【必考题】高一数学上期末试卷及答案
高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24xB x =>,则A B ⋂=( ) A .R B .),1(+∞C .)2,(-∞D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( ) A. -2 B. 2 C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.49、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34B.1334⎛⎤ ⎥⎝⎦,C. 103⎛⎤ ⎥⎝⎦,D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( )A. 0B. 2C. 6D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上) 13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分) 已知是的三个内角,向量,,且.(1) 求角; (2)若,求.19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
高一上学期期末考试数学试题(含答案)

高一上学期期末考试数学试题(含答案) 高一上学期期末考试数学试题(含答案)第I卷选择题(共60分)1.sin480的值为()A。
-1133B。
-2222C。
2222D。
11332.若集合M={y|y=2,x∈R},P={x|y=x-1},则M∩P=()A。
(1,+∞)B。
[1,+∞)C。
(-∞,+∞)D。
(-∞。
+∞)3.已知幂函数通过点(2,22),则幂函数的解析式为()A。
y=2xB。
y=xC。
y=x2D。
y=x1/24.已知sinα=-1/2,且α是第二象限角,那么tanα的值等于()A。
-5/3B。
-4/3C。
4/3D。
5/35.已知点A(1,3),B(4,-1),则与向量AB同方向的单位向量为()A。
(3/5,-4/5)B。
(-3/5,4/5)C。
(-4/5,-3/5)D。
(4/5,3/5)6.设tanα,tanβ是方程x2-3x+2=0的两根,则tan(α+β)的值为()A。
-3B。
-1C。
1D。
37.已知锐角三角形ABC中,|AB|=4,|AC|=1,△ABC的面积为3,则AB·AC的值为()A。
2B。
-2C。
4D。
-48.已知函数f(x)=asin(πx+β)+bcos(πx+β),且f(4)=3,则f(2015)的值为()A。
-1B。
1C。
3D。
-39.下列函数中,图象的一部分如图所示的是()无法确定图像,无法判断正确选项)10.在斜△ABC中,sinA=-2cosB·cosC,且tanB·tanC=1-2,则角A的值为()A。
π/4B。
π/3C。
π/2D。
2π/311.已知f(x)=log2(x2-ax+3a)在区间[2,+∞)上是减函数,则实数a的取值范围是()A。
(-∞,4]B。
(-∞,4)C。
(-4,4]D。
[-4,4]12.已知函数f(x)=1+cos2x-2sin(x-π/6),其中x∈R,则下列结论中正确的是()A。
f(x)是最小正周期为π的偶函数B。
高一上学期期末数学试卷及答案

高一上期末数学试卷一、选择题1.已知集合M={0,2},则M的真子集的个数为()A.1B.2C.3D.42.已知幂函数y=f(x)的图象过点(,4),则f(2)=()A.B.1C.2D.43.下列条件中,能判断两个平面平行的是()A.一个平面内的两条直线平行于另一个平面B.一个平面内的无数条直线平行于另一个平面C.平行于同一个平面的两个平面D.垂直于同一个平面的两个平面4.已知a=log32,b=log2,c=20.5,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.c<b<aD.c<a<b5.已知函数f(x)的定义域为[0,2],则函数f(x﹣3)的定义域为()A.[﹣3,﹣1]B.[0,2]C.[2,5]D.[3,5]6.已知直线l1:(m﹣2)x﹣y+5=0与l2:(m﹣2)x+(3﹣m)y+2=0平行,则实数m的值为()A.2或4B.1或4C.1或2D.47.如图,关于正方体ABCD﹣A1B1C1D1,下面结论错误的是()A.BD⊥平面ACC1A1B.AC⊥BDC.A1B∥平面CDD1C1D.该正方体的外接球和内接球的半径之比为2:18.过点P(1,2),并且在两坐标轴上的截距相等的直线方程是()A.x+y﹣3=0或x﹣2y=0B.x+y﹣3=0或2x﹣y=0C.x﹣y+1=0或x+y﹣3=0D.x﹣y+1=0或2x﹣y=09.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数g (x)=b+log a x的图象大致是()A.B.C.D.10.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是()A.cm3B.cm3C.2cm3D.4cm311.已知函数y=f(x)的图象关于直线x=1对称,当x<1时,f(x)=|()x ﹣1|,那么当x>1时,函数f(x)的递增区间是()A.(﹣∞,0)B.(1,2)C.(2,+∞)D.(2,5)12.已知点M(a,b)在直线4x﹣3y+c=0上,若(a﹣1)2+(b﹣1)2的最小值为4,则实数c的值为()A.﹣21或19B.﹣11或9C.﹣21或9D.﹣11或19二、填空题13.log240﹣log25=_______.14.已知函数f(x)=则f(f(e))=________.15.如图所示的正四棱台的上底面边长为2,下底面边长为8,高为3,则它的侧棱长为_______.16.给出下列结论:①已知函数f(x)是定义在R上的奇函数,若f(﹣1)=2,f(﹣3)=﹣1,则f (3)<f(﹣1);②函数y=log(x2﹣2x)的单调递增减区间是(﹣∞,0);③已知函数f(x)是奇函数,当x≥0时,f(x)=x2,则当x<0时,f(x)=﹣x2;④若函数y=f(x)的图象与函数y=e x的图象关于直线y=x对称,则对任意实数x,y都有f(xy)=f(x)+f(y).则正确结论的序号是_____________(请将所有正确结论的序号填在横线上).三、解答题17.已知全集U=R,集合A={x|0<log2x<2},B={x|x≤3m﹣4或x≥8+m}(m<6).(1)若m=2,求A∩(∁U B);(2)若A∩(∁U B)=∅,求实数m的取值范围.18.如图,在正三棱锥P﹣ABC中,D,E分别是AB,BC的中点.(1)求证:DE∥平面P AC;(2)求证:AB⊥PC.19.已知△ABC的三个顶点坐标分别为A(﹣1,1),B(7,﹣1),C(﹣2,5),AB边上的中线所在直线为l.(1)求直线l的方程;(2)若点A关于直线l的对称点为D,求△BCD的面积.20.在如图所示的几何体中,四边形DCFE为正方形,四边形ABCD为等腰梯形,AB∥CD,AC=,AB=2BC=2,且AC⊥FB.(1)求证:平面EAC⊥平面FCB;(2)若线段AC上存在点M,使AE∥平面FDM,求的值.21.2016年9月,第22届鲁台经贸洽谈会在潍坊鲁台会展中心举行,在会展期间某展销商销售一种商品,根据市场调查,每件商品售价x(元)与销量t(万元)之间的函数关系如图所示,又知供货价格与销量呈反比,比例系数为20.(注:每件产品利润=售价﹣供货价格)(1)求售价15元时的销量及此时的供货价格;(2)当销售价格为多少时总利润最大,并求出最大利润.22.已知a∈R,当x>0时,f(x)=log2(+a).(1)若函数f(x)过点(1,1),求此时函数f(x)的解析式;(2)若函数g(x)=f(x)+2log2x只有一个零点,求实数a的范围;(3)设a>0,若对任意实数t∈[,1],函数f(x)在[t,t+1]上的最大值与最小值的差不大于1,求实数a的取值范围.高一期末数学试卷(三)参考答案与试题解析一、选择题二、填空题 13.3 14.2 15.6 16.①③④. 三、解答题 17.答案:见解析解析:全集U =R ,集合A ={x |0<log 2x <2}={x |1<x <4}, B ={x |x ≤3m ﹣4或x ≥8+m }(m <6); (1)当m =2时,B ={x |x ≤2或x ≥10}, ∴∁U B ={x |2<x <10}, A ∩(∁U B )={x |2<x <4}; (2)∁U B ={x |3m ﹣4<x <8+m },当∁U B =∅时,3m ﹣4≥8+m ,解得m ≥6,不合题意,舍去; 当∁U B ≠∅时,应满足6634481m m m m <<⎧⎧⎨⎨-≥+≤⎩⎩或解得8673m m ≤<≤-或 ∴实数m 的取值范围是8673m m ≤<≤-或.点拨:(1)m =2时,求出集合B ,根据补集与交集的定义计算即可; (2)求出∁U B ,讨论∁U B =∅和∁U B ≠∅时,对应实数m 的取值范围. 18.答案:见解析解析:(1)∵在正三棱锥P ﹣ABC 中,D ,E 分别是AB ,BC 的中点. ∴DE ∥AC ,∵DE⊄平面P AC,AC⊂平面P AC,∴DE∥平面P AC.(2)连结PD,CD,∵正三棱锥P﹣ABC中,D是AB的中点,∴PD⊥AB,CD⊥AB,∵PD∩CD=D,∴AB⊥平面PDC,∵PC⊂平面PDC,∴AB⊥PC.点拨:(1)推导出DE∥AC,由此能证明DE∥平面P AC.(2)连结PD,CD,则PD⊥AB,CD⊥AB,从而AB⊥平面PDC,由此能证明AB⊥PC.19.答案:见解析解析:(1)AB中点坐标为(3,0),∴直线l的方程为y=(x﹣3),即x+y ﹣3=0;(2)设D(a,b),则,∴a=2,b=4,即D(2,4),直线BC的方程为y+1=(x﹣7),即2x+3y﹣11=0,D到直线BC的距离d==,|BC|==3,∴△BCD的面积S==.点拨:(1)求出AB中点坐标,即可求直线l的方程;(2)求出点A关于直线l的对称点为D,直线BC的方程,即可求△BCD的面积.20.答案:见解析解析:(1)在△ABC中,∵AC=,AB=2BC=2,∴AC2+BC2=AB2.∴AC⊥BC.又∵AC⊥FB,BF∩CB=B,∴AC⊥平面FBC.∵AC⊂平面平面EAC,∴平面EAC⊥平面FCB.