【典型题】高一数学上期末试卷(及答案)
高一数学期末考试测试卷参考答案

高一数学期末考试测试卷参考答案1.B【详解】因为,所以,则,所以复数所对应的向量的坐标为.故选:B 2.A【详解】,故选:A.3.D【详解】向量在上的投影为,向量在上的投影向量为.故选:D.4.C 【详解】由题意,可得,即因为,所以,即,故△ABC 是直角三角形故选:C 5.A【详解】由可得: ,故 ,解得 ,故 ,故选:A 6.C【详解】根据题意:概率等于没有黄球的概率减去只有白球或只有红球的概率.即.故选:.7.D【详解】对于A ,空间中两直线的位置关系有三种:平行、相交和异面,故A 错误;对于B ,若空间中两直线没有公共点,则这两直线异面或平行,故B 错误;对于C ,和两条异面直线都相交的两直线是异面直线或相交直线,故C 错误;12i z z +=⋅()2i 11z -⋅=()()112i 12i 12i 2i 12i 112i 555z ----====------z 12,55⎛⎫-- ⎪⎝⎭()441414333333AD AB BD AB BC AB AC AB AB AC a b =+=+=+-=-+=-+ a b ·cos 3a π ab 1·cos ·232b a b b b π=⨯= 1cos 22a b C a ++=⨯cos b C a=2222b a b c a ab+-=222a b c =+90A =︒sin 2sin B C =2b c =22222567cos 248b c a c A bc c +--===2,4c b ==11sin 4222ABC S bc A ==⨯⨯ 3331115162312p ⎛⎫⎛⎫⎛⎫=---= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C对于D ,如图,在长方体中,当所在直线为所在直线为时,与相交,当所在直线为所在直线为时,与异面,若两直线分别是正方体的相邻两个面的对角线所在的直线,则这两直线可能相交,也可能异面,故D 正确.(8题)故选:D8.A【详解】在△ABC 中,b cos A =c﹣a ,由正弦定理可得sin B cos A =sin C ﹣sin A ,可得sin B cos A =sin (A +B )﹣sin A =sin A cos B +cos A sin B ﹣sin A ,即sin A cos B =sin A ,由于sin A ≠0,所以,由B ∈(0,π),可得B=,设AD =x,则CD =2x ,AC =3x ,在△ADB ,△BDC,△ABC 中分别利用余弦定理,可得cos ∠ADB=,cos ∠CDB =,cos ∠ABC =,由于cos ∠ADB =﹣cos ∠CDB ,可得6x 2=a 2+2c 2﹣12,再根据cos ∠ABC =,可得a 2+c 2﹣9x 2=ac ,所以4c 2+a 2+2ac =36,根据基本不等式可得4c 2+a 2≥4ac ,所以ac ≤6,当且仅当a =c 所以△ABC 的面积S =ac sin ∠ABC ac A .9.AC【详解】对于A ,是纯虚数,故A 正确;对于B ,,对应的点的坐标为,位于第四象限,故B 错误;对于C ,复数的共轭复数为,故C 正确;对于D ,,故D 错误.故选:AC10.BC ABCD A B C D -''''A B ',a BC 'b a b A B ',a B C 'b a b 12121212121cos 2B =3π2244x c x +-22448x a x +-22292a c x ac+-12122z 12(1i)2i 13i z z -=--=-(1,3)-1z 11i z =+12(1i)2i 2i 2z z =-⋅=+11.【详解】对于A ,由,则,故A 错误;对于B ,与相互独立,则与相互独立,故,故B 正确;对于CD ,互斥,则,,故C 正确,D 错误.故选:BC11.BC【详解】对于A 选项,由图形可知,直线、异面,A 错;对于B 选项,连接,因为,则直线与所成角为或其补角,易知为等边三角形,故,因此,直线与所成的角为,B 对;对于C 选项,分别取、的中点、,连接、、,因为四边形为正方形,、分别为、的中点,所以,且,又因为,则四边形为矩形,所以,,且,同理可证,且,因为平面,则平面,因为平面,则,因为,、平面,所以,平面,因为平面,所以,,因此,平面与平面所成二面角的平面角为,因为平面,平面,所以,,又因为,故为等腰直角三角形,故,因此,平面与平面所成二面角的平面角为,C 对;对于D 选项,易知,又因为且,则四边形为等腰梯形,分别过点、在平面内作、,垂足分别为、,()()0.2,0.6P A P B ==()()1P A P B+≠A B A B ()()()()()()10.48P AB P A P B P A P B ==-=,A B ()()()0.8P A B P A P B ⋃=+=()()0P AB P =∅=AM BN 1AD 1//MN CD MN AC 1ACD ∠1ACD △160ACD ∠= MN AC 60 AB CD E F ME MF EF ABCD E F AB CD //AE DF AE DF =AD AE ⊥AEFD EF AB ⊥//EF AD 1//MF DD 12MF DD ==1DD ⊥ABCD MF ⊥ABCD AB ⊂ABCD AB MF ⊥EF MF F ⋂=EF MF ⊂EMF AB ⊥EMF ME ⊂EMF AB ME ⊥AMB ABCD MEF ∠MF ⊥ABCD EF ⊂ABCD MF EF ⊥2MF EF ==MEF 45MEF Ð=o AMB ABCD 45 BN ===1A M =1//MN A B 112MN A B =1A BNM M N 1A BNM 1MP A B ⊥1NQ A B ⊥P Q因为,,,所以,,所以,,因为,,,则四边形为矩形,所以,,所以,所以,,由A 选项可知,平面截正方体所得的截面为梯形,故截面面积为,D 错.故选:BC.12.2【详解】.故答案为:2.13.【详解】在中,由正弦定理可得,,又由题知,所以,整理得,,在中,由余弦定理得,,所以,又,所以.故答案为:.14. 【详解】由题意,恰有一个人面试合格的概率为:,甲签约,乙、丙没有签约的概率为;1A M BN =1MA P NBQ ∠=∠190MPA NQB ∠=∠= 1Rt Rt A MP BNQ △≌△1A P BQ =//MN PQ 1MP A B ⊥1NQ A B ⊥MNQP PQ MN ==112A B PQ A P BQ -====MP ===BMN 1A BNM ()1922A B MN MP +⋅==()2202a kb b a b kb k k -⋅=⋅-⇔-=⇔= π3ABC sin sin sin C c A B a b =++sin sin sin a b C a c A B -=-+a b c a c a b-=-+222b a c ac =+-ABC 2222cos b a c ac B =+-1cos 2B =()0,B π∈3B π=3π49793113113114(1)(1(1(1)(1)(14334334339P =⨯-⨯-+-⨯⨯-+-⨯-⨯=13112(1)4333P =⨯-⨯=甲未签约,乙、丙都签约的概率为甲乙丙三人都签约的概率为,所以至少一人签约的概率为.故答案为:;.15.【详解】(1)由频率分布直方图可得分数不小于60的频率为:,则分数小于60的频率为:,故从总体的500名学生中随机抽取一人,其分数小于60的概率估计为;(2)由频率分布直方图易得分数小于70的频率为,分数小于80的频率为,则测评成绩的第分位数落在区间上,所以测评成绩的第分位数为;(3)依题意,记事件 “抽到的学生分数小于30”,事件 “抽到的学生是男生”,因为分数小于40的学生有5人,其中3名男生;所以“抽到的学生是男生”的概率为,因为分数小于30的学生有2人,其中1名男生,所以“抽到的学生分数小于30” 的概率为,因为事件表示“抽到的学生分数小于30且为男生”,满足条件的只有1名男生,所以,因为,所以这两个事件不相互独立.16.【详解】(1)由,,故,由余弦定理可得,即,即,13111(143336P=-⨯⨯=3311143312P =⨯⨯=2117336129++=4979()0.020.040.02100.8++⨯=10.80.2-=0.20.40.875%[)70,8075%0.35701078.750.4+⨯=A =B =()35P B =()25P A =AB ()15P AB =()()()P A P B P AB ≠sin θ=π,π2θ⎛⎫∈ ⎪⎝⎭cos θ==2222cos 54413BD AB AD AB AD θ=+-⋅=++=BD CD ==sin sin AB BD ADB θ=∠sin sin AB ADB BD θ∠=⋅==则故有,故,;(2),,故,则,其中,则当,即ABCD 的面积最大,此时,即此时小路BD.17.【详解】(1)取棱的中点,连接、、,则就是所求作的线,如图:在正方体中,连,是的中点,为的中点,则,且,于是得四边形是平行四边形,有,而平面,平面,因此平面,πcos cos sin 2ADC ADB ADB ⎛⎫∠=+∠=-∠= ⎪⎝⎭2222cos 4132225AC AD CD AD CD ADC ⎛=+-⋅∠=+-⨯= ⎝5AC =22111117sin 222222ABCD ABD BCD S S S AB AD BD θ=+=⋅+=+⨯= 1sin 2ABD S AB AD θθ=⋅= 2222cos 549BD AB AD AB AD θθθ=+-⋅=+-=-21922BCD S BD θ==- ()995sin 22ABCD ABD BCD S S S θθθϕ=+=+-=-+ sin ϕ=π0,2ϕ⎛⎫∈ ⎪⎝⎭π2θϕ-=πcos cos sin 2θϕϕ⎛⎫=+=-= ⎪⎝⎭2917BD ⎛=-= ⎝1DD F AF CF AC ,,FC FA CA 1111ABCD A B C D -EF E 1CC F 1DD EF CD BA ∥∥EF CD BA ==ABEF AF BE ∥BE ⊂1BD E AF ⊄1BD E AF 1BD E又,,即四边形为平行四边形,则,又平面,平面,于是有平面,而,平面,从而得平面平面,所以就是所求作的线.(2)在正方体中,连接,如图,且,则四边形为平行四边形,有,三棱锥的体积,所以四棱锥的体积.18.【详解】(1)解:由频率分布直方图,根据平均数的计算公式,估计这次知识能力测评的平均数:分.(2)解:由频率分布直方图,可得的频率为,的频率为,所以用分层随机抽样的方法从,两个区间共抽取出4名学生,可得从抽取人,即为,从中抽取人,即为,从这4名学生中随机抽取2名依次进行交流分享,有 ,共有12个基本事件;其中第二个交流分享的学生成绩在区间的有:,共有3个,所以概率为.(3)解:甲最终获胜的可能性大.理由如下:由题意,甲至少得1分的概率是,1FD CE ∥1FD CE =1CED F 1CF ED ∥1ED ⊂1BD E CF ⊄1BD E CF 1BD E CF AF F ⋂=,CF AF ⊂AFC AFC 1BD E ,,FC FA CA 1111ABCD A B C D -11111,,,,,,AD BC EA EB EC ED AC 11AB C D ∥11AB C D =11ABC D 1112ABC D ABC S S = △1E ABC -111111112()21233263E ABC A BC E BC E V V S AB BC C E AB --==⋅=⋅⋅=⨯⨯⨯= 11E ABC D -111423E ABC D E ABC V V --==(650.01750.015850.045950.03)1084.5x =⨯+⨯+⨯+⨯⨯=[)60,700.1[]90,1000.3[)60,70[]90,100[)60,701a []90,10031,2,3()()()()(),1,,2,,3,1,2,1,3,a a a ()()()()()()()2,3,1,,2,,3,,2,1,3,1,3,2a a a []60,70()()()1,,2,,3,a a a 31124P ==4750可得,其中,解得,则甲的2分或3分的概率为:,所以乙得分为2分或3分的概率为,因为,所以甲最终获胜的可能性更大.19.【详解】(1)由题知,,所以∠AOB 是所折成的直二面角的平面角,即OA ⊥OB .因为,所以AO ⊥平面,所以OC 是AC 在平面内的射影,在四边形ABCD是等腰梯形中,,高得,,在和中,, 所以,,所以,因为AO ⊥平面,平面,所以,因为,所以平面,因为平面,所以(2)由(1)知,,所以⊥平面AOC .设,过点E 作于点F ,连接,因为,所以平面,因为平面,所以所以是二面角的平面角.由(1)知得,,高得,.所以,,12471(1)(1)(1)2550p ----=01p ≤≤45p =1241241241243(1(1(12552552552555P =⨯⨯-+⨯-⨯+-⨯⨯+⨯⨯=253255>1OA OO ⊥1OB OO ⊥1OO OB O = 1OBCO 1OBCO 3AB CD =h =tan A =6AB =2CD =1OO =1Rt OO B 1Rt OO C △11tan OB OO B OO ∠==111tan O C O OC OO ∠===160OO B ∠=︒130O OC ∠=︒1OC BO ⊥1OBCO 1BO ⊂1OBCO 1AO BO ⊥AO OC O = 1BO ⊥AOC AC ⊂AOC 1AC BO ⊥1AC BO ⊥1OC BO ⊥1BO 1OC O B E ⋂=EF AC ⊥1O F 1EF O B E = AC ⊥1O EF 1O F ⊂1O EF 1O F AC⊥1O FE ∠1O AC O --3AB CD =h =tan A =6AB =2CD =3OA =1OO =11O C =所以,因为平面平面,平面平面,,所以平面,因为平面,所以 所以又所以二面角1O A =AC =1AOO D ⊥1BOO C 1AOO D 11BOO C OO =11OO CO ⊥1CO ⊥1AOO D 1AO ⊂1AOO D 11CO AO ^111O A O C O F AC ⋅=11sin30O E OO =⋅= 111sin O E O FE O F ∠==1O AC O --。
新高一数学上期末试卷(带答案)

