动 简谐振动是一种周期性的振动过程。它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。 (1)简谐振动表达式)cos(0?ω+=t A x 反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。但是简谐振动表达式更多地用来揭示描述一个简谐运动必须

涉及到的物理量A 、ω、0?(或称描述简谐运动的三个参量),显然三个参量确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由t 对应地得到。 )2 cos()sin(00π ?ωω?ωω+ +=+-=t A t A v )c o s ()c o s (0202π?ωω?ωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即kx F -=,它是判定一个系统的运动过程是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。这里应该注意,F 系指合力,它可以是弹性力或准弹性力。 (3)和简谐运动的动力学特征相一致的是简谐运动的运动学特征:作简谐 运动物体的加速度大小总是与其位移大小成正比、而方向相反,即x dt x d 222ω-=, 它也是物体是否作简谐运动的判据之一。只要加速度与位移大小成正比、而方向恒相反,则该物理量的变化过程就是一个简谐运动的过程。在非力学量,例如电量、电流和电压等电学量,就不易用简谐振动的动力学特征去判定,而LC 电路中的电量q 就满足q LC dt q d 1 22-=,故电量q 的变化过程就是一个简谐振荡的过程,显然用运动学的特征来判定简谐运动更具有广泛的意义。 3. 简谐振动的振幅、周期、频率和相位 (1)振幅A 是指最大位移的绝对值。A 是由初始条件来决定的,即 2 20 2 ω v + = x A 。 (2)周期T 是指完成一次完整的振动所用时间。ω π 2=T ,式中ω是简谐振 动的圆频率,它是由谐振动系统的构造来决定的,即m k =ω,ω也称为固有圆频率。对应的T 称为固有周期。v T 1 = ,式中v 称为频率(即固有频率),它与圆频率的关系2v ωπ=,是由系统本身决定的。

河北科技大学大学物理答案11章分解

习 题 11-1 面积很大的导体平板A 与均匀带电平面B 平行放置,如习题11-1图所示。已知A 与B 相距d ,两者相对的部分的面积为S 。(1)设B 面带电量为q ,A 板的面电荷密度为1s 及2s ,求A 板与B 面之电势差。(2)若A 板带电量为Q ,求1s 及2s 。 (1)d S q U 0 212/εσσ-+= ; (2)S q Q 21+=σ,S q Q 22-=σ 习题11-1图 习题11-2图 习题11-3图 11-2 如习题11-2图所示,有三块互相平行的导体板,外面的两块用导线连接,原来不带电。中间一块上所带总面电荷密度为521310.C m --醋。求每块板的两个表面的面电荷密度各 是多少? (忽略边缘效应。) 解:从上到下6个面一次为面1、2、3、4、5、6. 2 61σ σσ= =,8323σσσ= -=,8 554σ σσ=-= 11-3 如习题11-3图所示,半径为1R 的导体球带有电荷q ,球外有一个内、外半径为2R 、3R 的同心导体球壳,壳上带有电荷Q 。求:(1)两球的电势1j 及2j ;(2)两球的电势差j D ;(3)用导线把球和壳连接在一起后,1j ,2j 及j D 分别为多少? (4)在情形(1)、(2)中,若外球接地,1j ,2j 和j D 为多少?(5)设外球离地面很远,若内球接地,情况如何? 解:(1)3 024R Q q πε?+= ,2010301444R q R q R Q q πεπεπε?- ++=; (2)两球的电势差2 01 044R q R q U πεπε- = ; (3) 3 0214R Q q πε??+= =,0=U ;