(2)线段AC上存在点M,且M为AC中点时,有EA∥平面FDM,证明如下:连接CE与DF交于点N,连接MN.由CDEF为正方形,得N为CE中点.∴EA∥MN.∵MN⊂平面FDM,EA⊄平面FDM,∴EA∥平面FDM.所以线段AC上存在点M,且=1,使得EA∥平面FDM成立.点拨:(1)推导出AC⊥BC,AC⊥FB,从而AC⊥平面FBC,由上能证明平面EAC⊥平面FCB.(2)线段AC上存在点M,且M为AC中点时,连接CE与DF交于点N,连接MN.则EA∥MN.由此推导出线段AC上存在点M,且=1,使得EA∥平面FDM成立.21.答案:见解析解析:(1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20﹣x (0≤x≤20),设价格为y,则y=,x=15时,t=5万件,y=4万元;(2)总利润L=(x﹣)t=xt﹣20=x(20﹣x)﹣20≤﹣20=80,当且仅当x=10元时总利润最大,最大利润80万元.点拨:(1)每件商品售价x(元)与销量t(万件)之间的函数关系为t=20﹣x (0≤x≤20),设价格为y,则y=,即可求售价15元时的销量及此时的供货价格;(2)总利润L=(x﹣)t=xt﹣20=x(20﹣x)﹣20≤﹣20=80,可得结论.22.答案:见解析解析:(1)∵a∈R,当x>0时,f(x)=log2(+a).函数f(x)过点(1,1),∴f(1)=log2(1+a)=1,解得a=1,∴此时函数f(x)=log2(+1)(x>0).(2)g(x)=f(x)+2log2x=+2log2x=log2(x+ax2),∵函数g(x)=f(x)+2log2x只有一个零点,∴g(x)=f(x)+2log2x=log2(x+ax2)=0∴(+a)•x2=1化为ax2+x﹣1=0∴h(x)=ax2+x=1在(0,+∞)上只有一个解,∴当a=0时,h(x)=x﹣1,只有一个零点,可得x=1;当a≠0时,h(x)=ax2+x﹣1在(0,+∞)上只有一个零点,当a>0时,成立;当a<0时,令△=1+4a=0解得a=﹣,可得x=2.综上可得,a≥0或a=﹣.(3)f(x)=,f′(x)=﹣,当x>0时,f′(x)<0,f(x)在[t,t+1]上的最大值与最小值分别是f(t)与f (t+1),由题意,得f(t)﹣f(t+1)≤1,∴≤2,整理,得a ≥,设Q(t)=,Q′(t)=,当t∈[,1]时,Q′(t)<0,则a≥Q(t),∴a≥Q (),解得a ≥.∴实数a的取值范围是[,+∞).点拨:(1)由f(1)=log2(1+a)=1,解得a=1,由此能求出此时函数f(x)的解析式.(2)g(x)=log2(x+ax2),由函数g(x)只有一个零点,从而h(x)=ax2+x=1在(0,+∞)上只有一个解,由此能求出a.(3)f(x)=,,由题意,得f(t)﹣f(t+1)≤1,从而a ≥,设Q(t)=,Q′(t)=,由此利用导数性质能求出实数a的取值范围.第11页(共11页)。
高一数学上学期期末考试试题含解析1 9

智才艺州攀枝花市创界学校2021~2021第一学期期末教学质量检测高一数学试题一、选择题 1.集合{}22A x x =-<<,{}03B x x =≤≤,那么AB =()A.{}02x x <<B.{}02x x ≤<C.{}02x x <≤D.{}02x x ≤≤【答案】B 【解析】 【分析】利用集合的交运算即可求解. 【详解】由{}22A x x =-<<,{}03B x x =≤≤,那么A B ={}02x x ≤<.应选:B【点睛】此题考察了集合的交运算,属于根底题. 2.函数()()()log 40,1a f x x a a =->≠的定义域是()A.()0,4B.()4,+∞C.(),4-∞ D.()(),44,-∞⋃+∞【答案】C 【解析】利用对数型函数真数大于零即可求解. 【详解】函数()()()log 40,1a f x x a a =->≠有意义,那么40x ->,解得4x <. 所以函数的定义域为(),4-∞.应选:C【点睛】此题考察了对数型复合函数的定义域,属于根底题.3.直线L 经过点A 〔1,0〕,B 〔2,,那么直线L 的倾斜角是〔〕 A.30° B.60°C.120°D.150°【答案】B 【解析】 【分析】利用斜率计算公式可得斜率k ,再利用直线的倾斜角与斜率的关系即可得出. 【详解】解:设直线L 的倾斜角为θ.∵直线L 经过点A 〔1,0〕,B 〔2,,∴012k ==-.∴tan θ=∴θ=60°. 应选B .【点睛】此题考察了直线斜率计算公式、直线的倾斜角与斜率的关系,属于根底题. 4.圆()()22215x y -++=关于原点对称的圆的方程为()A.()()22215x y -+-=B.()()22125x y ++-=C.()()22125x y -++=D.()()22215x y ++-=【解析】 【分析】根据圆的方程可得其圆心()2,1-,进而可求得其关于原点对称点,利用圆的HY 方程即可求解.【详解】由圆()()22215x y -++=,那么圆心为()2,1-,半径r =,圆心为()2,1-关于原点对称点为()2,1-,所以圆()()22215x y -++=关于原点对称的圆的方程为()()22215x y ++-=.应选:D【点睛】此题考察了根据圆心与半径求圆的HY 方程,属于根底题. 5.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,那么以下直线中与直线CF 互为异面直线的是() A.1CC B.AEC.DED.11B C【答案】B 【解析】 【分析】根据异面直线的定义即可得出选项.【详解】对于A ,直线CF 与1CC 相交,所以两直线一共面,故A 不符合; 对于B ,直线CF 与AE 既不平行也不相交,故B 符合;对于C ,连接EF ,那么EF CD ∥,且EF CD =,即四边形CDEF 为平行四边形,所以CFDE ,故两直线一共面,C 不符合;对于D ,直线CF 与11B C 相交于点F ,故D 不符合; 应选:B【点睛】此题考察了异面直线的定义,属于根底题. 6.设()y f x =是定义在R 上的偶函数,假设当()0,2x ∈时,()1f x x =-,那么()1f -=()A.0B.1C.1-D.2【答案】A 【解析】 【分析】利用函数的为偶函数,可得()()11f f -=,代入解析式即可求解.【详解】()y f x =是定义在R 上的偶函数,那么()()11f f -=,又当()0,2x ∈时,()1f x x =-,所以()()11110f f -==-=.应选:A【点睛】此题考察了利用函数的奇偶性求函数值,属于根底题. 7.直线x ﹣y+2=0与圆x 2+〔y ﹣1〕2=4的位置关系是〔〕 A.相交 B.相切C.相离D.不确定【答案】A 【解析】 【分析】求得圆心到直线的间隔,然后和圆的半径比较大小,从而断定两者位置关系,得到答案.【详解】由题意,可得圆心(0,1)到直线的间隔为22d==<, 所以直线与圆相交. 应选A .【点睛】此题主要考察了直线与圆的位置关系断定,其中解答中熟记直线与圆的位置关系的断定方法是解答的关键,着重考察了推理与计算才能,属于根底题. 8.函数()21f x x ax =-+在[)2,+∞上单调递增,那么实数a 的取值范围是()A.{}4 B.(],4-∞C.(),5-∞D.(],2-∞【答案】B 【解析】 【分析】利用二次函数的图像与性质,使对称轴22ax =≤,解不等式即可. 【详解】由题意,函数()21f x x ax =-+开口向上,在[)2,+∞上单调递增,所以对称轴22ax=≤,即4a ≤, 故实数a 的取值范围为(],4-∞.应选:B【点睛】此题考察了二次函数的图像与性质,需掌握二次函数的单调性与对称轴和开口方向有关,属于根底题.9.函数(01)xxa y a x=<<的图像的大致形状是〔〕 A. B.C. D.【答案】D 【解析】 【分析】分x >0与x <0两种情况将函数解析式化简,利用指数函数图象即可确定出大致形状.【详解】,0,0x x x a x xa y x a x ⎧>==⎨-<⎩且10a >>,根据指数函数的图象和性质,()0,x ∈+∞时,函数为减函数,(),0x ∈-∞时,函数为增函数,应选D .【点睛】此题考察了函数的图象,纯熟掌握指数函数的图象与性质是解此题的关键.10.如图,圆柱内有一内切球〔圆柱各面与球面均相切〕,假设内切球的体积为43π,那么圆柱的侧面积为A.πB.2πC.4πD.8π【答案】C 【解析】设球的半径为r ,那么34433r π=π,解得1r =, 所以圆柱的底面半径1r =,母线长为22l r ==,所以圆柱的侧面积为224Srl =π=π⨯1⨯2=π,应选C .11.在一定的储存温度范围内,某食品的保鲜时间是y 〔单位:小时〕与储存温度x 〔单位:C 〕之间满足函数关系e kx b y +=〔 2.71828e =⋅⋅⋅为自然对数的底数,k ,b 为常数〕,假设该食品在0C 时的保鲜时间是为120小时,在30C 时的保鲜时间是为15小时,那么该食品在20C 时的保鲜时间是为()A.60小时B.40小时C.30小时D.20小时【答案】C 【解析】 【分析】根据题意可得3012015bk be e+⎧=⎨=⎩,求出解析式即可求解. 【详解】由题意可得3012015bk be e +⎧=⎨=⎩,解得13018k e ⎛⎫= ⎪⎝⎭,120b e =, 所以当20x=时,()1203020201120308k b k b y e e e ⨯⨯+⎛⎫==⨯=⨯= ⎪⎝⎭,应选:C【点睛】此题考察了指数函数模型的应用以及指数的运算,属于根底题. 12.,a b 是不同的直线,αβ,是不同的平面,假设a α⊥,b β⊥,//a β〕A.b α⊥B.//b αC.αβ⊥D.//αβ【答案】C 【解析】 【分析】构造长方体中的线、面与直线,,,a b αβ相对应,从而直观地发现αβ⊥成立,其它情况均不成立.【详解】如图在长方体1111ABCD A B C D -中,令平面α为底面ABCD ,平面β为平面11BCC B ,直线a 为1AA假设直线AB 为直线b ,此时b α⊂,且αβ⊥,故排除A,B,D ;因为a α⊥,//a β,所以β内存在与a 平行的直线,且该直线也垂直α,由面面垂直的断定定理得:αβ⊥,应选C.【点睛】此题考察空间中线、面位置关系,考察空间想象才能,求解时要排除某个答案必需能举出反例加以说明. 二、填空题13.直线1:310l ax y +-=与直线2:6430l x y +-=垂直,那么实数a 的值是________.