新高一数学上期末试卷(带答案)一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( ) A .1,110⎛⎫⎪⎝⎭B .10,10,10C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞3.已知函数()()2,211,22x a x x f x x ⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩, 满足对任意的实数x 1≠x 2都有()()1212f x f x x x --<0成立,则实数a 的取值范围为( ) A .(-∞,2)B .13,8⎛⎤-∞ ⎥⎝⎦ C .(-∞,2]D .13,28⎡⎫⎪⎢⎣⎭4.函数y =a |x |(a >1)的图像是( ) A .B .C .D .5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a << B .b a c <<C .a c b <<D .c a b <<6.若()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数,则a 的取值范围是( )A .2,35⎡⎫⎪⎢⎣⎭B .2,35⎛⎤ ⎥⎝⎦C .(),3-∞D .2,5⎛⎫+∞⎪⎝⎭7.函数()2sin f x x x =的图象大致为( )A .B .C .D .8.对于函数()f x ,在使()f x m ≤恒成立的式子中,常数m 的最小值称为函数()f x 的“上界值”,则函数33()33x x f x -=+的“上界值”为( )A .2B .-2C .1D .-19.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .411.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.下列函数中,在区间(1,1)-上为减函数的是 A .11y x=- B .cos y x =C .ln(1)y x =+D .2x y -=二、填空题13.函数20.5log y x =________14.已知关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内,则a 的取值范围是__________.15.已知常数a R ∈,函数()21x af x x +=+.若()f x 的最大值与最小值之差为2,则a =__________.16.已知常数a R +∈,函数()()22log f x x a =+,()()g x f f x =⎡⎤⎣⎦,若()f x 与()g x 有相同的值域,则a 的取值范围为__________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.已知函数()f x 满足:()()1f x f x +=-,当11x -<≤时,()x f x e =,则92f ⎛⎫= ⎪⎝⎭________. 19.若存在实数(),m n m n <,使得[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,其中0a >且1a ≠,则实数t 的取值范围是______.20.已知函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-成立,则实数a 的取值范围为__________.三、解答题21.节约资源和保护环境是中国的基本国策.某化工企业,积极响应国家要求,探索改良工艺,使排放的废气中含有的污染物数量逐渐减少.已知改良工艺前所排放的废气中含有的污染物数量为32mg/m ,首次改良后所排放的废气中含有的污染物数量为31.94mg/m .设改良工艺前所排放的废气中含有的污染物数量为0r ,首次改良工艺后所排放的废气中含有的污染物数量为1r ,则第n 次改良后所排放的废气中的污染物数量n r ,可由函数模型()0.5001)*(5n p n r r r r p R n N +-∈⋅=-∈,给出,其中n 是指改良工艺的次数.(1)试求改良后所排放的废气中含有的污染物数量的函数模型;(2)依据国家环保要求,企业所排放的废气中含有的污染物数量不能超过30.08mg/m ,试问至少进行多少次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. (参考数据:取lg 20.3=)22.设()()12log 10f x ax =-,a 为常数.若()32f =-.(1)求a 的值;(2)若对于区间[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围 .23.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 24.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数) 25.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.26.设全集为R ,集合A ={x |3≤x <7},B ={x |2<x <6},求∁R (A ∪B ),∁R (A ∩B ),(∁R A )∩B ,A ∪(∁RB ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.B解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <,341x x =,从而得解【详解】解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示: 依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题3.B解析:B【分析】 【详解】试题分析:由题意有,函数()f x 在R 上为减函数,所以有220{1(2)2()12a a -<-⨯≤-,解出138a ≤,选B. 考点:分段函数的单调性. 【易错点晴】本题主要考查分段函数的单调性,属于易错题. 从题目中对任意的实数12x x ≠,都有()()12120f x f x x x -<-成立,得出函数()f x 在R 上为减函数,减函数图象特征:从左向右看,图象逐渐下降,故在分界点2x =处,有21(2)2()12a -⨯≤-,解出138a ≤. 本题容易出错的地方是容易漏掉分界点2x =处的情况.4.B解析:B 【解析】因为||0x ≥,所以1x a ≥,且在(0,)+∞上曲线向下弯曲的单调递增函数,应选答案B .5.D解析:D 【解析】 【分析】可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c, ()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.6.A【解析】 【分析】利用函数()y f x =是(),-∞+∞上的增函数,保证每支都是增函数,还要使得两支函数在分界点1x =处的函数值大小,即()23141a a -⨯-≤,然后列不等式可解出实数a 的取值范围. 【详解】由于函数()()234,1,1a x a x f x x x ⎧--<=⎨≥⎩是(),-∞+∞的增函数, 则函数()34y a x a =--在(),1-∞上是增函数,所以,30a ->,即3a <; 且有()23141a a -⨯-≤,即351a -≤,得25a ≥, 因此,实数a 的取值范围是2,35⎡⎫⎪⎢⎣⎭,故选A. 【点睛】本题考查分段函数的单调性与参数,在求解分段函数的单调性时,要注意以下两点: (1)确保每支函数的单调性和原函数的单调性一致; (2)结合图象确保各支函数在分界点处函数值的大小关系.7.C解析:C 【解析】 【分析】根据函数()2sin f x x x =是奇函数,且函数过点[],0π,从而得出结论.【详解】由于函数()2sin f x x x =是奇函数,故它的图象关于原点轴对称,可以排除B 和D ;又函数过点(),0π,可以排除A ,所以只有C 符合. 故选:C . 【点睛】本题主要考查奇函数的图象和性质,正弦函数与x 轴的交点,属于基础题.8.C解析:C 【解析】 【分析】利用换元法求解复合函数的值域即可求得函数的“上界值”. 【详解】 令3,0xt t => 则361133t y t t -==-<++ 故函数()f x 的“上界值”是1; 故选C 【点睛】本题背景比较新颖,但其实质是考查复合函数的值域求解问题,属于基础题,解题的关键是利用复合函数的单调性法则判断其单调性再求值域或 通过换元法求解函数的值域.9.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,() y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.10.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.11.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.D解析:D 【解析】 试题分析:11y x=-在区间()1,1-上为增函数;cos y x =在区间()1,1-上先增后减;()ln 1y x =+在区间()1,1-上为增函数;2x y -=在区间()1,1-上为减函数,选D.考点:函数增减性二、填空题13.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】 【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间. 【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-.当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数y =递增区间是[)1,0-. 【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题.14.【解析】【分析】根据方程的解在区间内将问题转化为解在区间内即可求解【详解】由题:关于的方程的解在区间内所以可以转化为:所以故答案为:【点睛】此题考查根据方程的根的范围求参数的取值范围关键在于利用对数 解析:()23log 11,1-+【解析】 【分析】根据方程的解在区间()3,8内,将问题转化为23log x a x+=解在区间()3,8内,即可求解. 【详解】由题:关于x 的方程()224log 3log +-=x x a 的解在区间()3,8内, 所以()224log 3log +-=x x a 可以转化为:23log x a x+=, ()3,8x ∈,33111,28x x x +⎛⎫=+∈ ⎪⎝⎭, 所以()23log 11,1a ∈-+ 故答案为:()23log 11,1-+ 【点睛】此题考查根据方程的根的范围求参数的取值范围,关键在于利用对数运算法则等价转化求解值域.15.【解析】【分析】将化简为关于的函数式利用基本不等式求出的最值即可求解【详解】当时当时时当且仅当时等号成立同理时即的最小值和最大值分别为依题意得解得故答案为:【点睛】本题考查函数的最值考查基本不等式的解析:【解析】 【分析】将()f x 化简为关于x a +的函数式,利用基本不等式,求出的最值,即可求解. 【详解】当x a =-时,()0f x =,当x a时,()222111[()]1()2 x a x af xax x a ax a ax a++===+++-+++-+,x a >-时,21()22ax a a ax a+++-≥+当且仅当x a=时,等号成立,0()2af x∴<≤=同理x a<-时,()02af x∴≤<,()22a af x∴≤≤,即()f x的最小值和最大值分别为,22a a,2=,解得a=.故答案为:【点睛】本题考查函数的最值,考查基本不等式的应用,属于中档题.16.【解析】【分析】分别求出的值域对分类讨论即可求解【详解】的值域为当函数值域为此时的值域相同;当时当时当所以当时函数的值域不同故的取值范围为故答案为:【点睛】本题考查对数型函数的值域要注意二次函数的值解析:(]0,1【解析】【分析】分别求出(),()f xg x的值域,对a分类讨论,即可求解.【详解】()()222,log loga R f x x a a+∈=+≥,()f x的值域为2[log,)a+∞,()()22log([()])g x f f x f x a==+⎡⎤⎣⎦,当22201,log0,[()]0,()loga a f x g x a<≤<≥≥,函数()g x值域为2[log,)a+∞,此时(),()f xg x的值域相同;当1a>时,2222log0,[()](log)a f x a>≥,222()log[(log)]g x a a≥+,当12a <<时,2222log 1,log (log )a a a a <∴<+ 当22222,log 1,(log )log a a a a ≥≥>,222log (log )a a a <+,所以当1a >时,函数(),()f x g x 的值域不同, 故a 的取值范围为(]0,1. 故答案为:(]0,1. 【点睛】本题考查对数型函数的值域,要注意二次函数的值域,考查分类讨论思想,属于中档题.17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】 【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可. 【详解】偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩,即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃, 故答案为()(),20,2-∞-⋃ 【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】由已知条件得出是以2为周期的函数根据函数周期性化简再代入求值即可【详解】因为所以所以是以2为周期的函数因为当时所以故答案为:【点睛】本题主要考查函数的周期性和递推关系这类题目往往是奇【解析】 【分析】由已知条件,得出()f x 是以2为周期的函数,根据函数周期性,化简92f ⎛⎫ ⎪⎝⎭,再代入求值即可. 【详解】 因为()()1f x f x +=-,所以()()()21f x f x f x +=-+=,所以()f x 是以2为周期的函数, 因为当11x -<≤时,()xf x e = ,所以129114222f f f e ⎛⎫⎛⎫⎛⎫=+=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭故答案为. 【点睛】本题主要考查函数的周期性和递推关系,这类题目往往是奇偶性和周期性相结合一起运用.19.【解析】【分析】由已知可构造有两不同实数根利用二次方程解出的范围即可【详解】为增函数且时函数的值域也为相当于方程有两不同实数根有两不同实根即有两解整理得:令有两个不同的正数根只需即可解得故答案为:【解析:10,4⎛⎫⎪⎝⎭【解析】 【分析】由已知可构造()2log xa a t x +=有两不同实数根,利用二次方程解出t 的范围即可.【详解】()2()log x a f x a t =+为增函数,且[],x m n ∈时,函数()()2log xa f x at =+的值域也为[],m n ,(),()f m m f n n ∴==,∴相当于方程()f x x =有两不同实数根,()2log x a a t x ∴+=有两不同实根,即2x x a a t =+有两解, 整理得:20x x a a t -+=, 令,0xm a m => ,20m m t ∴-+=有两个不同的正数根,∴只需1400t t ∆=->⎧⎨>⎩即可,解得104t <<, 故答案为:10,4⎛⎫ ⎪⎝⎭【点睛】本题主要考查了对数函数的单调性,对数方程,一元二次方程有两正根,属于中档题.20.【解析】若对任意的实数都有成立则函数在上为减函数∵函数故计算得出:点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调则该函数在此区间的任意子区间上也是单调的;(2)分段解析:13,8⎛⎤-∞ ⎥⎝⎦【解析】若对任意的实数12x x ≠都有1212()()0f x f x x x -<-成立,则函数()f x 在R 上为减函数,∵函数(2),2()11,22xa x x f x x -≥⎧⎪=⎨⎛⎫-< ⎪⎪⎝⎭⎩,故22012(2)12a a -<⎧⎪⎨⎛⎫-≤- ⎪⎪⎝⎭⎩, 计算得出:13,8a ⎛⎤∈-∞ ⎥⎝⎦. 点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间[,]a b 上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量取值范围.三、解答题21.(1)()0.50.5*20.065n n r n N -=-⨯∈ (2)6次【解析】 【分析】(1)先阅读题意,再解方程求出函数模型对应的解析式即可; (2)结合题意解指数不等式即可. 【详解】解:(1)由题意得02r =,1 1.94r =, 所以当1n =时,()0.510015pr r r r +=--⋅,即0.51.942(2 1.94)5p+=--⋅,解得0.5p =-,所以0.50.520.065*()n n r n -=-⨯∈N , 故改良后所排放的废气中含有的污染物数量的函数模型为()0.50.5*20.065n n r n -=-⨯∈N .(2)由题意可得,0.50.520.0650.08n n r -=-⨯≤, 整理得,0505..1950..206n -≥,即0.50.5532n -≥, 两边同时取常用对数,得lg3205055.lg .n -≥, 整理得5lg 2211lg 2n ≥⨯+-, 将lg 20.3=代入,得5lg 230211 5.31lg 27⨯+=+≈-,又因为*n ∈N ,所以6n ≥.综上,至少进行6次改良工艺后才能使得该企业所排放的废气中含有的污染物数量达标. 【点睛】本题考查了函数的应用,重点考查了阅读能力及解决问题的能力,属中档题. 22.(1)2a =(2)17,8⎛⎫-∞- ⎪⎝⎭【解析】 【分析】(1)依题意代数求值即可;(2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设条件可转化为()g x m >在[]3,4x ∈上恒成立,因此,求出()g x 的最小值即可得出结论. 