【必考题】高一数学上期末试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【必考题】高一数学上期末试题(含答案)
一、选择题
1.德国数学家狄利克在1837年时提出:“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,”这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象,表格述是其它形式已知函数f (x )由右表给出,则1102f f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭
的值为
( )
A .0
B .1
C .2
D .3
2.下列函数中,值域是()0,+∞的是( ) A .2y x = B .21
1
y x =
+ C .2x y =-
D .()lg 1(0)y x x =+>
3.函数()f x 的反函数图像向右平移1个单位,得到函数图像C ,函数()g x 的图像与函数图像C 关于y x =成轴对称,那么()g x =( ) A .(1)f x +
B .(1)f x -
C .()1f x +
D .()1f x -
4.已知函数()2log 14
x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( )
A .3
B .4
C .5
D .6
5.若二次函数()2
4f x ax x =-+对任意的()12,1,x x ∈-+∞,且12x x ≠,都有
()()
1212
0f x f x x x -<-,则实数a 的取值范围为( )
A .1,02⎡⎫-⎪⎢⎣⎭
B .1,2⎡⎫
-
+∞⎪⎢⎣⎭
C .1,02⎛⎫
-
⎪⎝⎭
D .1,2⎛⎫
-
+∞ ⎪⎝⎭
6.设()f x 是R 上的周期为2的函数,且对任意的实数x ,恒有()()0f x f x --=,当
[]1,0x ∈-时,()112x
f x ⎛⎫
=- ⎪⎝⎭
,若关于x 的方程()()log 10a f x x -+=(0a >且1a ≠)
恰有五个不相同的实数根,则实数a 的取值范围是( ) A .[]3,5
B .()3,5
C .[]4,6
D .()4,6
7.偶函数()f x 满足()()2f x f x =-,且当[]
1,0x ∈-时,()cos 12
x
f x π=-,若函数
()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )
A .()3,5
B .
()2,4
C .11,42⎛⎫
⎪⎝⎭
D .11,53⎛⎫ ⎪⎝⎭
8.已知[]x 表示不超过实数x 的最大整数,()[]
g x x =为取整函数,0x 是函数()2
ln f x x x
=-的零点,则()0g x 等于( )
A .1
B .2
C .3
D .4
9.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0
B .1
C .2
D .﹣1
10.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)
B .(2,+∞)
C .(-∞,-2)∪(2,+∞)
D .(-2,2)
11.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U
P Q ⋃=
A .{1}
B .{3,5}
C .{1,2,4,6}
D .{1,2,3,4,5}
12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5
B .7
C .9
D .11
二、填空题
13.已知函数()21311log 12
x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩
,()()2ln 21x
g x a x x =+++()a R ∈,若对
任意的均有1x ,{}
2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.
14.函数()(
)4log 5f x x =-+________. 15.若当0ln2x ≤≤时,不等式(
)()2220x x
x
x a e e e
e ---+++≥恒成立,则实数a 的取
值范围是_____.
16.函数()f x 与()g x 的图象拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A 、(1,1)B 、(0,0)O 、(1,1)C --、(0,1)D -五个点,若()f x 的图象关于原点对称的图形即为()
g x 的图象,则其中一个函数的解析式可以为__________.
17.某食品的保鲜时间y (单位:小时)与储存温度x (单位:
)满足函数关系
(
为自然对数的底数,k 、b 为常数).若该食品在0的保鲜时间
设计192小时,在22
的保鲜时间是48小时,则该食品在33
的保鲜时间是 小时.
18.已知函数(2),2()11,22x
a x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭
⎩,满足对任意的实数12x x ≠,都有
1212
()()
0f x f x x x -<-成立,则实数a 的取值范围为__________.
19.设
是两个非空集合,定义运算
.已知
,
,则
________.
20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34x f f x ⎡⎤-=⎣⎦,则
()4f =______. 三、解答题
21.已知函数2
()3f x x mx n =-+(0m >)的两个零点分别为1和2. (1)求m ,n 的值; (2)令()()f x g x x
=,若函数()()22x x
F x g r =-⋅在[]1,1x ∈-上有零点,求实数r 的取值范围.
22.已知函数()2
1
log 1
x f x x +=-. (1)判断()f x 的奇偶性并证明; (2)若对于[]
2,4x ∈,恒有()2
log (1)(7)
m
f x x x >-⋅-成立,求实数m 的取值范围.
23.已知函数(
)
2()log 21x
f x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1
()2
f x a x >-
恒成立,求实数a 的取值范围;