【答案】2- 【解析】 【分析】利用直线的一般式,直线垂直系数满足6120a +=即可求解. 【详解】由直线1:310l ax y +-=与直线2:6430l x y +-=垂直,那么6120a +=,解得2a =-. 故答案为:2-【点睛】此题考察了根据直线垂直求参数的取值,需掌握直线一般式,直线垂直系数满足12120A A B B +=,属于根底题.14.用斜二测画法画出的程度放置的三角形的直观图为O A B '''△〔如图〕,且1O A O B ''''==,那么原三角形的面积为________. 【答案】1 【解析】 【分析】根据斜二测画法,判断出原三角形为直角三角形,且求得两条直角边的长,进而求得原三角形的面积. 【详解】根据斜二测画法,原三角形为直角三角形,OA OB ⊥,且在原图中2,1OB OA ==,故原三角形的面积为12112⨯⨯=. 故答案为:1【点睛】此题主要考察斜二测画法的概念,考察直观图求原图的面积,属于根底题. 15.函数()f x 在R 上是减函数,且()21f =-,那么满足()241f x ->-的实数x 的取值范围是________. 【答案】(),3-∞【解析】 【分析】利用函数在R 上是减函数可得242x -<,解不等式即可. 【详解】由()21f =-,假设满足()241f x ->-,那么()()242f x f ->又函数()f x 在R 上是减函数,那么242x -<,解得3x <,所以实数x 的取值范围为(),3-∞.故答案为:(),3-∞【点睛】此题考察了利用函数的单调性解抽象函数不等式,属于根底题. 16.[]x 表示不超过实数x 的最大整数,如:[]0.90=,[]1.21=.设()[]g x x =,0x是函数()ln 4f x x x =+-的零点,那么()0g x =________.【答案】2 【解析】 【分析】利用零点存在性定理求出函数零点所在的区间,再根据定义即可求解. 【详解】函数()ln 4f x x x =+-在()0,∞+上递增,且()2ln 220f =-<,()3ln310f =->,所以函数()f x 存在唯一的零点()02,3x ∈,故()02gx =.故答案为:2【点睛】此题是一道函数的新定义题目,需理解[]x 的意义,同时考察了函数零点存在性定理,属于根底题. 三、解答题17.函数()()log 0,1a f x x a a =>≠的图象过点1,24⎛⎫⎪⎝⎭.(1)求a 的值; (2)计算12lg lg 5aa --+的值.【答案】(1)12;1. 【解析】 【分析】〔1〕根据题意将点1,24⎛⎫⎪⎝⎭代入解析式利用指数与对数的互化即可求解. 〔2〕由〔1〕根据指数与对数的运算性质即可求解.【详解】(1)()()log 0,1a f x x a a =>≠的图像过点1,24⎛⎫ ⎪⎝⎭,1log 24a∴=,214a ∴=,得12a =. (2)由(1)知,12a =,112211lg lg5lg lg5lg 2lg5122aa --⎛⎫∴-+=-+=+= ⎪⎝⎭.【点睛】此题考察了指数与对数的互化以及指数与对数的运算性质,属于根底题. 18.直线1:10l ax y a +++=与22(:1)30l x a y +-+=.〔1〕当0a=时,求直线1l 与2l 的交点坐标;〔2〕假设12l l ,求a 的值.【答案】〔1〕(2,1)--;〔2〕1-.【解析】【分析】〔1〕当0a =时,直线1:10l y +=与2:230l x y -+=联立即可.〔2〕两直线平行表示斜率一样且截距不同,联立方程求解即可.【详解】〔1〕当0a =时,直线1:10l y +=与2:230l x y -+=,联立10230y x y +=⎧⎨-+=⎩,解得21x y =-⎧⎨=-⎩,故直线1l 与2l 的交点坐标为(2,1)--. 〔2〕因为12l l ,所以(1)203(1)(1)0a a a a --=⎧⎨--+≠⎩,即2(2)(1)040a a a -+=⎧⎨-≠⎩解得1a =-. 【点睛】此题考察直线斜率,两直线平行表示斜率相等且截距不同〔假设斜率和截距都一样那么是同一条直线〕,属于根底简单题目.19.函数()()2210f x ax x a =++≠有唯一零点.(1)求a 的值;(2)当[]2,2x ∈-时,求函数()f x 的值域.【答案】(1)1;(2)[]0,9.【解析】【分析】 〔1〕根据题意,只需0∆=即可求解.〔2〕根据二次函数的图像与性质即可求解.【详解】(1)()221f x ax x =++有唯一零点,440a ∴∆=-=,得1a =.(2)由(1)知,1a =,故()()22211f x x x x =++=+,[]2,2x ∴∈-时,()09f x ≤≤,即当[]2,2x ∈-时,函数()f x 的值域为[]0,9.【点睛】此题考察了根据零点个数求参数值,考察了二次函数的值域,属于根底题.20.如图,在三棱柱111ABC A B C -中,D 、P 分别是棱AB ,11A B 的中点,求证: 〔1〕1AC ∥平面1B CD ;〔2〕平面1APC 平面1B CD .【答案】〔1〕见证明;〔2〕见证明【解析】【分析】〔1〕设1BC 与1B C 的交点为O ,连结OD ,证明1OD AC ,再由线面平行的断定可得1AC ∥平面1B CD ;〔2〕由P 为线段11A B 的中点,点D 是AB 的中点,证得四边形1ADB P 为平行四边形,得到1AP DB ,进一步得到AP ∥平面1B CD .再由1AC ∥平面1B CD ,结合面面平行的断定可得平面1APC 平面1B CD .【详解】证明:〔1〕设1BC 与1B C 的交点为O ,连结OD ,∵四边形11BCC B 为平行四边形,∴O 为1B C 中点,又D 是AB 的中点,∴OD 是三角形1ABC 的中位线,那么1OD AC , 又∵1AC ⊄平面1B CD ,OD ⊂平面1B CD ,∴1AC ∥平面1B CD ;〔2〕∵P 为线段11A B 的中点,点D 是AB 的中点, ∴1AD B P 且1AD B P =,那么四边形1ADB P 为平行四边形, ∴1AP DB ,又∵AP ⊄平面1B CD ,1DB ⊂平面1B CD , ∴AP ∥平面1B CD .又1AC ∥平面1B CD ,1AC AP P =,且1AC ⊂平面1APC ,AP ⊂平面1APC , ∴平面1APC 平面1B CD .【点睛】此题考察直线与平面,平面与平面平行的断定,考察空间想象才能与思维才能,是中档题.21.圆22:240C x y x y +-+=.(1)假设直线:20l x y t -+=与圆C 相切,务实数t 的值;(2)假设圆()()()222:320M x y r r -+-=>与圆C 无公一共点,求r 的取值范围.【答案】(1)1或者9-;(2){|0r r <<r >. 【解析】【分析】 〔1〕求出圆的圆心与半径,利用点到直线的间隔公式使圆心到直线的间隔等于半径即可求解.〔2〕根据圆C 的圆心为()1,2-,圆M 的圆心为()3,2,求出圆心距,两圆无交点可知:圆心距大于半径之和或者小于半径之差即可.【详解】(1)圆22:240C x y x y +-+=的HY 方程为()()22125x y -++=, ∴圆C 的圆心为()1,2-假设直线l 与圆C 相切,那么有d ==解得1t =或者9t =-,故实数t 的值是1或者9-.(2)圆C 的圆心为()1,2-,圆M 的圆心为()3,2,那么MC ==假设圆M 与圆C 无公一共点,那么r+<r ->解得r <r >故r 的取值范围为{|0r r <<或者r >. 【点睛】此题考察了直线与圆的位置关系、圆与圆的位置关系,同时考察了点到直线的间隔公式、两点间的间隔公式,属于根底题.22.如图,在多面体ABCDEF 中,底面ABCD 是边长为2的菱形,且60BAD ∠=︒,四边形BDEF是等腰梯形,且1DE EFFB ===,AC BF ⊥. 〔1〕证明:平面BDEF⊥平面ABCD . 〔2〕求该多面体的体积.【答案】(1)见证明;(2)32V= 【解析】【分析】〔1〕先证AC ⊥平面BDEF ,从而可得结论;〔2〕把几何体分割为两个锥体求解. 【详解】〔1〕证明:因为底面ABCD 是菱形,所以AC BD ⊥. 又因为AC BF ⊥,且BF BD B ⋂=, 所以AC ⊥平面BDEF . 又AC ⊂平面ABCD ,故平面BDEF ⊥平面ABCD .〔2〕解:梯形BDEF =()1222BDEF S +==梯形 多面体体积2A BDEF V V -=,所以1123232342BDEF V S AC ⎛⎫=⨯⨯⨯=⨯= ⎪⎝⎭. 【点睛】此题主要考察空间位置关系的证明和几何体体积的求解,面面垂直一般是通过线面垂直来实现,复杂几何体的体积求解一般是用割补法.。
新高一数学上期末试卷(带答案)

新高一数学上期末试卷(带答案)一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦ C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.函数y =a |x |(a >1)的图像是( ) A .B .C .D .5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭7.函数()2sin f x x x =的图象大致为( )A .B .C .D .8.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-19.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.函数20.5log y x =________14.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.15.已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 19.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.20.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 24.