【详解】 (1)()32f =-,()12log 1032a ∴-=-,即211032a -⎛⎫-= ⎪⎝⎭,解得2a =; (2)设()()121log 1022xg x x ⎛⎫=-- ⎪⎝⎭,题设不等式可转化为()g x m >在[]3,4x ∈上恒成立,()g x 在[]3,4上为增函数,()31min 2117(3)log (106)28g x g ⎛⎫∴==--=- ⎪⎝⎭,178m ∴<-, m ∴的取值范围为17,8⎛⎫-∞- ⎪⎝⎭.【点睛】本题考查函数性质的综合应用,属于中档题.在解决不等式恒成立问题时,常分离参数,将其转化为最值问题解决.23.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,xxa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.24.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克【解析】 【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =; 当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+,故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩.(2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩,当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=; 当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克. 【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题. 25.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得26.见解析 【解析】 【分析】根据题意,在数轴上表示出集合,A B ,再根据集合的运算,即可得到求解.【详解】解:如图所示.∴A∪B={x|2<x<7},A∩B={x|3≤x<6}.∴∁R(A∪B)={x|x≤2或x≥7},∁R(A∩B)={x|x≥6或x<3}.又∵∁R A={x|x<3或x≥7},∴(∁R A)∩B={x|2<x<3}.又∵∁R B={x|x≤2或x≥6},∴A∪(∁R B)={x|x≤2或x≥3}.【点睛】本题主要考查了集合的交集、并集与补集的混合运算问题,其中解答中正确在数轴上作出集合,A B,再根据集合的交集、并集和补集的基本运算求解是解答的关键,同时在数轴上画出集合时,要注意集合的端点的虚实,着重考查了数形结合思想的应用,以及推理与运算能力.。
【典型题】高一数学上期末试卷(含答案)(1)

【典型题】高一数学上期末试卷(含答案)(1)一、选择题1.设23a log =,b =23c e=,则a b c ,,的大小关系是( ) A .a b c <<B .b a c <<C .b c a <<D . a c b <<2.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .73.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( ) A .278-B .18-C .18D .2784.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦6.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y7.若0.33a =,log 3b π=,0.3log c e =,则( )A .a b c >>B .b a c >>C .c a b >>D .b c a >>8.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭9.函数y =11x -在[2,3]上的最小值为( ) A .2 B .12 C .13D .-1210.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 11.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .12.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.若155325a b c ===,则111a b c+-=__________. 14.若函数()(0,1)xf x a a a =>≠且在[1,2]上的最大值比最小值大2a,则a 的值为____________.15.已知()f x 是定义域为R 的单调函数,且对任意实数x 都有21()213xf f x ⎡⎤+=⎢⎥+⎣⎦,则52(log )f =__________.16.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.17.已知2()y f x x =+是奇函数,且f (1)1=,若()()2g x f x =+,则(1)g -=___.18.已知sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <>则1111()()66f f -+为_____19.已知正实数a 满足8(9)a aa a =,则log (3)a a 的值为_____________.20.定义在R 上的函数()f x 满足()()2=-+f x f x ,()()2f x f x =-,且当[]0,1x ∈时,()2f x x =,则方程()12f x x =-在[]6,10-上所有根的和为________. 三、解答题21.已知函数2()()21xx a f x a R -=∈+是奇函数.(1)求实数a 的值;(2)用定义法证明函数()f x 在R 上是减函数;(3)若对于任意实数t ,不等式()2(1)0f t kt f t -+-≤恒成立,求实数k 的取值范围.22.已知函数22()21x x a f x ⋅+=-是奇函数.(1)求a 的值;(2)求解不等式()4f x ≥;(3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.23.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.24.已知函数2()(,)1ax bf x a b x +=∈+R 为在R 上的奇函数,且(1)1f =. (1)用定义证明()f x 在(1,)+∞的单调性;(2)解不等式()()2341xxf f +≤+.25.已知集合{}121A x a x a =-<<+,{}01B x x =<<. (1)若B A ⊆,求实数a 的取值范围; (2)若A B =∅I ,求实数a 的取值范围.26.已知函数()xf x a =(0a >,且1a ≠),且(5)8(2)f f =. (1)若(23)(2)f m f m -<+,求实数m 的取值范围; (2)若方程|()1|f x t -=有两个解,求实数t 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】 【分析】根据指数幂与对数式的化简运算,结合函数图像即可比较大小.【详解】 因为23a log =,3b =,23c e = 令()2f x log x =,()g x x =函数图像如下图所示:则()2442f log ==,()442g == 所以当3x =时23log 3>,即a b <3b =23c e = 则66327b ==,626443 2.753.1c e e ⎛⎫⎪==>≈ ⎪⎝⎭所以66b c <,即b c < 综上可知, a b c << 故选:A 【点睛】本题考查了指数函数、对数函数与幂函数大小的比较,因为函数值都大于1,需借助函数图像及不等式性质比较大小,属于中档题.2.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.3.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<. 即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.6.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.7.A解析:A 【解析】因为00.31,1e <,所以0.3log 0c e =<,由于0.30.3031,130log 31a b ππ>⇒=><<⇒<=<,所以a b c >>,应选答案A .8.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.B解析:B 【解析】 y =11x -在[2,3]上单调递减,所以x=3时取最小值为12,选B. 10.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.11.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.12.C解析:C 【解析】 【分析】 【详解】210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭成立,则等价为a ⩾21x x--对于一切x ∈(0,1 2)成立,即a ⩾−x −1x 对于一切x ∈(0,12)成立, 设y =−x −1x ,则函数在区间(0,12〕上是增函数∴−x −1x <−12−2=52-, ∴a ⩾52-. 故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x >就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题13.1【解析】故答案为解析:1 【解析】155325a b c ===因为,1553log 25,log 25,log 25a b c ∴===,252525111log 15log 5log 3a b c∴+-=+-25log 251==,故答案为1. 14.或【解析】【分析】【详解】若∴函数在区间上单调递减所以由题意得又故若∴函数在区间上单调递增所以由题意得又故答案:或解析:12或32 【解析】 【分析】 【详解】若01a <<,∴函数()xf x a =在区间[1,2]上单调递减,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又01a <<,故12a =.若1a >,∴函数()xf x a =在区间[1,2]上单调递增,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又1a >,故32a =. 答案:12或3215.【解析】【分析】由已知可得=a 恒成立且f (a )=求出a =1后将x =log25代入可得答案【详解】∵函数f (x )是R 上的单调函数且对任意实数x 都有f =∴=a 恒成立且f (a )=即f (x )=﹣+af (a )解析:23 【解析】 【分析】由已知可得()221x f x ++=a 恒成立,且f (a )=13,求出a =1后,将x =log 25代入可得答案. 【详解】∵函数f (x )是R 上的单调函数,且对任意实数x ,都有f[()221x f x ++]=13, ∴()221x f x ++=a 恒成立,且f (a )=13,即f (x )=﹣x 221++a ,f (a )=﹣x 221++a =13, 解得:a =1,∴f (x )=﹣x 221++1, ∴f (log 25)=23, 故答案为:23. 【点睛】本题考查的知识点是函数解析式的求法和函数求值的问题,正确理解对任意实数x ,都有()21213x f f x ⎡⎤+=⎢⎥+⎣⎦成立是解答的关键,属于中档题.16.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.17.-1【解析】试题解析:因为是奇函数且所以则所以考点:函数的奇偶性解析:-1 【解析】试题解析:因为2()y f x x =+是奇函数且(1)1f =,所以, 则,所以.考点:函数的奇偶性.18.0【解析】【分析】根据分段函数的解析式代入求值即可求解【详解】因为则所以【点睛】本题主要考查了分段函数求值属于中档题解析:0 【解析】 【分析】根据分段函数的解析式,代入求值即可求解. 【详解】 因为sin ()(1)x f x f x π⎧=⎨-⎩(0)(0)x x <> 则11111()sin()sin 6662f ππ-=-==, 11511()()()sin()66662f f f π==-=-=-, 所以1111()()066f f -+=.【点睛】本题主要考查了分段函数求值,属于中档题.19.【解析】【分析】将已知等式两边同取以为底的对数求出利用换底公式即可求解【详解】故答案为:【点睛】本题考查指对数之间的关系考查对数的运算以及应用换底公式求值属于中档题 解析:916【解析】 【分析】将已知等式8(9)aaa a =,两边同取以e 为底的对数,求出ln a ,利用换底公式,即可求解. 【详解】8(9)a a a a =,8ln ,l )l n 8(ln 9(9ln n )a a a a a a a a +==,160,7ln 16ln 3,ln ln 37a a a >∴=-=-Q ,ln 3ln 39log (3)116ln 16ln 37a a a a ∴==+=-.故答案为:916. 【点睛】本题考查指对数之间的关系,考查对数的运算以及应用换底公式求值,属于中档题.20.【解析】【分析】结合题意分析出函数是以为周期的周期函数其图象关于直线对称由可得出函数的图象关于点对称据此作出函数与函数在区间上的图象利用对称性可得出方程在上所有根的和【详解】函数满足即则函数是以为周 解析:16【解析】 【分析】结合题意分析出函数()y f x =是以4为周期的周期函数,其图象关于直线1x =对称,由()()22f x f x -=-+可得出函数()y f x =的图象关于点()2,0对称,据此作出函数()y f x =与函数12y x =-在区间[]6,10-上的图象,利用对称性可得出方程()12f x x =-在[]6,10-上所有根的和. 【详解】函数()y f x =满足()()2f x f x =-+,即()()()24f x f x f x =-+=+,则函数()y f x =是以4为周期的周期函数;()()2f x f x =-Q ,则函数()y f x =的图象关于直线1x =对称;由()()2f x f x =-+,()()2f x f x =-,有()()22f x f x -=-+,则函数()y f x =的图象关于点()2,0成中心对称; 又函数12y x =-的图象关于点()2,0成中心对称,则函数()y f x =与函数12y x =-在区间[]6,10-上的图象的交点关于点()2,0对称,如下图所示:由图象可知,函数()y f x =与函数12y x =-在区间[]6,10-上的图象共有8个交点,4对交点关于点()2,0对称,则方程()12f x x =-在[]6,10-上所有根的和为4416⨯=. 故答案为:16. 【点睛】本题考查方程根的和的计算,将问题转化为利用函数图象的对称性求解是解答的关键,在作图时也要注意推导出函数的一些基本性质,考查分析问题和解决问题的能力,属于中等题.三、解答题21.(1) 1a =;(2)证明见解析;(3) 13k k ≥≤-或 【解析】 【分析】(1)根据函数是奇函数,由(0)0f =,可得a 的值; (2)用定义法进行证明,可得函数()f x 在R 上是减函数;(3)根据函数的单调性与奇偶性的性质,将不等式()2(1)0f t kt f t -+-≤进行化简求值,可得k 的范围. 【详解】解:(1)由函数2()()21xx a f x a R -=∈+是奇函数,可得:(0)0f =,即:1(0)02a f -==,1a =; (2)由(1)得:12()21xx f x -=+,任取12x x R ∈,且12x x <,则122112*********(22)()()=2121(21)(21)xx x x x x x x f x f x -----=++++, Q 12x x <,∴21220x x ->,即:2112122(22)()()=(21)(201)x x x x f x f x --++>, 12()()f x f x >,即()f x 在R 上是减函数;(3)Q ()f x 是奇函数,∴不等式()2(1)0f t kt f t -+-≤恒成立等价为()2(1)(1)f t kt f t f t -≤--=-恒成立,Q ()f x 在R 上是减函数,∴21t kt t -≥-,2(1)10t k t -++≥恒成立,设2()(1)1g t t k t =-++,可得当0∆≤时,()0g t ≥恒成立, 可得2(1)40k +-≥,解得13k k ≥≤-或, 故k 的取值范围为:13k k ≥≤-或. 