大学物理课后答案11章

习题11 11-1.测量星体表面温度的方法之一是将其看作黑体,测量它的峰值波长m λ,利用维恩定律便可求出T 。已知太阳、北极星和天狼星的m λ分别为60.5010m -?,60.4310m -?和 60.2910m -?,试计算它们的表面温度。 解:由维恩定律:m T b λ=,其中:3 10898.2-?=b ,那么: 太阳:3 6 2.8981057960.510 m b T K λ--?===?; 北极星:3 6 2.8981067400.4310m b T K λ--?===?; 天狼星:3 6 2.8981099930.2910 m b T K λ--?===?。 11-2.宇宙大爆炸遗留在宇宙空间的均匀背景辐射相当于温度为K 3的黑体辐射,试计算: (1)此辐射的单色辐出度的峰值波长; (2)地球表面接收到此辐射的功率。 解:(1)由m T b λ=,有3 42.898109.66103 m b m T λ--?== =?; (2)由4M T σ=,有:424P T R σπ=?地 ,那么: 328494(637010) 5.67103 2.3410P W π-=?????=?。 11-3.在加热黑体过程中,其单色辐出度对应的峰值波长由0.69μm 变化到0.50μm ,求总辐出度改变为原来的多少倍? 解:由 b T m =λ 和 4T M σ=可得, 63.3)5 .069.0()()(4 40400====m m T T M M λλ 11-4.已知000K 2时钨的辐出度与黑体的辐出度之比为259.0。设灯泡的钨丝面积为 2cm 10,其他能量损失不计,求维持灯丝温度所消耗的电功率。 解:∵4P T S σ=?黑体,消耗的功率等于钨丝的幅出度,所以, 44840.2591010 5.67102000235P S T W ησ--==?????=。 11-5.天文学中常用热辐射定律估算恒星的半径。现观测到某恒星热辐射的峰值波长为m λ;辐射到地面上单位面积的功率为W 。已测得该恒星与地球间的距离为l ,若将恒星看作黑体,试求该恒星的半径。(维恩常量b 和斯特藩常量σ均为己知) 解:由m T b λ=恒星,4 M T σ=, 考虑到恒星辐射到地面上单位面积的功率?大球面=恒星表面辐出的功率, 有:224 44W l R T ππσ?=?恒星恒星 ,

大学物理(下)课后习题解答---第11章

11章作业题 11.7 作近似计算时,把地球当作半径为6.40?106m 的孤立球体。求(1)其电容为多少?(2)若地球表面处的电场强度为1001 m V -?,已知地球带负电荷,求地球的总电量为多少?(3)地球表面的电势是多少? 解:(1) 根据孤立球体电容公式,地球的电容值近似为 001264444 3.148.8510 6.40107.1110F Q Q C R Q U R πεπε--====?????=?  (2) 设地球是总带电量为Q 的均匀带电球体,其表面处电场强度的大小为204Q E R πε= 故其电量值为 201262544 3.148.8510(6.4010)100 4.5510C Q R E πε-==??????=?    (3) 令无穷远处电势为零,则地球表面的电势为 268004 6.4010100 6.4010V 4R E Q U RE C R πεπε====??=? 11.8两极板间距离为0.50mm 的空气平行板电容器,若使它的电容为1F,求这个电容器的极板面积要多大? 解:由平行板电容器的电容公式0S C d ε=,可得 3 7212010.5010 5.6510m 8.8510Cd S ε--??==?? = 11.9 地球和电离层可当作球形电容器,它们之间相距约为100km 。求地球-电离层系统的电容。(设地球与电离层之间为真空) 解:根据球形电容器的电容公式 01221 4R R C R R πε= - 其中地球半径为 m 1040.661?=R , 电离层半径为 m 1050.6101006312?=?+=R R 。