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数) 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁RB ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <,341x x =,从而得解【详解】解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示: 依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.B解析:B【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .5.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.A【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数, 则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.7.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.8.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.11.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】 【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间. 【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-.当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数y =递增区间是[)1,0-. 【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题.14.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.15.【解析】【分析】将化简为关于的函数式利用基本不等式求出的最值即可求解【详解】当时当时时当且仅当时等号成立同理时即的最小值和最大值分别为依题意得解得故答案为:【点睛】本题考查函数的最值考查基本不等式的解析:【解析】 【分析】将()f x 化简为关于x a +的函数式,利用基本不等式,求出的最值,即可求解. 【详解】当x a =-时,()0f x =,当x a时,()222111[()]1()2 x a x af xax x a ax a ax a++===+++-+++-+,x a >-时,21()22ax a a ax a+++-≥+当且仅当x a=时,等号成立,0()2af x∴<≤=同理x a<-时,()02af x∴≤<,()22a af x∴≤≤,即()f x的最小值和最大值分别为,22a a,2=,解得a=.故答案为:【点睛】本题考查函数的最值,考查基本不等式的应用,属于中档题.16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值解析:(]0,1【解析】【分析】分别求出(),()f xg x的值域,对a分类讨论,即可求解.【详解】()()222,log loga R f x x a a+∈=+≥,()f x的值域为2[log,)a+∞,()()22log([()])g x f f x f x a==+⎡⎤⎣⎦,当22201,log0,[()]0,()loga a f x g x a<≤<≥≥,函数()g x值域为2[log,)a+∞,此时(),()f xg x的值域相同;当1a>时,2222log0,[()](log)a f x a>≥,222()log[(log)]g x a a≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+ 当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同, 故a 的取值范围为(]0,1. 故答案为:(]0,1. 【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫ ⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为. 【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.19.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.20.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立,则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.三、解答题21.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 22.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min 2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,xxa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.24.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克【解析】 【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =; 当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+,故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩.(2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩,当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=; 当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克. 【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.见解析 【解析】 【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为( )A.( ,1)B.( ,∞)C.(1,+∞ )D.( ,1)∪( 1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A.( ,1,1)B.(1,,1)C.(1,1, )D.( ,,1)3.若,,,则与的位置关系为( )A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为( )A. B.C. D.5.设,则的大小关系是( )A. B. C. D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为( )A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是( )A. B. C. D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是( )A. B.C. D.9.已知,则直线与圆的位置关系是( )A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( )A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是( )A. B.C. D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则 .14.已知,则 .15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3 cm,则球的体积是 .16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足 ,且 .若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱) 中,,分别是棱上的点(点不同于点 ),且为的中点.求证:(1)平面平面 ;(2)直线平面 .21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形A BCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBAD BDCAD BC二、填空题13. 14.13 15. 16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵ 是直三棱柱,∴ 平面。
高一数学上学期期末综合试卷含答案