【点睛】本题主要考查函数单调性的判断与证明及函数恒成立问题,体现了等价转化的数学思想,属于中档题.22.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x x xa a a f x f x --⋅++⋅⋅+-===-=--- ∴2a =.(2)222()421x xf x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥-- 即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x xf x ⋅+⋅-+===+--- 故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <- 综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题.23.(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0. 【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-,所以()()2320x ax a f x x =-+-+<,所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩,解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系. 24.(1)证明见解析;(2){|1}x x ≤. 【解析】 【分析】(1)根据函数为定义在R 上的奇函数得(0)0f =,结合(1)1f =求得()f x 的解析式,再利用单调性的定义进行证明;(2)因为231x +>,411x +>,由(1)可得2341x x +≥+,解指数不等式即可得答案. 【详解】 (1)因为函数2()(,)1ax bf x a b x +=∈+R 为在R 上的奇函数,所以(0)0f = 则有0001111ba b +⎧=⎪⎪+⎨+⎪=⎪+⎩解得20a b =⎧⎨=⎩,即22()1xf x x =+ 12,(1,)x x ∀∈+∞,且12x x <()()()()()()2212211212222212122121221111x x x x x x f x f x x x x x +-+-=-=++++ ()()()()122122122111x x x x xx --=++因为12,(1,)x x ∀∈+∞,且12x x <,所以()()2212110x x ++>,1210x x ->,210x x ->所以()()120f x f x ->即()()12f x f x > , 所以()f x 在(1,)+∞上单调递减 .(2)因为231x +>,411x +>,由(1)可得2341x x +≥+ 不等式可化为22220x x x ⋅--≤,即(()()21220xx+-≤ 解得22x ≤,即1x ≤ 所以不等式的解集为{|1}x x ≤ 【点睛】本题考查奇函数的应用、单调性的定义证明、利用单调性解不等式,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意不等式的解集要写成集合的形式. 25.(1)[]0,1;(2)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U .【解析】 【分析】(1)由题得10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解不等式即得解;(2)对集合A 分两种情况讨论即得实数a的取值范围. 【详解】(1)若B A ⊆,则10,211,121,a a a a -⎧⎪+⎨⎪-<+⎩„…解得01a ≤≤.故实数a 的取值范围是[]0,1.(2)①当A =∅时,有121a a -≥+,解得2a ≤-,满足A B =∅I . ②当A ≠∅时,有121a a -<+,解得 2.a >- 又A B =∅Q I ,则有210a +≤或11a -≥,解得12a ≤-或2a ≥, 122a ∴-<≤-或2a ≥.综上可知,实数a 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦U .【点睛】本题主要考查根据集合的关系和运算求参数的范围,意在考查学生对这些知识的理解掌握水平和分析推理能力. 26.(1)(,5)-∞;(2)()0,1. 【解析】 【分析】 (1)由(5)8(2)f f =求得a 的值,再利用指数函数的单调性解不等式,即可得答案; (2)作出函数|()1|y f x =-与y t =的图象,利用两个图象有两个交点,可得实数t 的取值范围. 【详解】 (1)∵(5)8(2)f f = ∴5328a a a==则2a = 即()2x f x =,则函数()f x 是增函数由(23)(2)f m f m -<+,得232m m -<+ 得5m <,即实数m 的取值范围是(,5)-∞.(2)()2x f x =,由题知21xy =-图象与y t =图象有两个不同交点, 由图知:(0,1)t ∈【点睛】本题考查指数函数的解析式求解、单调性应用、图象交点问题,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力.。
高一数学上册期末试卷(附答案)

高一数学上册期末试卷(附答案)高一数学期末考试试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的1.函数的定义域为( )A.( ,1)B.( ,∞)C.(1,+∞ )D.( ,1)∪( 1,+∞)2.以正方体ABCD—A1B1C1D1的棱AB、AD、AA1所在的直线为坐标轴建立空间直角坐标系,且正方体的棱长为一个单位长度,则棱CC1中点坐标为( )A.( ,1,1)B.(1,,1)C.(1,1, )D.( ,,1)3.若,,,则与的位置关系为( )A.相交B.平行或异面C.异面D.平行4.如果直线同时平行于直线,则的值为( )A. B.C. D.5.设,则的大小关系是( )A. B. C. D.6.空间四边形ABCD中,E、F分别为AC、BD中点,若CD=2AB,EF⊥AB,则直线EF与CD所成的角为( )A.45°B.30°C.60°D.90°7.如果函数在区间上是单调递增的,则实数的取值范围是( )A. B. C. D.8.圆:和圆:交于A,B两点,则AB的垂直平分线的方程是( )A. B.C. D.9.已知,则直线与圆的位置关系是( )A.相交但不过圆心B.过圆心C.相切D.相离10.某三棱锥的三视图如右图所示,则该三棱锥的表面积是( )A.28+65B.60+125C.56+125D.30+6511.若曲线与曲线有四个不同的交点,则实数m的取值范围是( )A. B.C. D.12.已知直线与函数的图象恰好有3个不同的公共点,则实数m 的取值范围是( )A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若是奇函数,则 .14.已知,则 .15.已知过球面上三点A,B,C的截面到球心O的距离等于球半径的一半,且AB=BC=CA=3 cm,则球的体积是 .16.如图,将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三种说法:①△DBC是等边三角形;②AC⊥BD;③三棱锥D-ABC的体积是26.其中正确的序号是________(写出所有正确说法的序号).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题10分)根据下列条件,求直线的方程:(1)已知直线过点P(-2,2)且与两坐标轴所围成的三角形面积为1;(2)过两直线3x-2y+1=0和x+3y+4=0的交点,且垂直于直线x+3y+4=0.18.(本小题12分)已知且,若函数在区间的最大值为10,求的值.19.(本小题12分)定义在上的函数满足 ,且 .若是上的减函数,求实数的取值范围.20.(本小题12分)如图,在直三棱柱(侧棱垂直于底面的三棱柱) 中,,分别是棱上的点(点不同于点 ),且为的中点.求证:(1)平面平面 ;(2)直线平面 .21.(本小题12分)如图所示,边长为2的等边△PCD所在的平面垂直于矩形A BCD所在的平面,BC=22,M为BC的中点.(1)证明:AM⊥PM;(2)求二面角P-AM-D的大小.22.(本小题12分)已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上的截距相等,求此切线的方程.(2)从圆C外一点P(x1,y1)向该圆引一条切线,切点为M,O为坐标原点,且有|PM|=|PO|,求使得|PM|取得最小值的点P的坐标.高一数学期末考试试题答案一、选择题ACBAD BDCAD BC二、填空题13. 14.13 15. 16.①②三、解答题17.(本小题10分)(1)x+2y-2=0或2x+y+2=0.(2)3x-y+2=0.18.(本小题12分)当0当x=-1时,函数f(x)取得最大值,则由2a-1-5=10,得a=215,当a>1时,f(x)在[-1,2]上是增函数,当x=2时,函数取得最大值,则由2a2-5=10,得a=302或a=-302(舍),综上所述,a=215或302.19.(本小题12分)由f(1-a)+f(1-2a)<0,得f(1-a)<-f(1-2a).∵f(-x)=-f(x),x∈(-1,1),∴f(1-a)又∵f(x)是(-1,1)上的减函数,∴-1<1-a<1,-1<1-2a<1,1-a>2a-1,解得0故实数a的取值范围是0,23.20.(本小题12分)(1)∵ 是直三棱柱,∴ 平面。
高一数学上学期期末综合试卷含答案

高一数学上学期期末综合试卷含答案一、选择题1.已知全集U =R ,集合{}12M x x =-≤,则U M 等于( ) A .{}13x x -<< B .{}13x x -≤≤ C .{1x x <-或}3x >D .{1x x ≤-或}3x ≥2.已知函数()f x =()()3y f x f x =+-的定义域是( ) A .[-5,4]B .[-2,7]C .[-2,1]D .[1,4]3.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角 B .第二象限角 C .第三象限角D .第四象限角4.已知0a <,角α的终边上一点(,2)a a -,则sin α=( )A B .C D .5.函数2()ln f x x x=-的零点所在的大致区间是( ) A .(1,2)B .1(1,)eC .(3,4)D .(2,3)6.筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画1描绘了筒车的工作原理.假定在水流稳定的情况下,简车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),筒车的半径为4m ,筒车转轮的中心O 到水面的距离为2m ,筒车每分钟沿逆时针方向转动4圈.规定:盛水筒M 对应的点P 从水中浮现(即0P 时的位置)时开始计算时间,且以水轮的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设盛水筒M 从点0P 运动到点P 时所经过的时间为(t 单位:s),则点P 第一次到达最高点需要的时间为( )A .7sB .132s C .6s D .5s7.若函数26,3()ln(2)9,3x x x f x x x ⎧-≤=⎨--->⎩,则()26(1)f x f x >+的解集为( )A .11,32⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .11,32⎛⎫- ⎪⎝⎭8.已知()f x 是定义在[]1,1-上的奇函数,且()11f -=-,当,1,1a b且0a b +≠时()()0f a f b a b+>+.已知,22ππθ⎛⎫∈- ⎪⎝⎭,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则θ的取值范围是( )A .,62ππ⎛⎫- ⎪⎝⎭B .,23ππ⎛⎫-- ⎪⎝⎭C .,32ππ⎛⎫- ⎪⎝⎭D .,26ππ⎛⎫- ⎪⎝⎭二、填空题9.下列命题是真命题的是( ) A .若幂函数()a f x x 过点1,42⎛⎫⎪⎝⎭,则12α=-B .(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭C .(0,)x ∀∈+∞,1123log log x x> D .命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥” 10.21x ≤的一个充分不必要条件是( ) A .10x -≤<B .1≥xC .01x <≤D .11x -≤≤11.下列命题不正确的( ) A .110||||a b a b<<⇒> B .ab a b cc>⇒>C .33110a b a b ab ⎫>⇒<⎬>⎭D .22110a b a bab ⎫>⇒<⎬>⎭12.关于函数()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭,其中正确命题是( )A .()y f x =的最大值为2B .()y f x =是以π为最小正周期的周期函数C .将函数2cos 2y x =的图像向左平24π个单位后,将与已知函数的图像重合 D .()y f x =在区间13,2424ππ⎛⎫⎪⎝⎭上单调递减 三、多选题13.若命题“()0x ∃∈+∞,,使得24ax x >+成立”是假命题,则实数a 的取值范围是_________. 14.2log 3a c =,1log 2ab c =,则log b c =________ 15.已知函数()221f x x ax =-+,[]1,x a ∈-,且()f x 最大值为f a ,则a 的取值范围为______.16.定义域为R 的函数()2x F x =可以表示为一个奇函数()f x 和一个偶函数()g x 的和,则()f x =_________;若关于x 的不等式()()f x a bF x +≥-的解的最小值为1,其中,R a b ∈,则a 的取值范围是_________.四、解答题17.已知集合{}()(23)0A x x m x m =+-+<,其中m ∈R ,集合203x B xx ⎧⎫-=>⎨⎬+⎩⎭. (1)当1m =-时,求A B ;(2)若B A ⊆,求实数m 的取值范围.18.已知函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭的部分图像如图所示,P 为该图像的最高点.(1)若2πω=,求cos APB ∠的值;(2)若PAB 45∠=︒,P 的坐标为()1,2,求()f x 的解析式. 19.已知函数2()(1)1(0)f x ax a x a =-++>.(1)若()f x 的单调递减区间是(,1]-∞,求a 的值并证明你的结论; (2)解关于x 的不等式()0(0)f x a <>.20.如图,已知正方形ABCD 的边长为1,点P ,Q 分别是边BC ,CD 上的动点(不与端点重合),在运动的过程中,始终保持4PAQ π∠=不变,设BAP α∠=.(1)将APQ 的面积表示成α的函数,并写出定义域; (2)求APQ 面积的最小值.21.已知函数()xf x a =(0a >,且1a ≠).(1)证明:()()()1212222f x f x f x x +≥+;(2)若()12f x =,()23f x =,()128f x x =,求a 的值; (3)x ∀∈R ,()212xx f x -+≤恒成立,求a 的取值范围.22.已知2()ln ,()241()f x x g x x ax a a R ==-+-∈.(Ⅰ)若函数(())f g x 在[1,3]上单调递增,求实数a 的取值范围; (Ⅱ)若函数(())g f x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为()M a ,最小值为()m a ,令()()()k a M a m a =-,求()k a 的解析式及其最小值(注:e 为自然对数的底数).