(完整版)大学物理学(课后答案)第7章

第七章课后习题解答 一、选择题 7-1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们[ ] (A) 温度,压强均不相同 (B) 温度相同,但氦气压强大于氮气的压强 (C) 温度,压强都相同 (D) 温度相同,但氦气压强小于氮气的压强 分析:理想气体分子的平均平动动能3 2k kT ε=,仅与温度有关,因此当氦气和氮 气的平均平动动能相同时,温度也相同。又由理想气体的压强公式p nkT =,当两者分子数密度相同时,它们压强也相同。故选(C )。 7-2 理想气体处于平衡状态,设温度为T ,气体分子的自由度为i ,则每个气体分子所具有的[ ] (A) 动能为2i kT (B) 动能为2 i RT (C) 平均动能为2i kT (D) 平均平动动能为2 i RT 分析:由理想气体分子的的平均平动动能3 2 k kT ε=和理想气体分子的的平均动能 2i kT ε=,故选择(C ) 。 7-3 三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而方均根速率之比为()()() 1/2 1/2 1/2 22::2A B C v v v =1:2:4,则其压强之比为A B C p :p :p [ ] (A) 1:2:4 (B) 1:4:8 (C) 1:4:16 (D) 4:2:1 = ,又由物态方程p nkT =,所以当三容器中得分子数密度相同时,得123123::::1:4:16p p p T T T ==。故选择(C )。 7-4 图7-4中两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线。如果()2 p O v 和()2 p H v 分别表示氧气和氢气的最概然速率,则[ ] (A) 图中a 表示氧气分子的速率分布曲线且()()2 2 p p O H /4v v =

大学物理学下册答案第11章-大学物理11章答案

第11 章稳恒磁场 一选择题 11-1 边长为l的正方形线圈,分别用图11-1 中所示的两种方式通以电流(I 其中ab、cd与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的 大小分别为:[ ] (A)B = 0,B = 0 (B)B =0,B = 220I 1 2l (C)B = 220I,B =0 1l2 (D)B =22 0I,B = 22 0I 1l2l 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为B = 0I(cos1- cos2), 并4d12 结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计算 B1 = 22l0I,B2 =0。故正确答案为(C)。 11-2 两个载有相等电流I的半径为R的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2 所示,则在圆心O处的磁感应强度大小为多少? [ ] (A)0 (B )I /2R (C)2I /2R(D )I /R 答案:C 解析:圆线圈在圆心处的磁感应强度大小为B1 =B2 = 0I /2R ,按照右手螺旋定 习题11-1 图

则判断知B v 1和B v 2 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心 O 处的磁感应强度大小为B = 20I /2R 。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面 S ,S 边线 所在平面的单位法线矢量n 与磁感应强度B 的夹角为,则通过该半球面的磁通 量的大小为[ ] (A )R 2B (B ) 2R 2 B (C ) R 2 B cos (D ) R 2 B sin 答案:C 解析:通过半球面的磁感应线线必通过底面, 确答案为(C )。 11-4 如图 11-4 所示,在无限长载流直导线附近作一球形闭合曲面 S ,当曲面 S 向长直导线靠近时,穿过曲面 S 的磁通量和面上各点的磁感应强度B 将如 何 变化?[ ] (A )增大,B 也增大 (C ) 增大,B 不变 答案:D 解析:根据磁场的高斯定理 = ? B v dS v = 0 ,通过闭合曲面 S 的磁感应强度始终 为 0,保持不变。无限长载 流直导线在空间中激发的磁感应强度大小为B = 0I , 2 d 曲面 S 靠近长直导线 时,距离 d 减小,从而 B 增大。故正确答案为(D )。 11-5 下列说法正确的是[ ] (A ) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为 零 (C ) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为 零 (D ) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 习题 11n -3 图 B 因此 = B v S v =R 2B cos 。故 正 B ) 不变,B 也不变 D ) 不变,B 增大

大学物理学第三版修订版下册第11章答案

习题11 选择题 (1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。 [答案:B] (2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。 [答案:A] (3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式22 1LI W m =() ( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。 [答案:D] (4)对于涡旋电场,下列说法不正确的是(): (A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。 [答案:C] 11.2 填空题 (1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。 [答案:磁力] (2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。 [答案:洛伦兹力,涡旋电场力,变化的磁场] (3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。 [答案:端点,2 2 1l B ω;中点,0] 一半径r =10cm 的圆形回路放在B =的均匀磁场中.回路平面与B ? 垂直.当回路半径以恒 定速率 t r d d =80cm·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2 πr B BS m ==Φ