高一数学上学期期末综合试卷含答案一、选择题1.已知全集U =R ,集合{}12M x x =-≤,则U M 等于( ) A .{}13x x -<< B .{}13x x -≤≤ C .{1x x <-或}3x >D .{1x x ≤-或}3x ≥2.已知函数()f x =()()3y f x f x =+-的定义域是( ) A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]3.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角4.已知0a <,角α的终边上一点(,2)a a -,则sin α=( )A B .C D .5.函数2()ln f x x x=-的零点所在的大致区间是( ) A .(1,2)B .1(1,)eC .(3,4)D .(2,3)6.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画1描绘了筒车的工作原理.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),筒车的半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点0P 运动到点P 时所经过的时间为(t 单位:s),则点P 第一次到达最高点需要的时间为( )A .7sB .132s C .6s D .5s7.若函数26,3()ln(2)9,3x x x f x x x ⎧-≤=⎨--->⎩,则()26(1)f x f x >+的解集为( )A .11,32⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .11,32⎛⎫- ⎪⎝⎭8.已知()f x 是定义在[]1,1-上的奇函数,且()11f -=-,当,1,1a b且0a b +≠时()()0f a f b a b+>+.已知,22ππθ⎛⎫∈- ⎪⎝⎭,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则θ的取值范围是( )A .,62ππ⎛⎫- ⎪⎝⎭B .,23ππ⎛⎫-- ⎪⎝⎭C .,32ππ⎛⎫- ⎪⎝⎭D .,26ππ⎛⎫- ⎪⎝⎭二、填空题9.下列命题是真命题的是( ) A .若幂函数()a f x x 过点1,42⎛⎫⎪⎝⎭,则12α=-B .(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭C .(0,)x ∀∈+∞,1123log log x x> D .命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥” 10.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1≥xC .01x <≤D .11x -≤≤11.下列命题不正确的( ) A .110||||a b a b<<⇒> B .ab a b cc>⇒>C .33110a b a b ab ⎫>⇒<⎬>⎭D .22110a b a bab ⎫>⇒<⎬>⎭12.关于函数()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,其中正确命题是( )A .()y f x =的最大值为2B .()y f x =是以π为最小正周期的周期函数C .将函数2cos 2y x =的图像向左平24π个单位后,将与已知函数的图像重合 D .()y f x =在区间13,2424ππ⎛⎫⎪⎝⎭上单调递减 三、多选题13.若命题“()0x ∃∈+∞,,使得24ax x >+成立”是假命题,则实数a 的取值范围是_________. 14.2log 3a c =,1log 2ab c =,则log b c =________ 15.已知函数()221f x x ax =-+,[]1,x a ∈-,且()f x 最大值为f a ,则a 的取值范围为______.16.定义域为R 的函数()2x F x =可以表示为一个奇函数()f x 和一个偶函数()g x 的和,则()f x =_________;若关于x 的不等式()()f x a bF x +≥-的解的最小值为1,其中,R a b ∈,则a 的取值范围是_________.四、解答题17.已知集合{}()(23)0A x x m x m =+-+<,其中m ∈R ,集合203x B xx ⎧⎫-=>⎨⎬+⎩⎭. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围.18.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图像如图所示,P 为该图像的最高点.(1)若2πω=,求cos APB ∠的值;(2)若PAB 45∠=︒,P 的坐标为()1,2,求()f x 的解析式. 19.已知函数2()(1)1(0)f x ax a x a =-++>.(1)若()f x 的单调递减区间是(,1]-∞,求a 的值并证明你的结论; (2)解关于x 的不等式()0(0)f x a <>.20.如图,已知正方形ABCD 的边长为1,点P ,Q 分别是边BC ,CD 上的动点(不与端点重合),在运动的过程中,始终保持4PAQ π∠=不变,设BAP α∠=.(1)将APQ 的面积表示成α的函数,并写出定义域; (2)求APQ 面积的最小值.21.已知函数()xf x a =(0a >,且1a ≠).(1)证明:()()()1212222f x f x f x x +≥+;(2)若()12f x =,()23f x =,()128f x x =,求a 的值; (3)x ∀∈R ,()212xx f x -+≤恒成立,求a 的取值范围.22.已知2()ln ,()241()f x x g x x ax a a R ==-+-∈.(Ⅰ)若函数(())f g x 在[1,3]上单调递增,求实数a 的取值范围; (Ⅱ)若函数(())g f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为()M a ,最小值为()m a ,令()()()k a M a m a =-,求()k a 的解析式及其最小值(注:e 为自然对数的底数).【参考答案】一、选择题 1.C 【分析】解绝对值不等式求出集合M ,再利用集合的补运算即可求解. 【详解】因为集合{}{}1213M x x x x =-≤=-≤≤,全集U =R , 所以{U 1M x x =<-或}3x >, 故选:C. 2.D 【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥, 解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤, 所以函数的定义域为[1,4]. 故选:D 3.B 【分析】由α是第三象限角,知2α在第二象限或在第四象限,再由cos cos 22αα=-,知cos 02α≤,由此能判断出2α所在象限. 【详解】α是第三象限角,()180360270360k k k Z α∴+⋅<<+⋅∈, ()901801351802k k k Z α∴+⋅<<+⋅∈.当k 是偶数时,设()2k n n =∈Z ,则()903601353602n n n Z α+⋅<<+⋅∈,此时2α为第二象限角; 当k 是奇数时,设()21k n n Z =+∈,则()2703603153602n n n Z α+⋅<<+⋅∈,此时2α为第四象限角. 综上所述,2α为第二象限角或第四象限角,coscos22αα=-,cos02α∴≤,2α∴为第二象限角.故选:B . 【点睛】本题考查角所在象限的判断,属于基础题,关键在于由所在的象限,得出关于α的不等式,再求出2α的范围. 4.C 【分析】首先根据三角函数的定义求出tan α,再根据同角三角函数的基本关系计算可得; 【详解】解:因为角α的终边上一点(,2)a a -,所以tan 2α,又22sin tan 2cos sin cos 1ααααα⎧==-⎪⎨⎪+=⎩,解得sin α=,由0a <可知α在第二象限,故sin α= 故选:C . 5.D 【分析】 函数2()ln f x x x=-在(0,)+∞上是连续增函数,根据()()230f f <,根据零点存在定理可得零点所在的大致区间. 【详解】解:对于函数2()ln f x x x=-在(0,)+∞上是连续增函数, 由于()2ln 210f =-<,()23ln 303f =->, 所以()()230f f <,根据零点存在定理可知,函数2()ln f x x x=-的零点所在的大致区间是(2,3), 故选:D . 6.D 【分析】设点P 离水面的高度为()sin()f t A t ωϕ=+,根据题意求出,,A ωϕ,再令()4f t =可求出结果. 【详解】设点P 离水面的高度为()sin()f t A t ωϕ=+, 依题意可得4A =,826015ππω==,6πϕ=-, 所以2()4sin()156f t t ππ=-, 令2()4sin()4156f t t ππ=-=,得2sin()1156t ππ-=,得221562t k ππππ-=+,k Z ∈,得155t k =+,k Z ∈,因为点P 第一次到达最高点,所以2015215t ππ<<=, 所以0,5s k t ==. 故选:D 7.D 【分析】首先作出分段函数()f x 的单调性,根据单调性去掉f 即可求解. 【详解】作出26,3()ln(2)9,3x x x f x x x ⎧-≤=⎨--->⎩的图象如图:由图知,函数()f x 在R 单调递减,由()26(1)f x f x >+可得261x x <+,即2610x x --<,解得:1132x -<<,所以()26(1)f x f x >+的解集为11,32⎛⎫- ⎪⎝⎭,故选:D 【点睛】关键点点睛:本题解题的关键点是判断()f x 的单调性,利用单调性解不等式. 8.A 【分析】由奇偶性分析条件可得()f x 在[]1,1-上单调递增,所以()max 1f x =,进而得2143sin 2cos θθ<+-,结合角的范围解不等式即可得解. 【详解】因为()f x 是定义在[]1,1-上的奇函数, 所以当,1,1a b且0a b +≠时()()()()00()f a f b f a f b a b a b +-->⇔>+--,根据,a b 的任意性,即,a b -的任意性可判断()f x 在[]1,1-上单调递增, 所以()max (1)(1)1f x f f ==--=,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则2143sin 2cos θθ<+-,整理得(sin 1)(2sin 1)0θθ++>,所以1sin 2θ>-,由,22ππθ⎛⎫∈- ⎪⎝⎭,可得,62ππθ⎛⎫∈- ⎪⎝⎭,故选:A. 【点睛】关键点点睛,本题解题的关键是利用()()()()00()f a f b f a f b a b a b +-->⇔>+--,结合变量的任意性,可判断函数的单调性,属于中档题.二、填空题9.BD 【分析】根据幂函数的定义判断A ,结合图象判断BC ,根据特称命题的否定为全称命题可判断D . 