【参考答案】一、选择题 1.C 【分析】解绝对值不等式求出集合M ,再利用集合的补运算即可求解. 【详解】因为集合{}{}1213M x x x x =-≤=-≤≤,全集U =R , 所以{U 1M x x =<-或}3x >, 故选:C. 2.D 【分析】由函数解析式可得2820x x +-≥,解不等式可得24x -≤≤,再由24234x x -≤≤⎧⎨-≤-≤⎩即可求解.【详解】由()f x =2820x x +-≥, 解得24x -≤≤,所以函数()()3y f x f x =+-的定义域满足24234x x -≤≤⎧⎨-≤-≤⎩,解得14x ≤≤, 所以函数的定义域为[1,4]. 故选:D 3.B 【分析】由α是第三象限角,知2α在第二象限或在第四象限,再由cos cos 22αα=-,知cos 02α≤,由此能判断出2α所在象限. 【详解】α是第三象限角,()180360270360k k k Z α∴+⋅<<+⋅∈, ()901801351802k k k Z α∴+⋅<<+⋅∈.当k 是偶数时,设()2k n n =∈Z ,则()903601353602n n n Z α+⋅<<+⋅∈,此时2α为第二象限角; 当k 是奇数时,设()21k n n Z =+∈,则()2703603153602n n n Z α+⋅<<+⋅∈,此时2α为第四象限角. 综上所述,2α为第二象限角或第四象限角,coscos22αα=-,cos02α∴≤,2α∴为第二象限角.故选:B . 【点睛】本题考查角所在象限的判断,属于基础题,关键在于由所在的象限,得出关于α的不等式,再求出2α的范围. 4.C 【分析】首先根据三角函数的定义求出tan α,再根据同角三角函数的基本关系计算可得; 【详解】解:因为角α的终边上一点(,2)a a -,所以tan 2α,又22sin tan 2cos sin cos 1ααααα⎧==-⎪⎨⎪+=⎩,解得sin α=,由0a <可知α在第二象限,故sin α= 故选:C . 5.D 【分析】 函数2()ln f x x x=-在(0,)+∞上是连续增函数,根据()()230f f <,根据零点存在定理可得零点所在的大致区间. 【详解】解:对于函数2()ln f x x x=-在(0,)+∞上是连续增函数, 由于()2ln 210f =-<,()23ln 303f =->, 所以()()230f f <,根据零点存在定理可知,函数2()ln f x x x=-的零点所在的大致区间是(2,3), 故选:D . 6.D 【分析】设点P 离水面的高度为()sin()f t A t ωϕ=+,根据题意求出,,A ωϕ,再令()4f t =可求出结果. 【详解】设点P 离水面的高度为()sin()f t A t ωϕ=+, 依题意可得4A =,826015ππω==,6πϕ=-, 所以2()4sin()156f t t ππ=-, 令2()4sin()4156f t t ππ=-=,得2sin()1156t ππ-=,得221562t k ππππ-=+,k Z ∈,得155t k =+,k Z ∈,因为点P 第一次到达最高点,所以2015215t ππ<<=, 所以0,5s k t ==. 故选:D 7.D 【分析】首先作出分段函数()f x 的单调性,根据单调性去掉f 即可求解. 【详解】作出26,3()ln(2)9,3x x x f x x x ⎧-≤=⎨--->⎩的图象如图:由图知,函数()f x 在R 单调递减,由()26(1)f x f x >+可得261x x <+,即2610x x --<,解得:1132x -<<,所以()26(1)f x f x >+的解集为11,32⎛⎫- ⎪⎝⎭,故选:D 【点睛】关键点点睛:本题解题的关键点是判断()f x 的单调性,利用单调性解不等式. 8.A 【分析】由奇偶性分析条件可得()f x 在[]1,1-上单调递增,所以()max 1f x =,进而得2143sin 2cos θθ<+-,结合角的范围解不等式即可得解. 【详解】因为()f x 是定义在[]1,1-上的奇函数, 所以当,1,1a b且0a b +≠时()()()()00()f a f b f a f b a b a b +-->⇔>+--,根据,a b 的任意性,即,a b -的任意性可判断()f x 在[]1,1-上单调递增, 所以()max (1)(1)1f x f f ==--=,若()243sin 2cos f x θθ<+-对[]1,1x ∀∈-恒成立,则2143sin 2cos θθ<+-,整理得(sin 1)(2sin 1)0θθ++>,所以1sin 2θ>-,由,22ππθ⎛⎫∈- ⎪⎝⎭,可得,62ππθ⎛⎫∈- ⎪⎝⎭,故选:A. 【点睛】关键点点睛,本题解题的关键是利用()()()()00()f a f b f a f b a b a b +-->⇔>+--,结合变量的任意性,可判断函数的单调性,属于中档题.二、填空题9.BD 【分析】根据幂函数的定义判断A ,结合图象判断BC ,根据特称命题的否定为全称命题可判断D . 【详解】解:对于A :若幂函数()a f x x 过点1,42⎛⎫ ⎪⎝⎭,则142解得2α=-,故A 错误;对于B :在同一平面直角坐标系上画出12xy ⎛⎫= ⎪⎝⎭与12log y x=两函数图象,如图所示由图可知(0,1)x ∃∈,121log 2xx ⎛⎫> ⎪⎝⎭,故B 正确;对于C :在同一平面直角坐标系上画出13log y x=与12log y x=两函数图象,如图所示由图可知,当(0,1)x ∈时,1123log log x x>,当1x =时,1123log log x x=,当(1,)x ∈+∞时,1123log log x x<,故C 错误;对于D :根据特称命题的否定为全称命题可知,命题“x ∃∈R ,sin cos 1x x +<”的否定是“x ∀∈R ,sin cos 1x x +≥”,故D 正确; 故选:BD【点睛】本题考查指数函数对数函数的性质,幂函数的概念,含有一个量词的命题的否定,属于基础题. 10.AC 【分析】由不等式21x ≤,求得11x -≤≤,结合充分条件、必要条件的判定方法,即可求解. 【详解】由不等式21x ≤,可得11x -≤≤,结合选项可得: 选项A 为21x ≤的一个充分不必要条件; 选项B 为21x ≤的一个既不充分也不必要条件; 选项C 为21x ≤的一个充分不必要条件; 选项D 为21x ≤的一个充要条件, 故选:AC. 11.ABD 【分析】利用不等式的性质,结合特殊值法、比较法逐一判断即可. 【详解】 A :1100ab a b <<∴>且110a b ->->,因此110ab ab ab a b-⋅>-⋅>⋅,即00b a b a b a ->->⇒->->⇒>,故本命题不正确; B :因为4822>--,显然48>不成立,所以本命题不正确; C :由332233()()0b a b a b a b b a a ⇒-=-++>>,而0ab >, 所以有a b >,而11110b a a b ab a b--=<⇒<,故本命题正确; D :若2,1a b =-=-,显然220a b ab ⎧>⎨>⎩成立,但是1121<--不成立,故本命题不正确, 故选:ABD 【点睛】方法点睛:关于不等式是否成立问题,一般有直接运用不等式性质法、特殊值法、比较法. 12.ABD 【分析】先把()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭化为()5212f x x π⎛⎫=+ ⎪⎝⎭,直接对四个选项一一验证. 【详解】()cos 2cos 236f x x x ππ⎛⎫⎛⎫=-++ ⎪ ⎪⎝⎭⎝⎭cos 2cos 2626x x πππ⎛⎫⎛⎫=+-++ ⎪ ⎪⎝⎭⎝⎭sin 2cos 266x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭264x ππ⎛⎫=++ ⎪⎝⎭5212x π⎛⎫=+ ⎪⎝⎭ 显然A 、B 选项正确C 选项:将函数2y x =的图像向左平24π个单位得到212y x π⎛⎫=+ ⎪⎝⎭,图像不会与原图像重合,故C 错误;D 选项:当13,2424x ππ⎛⎫∈ ⎪⎝⎭,则532,1222x πππ⎛⎫+∈ ⎪⎝⎭,∴()y f x =在区间13,2424ππ⎛⎫ ⎪⎝⎭上单调递减成立. 故选:ABD 【点睛】(1)三角函数问题通常需要把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题;(2)求单调区间,最后的结论务必写成区间形式,不能写成集合或不等式.三、多选题 13.(],4-∞【分析】由题意可知,命题“()0x ∀∈+∞,,使得24ax x ≤+成立”是真命题,可得出4a x x≤+,结合基本不等式可解得实数k 的取值范围. 【详解】若命题“()0x ∃∈+∞,,使得24ax x >+成立”是假命题, 则有“()0x ∀∈+∞,,使得24ax x ≤+成立”是真命题. 即4a x x ≤+,则min 4a x x ⎛⎫≤+ ⎪⎝⎭,又44x x+≥=,当且仅当2x =时取等号,故4a ≤. 故答案为:(],4-∞ 14.2 【分析】 根据2log 3a c =,1log 2ab c =,找到a 、b 、c 的关系,计算log b c . 【详解】 ∵2log 3a c =,1log 2ab c =, ∴()2132a c ab c ==,, ∴()2132=a ab ,化简得:1162=a b ,即3=a b , ∴2=c b ,∴2log log 2b b c b ==.故答案为:2 【点睛】 对数运算技巧: (1)应用常用对数值; (2)灵活应用对数的运算性质; (3) 逆用法则、公式;(4) 应用换底公式,化为同底结构.15.[)2,+∞【分析】由题知1a >-,进而得函数的对称轴[]14,a ax ∈-=,再根据函数开口向上,()f x 最大值为f a 得144a aa -≥+,解不等式即可得答案. 【详解】解:因为[]1,x a ∈-,所以1a >-, 因为函数的对称轴为[]14,a ax ∈-=,开口向上,()f x 最大值为f a 所以144a aa -≥+,解得2a ≥,所以a 的取值范围为[)2,+∞ 故答案为; [)2,+∞ 16.()1222xx -- 1a ≥- 【分析】先根据()f x 为奇函数,()g x 为偶函数,求出()F x -,再与()F x 联立即可求出()f x ;先将()(),f x F x -代入()()f x a bF x +≥-,即可得到()12222xxx a b --≥--,将其转化为()1max1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝,令()()11222,1x x h x x b --⎛⎫+- ⎪⎝⎭=≥,求出()max h x 即可求出a 的取值范围. 【详解】解:由题意知:()()()2xF x f x g x =+=()f x 为奇函数,()g x 为偶函数,()()()(),f x f x g x g x ∴-=--=, ()()()()()2x F x f x g x f x g x -=-+-=-+=()()()()()()()222x xF x F x f x g x f x g x f x ---=+--+==-⎡⎤⎣⎦,即()()1222x xf x -=-, ()()f x a bF x +≥-,即()12222xx x a b ---+≥⋅, 即()12222xxx a b --≥--, 即11222x x a b --⎛⎫≥+- ⎪⎝⎭,关于x 的不等式()()f x a bF x +≥-的解的最小值为1, 等价于()1max 1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝, 令()()11222,1x x h x x b --⎛⎫+- ⎪⎝⎭=≥,当12b =-时,()()1,21x h x x --=≥易知:()12x h x -=-在[)1,+∞单调递减,()()0max 121h x h ==-=-,故1a ≥-,当12b >-时,102b +>,()11222x x b h x --⎛⎫+- ⎪⎝⎭=在[)1,+∞单调递减,()()10max 13122224b h x h b -⎛⎫==+⨯-=- ⎪⎝⎭,当b 趋近于+∞时,()max h x 趋近于+∞, 故()1max 1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝无解,当12b <-时,102b +<,当1≥x 时,1022x-≤≤, 1202x b -⎛⎫+< ⎪⎝⎭,112x --<-, 故()121122x x h x b --⎛⎫+- ⎪⎝⎭=<-,即1a ≥-, 综上所述:1a ≥-. 故答案为:()1222xx --;1a ≥-. 【点睛】关键点点睛:本题解题的关键是将关于x 的不等式()()f x a bF x +≥-的解的最小值为1,转化为()1max1222,1x x a b x --⎡⎤⎛⎫≥+- ⎪⎢⎥⎭⎣⎦≥⎝.四、解答题17.(1){}52x x -<<;(2)(,2][3,)-∞-⋃+∞ 【分析】(1)先分别求出集合,A B ,再根据集合间的运算即可求解; (2)由B A ⊆知:A ≠∅,对m 进行讨论即可求解. 【详解】 解:(1)由203xx ->+, 解得:32x -<<,故{}20323x B x x x x ⎧⎫-=>=-<<⎨⎬+⎩⎭∣, 当1m =-时,()(23)0x m x m +-+<可化为:(5)(1)0x x +-<, 解得:51x -<<,∴集合{}51A x x =-<<,故{}52A B x x ⋃=-<<; (2)显然A ≠∅,即1m ≠, 当23m m -<-,即1m 时,{}23A x m x m =-<<-, 又B A ⊆,13232m m m >⎧⎪∴-≤-⎨⎪-≥⎩, 解得:3m ≥; 当23m m ->-,即1m <时,{}23A x m x m =-<<-, 又B A ⊆,12332m m m <⎧⎪∴-≤-⎨⎪-≥⎩, 解得:2m ≤-,综上所述:实数m 的取值范围为(,2][3,)-∞-⋃+∞. 18.(12)()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.【分析】 (1) 由2πω=,则2242AB πππω===,由周期可分别求出,AQ BQ ,进一步求出,AP BP ,由余弦定理可得答案.(2)由条件可得2AQ QP ==,即8T =,所以4πω=,又(1)2sin()24f πϕ=+=可得答案.【详解】解析:(1)由题设可知,由2πω=,则2242AB πππω===在APB △中,max ()2PQ f x ==,则14T AQ ==,334T BQ == 所以222145AP AQ PQ =+=+=,222223213BP PQ BQ =+=+=,由余弦定理可得:2225131665cos 2652513AP PB AB APB AP BP+-+-∠===⋅⋅⨯⨯.(2)由PAB 45∠=︒,P 的坐标为()1,2,所以在APQ ,2AQ QP == 易知24T=,8T =,所以4πω=, 又(1)2sin()24f πϕ=+=,则2,42k k Z ππϕπ+=+∈又02πϕ<<,所以4πϕ=,所以()2sin 44f x x ππ⎛⎫=+ ⎪⎝⎭.19.(1)1a =,证明见解析;(2)当01a <<时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭;当=1a 时,不等式的解集为∅;当1a >时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭.【分析】(1)先求出a 的值,并利用单调性的定义进行证明; (2)对1a和1 的大小进行分类讨论,解不等式即可. 【详解】(1)函数2()(1)1(0)f x ax a x a =-++>的图像为抛物线,开口向上,对称轴为12a x a+=. 因为()f x 的单调递减区间是(,1]-∞,所以1=12a a+,解得:1a =. 此时2()21f x x x =-+,下面证明2()21f x x x =-+在区间(,1]-∞单调递减: 任取121x x <≤,则()()12212122()()2121f f x x x x x x -=-+--+()222121=2x x x x --- ()()1212=2x x x x -+-因为121x x <≤,所以12x x <,1220x x +-<,所以()()121220x x x x -+->. 