大学物理课后习题答案第十二章

第12章 机械振动 习题及答案 1、什么是简谐振动?哪个或哪几个是表示质点作简谐振动时加速度和位移关系的? (1) ;(2) ;(3) ;(4) . 答:系统在线性回复力的作用下,作周期性往复运动,即为简谐振动。 对于简谐振动,有 ,故(3)表示简谐振动。 2、对于给定的弹簧振子,当其振幅减为原来的1/2时,下列哪些物理量发生了变化?变化为原来的多少倍? (1)劲度系数;(2)频率;(3)总机械能;(4)最大速度;(5)最大加速度。 解:当 时, (1)劲度系数k 不变。 (2)频率不变。 (3)总机械能 (4)最大速度 (5) 最大加速度 3、劲度系数为1k 和2k 的两根弹簧,与质量为m 的小球按题图所示的两种方式连接,试证明它们的振动均为谐振动,并分别求出它们的振动周期. 解:(1)图(a)中为串联弹簧,对于轻弹簧在任一时刻应有21F F F ==,设串联弹簧的等效倔强系数为串K 等效位移为x ,则有 1 11x k F x k F -=-=串 222x k F -= 又有 21x x x += 2 211k F k F k F x +== 串

所以串联弹簧的等效倔强系数为 2 12 1k k k k k += 串 即小球与串联弹簧构成了一个等效倔强系数为)/(2121k k k k k +=的弹簧振子系统,故小球作谐振动.其振动周期为 2 121)(222k k k k m k m T +=== ππ ω π 串 (2)图(b)中可等效为并联弹簧,同上理,应有21F F F ==,即21x x x ==,设并联弹簧的倔强系数为并k ,则有 2211x k x k x k +=并 故 21k k k +=并 同上理,其振动周期为 2 12k k m T +='π 4. 完全相同的弹簧振子, 时刻的状态如图所示,其相位分别为多少? 解:对于弹簧振子,时, , (a ) ,故 ,故 k m (a k m v (b k m v (c k m (d

大学物理第十一章气体动理论习题

第十一章气体动理论 一、基本要求 1.理解平衡态、物态参量、温度等概念,掌握理想气体物态方程的物理意义及应用。 2.了解气体分子热运动的统计规律性,理解理想气体的压强公式和温度公式的统计意义及微观本质,并能熟练应用。 3.理解自由度和内能的概念,掌握能量按自由度均分定理。掌握理想气体的内能公式并能熟练应用。 4.理解麦克斯韦气体分子速率分布律、速率分布函数及分子速率分布曲线的物理意义,掌握气体分子热运动的平均速率、方均根速率和最概然速率的求法和意义。 5.了解气体分子平均碰撞频率及平均自由程的物理意义和计算公式。 二、基本概念 1 平衡态 系统在不受外界的影响下,宏观性质不随时间变化的状态。 2 物态参量 描述一定质量的理想气体在平衡态时的宏观性质的物理量,包括压强、体积和温度 3 温度 宏观上反映物体的冷热程度,微观上反映气体分子无规则热运动的剧烈程度。 4 自由度 确定一个物体在空间的位置所需要的独立坐标数目,用字母表示。

5 内能 理想气体的内能就是气体内所有分子的动能之和,即 6 最概然速率 速率分布函数取极大值时所对应的速率,用表示,,其物理意义为在一定温度下,分布在速率附近的单位速率区间内的分子在总分子数中所占的百分比最大。 7 平均速率 各个分子速率的统计平均值,用表示, 8 方均根速率 各个分子速率的平方平均值的算术平方根,用表示, 9 平均碰撞频率和平均自由程 平均碰撞频率是指单位时间内一个分子和其他分子平均碰撞的次数;平均自由程是每两次碰撞之间一个分子自由运动的平均路程,两者的关系式为:或 三、基本规律 1 理想气体的物态方程 pV RT ν=或'm pV RT M = pV NkT =或p nkT = 2 理想气体的压强公式 23 k p n ε= 3 理想气体的温度公式 21322 k m kT ευ==