【详解】解:对于A :若幂函数()a f x x 过点1,42⎛⎫ ⎪⎝⎭,则142解得2α=-,故A 错误;对于B :在同一平面直角坐标系上画出12xy ⎛⎫= ⎪⎝⎭与12log y x=两函数图象,如图所示由图可知(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭,故B 正确;对于C :在同一平面直角坐标系上画出13log y x=与12log y x=两函数图象,如图所示由图可知,当(0,1)x ∈时,1123log log x x>,当1x =时,1123log log x x=,当(1,)x ∈+∞时,1123log log x x<,故C 错误;对于D :根据特称命题的否定为全称命题可知,命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”,故D 正确; 故选:BD【点睛】本题考查指数函数对数函数的性质,幂函数的概念,含有一个量词的命题的否定,属于基础题. 10.AC 【分析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 11.ABD 【分析】利用不等式的性质,结合特殊值法、比较法逐一判断即可. 【详解】 A :1100ab a b <<∴>且110a b ->->,因此110ab ab ab a b-⋅>-⋅>⋅,即00b a b a b a ->->⇒->->⇒>,故本命题不正确; B :因为4822>--,显然48>不成立,所以本命题不正确; C :由332233()()0b a b a b a b b a a ⇒-=-++>>,而0ab >, 所以有a b >,而11110b a a b ab a b--=<⇒<,故本命题正确; D :若2,1a b =-=-,显然220a b ab ⎧>⎨>⎩成立,但是1121<--不成立,故本命题不正确, 故选:ABD 【点睛】方法点睛:关于不等式是否成立问题,一般有直接运用不等式性质法、特殊值法、比较法. 12.ABD 【分析】先把()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭化为()5212f x x π⎛⎫=+ ⎪⎝⎭,直接对四个选项一一验证. 【详解】()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭cos 2cos 2626x x πππ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭sin 2cos 266x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭264x ππ⎛⎫=++ ⎪⎝⎭5212x π⎛⎫=+ ⎪⎝⎭ 显然A 、B 选项正确C 选项:将函数2y x =的图像向左平24π个单位得到212y x π⎛⎫=+ ⎪⎝⎭,图像不会与原图像重合,故C 错误;D 选项:当13,2424x ππ⎛⎫∈ ⎪⎝⎭,则532,1222x πππ⎛⎫+∈ ⎪⎝⎭,∴()y f x =在区间13,2424ππ⎛⎫ ⎪⎝⎭上单调递减成立. 故选:ABD 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.三、多选题 13.(],4-∞【分析】由题意可知,命题“()0x ∀∈+∞,,使得24ax x ≤+成立”是真命题,可得出4a x x≤+,结合基本不等式可解得实数k 的取值范围. 【详解】若命题“()0x ∃∈+∞,,使得24ax x >+成立”是假命题, 则有“()0x ∀∈+∞,,使得24ax x ≤+成立”是真命题. 即4a x x ≤+,则min 4a x x ⎛⎫≤+ ⎪⎝⎭,又44x x+≥=,当且仅当2x =时取等号,故4a ≤. 故答案为:(],4-∞ 14.2 【分析】 根据2log 3a c =,1log 2ab c =,找到a 、b 、c 的关系,计算log b c . 【详解】 ∵2log 3a c =,1log 2ab c =, ∴()2132a c ab c ==,, ∴()2132=a ab ,化简得:1162=a b ,即3=a b , ∴2=c b ,∴2log log 2b b c b ==.故答案为:2 【点睛】 对数运算技巧: (1)应用常用对数值; (2)灵活应用对数的运算性质; (3) 逆用法则、公式;(4) 应用换底公式,化为同底结构.15.[)2,+∞【分析】由题知1a >-,进而得函数的对称轴[]14,a ax ∈-=,再根据函数开口向上,()f x 最大值为f a 得144a aa -≥+,解不等式即可得答案. 【详解】解:因为[]1,x a ∈-,所以1a >-, 因为函数的对称轴为[]14,a ax ∈-=,开口向上,()f x 最大值为f a 所以144a aa -≥+,解得2a ≥,所以a 的取值范围为[)2,+∞ 故答案为; [)2,+∞ 16.()1222xx -- 1a ≥- 【分析】先根据()f x 为奇函数,()g x 为偶函数,求出()F x -,再与()F x 联立即可求出()f x ;先将()(),f x F x -代入()()f x a bF x +≥-,即可得到()12222xxx a b --≥--,将其转化为()1max1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝,令()()11222,1x x h x x b --⎛⎫+- ⎪⎝⎭=≥,求出()max h x 即可求出a 的取值范围. 【详解】解:由题意知:()()()2xF x f x g x =+=()f x 为奇函数,()g x 为偶函数,()()()(),f x f x g x g x ∴-=--=, ()()()()()2x F x f x g x f x g x -=-+-=-+=()()()()()()()222x xF x F x f x g x f x g x f x ---=+--+==-⎡⎤⎣⎦,即()()1222x xf x -=-, ()()f x a bF x +≥-,即()12222xx x a b ---+≥⋅, 即()12222xxx a b --≥--, 即11222x x a b --⎛⎫≥+- ⎪⎝⎭,关于x 的不等式()()f x a bF x +≥-的解的最小值为1, 等价于()1max 1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝, 令()()11222,1x x h x x b --⎛⎫+- ⎪⎝⎭=≥,当12b =-时,()()1,21x h x x --=≥易知:()12x h x -=-在[)1,+∞单调递减,()()0max 121h x h ==-=-,故1a ≥-,当12b >-时,102b +>,()11222x x b h x --⎛⎫+- ⎪⎝⎭=在[)1,+∞单调递减,()()10max 13122224b h x h b -⎛⎫==+⨯-=- ⎪⎝⎭,当b 趋近于+∞时,()max h x 趋近于+∞, 故()1max 1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝无解,当12b <-时,102b +<,当1≥x 时,1022x-≤≤, 1202x b -⎛⎫+< ⎪⎝⎭,112x --<-, 故()121122x x h x b --⎛⎫+- ⎪⎝⎭=<-,即1a ≥-, 综上所述:1a ≥-. 故答案为:()1222xx --;1a ≥-. 【点睛】关键点点睛:本题解题的关键是将关于x 的不等式()()f x a bF x +≥-的解的最小值为1,转化为()1max1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝.四、解答题17.(1){}52x x -<<;(2)(,2][3,)-∞-⋃+∞ 【分析】(1)先分别求出集合,A B ,再根据集合间的运算即可求解; (2)由B A ⊆知:A ≠∅,对m 进行讨论即可求解. 【详解】 解:(1)由203xx ->+, 解得:32x -<<,故{}20323x B x x x x ⎧⎫-=>=-<<⎨⎬+⎩⎭∣, 当1m =-时,()(23)0x m x m +-+<可化为:(5)(1)0x x +-<, 解得:51x -<<,∴集合{}51A x x =-<<,故{}52A B x x ⋃=-<<; (2)显然A ≠∅,即1m ≠, 当23m m -<-,即1m 时,{}23A x m x m =-<<-, 又B A ⊆,13232m m m >⎧⎪∴-≤-⎨⎪-≥⎩, 解得:3m ≥; 当23m m ->-,即1m <时,{}23A x m x m =-<<-, 又B A ⊆,12332m m m <⎧⎪∴-≤-⎨⎪-≥⎩, 解得:2m ≤-,综上所述:实数m 的取值范围为(,2][3,)-∞-⋃+∞. 18.(12)()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.【分析】 (1) 由2πω=,则2242AB πππω===,由周期可分别求出,AQ BQ ,进一步求出,AP BP ,由余弦定理可得答案.(2)由条件可得2AQ QP ==,即8T =,所以4πω=,又(1)2sin()24f πϕ=+=可得答案.【详解】解析:(1)由题设可知,由2πω=,则2242AB πππω===在APB △中,max ()2PQ f x ==,则14T AQ ==,334T BQ == 所以222145AP AQ PQ =+=+=,222223213BP PQ BQ =+=+=,由余弦定理可得:2225131665cos 2652513AP PB AB APB AP BP+-+-∠===⋅⋅⨯⨯.(2)由PAB 45∠=︒,P 的坐标为()1,2,所以在APQ ,2AQ QP == 易知24T=,8T =,所以4πω=, 又(1)2sin()24f πϕ=+=,则2,42k k Z ππϕπ+=+∈又02πϕ<<,所以4πϕ=,所以()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.19.(1)1a =,证明见解析;(2)当01a <<时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭;当=1a 时,不等式的解集为∅;当1a >时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭.【分析】(1)先求出a 的值,并利用单调性的定义进行证明; (2)对1a和1 的大小进行分类讨论,解不等式即可. 