所以12()()f f x x >,所以2()21f x x x =-+在区间(,1]-∞单调递减;(2)关于x 的不等式()0(0)f x a <>可化为:()()110x ax --<. 当01a <<时,解得:11x a<<; 当=1a 时,原不等式无解; 当1a >时,解得:11x a<<; 综上所述:当01a <<时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭;当=1a 时,不等式的解集为∅;当1a >时,不等式的解集为1|1x x a ⎧⎫<<⎨⎬⎩⎭.【点睛】(1)单调性的证明通常用定义法;(2)解含参数的不等式通常需要分类讨论,分类的标准:①最高次项系数是否为0;②关于x 的方程()=0f x 是否有根;③()=0f x 的几个根的大小比较. 20.(1)1124APQSπα=⎛⎫+ ⎪⎝⎭;定义域为0,4π⎛⎫⎪⎝⎭;(21 【分析】(1)在Rt ABP 与Rt ADQ 中,利用正方形的边长,求出,AP AQ ,根据三角形的面积公式即可求解.(2)由(1)利用三角函数的性质即可求解. 【详解】(1)由BAP α∠=,4PAQ π∠=,则244ADQ πππαα∠=--=-,正方形的边长为1,在Rt ABP 中,1cos AP α=, 在Rt ADQ 中,1cos 4AQ πα=⎛⎫- ⎪⎝⎭,所以1111sin 242cos cos 4APQSAP AQ ππαα=⋅⋅=⋅⋅⎛⎫- ⎪⎝⎭()211112cos cos sin 2cos cos sin αααααα=⋅=⋅++12121cos 2sin 2124ααπα=⋅=++⎛⎫+ ⎪⎝⎭,由图可知04πα<<,所以函数的定义域为0,4π⎛⎫⎪⎝⎭. (2)由04πα<<,则32444πππα<+<,1124APQS πα=⎛⎫+ ⎪⎝⎭,当sin 214πα⎛⎫+= ⎪⎝⎭,即8πα=时,APQ 面积的最小,即APQ 1=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).21.(1)见详解;(23)(]1,11,28⎡⎫⎪⎢⎣⎭【分析】(1)根据函数解析式,直接作差比较()()1222f x f x +与()122f x x +的大小,即可证明结论成立;(2)根据题中条件,由指数幂运算性质,直接计算,即可得出结果; (3)先由不等式恒成立,得到x ∀∈R ,212x xx a -+≤恒成立;不等式两边同时取对数,得到x ∀∈R ,22log 1x a x x ≤-+恒成立,讨论0x =,0x >,0x <三种情况,分别求出对应的a 的范围,再求交集,即可得出结果.【详解】(1)因为()xf x a =,所以()()()()111222222121222220x x x x x x f x f x f x x a a a a a ++-+=+-=-≥显然恒成立, 所以()()()1212222f x f x f x x +≥+;(2)由()12f x =,()23f x =得1223x x a a ⎧=⎨=⎩,所以()212122x x x x x a a ==,又()1221228x x xf x x a ===,所以23x =,则233x a a ==,因此a =(3)若x ∀∈R ,()212xx f x -+≤恒成立,即x ∀∈R ,212x xx a -+≤恒成立;则x ∀∈R ,2122log log 2x xx a -+≤恒成立,即x ∀∈R ,22log 1x a x x ≤-+恒成立,当0x =时,不等式可化为01<,显然恒成立;所以0a >,且1a ≠; 当0x >时,不等式可化为21log 1a x x ≤+-,而1111y x x =+-≥=在0x >上恒成立,当且仅当1x =时,取等号;所以只需2log 1a ≤,解得12a <≤或01a <<; 当0x <时,不等式可化为21log 1a x x≥+-,而()111113y x x x x ⎡⎤⎛⎫=+-=--+--≤-=- ⎪⎢⎥⎝⎭⎣⎦在0x <上恒成立,当且仅当1x =-时,取等号;所以只需2log 3a ≥-,解得118a ≤<或1a >,综上,118a ≤<或12a <≤,即a 的取值范围是(]1,11,28⎡⎫⎪⎢⎣⎭【点睛】 关键点点睛:求解本题第三问的关键在于将不等式两边同时取对数,化为22log 1x a x x ≤-+恒成立,再对x 分段讨论,求解a 的范围,即可得解.22.(Ⅰ)(]0,1;(Ⅱ)224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,1.【分析】(Ⅰ)由复合函数的单调性得函数2()241g x x ax a =-+-在[1,3]上单调递增,则1(1)0a g ≤⎧⎨>⎩,解出即可; (Ⅱ)由题意得[]()ln 1,1f x x =∈-,设()t f x =,则2(())()241g f x g t t at a ==-+-22()41t a a a =--+-,[]1,1t ∈-,再分类讨论即可得到224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,再根据函数()k a 的单调性即可求出最小值.【详解】解:(Ⅰ)∵函数(())f g x 在[1,3]上单调递增, 函数()ln f x x =在[1,3]上单调递增,,∴函数2()241g x x ax a =-+-在[1,3]上单调递增,∴1(1)0a g ≤⎧⎨>⎩,解得01a <≤, ∴实数a 的取值范围是(]0,1;(Ⅱ)∵1,x e e ⎡⎤∈⎢⎥⎣⎦,∴[]()ln 1,1f x x =∈-,设()t f x =,则2(())()241g f x g t t at a ==-+-22()41t a a a =--+-,[]1,1t ∈-, ①当1a <-时,函数()g t 在[]1,1-上单调递增, ∴最大值()()12M a g a ==,最小值()()16m a g a =-=, ∴()264k a a a a =-=-;②当10a -≤≤时,函数()g t 在[]1,a -上单调递减,在[],1a 上单调递增,∴最大值()()12M a g a ==,最小值()2()41m a g a a a ==-+-,∴()22()24121k a a a a a a =--+-=-+;③当01a <≤时,函数()g t 在[]1,a -上单调递减,在[],1a 上单调递增,∴最大值()()16M a g a =-=,最小值()2()41m a g a a a ==-+-,∴()22()64121k a a a a a a =--+-=++;④当1a >时,函数()g t 在[]1,1-上单调递减,∴最大值()()16M a g a =-=,最小值()()12m a g a ==, ∴()624k a a a a =-=;综上,224,121,10()21,014,1a a a a a k a a a a a a -<-⎧⎪-+-≤≤⎪=⎨++<≤⎪⎪>⎩,∴()k a 在(],0-∞上单调递减,在[)0,+∞上单调递增, 当0a =时,()k a 取最小值1. 【点睛】本题主要考查复合函数的单调性,考查含参的二次函数在闭区间上的最值,考查计算能力,考查分类讨论的方法,属于难题.。
高一数学第一学期期末试卷及答案5套

高一数学第一学期期末试卷及答案5套考生注意:1、本试题卷包括选择题、填空题和解答题三部分,时量120分钟,满分100分2、答题前,请考生先将自己的学校、班次、姓名、考号在答题卷上填写清楚3、请将选择题答案填在答卷上指定的答框内,填空题和解爷题各案请按题号用黑色墨水签字笔填在指定的位置上。
交卷只交答题卷。
一、选择题:本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中, 只有一项是符合题目要求的。
L .已知集合{}{}1,31x A x x B x =<=<,则() A. {}0AB x x =< B. A B R = C. {}1A B x x => D. A B φ=2.下列四组函数,表示同一函数的是( ) A . 2(),()f x x g x x == B. 33(),()f x x g x x ==C. 2()4,()22f x x g x x x =-=-⋅+ D. 2(),()x f x x g x x==3.下列函数中,既是奇函数又在区间(0,)+∞上单调递増的函数为( ) A. 1y x=B. ln y x =C. 3y x =D. 2y x = 4.如图所示,观察四个几何体,其中判断正确的是( )A .(1)是棱台B .(2)是圆台 C. (3)是棱锥 D .(4)不是棱柱 5.函数(2)log 1x ay +=+的图象过定点( )A, (1,2) B.(1,1)- C. (2,1)- D.(2,1)6.经过点(-1,0),且与直线x +2y —3=0垂直的直线方程是() A.2x-y+2=0 B.2x+y+2=0 C.2x-y-2=0 D.x-2y+1=0 7.在四面体P-ABC 的四个面中,是直角三角形的面至多有( )A .4个B .3个C .2个D .1个 8.直线310x y -+=的倾斜角为( ) A.23π B. 56π C. 3π D. 6π 9.函数2()ln(1)f x x =+的图象大致是( )10、已知函数()f x 是R 上的奇函数,且满足(2)()f x f x +=-,当(0,1]x ∈时,()21x f x =-,则方程27()log x f x -=解的个数是( )A. 10B. 9C. 8D. 7 二、填空题(本大题共5小题,每小题4分,共20分。
高一数学期末(含答案)

高一数学期末(含答案)2019-2020学年度第一学期期末考试高一数学参考答案一、选择题1.解析:根据函数y=cos(-2x)的周期公式T=2π/|ω|可知,函数的最小正周期是T=π/2.故选D。
2.解析:根据勾股定理可得r=√(4^2+3^2)=5,由任意角的三角函数定义可得cosα=-4/5.故选B。
3.删除。
4.解析:由cos(π+α)=-cosα得cosα=-1/3.故选A。
5.解析:根据三角函数的基本关系sin^2α+cos^2α=1和1-cos2α=2sin^2(α/2)可得sinα=√(1-cos^2α)=√(26/169),tanα=sinα/cosα=-2/3.故选D。
6.删除。
7.解析:由题意可得函数f(x)的图像是连续不断的一条曲线,且f(-2)0,故f(0)·f(1)<0,即函数在(0,1)内有一个零点。
故选C。
8.解析:由勾股定理可得EB=√(ED^2+DB^2)=√(1+1/9)=√(10/9),AD=AB-DB=2AB/3,故EB/AD=√(10/9)/(2AB/3)=√10/2=AB/AD。
故选A。
9.解析:由a+b=a-b两边平方得a^2+2ab+b^2=a^2-2ab+b^2,即ab=0,故a⊥b。
故选A。
10.解析:大正方形的边长为10,小正方形的边长为2,故小正方形的对角线长为2√2.由勾股定理可得大正方形的对角线长为10√2,故大正方形内切圆的半径为5-√2,故其面积为(5-√2)^2π=23π-10√2.故选A。
4sinα-2cosα = 2(2sinα-cosα) = 2(2tanα-1)cosα/√(1+4tan^2α) 4(1-2sin^2α)/(5+3tanα) = 8/135cosα+3sinα = √34sin(α+0.424)sinαcosα = 22/37tanα=2.sinα=4/√20.cosα= -1/√20cos2α=5/13.cosα=±√5/13因为α是第三象限角,所以cosα=-√5/13.sinα=-2√5/131) 设X=2x+π/3,则X=2x+2πk/3.k∈Zy=sinX的单调递减区间为[2kπ+π/3.2kπ+5π/3]。
高一数学上册期末质量检测试卷带答案

高一数学上册期末质量检测试卷带答案一、选择题1.全集U =R,集合{|A x y ==,则UA( )A .[0,)+∞B .(,0)-∞C .(0,)+∞D .(,0]-∞2.已知函数()f x 的定义域为[]3,3-,则函数()1f x -的定义域为( )A .[]2,3-B .[]2,4-C .[]4,2-D .[]0,23.已知角α的终边过点()sin1,cos1P ,则α是第( )象限角. A .一 B .二 C .三 D .四 4.已知角α的终边经过点(3,4)P ,则5sin 10cos αα+的值为( )A .11B .10C .12D .135.已知函数()2ln f x x x=-,在下列区间中,包含()f x 零点的区间是( ) A .()0,1B .()1,2C .()2,eD .(),e +∞6.黄金分割比是指将整体一分为二,较大部分与整体得比值等于较小部分与较大部分得比值,该比值为0.618m =≈,这是公认的最能引起美感的比例.黄金分割比例得值还可以近似地表示为2sin18sin12cos12m+的 近似值等于( )A .12B .1C .2D 7.若()f x 为偶函数,且在区间(,0)-∞上单调递减,则满足1(31)2f x f ⎛⎫+< ⎪⎝⎭的实数x 的取值范围是( ) A .11,36--⎡⎫⎪⎢⎣⎭B .11,36--⎛⎫ ⎪⎝⎭C .11,26⎡⎫--⎪⎢⎣⎭D .11,26--⎛⎫ ⎪⎝⎭8.已知函数321,01,()4log ,1a ax x x x f x x x x x ⎧--<⎪=⎨⎪->⎩,对()()211212210,0x f x x f x x x x x -∀>>>-成立,则实数a 的取值范围为( )A .1,14⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎡⎫⎪⎢⎣⎭二、填空题9.下列函数中,既是偶函数又在区间()0,∞+单调递增的是( ) A .21y x =+B .1y x =-C .21y x =D .x t e -=10.下列命题不正确的有( ) A .函数tan y x =在定义域内单调递增 B .若a b >,则lg lg a b >成立C .命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”D .已知()f x 是定义在R 上的奇函数,当(),0x ∈-∞时,()221f x x x =-++,则[)0,x ∈+∞时,函数解析式为()221f x x x =-- 11.已知,,,a b c d R ∈,则下列结论正确的是( ) A .若,a b c d >>,则ac bd > B .若22ac bc >,则a b > C .若0a b >>,则()0a b c ->D .若,a b c d >>,则a d b c ->-12.对于函数()cos 6f x x πω⎛⎫=- ⎪⎝⎭(其中0>ω),下列结论正确的有A .若()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,则ω的取小值为2B .当12ω=时,()f x 的图象关于点4,03π⎛⎫⎪⎝⎭中心对称 C .当2ω=时,()f x 在区间0,2π⎛⎫⎪⎝⎭上为单调函数D .当1ω=时,()f x 的图象可由()sin g x x =的图象向左平移3π个单位长度得到 三、多选题13.已知集合{15}A x Nx =∈<<∣,则A 的非空真子集有________个. 14.关于x 的方程sin 30x x +-=的唯一解在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内,则k 的值为__________.15.已知定义在R 上的奇函数y =f (x ),当x >0时,()21x f x x =+-,则关于x 的不等式()22()f x f x -<的解集为___________.16.已知函数()(21)ln(1)f x x a x a =-+++的定义域为(1,)a --+∞, 若()f x ≥0恒成立,则a 的值是______.四、解答题17.已知全集为R ,集合6|03x A x x -⎧⎫=∈>⎨⎬+⎩⎭R ,{}2|2(10)50B x x a x a =∈-++≤R . (1)若B A ⊆R,求实数a 的取值范围;(2)从下面所给的三个条件中选择一个,说明它是B A ⊆R的什么条件(充分必要性).①[7,12)a ∈-;②(7,12]a ∈-;③(6,12]a ∈. 18.已知函数()sin 22f x x x =. (1)求()f x 的最小正周期; (2)将()y f x =图象向右平移π12个单位后得到函数()y g x =的图象,当[0,]x a ∈时,()g x 的最大值为2,求实数a 的取值范围. 