大学物理3第11章习题分析与解答

习 题 解 答 11-1 在双缝干涉实验中,若单色光源S 到两缝21S S 、距离相等,则观察屏上中央明纹位于图中O 处。现将光源S 向下移动到示意图中的S '位置,则( ) (A )中央明条纹也向下移动,且条纹间距不变 (B )中央明条纹向上移动,且条纹间距不变 (C )中央明条纹向下移动,且条纹间距增大 (D )中央明条纹向上移动,且条纹间距增大 解 由S 发出的光到达21S S 、的光成相等,它们传到屏上中央O 处,光程差 0=?,形成明纹,当光源由S 向下移动S '时,由S '到达21S S 、的两束光产生了 光程差,为了保持原中央明纹处的光程差为0,它将上移到图中O '处,使得由S '沿21S S 、传到O '处的两束光的光程差仍为0.而屏上各级明纹位置只是向上平移,因此条纹间距不变。故选B 11-2 单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如附图所示,若薄膜厚度为e , 且n 1<n 2,n 3<n 2, λ1为入射光在n 1中的波长,则两束反射光的光程为( ) (A )e n 22 (B )1 1222n e n λ- (C )2 2112λn e n - (D )2 2122λn e n - 习题11-2图 解 由于n 1〈n 2,n 3〈n 2,因此光在表面上的反射光有半波损失,下表面的反射光没有半波损失,所以他们的光程差2 22λ-=?e n ,这里λ是光在真空中的波 3 n S S ’ O O ’

长,与1λ的关系是11λλn =。 故选C 11-3 如图所示,两平面玻璃板构成一空气劈尖,一平面单色光垂直入射到劈尖上,当A 板与B 板的夹角θ增大时,干涉图样将发生( )变化 (A )干涉条纹间距增大,并向O 方向移动 (B )干涉条纹间距减小,并向B 方向移动 (C )干涉条纹间距减小,并向O 方向移动 (D )干涉条纹间距增大,并向B 方向移动 解 空气劈尖干涉条纹间距θ λ sin 2n l = ?,劈尖干涉又称为等厚干涉,即k 相同的同一级条纹,无论是明纹还是暗纹,都出现在厚度相同的地方. 当A 板与B 板的夹角θ增大时,△l变小. 和原厚度相同的地方向顶角方向移动,所以干涉条纹向O 方向移动。 故选C 11-4 如图所示的三种透明材料构成的牛顿环装置中,用单色光垂直照射,在反射光中看到干涉条纹,则在接触点P 处形成的圆斑为( ) (A )全明 (B )全暗 (C )右半部明,左半部暗 (D )右半部暗,左半部明 习题11-4图 解 牛顿环的明暗纹条件(光线垂直入射0=i ) ??? ???? ???=???=+=?)(,2,1,0,,2,1,0,2)12(明纹(暗纹)k k k k λλ 在接触点P 处的厚度为零,光经劈尖空气层的上下表面反射后的光程差主要由此处是否有半波损失决定. 当光从光疏介质(折射率较小的介质)射向光密的介质(折射率较大的介质)时,反射光有半波损失. 结合本题的条件可知右半部有一次半波损失,所以光程差是2 λ ,右半部暗,左半部有二次半波损失,光程差是零,左半部明。 故选D .162 .A θ B O 习题11-3图

大学物理第十一章习题解答

第十一章:恒定电流的磁场习题解答 1.题号:40941001 分值:10分 如下图所示,是一段通有电流I 的圆弧形导线,它的半径为R ,对圆心的张角为θ。 求该圆弧形电流所激发的在圆心O 处的磁感强度。 解答及评分标准: 在圆弧形电流中取一电流元l Id (1分), 则该电流元l Id 在圆心处的磁感强度为: θπμπμd R I R Idl dB 490sin 40020==(2分) 其中θRd dl = 则整段电流在圆心处的磁感强度为: θπμθπμθR I d R I dB B 44000===??(2分) 2.题号:40941002 分值:10分 一无限长的载流导线中部被弯成圆弧形,如图所示,圆弧形半径为cm R 3=,导线中 的电流为A I 2=。求圆弧形中心O 点的磁感应强度。 解答及评分标准: 两根半无限长直电流在O 点的磁感应强度方向同为垂直图面向外,大小相等,以垂直 图面向里为正向,叠加后得 R I R I B πμπμ242001-=?-= (3分) 圆弧形导线在O 点产生的磁感应强度方向垂直图面向里,大小为

R I R I B 83432002μμ== (3分) 二者叠加后得 T R I R I B B B 500121081.1283-?=-=+=πμμ (3分) 方向垂直图面向里。 (1分) 3.题号:40941003 分值:10分 难度系数等级:1 一段导线先弯成图(a )所示形状,然后将同样长的导线再弯成图(b )所示形状。在导 线通以电流I 后,求两个图形中P 点的磁感应强度之比。 (a ) (b ) 解答及评分标准: 图中(a )可分解为5段电流。 处于同一直线的两段电流对P 点的磁感应强度为零,其他三段在P 点的磁感应强度方向相 同。 长为l 的两段在P 点的磁感应强度为 l I B πμ4201= (2分) 长为2l 的一段在P 点的磁感应强度为 l I B πμ4202= (2分) 所以 l I B B B πμ22012=+= (2分) 图(b )中可分解为3段电流。

大学物理学第三版修订版下册第11章答案(赵近芳)

习题11 11.1选择题 (1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。 [答案:B] (2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。 [答案:A] (3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式22 1LI W m =() ( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。 [答案:D] (4)对于涡旋电场,下列说法不正确的是(): (A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。 [答案:C] 11.2 填空题 (1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。 [答案:磁力] (2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。 [答案:洛伦兹力,涡旋电场力,变化的磁场] (3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。 [答案:端点,2 2 1l B ω;中点,0] 11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B 垂直.当回路半 径以恒定速率 t r d d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2 πr B BS m ==Φ

大学物理答案第11章

第十一章 恒定磁场 11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( ) (A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比 因而正确答案为(C ). 11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( ) (A )B r 2π2 (B ) B r 2π (C )αB r cos π22 (D ) αB r cos π2 题 11-2 图 分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ?=m Φ.因而正确答案为(D ). 11-3 下列说法正确的是( ) (A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零 (D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零 分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ). 11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )

大学物理课后答案第十一章

第十一章 机械振动 一、基本要求 1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。 2. 掌握描述简谐运动的运动方程)cos(0?ω+=t A x ,理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。能根据给出的初始条件求振幅和初位相。 3. 掌握旋转矢量法。 4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。 二、基本内容 1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。如果物体振动的位置满足)()(T t x t x +=,则该物体的运动称为周期性运动。否则称为非周期运动。但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。 一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。 2. 简谐振动 简谐振动是一种周期性的振动过程。它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。 (1)简谐振动表达式)cos(0?ω+=t A x 反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。但是简谐振动表达式更多地用来揭示描述一个简谐运动必须

涉及到的物理量A 、ω、0?(或称描述简谐运动的三个参量),显然三个参量确定后,任一时刻作简谐振动的物体的位移、速度、加速度都可以由t 对应地得到。 )2cos()sin(00π ?ωω?ωω++=+-=t A t A v )cos()cos(0202π?ωω?ωω±+=+-=t A t A a (2)简谐运动的动力学特征为:物体受到的力的大小总是与物体对其平衡位置的位移成正比、而方向相反,即kx F -=,它是判定一个系统的运动过程是否作简谐运动的动力学根据,只要受力分析满足动力学特征的,毫无疑问地系统的运动是简谐运动。这里应该注意,F 系指合力,它可以是弹性力或准弹性力。 (3)和简谐运动的动力学特征相一致的是简谐运动的运动学特征:作简谐 运动物体的加速度大小总是与其位移大小成正比、而方向相反,即x dt x d 222ω-=,它也是物体是否作简谐运动的判据之一。只要加速度与位移大小成正比、而方向恒相反,则该物理量的变化过程就是一个简谐运动的过程。在非力学量,例如电量、电流和电压等电学量,就不易用简谐振动的动力学特征去判定,而LC 电路中的电量q 就满足q LC dt q d 122-=,故电量q 的变化过程就是一个简谐振荡的过程,显然用运动学的特征来判定简谐运动更具有广泛的意义。 3. 简谐振动的振幅、周期、频率和相位 (1)振幅A 是指最大位移的绝对值。A 是由初始条件来决定的,即 2202 0ωv +=x A 。 (2)周期T 是指完成一次完整的振动所用时间。ωπ2= T ,式中ω是简谐振动的圆频率,它是由谐振动系统的构造来决定的,即m k = ω,ω也称为固有圆频率。对应的T 称为固有周期。v T 1=,式中v 称为频率(即固有频率),它与圆频率的关系2v ωπ=,是由系统本身决定的。

大学物理13章习题详细答案

习题13 13-3.如习题13-3图所示,把一块原来不带电的金属板B 移近一块已带有正电荷Q 的金属板A ,平行放置。设两板面积都是S ,板间距为d ,忽略边缘效应,求:(1)板B 不接地时,两板间的电势差。(2)板B 接地时,两板间的电势差。 [解] (1)两带电平板导体相向面上电量大小相等符号相反,而相背面上电量大小相等符号相同,因此当板B 不接地,电荷分布为 因而板间电场强度为 S Q E 02ε= 电势差为 S Qd Ed U 0AB 2ε= = (2) 板B 接地时,在B 板上感应出负电荷,电荷分布为 故板间电场强度为 S Q E 0ε= 电势差为 S Qd Ed U 0AB ε= = B A -Q/2Q/2Q/2Q/2A B -Q Q

13-4 两块靠近的平行金属板间原为真空。使两板分别带上面电荷密度为?0的等量异号电荷,这时两板间电压为U 0=300V 。保持两板上电量不变,将板间空间一半如图习题13-4图所示充以相对电容率为?r =5的电介质,试求 (1) 金属板间有电介质部分和无电介质部分的E,D 和板上的自由电荷密度?; (2) 金属板间电压变为多少?电介质上下表面束缚电荷面密度多大? 13-5.如习题13-5图所示,三个无限长的同轴导体圆柱面A 、B 和C ,半径分别为R A 、R B 、R C 。圆柱面B 上带电荷,A 和C 都接地。求B 的内表面上线电荷密度?1和外表面上线电荷密度?2之比值?1/?2。 [解] 由A 、C 接地 BC BA U U = 由高斯定理知 r E 01I 2πελ-= r E 02 II 2πελ= A B 0101I BA ln 2d 2d A B A B R R r r U R R R R πελπελ=-==? ?r E B C 020 2II BC ln 2d 2d C B C B R R r r U R R R R πελ πελ===? ?r E B C 02A B 01ln 2ln 2R R R R πελ πελ= 因此 A B B C 21ln :ln :R R R R =λλ 13-6.如习题13-6图所示,一厚度为d 的无限大均匀带电导体板,单位面积上两表面带电量之和为?。试求离左表面的距离为a 的点与离右表面的距离为b 的点之间的电势差。 [解] 导体板内场强0=内E ,由高斯定理可得板外场强为 2εσ= E 故A 、B 两点间电势差为 ()a b x x x U b d a d a d a a a B A -= ++- =?=? ???++++0 00 AB 2d 2d 0d 2d εσ εσεσ l E II I Ⅰ Ⅱ Ⅲ B A

相关文档
最新文档