【必考题】高一数学上期末试题(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【必考题】高一数学上期末试题(含答案)

一、选择题

1.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭

的值为

( )

A .0

B .1

C .2

D .3

2.下列函数中,值域是()0,+∞的是( ) A .2y x = B .21

1

y x =

+ C .2x y =-

D .()lg 1(0)y x x =+>

3.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +

B .(1)f x -

C .()1f x +

D .()1f x -

4.已知函数()2log 14

x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )

A .3

B .4

C .5

D .6

5.若二次函数()2

4f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有

()()

1212

0f x f x x x -<-,则实数a 的取值范围为( )

A .1,02⎡⎫-⎪⎢⎣⎭

B .1,2⎡⎫

-

+∞⎪⎢⎣⎭

C .1,02⎛⎫

-

⎪⎝⎭

D .1,2⎛⎫

-

+∞ ⎪⎝⎭

6.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当

[]1,0x ∈-时,()112x

f x ⎛⎫

=- ⎪⎝⎭

,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)

恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5

B .()3,5

C .[]4,6

D .()4,6

7.偶函数()f x 满足()()2f x f x =-,且当[]

1,0x ∈-时,()cos 12

x

f x π=-,若函数

()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )

A .()3,5

B .

()2,4

C .11,42⎛⎫

⎪⎝⎭

D .11,53⎛⎫ ⎪⎝⎭

8.已知[]x 表示不超过实数x 的最大整数,()[]

g x x =为取整函数,0x 是函数()2

ln f x x x

=-的零点,则()0g x 等于( )

A .1

B .2

C .3

D .4

9.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0

B .1

C .2

D .﹣1

10.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)

B .(2,+∞)

C .(-∞,-2)∪(2,+∞)

D .(-2,2)

11.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U

P Q ⋃=

A .{1}

B .{3,5}

C .{1,2,4,6}

D .{1,2,3,4,5}

12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5

B .7

C .9

D .11

二、填空题

13.已知函数()21311log 12

x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩

,()()2ln 21x

g x a x x =+++()a R ∈,若对

任意的均有1x ,{}

2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.

14.函数()(

)4log 5f x x =-+________. 15.若当0ln2x ≤≤时,不等式(

)()2220x x

x

x a e e e

e ---+++≥恒成立,则实数a 的取

值范围是_____.

16.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()

g x 的图象,则其中一个函数的解析式可以为__________.

17.某食品的保鲜时间y (单位:小时)与储存温度x (单位:

)满足函数关系

为自然对数的底数,k 、b 为常数).若该食品在0的保鲜时间

设计192小时,在22

的保鲜时间是48小时,则该食品在33

的保鲜时间是 小时.

18.已知函数(2),2()11,22x

a x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭

⎩,满足对任意的实数12x x ≠,都有

1212

()()

0f x f x x x -<-成立,则实数a 的取值范围为__________.

19.设

是两个非空集合,定义运算

.已知

,则

________.

20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34x f f x ⎡⎤-=⎣⎦,则

()4f =______. 三、解答题

21.已知函数2

()3f x x mx n =-+(0m >)的两个零点分别为1和2. (1)求m ,n 的值; (2)令()()f x g x x

=,若函数()()22x x

F x g r =-⋅在[]1,1x ∈-上有零点,求实数r 的取值范围.

22.已知函数()2

1

log 1

x f x x +=-. (1)判断()f x 的奇偶性并证明; (2)若对于[]

2,4x ∈,恒有()2

log (1)(7)

m

f x x x >-⋅-成立,求实数m 的取值范围.

23.已知函数(

)

2()log 21x

f x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1

()2

f x a x >-

恒成立,求实数a 的取值范围;

相关文档
最新文档