【详解】(1)函数2()(1)1(0)f x ax a x a =-++>的图像为抛物线,开口向上,对称轴为12a x a+=. 因为()f x 的单调递减区间是(,1]-∞,所以1=12a a+,解得:1a =. 此时2()21f x x x =-+,下面证明2()21f x x x =-+在区间(,1]-∞单调递减: 任取121x x <≤,则()()12212122()()2121f f x x x x x x -=-+--+()222121=2x x x x --- ()()1212=2x x x x -+-因为121x x <≤,所以12x x <,1220x x +-<,所以()()121220x x x x -+->. 所以12()()f f x x >,所以2()21f x x x =-+在区间(,1]-∞单调递减;(2)关于x 的不等式()0(0)f x a <>可化为:()()110x ax --<. 当01a <<时,解得:11x a<<; 当=1a 时,原不等式无解; 当1a >时,解得:11x a<<; 综上所述:当01a <<时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭;当=1a 时,不等式的解集为∅;当1a >时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭.【点睛】(1)单调性的证明通常用定义法;(2)解含参数的不等式通常需要分类讨论,分类的标准:①最高次项系数是否为0;②关于x 的方程()=0f x 是否有根;③()=0f x 的几个根的大小比较. 20.(1)1124APQSπα=⎛⎫+ ⎪⎝⎭;定义域为0,4π⎛⎫⎪⎝⎭;(21 【分析】(1)在Rt ABP 与Rt ADQ 中,利用正方形的边长,求出,AP AQ ,根据三角形的面积公式即可求解.(2)由(1)利用三角函数的性质即可求解. 【详解】(1)由BAP α∠=,4PAQ π∠=,则244ADQ πππαα∠=--=-,正方形的边长为1,在Rt ABP 中,1cos AP α=, 在Rt ADQ 中,1cos 4AQ πα=⎛⎫- ⎪⎝⎭,所以1111sin 242cos cos 4APQSAP AQ ππαα=⋅⋅=⋅⋅⎛⎫- ⎪⎝⎭()211112cos cos sin 2cos cos sin αααααα=⋅=⋅++12121cos 2sin 2124ααπα=⋅=++⎛⎫+ ⎪⎝⎭,由图可知04πα<<,所以函数的定义域为0,4π⎛⎫⎪⎝⎭. (2)由04πα<<,则32444πππα<+<,1124APQS πα=⎛⎫+ ⎪⎝⎭,当sin 214πα⎛⎫+= ⎪⎝⎭,即8πα=时,APQ 面积的最小,即APQ 1=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).21.(1)见详解;(23)(]1,11,28⎡⎫⎪⎢⎣⎭【分析】(1)根据函数解析式,直接作差比较()()1222f x f x +与()122f x x +的大小,即可证明结论成立;(2)根据题中条件,由指数幂运算性质,直接计算,即可得出结果; (3)先由不等式恒成立,得到x ∀∈R ,212x xx a -+≤恒成立;不等式两边同时取对数,得到x ∀∈R ,22log 1x a x x ≤-+恒成立,讨论0x =,0x >,0x <三种情况,分别求出对应的a 的范围,再求交集,即可得出结果.【详解】(1)因为()xf x a =,所以()()()()111222222121222220x x x x x x f x f x f x x a a a a a ++-+=+-=-≥显然恒成立, 所以()()()1212222f x f x f x x +≥+;(2)由()12f x =,()23f x =得1223x x a a ⎧=⎨=⎩,所以()212122x x x x x a a ==,又()1221228x x xf x x a ===,所以23x =,则233x a a ==,因此a =(3)若x ∀∈R ,()212xx f x -+≤恒成立,即x ∀∈R ,212x xx a -+≤恒成立;则x ∀∈R ,2122log log 2x xx a -+≤恒成立,即x ∀∈R ,22log 1x a x x ≤-+恒成立,当0x =时,不等式可化为01<,显然恒成立;所以0a >,且1a ≠; 当0x >时,不等式可化为21log 1a x x ≤+-,而1111y x x =+-≥=在0x >上恒成立,当且仅当1x =时,取等号;所以只需2log 1a ≤,解得12a <≤或01a <<; 当0x <时,不等式可化为21log 1a x x≥+-,而()111113y x x x x ⎡⎤⎛⎫=+-=--+--≤-=- ⎪⎢⎥⎝⎭⎣⎦在0x <上恒成立,当且仅当1x =-时,取等号;所以只需2log 3a ≥-,解得118a ≤<或1a >,综上,118a ≤<或12a <≤,即a 的取值范围是(]1,11,28⎡⎫⎪⎢⎣⎭【点睛】 关键点点睛:求解本题第三问的关键在于将不等式两边同时取对数,化为22log 1x a x x ≤-+恒成立,再对x 分段讨论,求解a 的范围,即可得解.22.(Ⅰ)(]0,1;(Ⅱ)224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,1.【分析】(Ⅰ)由复合函数的单调性得函数2()241g x x ax a =-+-在[1,3]上单调递增,则1(1)0a g ≤⎧⎨>⎩,解出即可; (Ⅱ)由题意得[]()ln 1,1f x x =∈-,设()t f x =,则2(())()241g f x g t t at a ==-+-22()41t a a a =--+-,[]1,1t ∈-,再分类讨论即可得到224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,再根据函数()k a 的单调性即可求出最小值.【详解】解:(Ⅰ)∵函数(())f g x 在[1,3]上单调递增, 函数()ln f x x =在[1,3]上单调递增,,∴函数2()241g x x ax a =-+-在[1,3]上单调递增,∴1(1)0a g ≤⎧⎨>⎩,解得01a <≤, ∴实数a 的取值范围是(]0,1;(Ⅱ)∵1,x e e ⎡⎤∈⎢⎥⎣⎦,∴[]()ln 1,1f x x =∈-,设()t f x =,则2(())()241g f x g t t at a ==-+-22()41t a a a =--+-,[]1,1t ∈-, ①当1a <-时,函数()g t 在[]1,1-上单调递增, ∴最大值()()12M a g a ==,最小值()()16m a g a =-=, ∴()264k a a a a =-=-;②当10a -≤≤时,函数()g t 在[]1,a -上单调递减,在[],1a 上单调递增,∴最大值()()12M a g a ==,最小值()2()41m a g a a a ==-+-,∴()22()24121k a a a a a a =--+-=-+;③当01a <≤时,函数()g t 在[]1,a -上单调递减,在[],1a 上单调递增,∴最大值()()16M a g a =-=,最小值()2()41m a g a a a ==-+-,∴()22()64121k a a a a a a =--+-=++;④当1a >时,函数()g t 在[]1,1-上单调递减,∴最大值()()16M a g a =-=,最小值()()12m a g a ==, ∴()624k a a a a =-=;综上,224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,∴()k a 在(],0-∞上单调递减,在[)0,+∞上单调递增, 当0a =时,()k a 取最小值1. 【点睛】本题主要考查复合函数的单调性,考查含参的二次函数在闭区间上的最值,考查计算能力,考查分类讨论的方法,属于难题.。
高一数学期末(含答案)

高一数学期末(含答案)2019-2020学年度第一学期期末考试高一数学参考答案一、选择题1.解析:根据函数y=cos(-2x)的周期公式T=2π/|ω|可知,函数的最小正周期是T=π/2.故选D。
2.解析:根据勾股定理可得r=√(4^2+3^2)=5,由任意角的三角函数定义可得cosα=-4/5.故选B。
3.删除。
4.解析:由cos(π+α)=-cosα得cosα=-1/3.故选A。
5.解析:根据三角函数的基本关系sin^2α+cos^2α=1和1-cos2α=2sin^2(α/2)可得sinα=√(1-cos^2α)=√(26/169),tanα=sinα/cosα=-2/3.故选D。
6.删除。
7.解析:由题意可得函数f(x)的图像是连续不断的一条曲线,且f(-2)0,故f(0)·f(1)<0,即函数在(0,1)内有一个零点。
故选C。
8.解析:由勾股定理可得EB=√(ED^2+DB^2)=√(1+1/9)=√(10/9),AD=AB-DB=2AB/3,故EB/AD=√(10/9)/(2AB/3)=√10/2=AB/AD。
故选A。
9.解析:由a+b=a-b两边平方得a^2+2ab+b^2=a^2-2ab+b^2,即ab=0,故a⊥b。
故选A。
10.解析:大正方形的边长为10,小正方形的边长为2,故小正方形的对角线长为2√2.由勾股定理可得大正方形的对角线长为10√2,故大正方形内切圆的半径为5-√2,故其面积为(5-√2)^2π=23π-10√2.故选A。
4sinα-2cosα = 2(2sinα-cosα) = 2(2tanα-1)cosα/√(1+4tan^2α) 4(1-2sin^2α)/(5+3tanα) = 8/135cosα+3sinα = √34sin(α+0.424)sinαcosα = 22/37tanα=2.sinα=4/√20.cosα= -1/√20cos2α=5/13.cosα=±√5/13因为α是第三象限角,所以cosα=-√5/13.sinα=-2√5/131) 设X=2x+π/3,则X=2x+2πk/3.k∈Zy=sinX的单调递减区间为[2kπ+π/3.2kπ+5π/3]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点评:做此题时要仔细观察、分析,分析出 f (0)=0 ,这样避免了讨论.不然的话,需要
讨论函数的单调性.