19.已知函数22()log (1)log (1)f x x x =-++. (1)判断该函数的奇偶性,并说明理由;(2)判断并证明该函数的单调性,写出该函数在区间2⎫⎪⎢⎪⎣⎭上的值域. 20.某工厂生产某种产品,每日的成本C (单位:万元)与日产量x (单位:吨)满足函数关系式3C x =+,每日的销售额S (单位:万元)与日产量x 的函数关系式35,07819,7k x x S x x ⎧++<<⎪=-⎨⎪≥⎩.已知每日的利润L S C =-,且当2x =时,143L =.(1)求k 的值,并将该产品每日的利润L 万元表示为日产量x 吨的函数; (2)当日产量为多少吨时,每日的利润可以达到最大,并求出最大值. 21.对于集合{}12,,,n A θθθ=⋅⋅⋅和常数0θ,定义:()()()22210200cos cos cos n nθθθθθθμ-+-++-=为集合A 相对0θ的“余弦方差”.(1)若集合ππ,34A ⎧⎫=⎨⎬⎩⎭,00θ=,求集合A 相对0θ的“余弦方差”;(2)求证:集合π2π,,π33A ⎧⎫=⎨⎬⎩⎭相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,并求此定值;(3)若集合π,,4A αβ⎧⎫=⎨⎬⎩⎭,[)0,πα∈,[)π,2πβ∈,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值,求出α、β.22.已知函数()2xf x =,()()()g x f x f x =+.(1)解不等式:(2)(1)3f x f x -+>; (2)当1[1,]2x ∈-时,求函数()g x 的值域;(3)若1x ∀∈(0,+∞),2x ∃∈[﹣1,0],使得112(2)()2()0g x ag x g x ++>成立,求实数 a 的取值范围.【参考答案】一、选择题 1.B 【分析】解指数不等式,可化简集合A ,再根据补集的定义求解即可. 【详解】由310x -≥,得033x ≥,所以0x ≥,所以[0,)A =+∞,所以(,0)UA .故选:B 2.B 【分析】由题意可得313x -≤-≤,解此不等式可得出函数()1f x -的定义域. 【详解】由于函数()f x 的定义域为[]3,3-,对于函数()1f x -,有313x -≤-≤,解得24x -≤≤. 因此,函数()1f x -的定义域为[]2,4-. 故选:B. 3.A 【分析】分析()sin1,cos1P 横纵坐标的符号即可求解. 【详解】因为角α的终边过点()sin1,cos1P , 且sin10,cos10>>,所以α是第一象限角. 故选:A 4.B【分析】由角α的终边经过点(3,4)P ,根据三角函数定义,求出sin cos αα,,带入即可求解. 【详解】∵角α的终边经过点(3,4)P ,∴43sin cos 55||5,O y x r r r P αα===∴===,=, ∴435sin 10cos =510=1055αα++. 故选:B 【点睛】利用定义法求三角函数值要注意:(1) 三角函数值的大小与点P (x ,y )在终边上的位置无关,严格代入定义式子就可以求出对应三角函数值;(2) 当角的终边在直线上时,或终边上的点带参数必要时,要对参数进行讨论. 5.C 【分析】利用零点存在定理,分别计算判断()1,(2),()f f f e 的正负,即可判断零点所在区间. 【详解】 因为函数()2ln f x x x =-在()0,∞+上是减函数,且()21ln1201=-=>f ,()22ln 2n 21l 20=-=->f ,()2ln 0=-<f ee e ,所以()2()0⋅<f f e ,由零点存在定理可知,函数()f x 的零点所在区间为()2,e 故选:C 6.B 【分析】由题可得2sin18m =,利用()sin18sin 3012=-sin12cos121cos12cos12m +==.【详解】由题可得2sin18m =,∴()3sin122sin 30123sin123sin122sin18cos12cos12cos12m +-++==cos122cos30sin12cos121cos12cos12-===.故选:B. 7.D 【分析】偶函数有()|(|)f x f x =,把不等式化到区间(0,)+∞上用增函数去掉抽象符号,可化为含绝对值的一次不等式来解. 【详解】因为()f x 为偶函数,()()||f x x f ∴=, 则1(31)2f x f ⎛⎫+< ⎪⎝⎭可化为1(|31|)2f x f ⎛⎫+< ⎪⎝⎭,而偶函数()f x 在区间(,0)-∞上单调递减, 得()f x 在区间(0,)+∞上单调递增, 所以原不等式可化为1|31|2x +<, 所以113122x -<+<,解得1126x -<<-.故选:D. 【点睛】解抽象不等式,常用单调性去掉抽象符号化为简单不等式来解; 或者利用对称性和单调性画草图,由图找出解集. 8.B 【分析】 根据题意可得()()1212f x f x x x <,构造函数()()f xg x x=,使函数()g x 在()0,∞+上单调递减,根据分段函数的单调性可得011121114a a a ⎧⎪<<⎪⎪≥⎨⎪⎪--≥-⎪⎩,解不等式即可求解.【详解】 对()()211212210,0x f x x f x x x x x -∀>>>-成立,即()()21120x f x x f x -<成立,即()()1212f x f x x x <,()()f xg x x∴=在()0,∞+上单调递减, 由()21,01,()4log 1,1a ax x x f x g x x x x ⎧--<≤⎪==⎨⎪->⎩, 可得011121114a aa ⎧⎪<<⎪⎪≥⎨⎪⎪--≥-⎪⎩,解得1142a ≤≤. 故选:B二、填空题9.AB 【分析】利用定义法逐一判断奇偶性,并结合常见函数性质判断单调性,即得结果. 【详解】选项A 中,()211y f x x ==+,定义域为R ,满足()()()221111f x x x f x -=-+=+=,故()1f x 是偶函数,又由二次函数性质知()211y f x x ==+区间()0,∞+单调递增,故符合题意;选项B 中,2()1y f x x ==-,定义域为R ,满足22()11()f x x x f x -=--=-=,故2()f x 是偶函数,在区间()0,∞+上,2()1y f x x ==-是递增函数,故符合题意; 选项C 中,321()y f x x==,定义域为()(),00,-∞⋃+∞,满足()332211()()f x f x x x -===-,故3()f x 是偶函数,但由幂函数性质知2321()y f x x x-===在区间()0,∞+单调递减,故不符合题意;选项D 中,()x t t x e -==,定义域为R ,()x x t x e e --=≠恒成立,故()x t t x e -==不是偶函数,故不符合题意. 故选:AB. 10.ABD 【分析】由正切函数的性质判断A ;由对数函数的性质判断B ;由特称命题的否定判断C ;由函数的奇偶性判断D.【详解】对于选项A :因为tan y x =在其定义域内不具有单调性,故A 不正确; 对于选项B :若0a b >>,则lg lg a b >,故B 不正确;对于选项C :命题“0x ∃>,230ax ax +-≥”的否定是“0x ∀>,230ax ax +-<”,故C 正确;对于选项D :当0x >时,()()()222121f x f x x x x x =--=---+=+-,又()00f =,所以当[)0,x ∈+∞时,()20,021,0x f x x x x =⎧=⎨+->⎩. 故D 不正确. 故选:ABD. 11.BD 【分析】举反例可判断选项A 、C 不正确,由不等式的性质可判断选项B 、D 正确,即可得正确选项. 【详解】对于选项A :举反例:3a =-,4b =-,0c ,2d =-满足,a b c d >>,但ac bd <, 故选项A 不正确;对于选项B :因为22ac bc >,则20c >,所以 a b >,故选项B 正确;对于选项C :因为2a =,1b =,1c =-,满足0a b >>,但()0a b c -<,故选项C 不正确;对于选项D :因为c d >,所以d c ->-,因为a b >,所以a d b c ->-,故选项D 正确, 故选:BD. 12.ABD 【分析】对于A. 若()12f x f π⎛⎫≤ ⎪⎝⎭恒成立, 242()k k Z ω=+∈,结合条件0>ω判定;对于B. 当12ω=时,()1cos 26f x x π⎛⎫=- ⎪⎝⎭,验证403f π⎛⎫= ⎪⎝⎭是否成立; 对于C. 当2ω=时,()cos 26f x x π⎛⎫=- ⎪⎝⎭,验证函数cos y t =在5,66ππ⎛⎫- ⎪⎝⎭是否单调; 对于D. 当1ω=时,()cos 6f x x π⎛⎫=- ⎪⎝⎭,而cos 36g x x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭符合题意.【详解】解:对于A. 若()12f x f π⎛⎫≤ ⎪⎝⎭恒成立,则cos 1,61212f ωπππ⎛⎫-= ⎪⎝⎭⎛⎫= ⎪⎝⎭2()122426k k Z k ωππωπ∴-=∈⇒=+()k ∈Z ,又0>ω,所以ω的取小值为2,故正确; 对于B. 当12ω=时,()1cos 26f x x π⎛⎫=- ⎪⎝⎭,所以1cos cos 04432326f ππππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭, 所以()f x 的图象关于点4,03π⎛⎫⎪⎝⎭中心对称,故正确﹔ 对于C. 当2ω=时,()cos 26f x x π⎛⎫=- ⎪⎝⎭,当0,2x π⎛⎫∈ ⎪⎝⎭时,52,666x πππ⎛⎫-∈- ⎪⎝⎭, 此时函数cos y t =在5,66ππ⎛⎫- ⎪⎝⎭上先递增再递减,故不正确;对于D. 当1ω=时,()cos 6f x x π⎛⎫=- ⎪⎝⎭,因为()sin g x x =的图象向左平移3π个单位长度得到,所以sin sin 336cos 26g x x x x πππππ⎛⎫⎛⎫⎛⎫⎛⎫+=+=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭+,故正确.故选:ABD. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.三、多选题13.6 【分析】由题意可得集合{}234A =,,,结合求子集个数的计算公式即可. 【详解】 由题意知,{}15A x N x =∈<<,所以{}234A =,,, 所以集合A 的非空真子集的个数为:3226-=. 故答案为:6 14.2 【分析】由题意转化为函数()sin 3f x x x =+-在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内有唯一零点,求导得()'cos 10f x x =+≥,从而()f x 在R 上递增,且()20f <,502f ⎛⎫> ⎪⎝⎭,由函数的零点存在定理可得结果. 【详解】由题意得,关于x 的方程sin 30x x +-=的唯一解转化为函数()sin 3f x x x =+-在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内有唯一零点, ()'cos 10f x x =+≥,()f x ∴在R 上递增,由()2sin 223sin 210f =+-=-<,且5555511sin 3sin302226222f π⎛⎫=+->+-=-= ⎪⎝⎭, 由函数的零点存在定理可得()f x 在52,2⎛⎫⎪⎝⎭上有唯一的零点,又因为方程sin 30x x +-=的唯一解在区间()11,22k k k Z ⎛⎫-+∈ ⎪⎝⎭内,所以2k =.故答案为:2 【点睛】关键点点睛:方程sin 30x x +-=的解转化为函数()sin 3f x x x =+-的零点问题,求导得()f x 的单调性,再结合函数的零点存在定理.15.(,2)(1,)-∞-+∞【分析】确定函数的单调性,然后解不等式. 【详解】2x y =和y x =都是增函数,所以()21x f x x =+-在(0,)+∞上增函数,而02010-+=,即()f x 在[0,)+∞上是增函数,又()f x 是奇函数,所以()f x 在(,0]-∞是递增,也即在(,)-∞+∞上是增函数,因此由()22()f x f x -<得22x x -<,解得2x <-或1x >. 故答案为:(,2)(1,)-∞-+∞. 【点睛】关键点点睛:本题考查函数的奇偶性与单调性,由单调性解函数不等式.解题关键是确定单调性.解题时要注意由奇函数()f x 在(0,)+∞上递增,得()f x 在(,0)-∞上递增,并不能得出()f x 在R 或在(,0)(0,)-∞+∞上递增,但由奇函数()f x 在[0,)+∞上递增,可得其在R 上是增函数.16.13a = 【详解】 试题分析:当011x a <++≤ 时,1a x a --<≤- 时,有()ln 10x a ++≤,∵()0f x ≥,∴12102a x a x --+≤≤,,欲使()0x f x ∀≥,恒成立,则12a a -≥-,∴13a ≥;当11x a ++> 时,x a >- 时,有()ln 10x a ++>,∵()0f x ≥ ,∴12102a x a x --+>>,欲使()0x f x ∀≥, 恒成立,则12a a -≤-,∴13a ≤;故13a =. 考点:1.恒成立问题;2.转化思想.【思路点睛】对对数函数分类讨论:当011x a <++≤时,有()ln 10x a ++≤,欲使()0x f x ∀≥,恒成立,则12a a -≥-;当时,x a >- 时,欲使()0x f x ∀≥, 恒成立,则12a a -≤-,得出答案. 四、解答题17.(1)612a -≤≤(2)选择①,则结论是不充分不必要条件;选择②,则结论是必要不充分条件;选择③,则结论是是充分不必要条件.【分析】(1)解出集合A ,根据补集的定义求出A R ,由B A ⊆R ,得到关于a 的不等式,解得; (2)由(1)知B A ⊆R 的充要条件为[6,12]a ∈-,再根据集合的包含关系判断即可.【详解】解:(1)集合6|0(3)(6,)3x A x x -⎧⎫=∈>=-∞-⋃+∞⎨⎬+⎩⎭R , 所以[3,6]A =-R ,集合{}2|2(10)50{|(2)(5)0}B x x a x a x x a x =∈-++≤=∈--≤R R , 若B A ⊆R ,且5[3,6]A ∈=-R ,只需362a -≤≤, 所以612a -≤≤. (2)由(1)可知B A ⊆R 的充要条件是[6,12]a ∈-, 选择①,[7,12)[6,12]-⊄-且[6,12][7,12)-⊄-,则结论是不充分不必要条件; 选择②,[6,12]-(7,12]-,则结论是必要不充分条件; 选择③,(6,12][6,12]-,则结论是充分不必要条件.【点睛】本题考查根据集合的包含关系求参数的取值范围,以及充分条件必要条件的判断,属于基础题.18.(1)π;(2)π,6⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)依题意得2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭,进而可得周期; (2)求得()2sin 26g x x π⎛⎫=+ ⎪⎝⎭,由262x ππ+=得6x π=,进而可得a 的取值范围. 【详解】(1)()sin 222sin 23f x x x x π⎛⎫==+ ⎪⎝⎭,所以()f x 的最小正周期22T ππ==; (2)由已知得()2sin 22sin 21236g x x x πππ⎡⎤⎛⎫⎛⎫=-+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 令262x ππ+=,解得6x π=,所以实数a 的取值范围是,6π⎡⎫+∞⎪⎢⎣⎭. 19.(1)偶函数,理由见解析(2)函数在(1,0)-上为增函数,在[0,1)上为减函数,证明见解析,值域为(,1]-∞-.【分析】(1)令1010x x +>⎧⎨->⎩求得函数的定义域关于原点对称,再根据()()f x f x -=,可得函数()f x 为偶函数;(2)利用函数单调性的定义证明,根据单调性求值域即可.【详解】(1)由1010x x +>⎧⎨->⎩解得11x -<<, 所以函数定义域为()1,1-,关于原点对称,又22()log (1)log (1)()f x x x f x -=++-=,所以函数()f x 为偶函数.