5.B
解析:B 【解析】
【分析】
【详解】
a20
试题分析:由题意有,函数
f
x在
R
上为减函数,所以有{ (a
2) 2
(1)2
,解出
1
2
a 13 ,选 B. 8
考点:分段函数的单调性. 【易错点晴】
增,在1, 2 上单调递减,
根据复合函数“同增异减”的原则函数 f 2x x2 的单调减区间为 0,1 .
故选 C.
点睛:形如 y f g x 的函数为 y g x , y f x 的复合函数, y g x 为内层函
log2 x, (0 x 4)
根,则实数 k 的取值范围是____________.
14.已知函数 f x mx2 2x m 的值域为[0, ) ,则实数 m 的值为__________
15.函数
f
x
2 5x,g x
sin
x ,若
x1,x2,……,xn
0,2
,使得
f x1 f x2 …
A. f (x) 1 sin x B. f (x) 1 sin x C. f (x) 1 cos x D. f (x) 1 cos x
4.已知函数
f
(x)
loga
(
x
1
)(a 1
0且a
1)的定义域和值域都是[0,1],则
a=(
)
A. 1 2
B. 2
C. 2 2
D.2
5.已知函数
f
a 2 x, x 2
,
D.
1 2
,
3 2
12.点 P 从点 O 出发,按逆时针方向沿周长为 l 的平面图形运动一周, O , P 两点连线的 距离 y 与点 P 走过的路程 x 的函数关系如图所示,则点 P 所走的图形可能是
A.
B.
C.
D.
二、填空题
13.已知函数
f
(x)
1
4 x
,(x
4)
.若关于 x 的方程, f (x) k 有两个不同的实
则实数 m 的取值范围是________.
18.对于函数 y f (x) ,若存在定义域 D 内某个区间[a,b],使得 y f (x) 在[a,b]上
的值域也为[a,b],则称函数 y
f (x) 在定义域 D 上封闭,如果函数
f
(x) 4x 1 x
在R
上封闭,则 b a ____.
19.已知 3m 5n k ,且 1 1 2 ,则 k __________ mn
故选 C
【点睛】
本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.
4.A
解析:A 【解析】
【分析】
由函数
f
x
1
loga
(
x
)=0, 1
(a
0, a
1)
的定义域和值域都是[0,1],可得
f(x)为增
函数,但
在[0,1]上为减函数,得 0<a<1,把 x=1 代入即可求出 a 的值.
loga M n n loga M . 9.C
解析:C
【解析】
函数 f x log0.5x 为减函数,且 x 0 ,
令 t 2x x2 ,有 t 0 ,解得 0 x 2.
又 t 2x x2 为开口向下的抛物线,对称轴为 x 1 ,所以 t 2x x2 在 0,1 上单调递
(1)若 ,求集合 ;
(2)若 且
,求 的取值范围.
26.如图, OAB 是等腰直角三角形, ABO 90 ,且直角边长为 2 2 ,记 OAB 位于
直线 x t t 0 左侧的图形面积为 f t ,试求函数 f t 的解析式.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A 解析:A 【解析】 因为 f(x) 在 R 上的单调增,所以由 x2+x1>0,得 x2>-x1,所以
2.D
解析:D
【解析】 【分析】
令 g x ax3 bx ,则 g x 是 R 上的奇函数,利用函数的奇偶性可以推得 f (2) 的值.
【详解】
令 g(x) ax3 bx ,则 g(x) 是 R 上的奇函数,
又 f (2) 3 ,所以 g(2) 3 5 ,
所以 g(2) 2 , g 2 2,
内层函数 u x2 2x 在区间 ,0 上为减函数,在区间 2, 上为增函数,
外层函数 y log 1 u 在 0, 上为减函数, 2
由复合函数同增异减法可知,函数 f x log1 x2 2x 的单调递增区间为 ,0 .
2
故选:C. 【点睛】 本题考查对数型复合函数单调区间的求解,解题时应先求出函数的定义域,考查计算能 力,属于中等题.
2
8
是容易漏掉分界点 x 2 处的情况.
6.C
解析:C
【解析】
【分析】
求出函数 f x log1 x2 2x 的定义域,然后利用复合函数法可求出函数 y f x 的
2
单调递增区间.
【详解】
解不等式 x2 2x 0 ,解得 x 0 或 x 2 ,函数 y f x 的定义域为 ,0 2, .
【详解】
由函数
f
x
1
loga
(
x
)=0, 1
(a
0, a
1)
的定义域和值域都是[0,1],可得
f(x)为增
函数,
但
在[0,1]上为减函数,∴0<a<1,
当
x=1
时,
f
(1)
1
log
a
( 1
)=1
loga
2=1 ,
解得 a= 1 , 2
故选 A. 本题考查了函数的值与及定义域的求法,属于基础题,关键是先判断出函数的单调性.
13 8
,
2
D. 1,
7.下列函数中,值域是 0, 的是( )
A. y x2
B.
y
1 x2 1
C. y 2x
D. y lgx 1(x 0)
8.根据有关资料,围棋状态空间复杂度的上限 M 约为 3361,而可观测宇宙中普通物质的原
子总数 N 约为 1080.则下列各数中与 M 最接近的是 N
本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数 x1 x2 ,都有
f
x1
x1
f x2
x2
0 成立,得出函数
f
x在
R
上为减函数,减函数图象特征:从左向右看,图
象逐渐下降,故在分界点 x 2 处,有 (a 2) 2 (1)2 1,解出 a 13 . 本题容易出错的地方
23.已知集合
,
,
.
(1)若 ,求 的值;
(2)若 ,求 的取值范围.
24.计算或化简:
1
1
(1)
3
1 16
2
0.12
27 64
3
0
log4
32 ;
(2) log3 27 log3 2log2 3 6log6 3 lg 2 lg 5 .
25.记关于 的不等式
的解集为 ,不等式
的解集为 .
【必考题】高一数学上期末试卷及答案
一、选择题
1.已知定义在 R 上的增函数 f(x),满足 f(-x)+f(x)=0,x1,x2,x3∈R,且 x1+x2>0,x2+
x3>0,x3+x1>0,则 f(x1)+f(x2)+f(x3)的值 ( )
A.一定大于 0
B.一定小于 0
C.等于 0
D.正负都有可能
2.已知函数 f (x) ax3 bx 3(a,b R) .若 f (2) 5 ,则 f (2) ( )
A.4
B.3
C.2
D.1
3.已知奇函数 y f (x) 的图像关于点 ( , 0) 对称,当 x [0, ) 时, f (x) 1 cos x ,
2
2
则当 x (5 ,3 ] 时, f (x) 的解析式为( ) 2
择了模型 y pqx r ,其中 y 为该物质的数量,x 为月份数,a,b,c,p,q,r 为常数.
(1)若 5 月份检测到该物质有 32 个单位,你认为哪个模型较好,请说明理由.
(2)对于乙选择的模型,试分别计算 4 月、7 月和 10 月该物质的当月增长量,从计算结
果中你对增长速度的体会是什么?
2x,0 x 1,
20.已知函数
f
(x)
1 2
f
(x 1),1
x
则关于 x 的方程 4x 3,
f
(x) k
0 的所有根的和
的最大值是_______.
三、解答题
21.已知函数 f x x2 2ax 1满足 f x f 2 x .
(1)求 a 的值;
(2)若不等式 f 2x 4x
7.D
解析:D 【解析】 【分析】 利用不等式性质及函数单调性对选项依次求值域即可. 【详解】
对于 A: y x2 的值域为0, ;
对于 B:
x2
0 , x2
1 1 ,0
1 x2 1
1,
y
1 x2
1
的值域为
0,1
;
对于 C: y 2x 的值域为 ,0 ;
对于 D: x 0,x 11,lg x 1 0 ,
x
1 2
x
1,
x
2
,
满足对任意的实数 x1≠x2 都有