(2)函数在(1,0)-上为增函数,在[0,1)上为减函数.设12,[0,1)x x ∀∈且12x x <,则210x x x ∆=->,2222()log (1)log (1)log (1)f x x x x =-++=-,22212211()()()log 1()x f x f x x -∴-=-,而222112121()[1()]()()0x x x x x x ---=-+<, 所以22211()011()x x -<<-, 故22212211()()()log 01()x f x f x x --=<-, 所以函数在[0,1)上为减函数,因为函数为偶函数,所以函数在(1,0)-上为增函数,当x ⎫∈⎪⎪⎣⎭时,()f x 为减函数,所以21()log 12f x f ≤==-, 即函数值域为(,1]-∞-【点睛】关键点点睛:根据奇偶函数的定义判断函数奇偶性注意分析函数定义域;利用函数单调性的定义证明,要注意做差后变形求证,属于中档题.20.(1)8k ,822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩(2)当日产量为6吨时,日利润达到最大10万元.【分析】(1)利用每日的利润L S C =-,且当2x =时,3L =,可求k 的值;(2)利用分段函数,分别求出相应的最值,即可得出函数的最大值.【详解】解:由题意,每日利润L 与日产量x 的函数关系式为22(07)816(7)k x x L x xx ⎧++<<⎪=-⎨⎪-⎩ (1)当2x =时,143L =,即:14222283k ⨯++=- 8k ∴= 所以822(07)816(7)x x L x xx ⎧++<<⎪=-⎨⎪-⎩ (2)当7x 时,16L x =-为单调递减函数,故当7x =时,9max L =当07x <<时,888222(8)182(8)18888L x x x x x x ⎡⎤=++=-++=--+-⎣-+⎢⎥-⎦1810≤-= 当且仅当82(8)(07)8x x x -=<<-, 即6x =时,10max L =综合上述情况,当日产量为6吨时,日利润达到最大10万元.【点睛】本题考查函数解析式的确定,考查函数的最值,确定函数的解析式是关键,属于中档题. 21.(1)38;(2)证明见解析,定值12;(3)7π12α=,23π12β=或11π12α=,19π12β= 【分析】由“余弦方差”的定义,对(1)(2)(3)逐个求解或证明即可.【详解】(1)依题意:22ππ11cos 0cos 033442228μ⎛⎫⎛⎫-+-+ ⎪ ⎪⎝⎭⎝⎭===; (2)由“余弦方差”定义得:()222000π2πcos cos cos π333θθθμ⎛⎫⎛⎫-+-+- ⎪ ⎪⎝⎭⎝⎭=, 则分子()222000000ππ2π2πcos cos sin sin cos cos sin sin cos πcos sin πsin 3333θθθθθθ⎛⎫⎛⎫=+++++ ⎪ ⎪⎝⎭⎝⎭2220000011cos cos cos 22θθθθθ⎛⎫⎛⎫=+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ 22200013cos sin cos 22θθθ=++ 32= 31232μ∴==为定值,与0θ的取值无关. (3)()()222000πcos cos cos 43θαθβθμ⎛⎫-+-+- ⎪⎝⎭=, 分子=()()222000000ππcos cos sin sin cos cos sin sin cos cos sin sin 44θθαθαθβθβθ⎛⎫+++++ ⎪⎝⎭22000011cos +sin sin cos 22θθθθ⎛⎫=+ ⎪⎝⎭()22220000cos cos sin sin 2sin cos sin cos αθαθθθαα+++()22220000cos cos sin sin 2sin cos sin cos βθβθθθββ+++()222222000011cos cos cos sin sin sin 1sin 2sin 2sin cos 22αβθαβθαβθθ⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭ ()22220001cos 21cos 2111cos cos sin sin 1sin 2sin 2sin 222222θθαβαβαβθ+-⎛⎫⎛⎫=++++++++ ⎪ ⎪⎝⎭⎝⎭()()222200cos 2sin 2cos cos sin sin 1sin 2sin 222θθαβαβαβ=+--+++22221111cos cos sin sin 2222αβαβ⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ ()()00cos 2sin 2cos 2cos 21sin 2sin 222θθαβαβ=++++22221111cos cos sin sin 2222αβαβ⎛⎫⎛⎫++++++ ⎪ ⎪⎝⎭⎝⎭ ()()00311sin 21sin 2sin 2cos 2cos 2cos 2222θαβθαβ=+⋅+++⋅+. 要使μ是一个与0θ无关的定值,则cos 2cos 201sin 2sin 20αβαβ+=⎧⎨++=⎩, cos 2cos 2αβ=-,2α∴与2β终边关于y 轴对称或关于原点对称,又sin 2sin 21αβ+=-,得2α与2β终边只能关于y 轴对称,1sin 2sin 22cos 2cos 2αβαβ⎧==-⎪∴⎨⎪=-⎩, 又[)0,πα∈,[)π,2πβ∈, 则当72π6α=时,232π6β=; 当112π6α=时,192π6β=. 7π12α∴=,23π12β=或11π12α=,19π12β=. 故7π12α=,23π12β=或11π12α=,19π12β=时,相对任何常数0θ的“余弦方差”是一个与0θ无关的定值.【点睛】本题考查了新定义,考查了三角函数的恒等变换,考查了学生的逻辑推理能力与计算求解能力,属于难题.22.(1){}2|log 3>x x ;(2);(3)()+∞.【分析】(1)由(2)(1)3f x f x -+>,化简得(23)(21)0-+>x x ,结合对数的运算性质,即可求解;(2)由()()()22=+=+xx g x f x f x ,分类讨论,结合指数的单调性,即可求解. (3)根据题意,转化为[]1112min (0,),(2)()2()x ∈+∞+∀>-g x ag x g x ,由(2)求得2max 5(())2=g x ,分离参数,得到115(2)22>-+⋅x x a 恒成立, 结合基本不等式,即可求解. 【详解】(1)由题意,函数()2x f x =,又由不等式(2)(1)3f x f x -+>,可得212230+-->x x ,即(23)(21)0-+>x x ,解得23x >,可得2log 3x >,所以不等式的解集为{}2|log 3>x x ;(2)由()()()22=+=+xx g x f x f x ,①当10,2x ⎡⎤∈⎢⎥⎣⎦时,1()2+⎡=∈⎣x g x ; ②当[1,0)x ∈-时,1()22x xg x =+, 令2x t =,则2111,,1,102'⎡⎤=+∈=-<⎢⎥⎣⎦y t t y t t , 即1y t t =+在1,12⎡⎤⎢⎥⎣⎦上为减函数,故5()2,2⎡⎤∈⎢⎥⎣⎦g x ;综上得:当11,2x ⎡⎤∈-⎢⎥⎣⎦时,函数()g x 的值域为. (3)由题意得,[]1112min (0,),(2)()2()x ∈+∞+∀>-g x ag x g x ,当[]21,0x ∈-,由(2)得2max 5(())2=g x ,所以[]2min 2()5-=-g x , 所以1122(2)225⋅+⋅>-x x a 恒成立,即115(2)22>-+⋅x x a 恒成立,又115222+≥⋅x x 12log =x所以实数a 的取值范围为()+∞.【点睛】有关任意性和存在性问题的求解:此类逻辑推理的关键要素是:逻辑的起点、推理的形式、结论的表达,解决此类问题是对“任意性或存在性”问题进行“等价转化”为两个函数的最值或值域之间的关系,结合基本不等式或不等式的解法等进行求解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
需 2 a f (0) a2 ,即 a2 a 2 0 ,解得 1 a 2, 所以 a 的取值范围是 0 a 2 ,
故选 D. 【点睛】
该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性 质,建立不等关系,求出参数的取值范围,属于简单题目.
数,即有 a 0 ,当 x 0 时, f (x) x 1 a 在 x 1 时取得最小值 2 a ,则有 x
a2 a 2 ,解不等式可得 a 的取值范围.
【详解】
因为当 x≤0 时,f(x)= x a 2 ,f(0)是 f(x)的最小值,
所以 a≥0.当 x>0 时, f (x) x 1 a 2 a ,当且仅当 x=1 时取“=”. x
1 x
1 求函数 f x 在 R 上的解析式;
2 判断函数 f x 在 0, 上的单调性,并用单调性的定义证明你的结论.
23.已知函数
f
x
log2
m x 1
1
,其中
m
为实数.
(1)若 m 1,求证:函数 f x 在 1, 上为减函数;
(2)若 f x 为奇函数,求实数 m 的值.
24.王久良导演的纪录片《垃圾围城》真实地反映了城市垃圾污染问题,目前中国 668 个
即 f ( f (1)) 1 ,故选 A. 2e
【点睛】
该题考查的是有关利用分段函数解析式求函数值的问题,在解题的过程中,注意自变量的
取值范围,选择合适的式子,求解即可,注意内层函数的函数值充当外层函数的自变量.
3.D
解析:D
【解析】
【分析】
由分段函数可得当 x 0 时, f (0) a2 ,由于 f (0) 是 f (x) 的最小值,则 (, 0] 为减函
4.C
解析:C 【解析】 分析:由题意分别确定函数 f(x)的图象性质和函数 h(x)图象的性质,然后数形结合得到关于 k 的不等式组,求解不等式组即可求得最终结果.
详解:曲线 f x log2 x 1 右移一个单位,得 y f x 1 log2 x ,
所以 g(x)=2x,h(x-1)=h(-x-1)=h(x+1),则函数 h(x)的周期为 2.
城市中有超过 2 的城市处于垃圾的包围之中,且城市垃圾中的快递行业产生的包装垃圾正 3
在逐年攀升,有关数据显示,某城市从 2016 年到 2019 年产生的包装垃圾量如下表:
年份 x 包装垃圾 y(万吨)
2016 4
2017 6
2018 9
2019 13.5
(1)有下列函数模型:① y a bx2016 ;② y a sin x b ; 2016
题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不
等式的解集.
7.B
解析:B
【解析】
【分析】
【详解】
因为
y
f
x
是以
为周期,所以当
x
5 2
, 3
时,
f
x
f
x
3π
,
此时
x
3
1 2
, 0
,又因为偶函数,所以有
f
x 3π
f
3π x ,
3π
x
0,
2
,所以
f
3π
x
1sin3π
16.设定义在2,2 上的偶函数 f x 在区间0, 2 上单调递减,若 f 1 m f m ,
则实数 m 的取值范围是________.
17.若函数 f (x)
x
为奇函数,则 f (1) ___________.
(2x 1)(x a)
18.已知函数 y x2 2x 2 , x 1, m .若该函数的值域为1,10,则 m ________.
CRB 的子集可得结果.
【详解】
由 y ln6 xx 2 可知,
6 x x 2 0 2 x 6 ,所以 A x | 2 x 6 ,
CRB x a 4或x a 4 ,
因为 A CRB ,所以 6 a 4或2 a 4 ,即 a 10或a 2 ,故选 C.
40 万吨?(参考数据: lg 2 0.3010, lg 3 0.4771 )
25.义域为 R 的函数 f x 满足:对任意实数 x,y 均有 f x y f x f y 2,且 f 2 2 ,又当 x 1时, f x 0 . (1)求 f 0. f 1 的值,并证明:当 x 1时, f x 0 ;
y aent ,假设过 5min 后甲桶和乙桶的水量相等,若再过 mmin 甲桶中的水只有 a 升, 4
则 m 的值为( )
A.10
B.9
C.8
D.5
10.函数 f x 1 x2 2 ln x 1 的图象大致是( )
2
A.
B.
C.
D.
11.已知全集 U={1,2,3,4,5,6},集合 P={1,3,5},Q={1,2,4},则 ( U P) Q =
R
上单调递增,从而得到
sinθ>m﹣1,也就是对任意的
0,
2
都
有 sinθ>m﹣1 成立,根据 0<sinθ≤1,即可得出 m 的取值范围.
详解:
f(x)的定义域为 R,f(﹣x)=﹣f(x);
f′(x)=ex+e﹣x>0;
∴f(x)在 R 上单调递增;
由 f(sinθ)+f(1﹣m)>0 得,f(sinθ)>f(m﹣1);
的取值范围是
log6
2,
1 2
.
本题选择 C 选项.
点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题 等知识,意在考查学生的转化能力和计算求解能力.
5.C
解析:C 【解析】 【分析】
由 6 x x 2 0可得 A x | 2 x 6 , CRB x a 4或x a 4 ,再通过 A 为
e
C.
1 e2
D. e2
3.设
f(x)=
x a2 , x 0
x
1 x
a,
x
0
若
f(0)是
f(x)的最小值,则
a
的取值范围为(
)
A.[-1,2]
B.[-1,0]
C.[1,2]
D.[0,2]
4.把函数 f x log2 x 1 的图象向右平移一个单位,所得图象与函数 g x 的图象关
于直线 y x 对称;已知偶函数 h x 满足 hx 1 hx 1 ,当 x0,1 时,
(2)若不等式 f a2 a 2 x2 2a 12 x 2 4 0 对任意 x1,3恒成立,求实
数 a 的取值范围. 26.已知函数 f (x) x2 mx 1.
(1)若 f x 在 x 轴正半轴上有两个不同的零点,求实数 m 的取值范围;
(2)当 x [1,2] 时, f x 1 恒成立,求实数 m 的取值范围.
h x g x 1;若函数 y k f x hx 有五个零点,则正数 k 的取值范围是
()
A. log3 2,1
B.log3 2,1
C.
log
6
2,
1 2
5.已知全集为 R ,函数 y ln 6 x x 2 的定义域为集合
D.
log
6
2,
1 2
A, B x | a 4 x a 4,且 A R B ,则 a 的取值范围是( )
x
1sinx ,
故 f x 1 sinx ,故选 B.
8.C
解析:C 【解析】 【分析】 【详解】
因为函数 f x ln x , g x x2 3 ,可得 f x • g x 是偶函数,图象关于 y 轴对
称,排除 A, D ;又 x 0,1时, f x 0, g x 0 ,所以 f x • g x 0,排除 B ,
2.A
解析:A 【解析】 【分析】 直接利用分段函数解析式,认清自变量的范围,多重函数值的意义,从内往外求,根据自 变量的范围,选择合适的式子求解即可. 【详解】
因为函数
f
(x)
leoxg, x2
x, x 0
0
,
因为
1 2
0 ,所以
f
(1) 2
log2
1 2
1,
又因为 1 0 ,
所以 f (1) e1 1 , e
A.{1}
B.{3,5}
C.{1,2,4,6}
D.{1,2,3,4,5}
12.对数函数
且
与二次函数
在同一坐标系内的图象
可能是( )
A.
B.
C.
D.
二、填空题
13.已知
f
(x)
1, x 1,
0 x
0
,则不等式
x
(x
2)
f
(x
2)
5
的解集为______.
14.已知函数
f
x2 ax, x 1,
(x) { ax 1,
【典型题】高一数学上期末试卷(及答案)
一、选择题
1.设集合 A x | 2x1 1 , B y | y log3 x, x A ,则 B A ( )
A. 0,1
B. 0,1
C. 0,1
D.0,1
2.若函数
f
x
leoxg, ?2
x, ?
x x
0 0
,则
f
f
1 2
(
)
A. 1
B.e
当 x∈[0,1]时, h x 2x 1,
y=kf(x)-h(x)有五个零点,等价于函数 y=kf(x)与函数 y=h(x)的图象有五个公共点. 绘制函数图像如图所示,由图像知 kf(3)<1 且 kf(5)>1,即: