苏教版七年级上册数学 期末试卷易错题(Word版 含答案)

合集下载

苏教版七年级数学上册 期末试卷(Word版 含解析)

苏教版七年级数学上册 期末试卷(Word版 含解析)
点.
(1)若 BD 5 , BC 4 ,求线段 EC 、 AC 的长; (2)试说明: AC 2DE . 28.在一条直路上的 A 、 B 、 C 、 D 四个车站的位置如图所示(单位千米),如果小明 家在 A 站旁,他的同学小亮家在 B 站旁,新华书店在 D 站旁,一天小明乘车从 A 站出发 到 D 站下车去新华书店购买一些课外阅读书籍,途径 B 、 C 两站,当小明到达 C 站时发
20.数轴上有 A、B、C 三点,A、B 两点所表示的数如图所示,若 BC=3,则 AC 的中点所表 示的数是_______.
21.已知关于 x 的一元一次方程 2020x 3a 4x 2019 的解为 x 4 ,那么关于 y 的一 元一次方程 2020( y 1) 3a 4( y 1) 2019 的解为 y ___________.
苏教版七年级数学上册 期末试卷(Word 版 含解析)
一、选择题
1.按图中程序计算,若输出的值为 9,则输入的数是( )
A.289
B.2
2.下面计算正确的是(

C. 1
D.2 或 1
A. 3x2 x2 3
B. 3a2 2a3 5a5
C. 0.25ab 1 ab 0 4
3.下列比较大小正确的是( )
D. 0.7x 1 20%400
11.下列计算结果正确的是( )
A. 3x2 2x2 1 B. 3x2 2x2 5x4 C. 3x2 y 3yx2 0 D. 4x y 4xy
12.下列语句错误的是( )
A.两点确定一条直线
B.同角的余角相等
C.两点之间线段最短
D.两点之间的距离是指连接这两点的线段
D. 43%x 1 7 2
10.某网店销售一件商品,已知这件商品的进价为每件 400 元,按标价的 7 折销售,仍可

苏教版数学七年级上册 期末试卷易错题(Word版 含答案)

苏教版数学七年级上册 期末试卷易错题(Word版 含答案)

苏教版数学七年级上册 期末试卷易错题(Word 版 含答案)一、选择题1.下列各组单项式中,是同类项的一组是( )A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.下列图形中,线段PQ 的长度表示点P 到直线L 的距离的是( )A .B .C .D .3.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++B .12(10)1360x x +=+C .60101312x x +-= D .60101213x x +-= 4.用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A .22(a b)- B .22a b -C .2(2a b)-D .2(a 2b)- 5.无论x 取什么值,代数式的值一定是正数的是( )A .(x +2)2B .|x +2|C .x 2+2D .x 2-2 6.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°7.如图由5个小正方形组成,只要再添加1个小正方形,拼接后就能使得整个图形能折叠成正方体纸盒,这种拼接的方式有( )A .2种B .3种C .4种D .5种8.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是( )A.两点之间,线段最短B.经过一点,有无数条直线C.垂线段最短D.经过两点,有且只有一条直线9.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为()元.A.100 B.140 C.90 D.12010.将7760000用科学记数法表示为()A.57.7610⨯B.67.7610⨯C.677.610⨯D.77.7610⨯11.下列图形中,能够折叠成一个正方体的是()A.B.C.D.12.如图正方体纸盒,展开后可以得到()A.B.C.D.13.将方程21101136x x++-=去分母,得()A.2(2x+1)﹣10x+1=6 B.2(2x+1)﹣10x﹣1=1 C.2(2x+1)﹣(10x+1)=6 D.2(2x+1)﹣10x+1=1 14.下列计算正确的是( )A.2334a a a+=B.﹣2(a﹣b)=﹣2a+b C.5a﹣4a=1 D.2222a b a b a b-=-15.下列单项式中,与2a b 是同类项的是( )A .22a bB .22a bC .2abD .3ab二、填空题16.如图,若输入的x 的值为正整数,输出的结果为119,则满足条件的所有x 的值为_____.17.一个角的的余角为30°15′,则这个角的补角的度数为________.18.有一数值转换器,其转换原理如图所示,若开始输入x 的值是9,可发现第1次输出的结果是14,第2次输出的结果是7,第3次输出的结果是12,…,依次继续下去,第2020次输出的结果是______.19.若232a b -=,则2622020b a -+=_______.20.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.21.请写出一个系数是-2,次数是3的单项式:________________.22.实数a ,b ,c 在数轴上的对应点的位置如图所示,化简b c c a b -+--的结果是________.23.如图所示的运算程序中,若开始输入的x 值为48,我们发现第一次输出的结果为24,第二次输出的结果为12,…,则第2020次输出的结果为___________.24.正方体切去一块,可得到如图几何体,这个几何体有______条棱.25.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.三、解答题26.已知,22321A x xy x =+--,2+1B x xy =-+,且36A B +的值与x 的取值无关,求y 的值.27.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.28.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元?29.计算:(1)1+(―2)+|-3|;(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭.30.先化简,再求值:()()2222233a b ab ab a b ---+,其中1a =-,13b =. 31.如图,点O 是直线AB 上一点, OC ⊥OE ,OF 平分∠AOE ,∠COF =25°,求∠BOE 的度数.32.线段AB=20cm ,M 是线段AB 的中点,C 是线段AB 的延长线上的点,AC=3BC ,D 是线段BA 的延长线上的点,且DB=AC .(1)求线段BC ,DC 的长;(2)试说明M 是线段DC 的中点.33.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个…[ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

七年级数学上册期末试卷易错题(Word版 含答案)

七年级数学上册期末试卷易错题(Word版 含答案)

七年级数学上册期末试卷易错题(Word 版 含答案)一、选择题1.如图,正方形硬纸片ABCD 的边长是8,点E 、F 分别是AB 、BC 的中点,若沿图中的虚线剪开,拼成如图的一座“小房子”,则图中阴影部分的面积是( )A .4B .8C .16D .322.据江苏省统计局统计:2018年三季度南通市GDP 总量为6172.89亿元,位于江苏省第4名,将这个数据用科学记数法表示为( ) A .36.1728910⨯亿元 B .261.728910⨯亿元 C .56.1728910⨯亿元D .46.1728910⨯亿元3.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( ) A .-3B .3C .13D .164.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61° 5.若a >b ,则下列不等式中成立的是( )A .a +2<b +2B .a ﹣2<b ﹣2C .2a <2bD .﹣2a <﹣2b6.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣17.某数x 的43%比它的一半还少7,则列出的方程是( ) A .143%72x ⎛⎫-= ⎪⎝⎭B .1743%2x x -= C .143%72x x -= D .143%72x -= 8.每瓶A 种饮料比每瓶B 种饮料少1元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( ) A .()21313x x -+= B .()21313x x ++= C .()23113x x ++=D .()23113x x +-=9.下面四个图形中,∠1=∠2一定成立的是( ) A .B .C .D .10.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上11.画如图所示物体的主视图,正确的是( )A .B .C .D .12.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m 13.下列合并同类项正确的是( ) A .2x +3x =5x 2 B .3a +2b =6abC .5ac ﹣2ac =3D .x 2y ﹣yx 2=0 14.下列各题中,运算结果正确的是( )A .325a b ab +=B .22422x y xy xy -=C .222532y y y -=D .277a a a +=15.下列各图中,是四棱柱的侧面展开图的是( )A .B .C .D .二、填空题16.用边长为10 cm 的正方形,做了一套七巧板.拼成如图所示的一座“桥”,则“桥”中涂色部分的面积为______cm.17.若221x x -++= 4,则2247x x -+的值是________.18.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.19.太阳与地球的平均距离大约是150 000 000千米,数据150 000 000用科学记数法表示为 _______.20.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.21.若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是______.22.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .23.若代数式m 42a b 与2n 15a b +-是同类项,则n m =______.24.已知长方形周长为12,长为x ,则宽用含x 的代数式表示为______;25.如图为正方体的一种平面展开图,各面都标有数字,则数字为1的面所对的面上的数字是__________.三、解答题26.已知,22321A x xy x =+--,2+1B x xy =-+,且36A B +的值与x 的取值无关,求y 的值. 27.解方程(1)610129x x -=+;(2)21232x x x +--=-. 28.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭29.计算: (1) 12(8)(7)15--+--;(2) ()241123522-+⨯--÷⨯30.如图,直线AB 与CD 相交于点O ,OE 是COB ∠的平分线,OE OF ⊥,. (1)图中∠BOE 的补角是(2)若∠COF =2∠COE ,求∠BOE 的度数;(3) 试判断OF 是否平分∠AOC ,并说明理由;请说明理由.31.计算:(1)()360.655---+-+ (2)()()202031113122⎛⎫---÷⨯-- ⎪⎝⎭32.先化简,再求值:()()22225343a b ababa b ---+,其中a=-2,b=12;33.小明同学在查阅大数学家高斯的资料时,知道了高斯如何求1+2+3+…+100.小明于是对从1开始连续奇数的和进行了研究,发现如下式子:第1个等式: 211=;第2个等式: 2132+=;第3个等式: 21353++= 探索以上等式的规律,解决下列问题: (1) 13549++++=…( 2); (2)完成第n 个等式的填空: 2135()n ++++=…;(3)利用上述结论,计算51+53+55+…+109 .四、压轴题34.阅读下列材料:根据绝对值的定义,|x| 表示数轴上表示数x的点与原点的距离,那么,如果数轴上两点P、Q表示的数为x1,x2时,点P与点Q之间的距离为PQ=|x1-x2|.根据上述材料,解决下列问题:如图,在数轴上,点A、B表示的数分别是-4, 8(A、B两点的距离用AB表示),点M、N是数轴上两个动点,分别表示数m、n.(1)AB=_____个单位长度;若点M在A、B之间,则|m+4|+|m-8|=______;(2)若|m+4|+|m-8|=20,求m的值;(3)若点M、点N既满足|m+4|+n=6,也满足|n-8|+m=28,则m= ____ ;n=______.35.如图一,点C在线段AB上,图中有三条线段AB、AC和BC,若其中一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)填空:线段的中点这条线段的巧点(填“是”或“不是”或“不确定是”)(问题解决)和40,点C是线段AB的巧点,求(2)如图二,点A和B在数轴上表示的数分别是20点C在数轴上表示的数。

苏教版七年级上册数学 期末试卷易错题(Word版 含答案)

苏教版七年级上册数学 期末试卷易错题(Word版 含答案)

苏教版七年级上册数学 期末试卷易错题(Word 版 含答案)一、选择题1.下列图形中1∠和2∠互为余角的是( ) A .B .C .D .2.有一列数121000,,,a a a ,其中任意三个相邻数的和是4,其中21009004,1,2a a x a x =-=-=,可得 x 的值为( )A .0B .1C .2D .33.如图,若将三个含45°的直角三角板的直角顶点重合放置,则∠1的度数为( )A .15°B .20°C .25°D .30°4.下列图形经过折叠不能围成棱柱的是( ).A .B .C .D .5.如图,数轴的单位长度为1,如果点A 表示的数为-2,那么点B 表示的数是( )A .3B .2C .0D .-1 6.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( )A .+B .-C .×D .÷7.方程1502x --=的解为( ) A .4-B .6-C .8-D .10-8.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为 ( )元. A .100B .140C .90D .1209.已知一个多项式与3x 2+9x 的和等于3x 2+4x ﹣1,则这个多项式是( ) A .﹣5x ﹣1 B .5x+1C .13x ﹣1D .6x 2+13x ﹣110.某网店销售一件商品,已知这件商品的进价为每件400元,按标价的7折销售,仍可获利20%,设这件商品的标价为x 元,根据题意可列出方程( ) A .0.740020%400x -=⨯B .0.740020%0.7x x -=⨯C .()120%0.7400x -⨯=D .()0.7120%400x =-⨯11.我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为( ) A .316710⨯ B .416.710⨯ C .51.6710⨯ D .60.16710⨯ 12.若1x =是方程260x m +-=的解,则m 的值是( )A .﹣4B .4C .﹣8D .813.-5的倒数是 A .15B .5C .-15D .-514.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是( )A .13B .12C .23D .115.某商品在进价的基础上提价70元后出售,之后打七五折促销,获利30元,则商品进价为( )元. A .90B .100C .110D .120二、填空题16.计算: x(x-2y) =______________17.已知关于x 的方程4231x m x +=+与方程3265x m x +=+的解相同,则方程的解为_________.18.写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是负数__. 19.比较大小:0.4--_________(0.4)--(填“>”“<”或“=”). 20.﹣|﹣2|=____.21.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .22.若单项式42m a b 与22n ab -是同类项,则m n -=_______. 23.若a -2b =1,则3-2a +4b 的值是__.24.如果一个角的余角等于它本身,那么这个角的补角等于__________度. 25.若关于x 的方程1322020x x b +=+的解是2x =,则关于y 的方程1(1)32(1)2020y y b -+=-+的解是__________. 三、解答题26.解方程 (1)528x +=- (2)4352x x -=+ (3)()4232x x -=-- (4)2151136x x +--= 27.如图,点O 是直线AB 上的一点,将一直角三角板如图摆放,过点O 作射线OE 平分BOC ∠.(1)如图1,如果40AOC ∠=︒,依题意补全图形,求DOE ∠度数;(2)当直角三角板绕点O 顺时针旋转一定的角度得到图2,使得直角边OC 在直线AB 的上方,若AOC α∠=,其他条件不变,请你直接用含α的代数式表示DOE ∠的度数为 ;(3)当直角三角板绕点O 继续顺时针旋转一周,回到图1的位置,在旋转过程中你发现DOE ∠与AOC ∠(0180,0AOC DOE ≤∠≤≤∠°°°)≤180°之间有怎样的数量关系?请直接写出你的发现: .28.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).29.已知同一平面内,∠AOB=90°,∠AOC=30°,(1)画出图形并求∠COB的度数;(2)若OD平分∠BOC,OE平分∠AOC,求∠DOE的度数.30.计算.(1)4×(﹣12)÷(﹣2)(2)132(36)249⎛⎫-+-⨯-⎪⎝⎭(3)﹣1+(1﹣0.5)÷(﹣3)×[2﹣(﹣3)2](4)2(a2﹣ab)+3(23a2﹣ab)+4ab31.如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.(1)∠AOC与∠BOD的度数相等吗,为什么?(2)已知OM平分∠AOC,若射线ON在∠COD的内部,且满足∠AOC与∠MON互余;①∠AOC=32°,求∠MON的度数;②试探究∠AON与∠DON之间有怎样的数量关系,请写出结论并说明理由.32.按要求画图,并解答问题(1)如图,取BC边的中点D,画射线AD;(2)分别过点B、C画BE⊥AD于点E,CF⊥AD于点F;(3)BE和CF的位置关系是;通过度量猜想BE和CF的数量关系是.33.如图所示的几何体是由6个相同的正方体搭成的,请画出它的主视图,左视图和俯视图.四、压轴题34.[ 问题提出 ]一个边长为 ncm(n⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手(1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体;一面涂色的:在面上,每个面上有1个,共有6个;两面涂色的:在棱上,每个棱上有1个,共有12个;三面涂色的:在顶点处,每个顶点处有1个,共有8个.(2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体:一面涂色的:在面上,每个面上有4个,正方体共有个面,因此一面涂色的共有个;两面涂色的:在棱上,每个棱上有2个,正方体共有条棱,因此两面涂色的共有个;三面涂色的:在顶点处,每个顶点处有1个,正方体共有个顶点,因此三面涂色的共有个…[ 问题解决 ]一个边长为ncm(n⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个;两面涂色的:在棱上,共有______个;三面涂色的:在顶点处,共______个。

苏教版数学七年级上册 期末试卷试卷(word版含答案)

苏教版数学七年级上册 期末试卷试卷(word版含答案)

29.如图,在方格纸中, A 、 B 、 C 为 3 个格点,点 C 在直线 AB 外.
(1)仅用直尺,过点 C 画 AB 的垂线 m 和平行线 n ; (2)请直接写出(1)中直线 m 、 n 的位置关系.
30.解方程
(1) 3x 2 x 2 6;
(2) 2x 1 x 2 1 34
31.我们定义:若两个角差的绝对值等于 60 ,则称这两个角互为“正角”,其中一个角是 另一个角的“正角”,如: 1 110 , 2 50 ,|∠1∠2 | 60 ,则 1和 2 互为“正 角”.如图,已知 AOB 120 ,射线 OC 平分 AOB , EOF 在 AOB 的内部,若 EOF 60 ,则图中互为“正角”的共有___________对.
直线
二、填空题
16.若代数式 2a-b 的值是 4,则多项式 2-a+ 1 b 的值是_______________ . 2
17.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.
18.一个角的度数为 20 18 ,则这个角的补角的度数是________.
19.如图,已知数轴上点 A 、 B 、 C 所表示的数分别为 a 、 b 、 c ,点 C 是线段 AB 的中 点,且 AB 2 ,如果原点 O 的位置在线段 AC 上,那么| b 1| | c 1| ______.
表示为(

A.2.1×104
B.2.1×105
C.0.21×104
D.0.21×105
5.据江苏省统计局统计:2018 年三季度南通市 GDP 总量为 6172.89 亿元,位于江苏省第
4 名,将这个数据用科学记数法表示为 ( )
A. 6.17289103 亿元 C. 6.17289105 亿元

苏教版七年级数学上册 期末试卷试卷(word版含答案)

苏教版七年级数学上册 期末试卷试卷(word版含答案)

A.13x 12(x 10) 60
B.12(x 10) 13x 60
C. x x 60 10 13 12
D. x 60 x 10 12 13
5.下列单项式中,与 a2b 是同ab2
D. 3ab
6.如图,表中给出的是某月的月历,任意选取“H”型框中的 7 个数(如阴影部分所示),
(深入研究)如图 2,现有一个直径为 1 个单位长度的圆片,将圆片上的某点与数轴上表 示 1 的点重合,并把圆片沿数轴向右无滑动地滚动 1 周,该点到达点 C 的位置.
(3)若点 M、N 均为线段 OC 的圆周率点,求线段 MN 的长度. (4)图 2 中,若点 D 在射线 OC 上,且线段 CD 与以 O、C、D 中某两个点为端点的线段互
为圆周率伴侣线段,请直接写出点 D 所表示的数.
28.列方程解应用题:
《弟子规》的初中读本的主页共计 96 页。张同学第一周看了 4 小时,第二周看了 6 小时,
苏教版七年级数学上册 期末试卷试卷(word 版含答案)
一、选择题
1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图
中这一现象,其原因( )
A.两点之间,线段最短
B.过一点有无数条直线
C.两点确定一条直线
D.两点之间线段的长度,叫做这两点之间的距离
2.2020 的相反数是( )
D. 0.167106
A. 7a a 7a2
B. 3x2 y 2yx2 x2 y C. 5y 3y 2
D. 3a 2b 5ab
12.如果 a 和1- 4b 互为相反数,那么多项式 2b 2a 10 7a 2b 3 的值是
()
A.-4
B.-2

苏教版七年级数学上册 期末试卷(Word版 含解析)

苏教版七年级数学上册 期末试卷(Word版 含解析)

苏教版七年级数学上册 期末试卷(Word 版 含解析)一、选择题1.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣120202.下列运算正确的是( ) A .332(2)-=- B .22(3)3-=- C .323233-⨯=-⨯D .2332-=-3.A 、B 两地相距550千米,甲、乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为110千米/小时,乙车的速度为90千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2.5 B .2或10 C .2.5或3 D .34.下列各项中,是同类项的是( )A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab 5.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( ) A .+B .-C .×D .÷6.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=27.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2 B .-1C .1D .28.由n 个相同的小正方体搭成的几何体,其主视图和俯视图如图所示,则n 的最小值为( )A .10B .11C .12D .139.如图,点C 、D 为线段AB 上两点,6AC BD +=,且75AD BC AB +=,则CD 等于( )A .6B .4C .10D .30710.如图,学校(记作A )在蕾蕾家(记作B )南偏西20︒的方向上.若90ABC ∠=︒,则超市(记作C )在蕾蕾家的( )A .北偏东20︒的方向上B .北偏东70︒的方向上C .南偏东20︒的方向上D .南偏东70︒的方向上11.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ) A .①② B .①③C .②④D .③④12.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .13.-3的相反数为( ) A .-3B .3C .0D .不能确定14.2020的相反数是( ) A .2020B .﹣2020C .12020D .﹣1202015.下列单项式中,与2a b 是同类项的是( ) A .22a bB .22a bC .2abD .3ab二、填空题16.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.17.一个两位数,个位数字比十位数字大4,且个位数字与十位数字的和为10,则这个两位数为_______.18.方程2x+1=0的解是_______________. 19.有理数中,最大的负整数是____.20.已知23a b -=,则736a b +-的值为__________.21.己知多项式1A ay =-,351B ay y =--,且多项式2A B +中不含字母y ,则a 的值为__________.22.如图,135AOD ∠=︒,75COD ∠=︒,OB 平分AOC ∠,则BOC ∠=________度.23.如图示,一副三角尺有公共顶点O ,若3AOC BOD ∠=∠,则BOD ∠=_________度.24.如图,AB =24,点C 为AB 的中点,点D 在线段AC 上,且AD =13CB ,则DB 的长度为___.25.程序图的算法源于我国数学名著《九章算术》,如图所示的程序图,当输入x 的值为12时,输出y 的值是8,则当输入x 的值为﹣12时,输出y 的值为__.三、解答题26.计算(1)2212 6.533-+--;(2)4210.5132(3)⎡⎤---÷⨯--⎣⎦.27.(建立概念)如下图,A 、B 为数轴上不重合的两定点,点P 也在该数轴上,我们比较线段PA 和PB 的长度,将较短线段的长度定义为点P 到线段AB 的“靠近距离”.特别地,若线段PA 和PB 的长度相等,则将线段PA 或PB 的长度定义为点P 到线段AB 的“靠近距离”.(概念理解)如下图,数轴的原点为O ,点A 表示的数为2-,点B 表示的数为4. (1)点O 到线段AB 的“靠近距离”为________;(2)点P 表示的数为m ,若点P 到线段AB 的“靠近距离”为3,则m 的值为_________;(拓展应用)(3)如下图,在数轴上,点P 表示的数为8-,点A 表示的数为3-,点B 表示的数为6. 点P 以每秒2个单位长度的速度向正半轴方向移动时,点B 同时以每秒1个单位长度的速度向负半轴方向移动.设移动的时间为(0)t t >秒,当点P 到线段AB 的“靠近距离”为3时,求t 的值.28.一家商店因换季将某种服装打折销售,如果每件服装按标价的5折出售将亏20元,而按标价的8折出售将赚40元,求每件服装的标价是多少元? 29.如图,点P 是∠AOB 的边OB 上的一点. (1)过点P 画OB 的垂线,交OA 于点C ; (2)过点P 画OA 的垂线,垂足为H ;(3)线段PH 的长度是点P 到______的距离,______是点C 到直线OB 的距离,线段PC 、PH 、OC 这三条线段大小关系是______(用“<”号连接).30.计算:(1)﹣2÷8×(﹣12); (2)2312(3)()19---⨯-+.31.轮船和汽车都往甲地开往乙地,海路比公路近40千米.轮船上午7点开出,速度是每小时24千米.汽车上午10点开出,速度为每小时40千米,结果同时到达乙地.求甲、乙两地的海路和公路长.32.解方程:(1)523(2)x x-=--(2)321143x x---=33.已知,22321A x xy x=+--,2+1B x xy=-+,且36A B+的值与x的取值无关,求y的值.四、压轴题34.已知M,N两点在数轴上所表示的数分别为m,n,且m,n满足:|m﹣12|+(n+3)2=0(1)则m=,n=;(2)①情境:有一个玩具火车AB如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A移动到点B时,点B所对应的数为m,当点B移动到点A时,点A所对应的数为n.则玩具火车的长为个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB以每秒2个单位长度的速度向右运动,同时点P和点Q从N、M出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB运动后对应的位置为A′B′.是否存在常数k使得3PQ﹣kB′A的值与它们的运动时间无关?若存在,请求出k和这个定值;若不存在,请说明理由.35.概念学习:规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.如:222÷÷,()()()()3333-÷-÷-÷-等,类比有理数的乘方,我们把222÷÷记作32,读作“2的3次商”,()()()()3333-÷-÷-÷-记作()43-,读作“3-的4次商”.一般地,我们把n个()0a a≠相除记作na,读作“a的n次商”.(1)直接写出结果:312⎛⎫=⎪⎝⎭______,()42-=______.(2)关于除方,下列说法错误的是()A.任何非零数的2次商都等于1B.对于任何正整数n,()111n--=-C.除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数D.负数的奇数次商结果是负数,负数的偶数次商结果是正数.深入思考:除法运算能转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)试一试,将下列运算结果直接写成乘方(幂)的形式()43-=______ 615⎛⎫= ⎪⎝⎭______ (4)想一想,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于______.(5)算一算:201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭36.请观察下列算式,找出规律并填空.111122=-⨯,1112323=-⨯,1113434=-⨯,1114545=-⨯. 则第10个算式是________,第n 个算式是________.根据以上规律解读以下两题: (1)求111112233420192020++++⨯⨯⨯⨯的值;(2)若有理数a ,b 满足|2||4|0a b -+-=,试求:1111(2)(2)(4)(4)(2016)(2016)ab a b a b a b ++++++++++的值.37.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =38.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|; (应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 . (2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 . (拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5. 解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q).39.如图∠AOB=120°,把三角板60°的角的顶点放在O处.转动三角板(其中OC边始终在∠AOB内部),OE始终平分∠AOD.(1)(特殊发现)如图1,若OC边与OA边重合时,求出∠COE与∠BOD的度数.(2)(类比探究)如图2,当三角板绕O点旋转的过程中(其中OC边始终在∠AOB内部),∠COE与∠BOD的度数比是否为定值?若为定值,请求出这个定值;若不为定值,请说明理由.(3)(拓展延伸)如图3,在转动三角板的过程中(其中OC边始终在∠AOB内部),若OP平分∠COB,请画出图形,直接写出∠EOP的度数(无须证明).40.如图1,点A,B,C,D为直线l上从左到右顺次的4个点.(1) ①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.41.如图,点O在直线AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先将△ODE一边OE与OC重合,然后绕点O顺时针方向旋转,当OE与OB重合时停止旋转.(1)当OD在OA与OC之间,且∠COD=20°时,则∠AOE=______;(2)试探索:在△ODE旋转过程中,∠AOD与∠COE大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.42.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 43.观察下列各等式:第1个:22()()a b a b a b -+=-; 第2个:2233()()a b a ab b a b -++=-; 第3个:322344()()a b a a b ab b a b -+++=- ……(1)这些等式反映出多项式乘法的某种运算规律,请利用发现的规律猜想并填空:若n 为大于1的正整数,则12322321()( )n n n n n n a b aa b a b a b ab b -------++++++=______;(2)利用(1)的猜想计算:1233212222221n n n ---+++++++(n 为大于1的正整数);(3)拓展与应用:计算1233213333331n n n ---+++++++(n 为大于1的正整数).【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据相反数的定义可直接得出结论. 【详解】解:2020的相反数是−2020. 故选:B . 【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.2.A解析:A 【解析】 【分析】根据幂的乘法运算法则判断即可. 【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误; 故选A. 【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.3.C解析:C 【解析】 【分析】分两种情况讨论,①甲乙没有相遇过;②甲乙相遇过后,根据题意结合这两种情况分别列出关于t 的一元一次方程求解即可. 【详解】解:甲车行驶的路程为110t 千米,乙车行驶的路程为90t 千米 ①当甲乙没有相遇过时,根据题意得550(11090)50t t -+= 解得 2.5t =②当甲乙相遇过时,根据题意得(11090)55050t t +-= 解得3t =综合上述,t 的值为2.5或3. 故选:C 【点睛】本题主要考查了一元一次方程的应用,正确理解题意是解题的关键,难点在于要从相遇前和相遇后两方面去考虑,涉及到了分类讨论的数学思想.4.A解析:A 【解析】 【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案. 【详解】A .﹣xy 与2yx ,所含字母相同,相同字母的指数也相同,是同类项.故选项A 符合题意;B .2ab 与2abc ,所含字母不相同,不是同类项.故选项B 不符合题意;C .x 2y 与x 2z ,所含字母不相同,不是同类项.故选项C 不符合题意;D .a 2b 与ab 2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D 不符合题意.故选A .【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同. 5.C解析:C【解析】【分析】将运算符号放入方框,计算即可作出判断.【详解】解:-3+0.5=-2.5;-3-0.5=-4.5;-3×0.5=-1.5;-3÷0.5=-6,∵-6<-4.5<-2.5<-1.5∴使得算式-1□0.5的值最大时,则“□”中填入的运算符号是×,故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.6.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.【详解】解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.7.C解析:C【解析】【分析】把2x =-代入250x a -+=即可求解.【详解】把2x =-代入250x a -+=得-4-a+5=0解得a=1故选C.【点睛】此题主要考查方程的解,解题的关键是熟知把方程的解代入原方程.8.C解析:C【解析】【分析】根据主视图、俯视图是分别从物体正面和上面看,所得到的图形即可求出答案.【详解】由俯视图知,最少有7个立方块,∵由正视图知在最左边前后两层每层3个立方体,中间3个每层2个立方体和最右边前两排每层3个立方体,∴n 的最小值是:7+5=12,故选C.【点睛】此题主要考查了由三视图判断几何体,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.9.B解析:B【解析】【分析】 由线段和差可得35AC BD AB +=,由6AC BD +=即可得AB 的长度,即可得CD 的长度.【详解】 解:∵75AD BC AB += 又∵AD BC AD CD BD AB CD +=++=+ ∴75AB CD AB +=∴25CD AB = ∴35AC BD AB CD AB +=-=∵6AC BD += ∴3=65AB ∴=10AB∴22=10=455CD AB=⨯故选:B【点睛】本题考查了线段和差及倍数关系,掌握线段的和差及转化是解题的关键.10.D解析:D【解析】【分析】直接利用方向角的定义得出∠2的度数.【详解】如图所示:由题意可得:∠1=20°,∠ABC=90°,则∠2=90°-20°=70°,故超市(记作C)在蕾蕾家的南偏东70°的方向上.故选:D.【点睛】本题考查了方向角的定义,正确根据图形得出∠2的度数是解答本题的关键.11.C解析:C【解析】【分析】【详解】试题分析:直接利用直线的性质以及两点确定一条直线的性质分析得出答案.解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选C.考点:直线的性质:两点确定一条直线.12.C解析:C【解析】【分析】由四棱柱的四个侧面及底面可知,A、B、D都可以拼成无盖的正方体,但C拼成的有一个面重合,有两面没有的图形.所以将一个无盖正方体形状盒子的表面沿某些棱展开后不能得到的平面图形是C.故选C.13.B解析:B【解析】【分析】根据相反数的定义,即可得到答案.【详解】解:-3的相反数为3;故选:B.【点睛】本题考查了相反数的定义,解题的关键是熟练掌握相反数的定义进行求解.14.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.15.A解析:A【解析】试题分析:含有相同字母,并且相同字母的指数相同的单项式为同类项,故选A.考点:同类项的概念.二、填空题16.1838【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62解析:1838分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1838.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838,故答案为:1838.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.17.37【解析】【分析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,∴这个两位数为:37【点睛解析:37【解析】【分析】根据题意列出一元一次方程即可求解.【详解】解:设十位上的数字为a,则个位上的数为(a+4),依题意得:a+a+4=10,解得:a=3,∴这个两位数为:37【点睛】本题考查了一元一次方程的实际应用,属于简单题,找到等量关系是解题关键.18.x=-【解析】【分析】先移项,再系数化1,可求出x的值.【详解】移项得:2x=-1,系数化1得:x=-.故答案为:-.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同解析:x=-1 2【解析】【分析】先移项,再系数化1,可求出x的值.【详解】移项得:2x=-1,系数化1得:x=-12.故答案为:-12.【点睛】解一元一次方程的一般步骤是去分母,去括号,移项,合并同类项,移项时要变号,最后系数化1.19.-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.解析:-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.20.【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数解析:16【解析】【分析】直接利用整体思想将原式变形进而得出答案.【详解】解:∵a-2b=3,∴7+3a-6b=7+3(a-2b)=7+3×3=16.故答案为:16.【点睛】本题考查代数式求值,解题关键是正确将原式变形.21.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为1解析:1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为122.【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵,,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=.故答案解析:【解析】【分析】先根据题意算出∠AOC,再由平分的条件算出∠BOC.【详解】∵135AOD ∠=︒,75COD ∠=︒,∴∠AOC=∠AOD-∠COD=135°-75°=60°,∵OB 平分∠AOC,∴∠BOC=1302AOC ∠=︒.故答案为:30.【点睛】本题考查角度的计算,关键在于结合图形进行计算. 23.【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:∠AOC=∠AOB+∠BOC.x=45°.故答案解析:【解析】【分析】设∠BOD 为x,则∠AOC=3x,利用直角建立等式解出x 即可.【详解】设∠BOD 为x,则∠AOC=3x,由题意得:90,BOC x ∠=︒-∠AOC=∠AOB+∠BOC.39090x x =︒+︒-x =45°.故答案为:45.【点睛】本题考查角度的计算,关键在于利用方程的思想将题目简单化.24.【解析】【分析】根据线段中点的定义可得,再求出,然后根据代入数据计算即可得解.【详解】∵AB =24,点C 为AB 的中点,,,,∴DB =AB ﹣AD =24﹣4=20.故答案为:20.解析:【解析】【分析】 根据线段中点的定义可得12BC AB =,再求出AD ,然后根据DB AB AD =-代入数据计算即可得解.【详解】∵AB =24,点C 为AB 的中点, 11241222CB AB ∴==⨯=, 13AD CB =, 11243AD ∴=⨯=, ∴DB =AB ﹣AD =24﹣4=20.故答案为:20.【点睛】本题考查了两点间的距离,掌握线段中点的定义,灵活运用数形结合思想是解题的关键. 25.﹣5.【解析】【分析】根据:当输入的值为时,输出的值是,可得:,据此求出的值是多少,进而求出当输入的值为时,输出的值为多少即可.【详解】∵当x =12时,y =8,∴12÷3+b =8,解得解析:﹣5.【解析】【分析】根据:当输入x 的值为12时,输出y 的值是8,可得:1238b ÷+=,据此求出b 的值是多少,进而求出当输入x 的值为12-时,输出y 的值为多少即可. 【详解】∵当x =12时,y =8,∴12÷3+b =8,解得b =4,∴当x =﹣12时, y =﹣12×2﹣4=﹣5. 故答案为:﹣5.【点睛】此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.三、解答题26.(1)-5.5;(2)16. 【解析】【分析】根据有理数的计算法则计算即可.【详解】(1)解:原式=1 6.52--+=-5.5.(2)解:原式=111(29)23--⨯⨯- =716-+=16. 【点睛】本题考查有理数的计算,关键在于熟练掌握计算方法.27.(1)2;(2)−5或1或7;(3)1t =或173t =【解析】【分析】(1)根据题意OA 的长度即为所求;(2)分三种情况进行讨论,①当点P 位于A 点左侧;②点P 位于线段AB 上;③点P 位于B 点右侧,分别求解;(3)分情况讨论,当PA=3或PB=3时,分别求解.【详解】解:(1)由题意OA=2;OB=4∴点O 到线段AB 的“靠近距离”为2故答案为:2;(2)①当点P 位于A 点左侧时,点P 表示-2-3=-5;②点P 位于线段AB 上时,点P 表示-2+3=1,此时PA=PB=1③点P 位于B 点右侧时,点P 表示4+3=7∴m=−5或1或7故答案为:−5或1或7;(3)①当PA=3时, 可得523t -=,或253t -=,解得14t t ==或.而当4t =时,PB=14-4×3=2,PB <PA ,点P 到线段AB 的“靠近距离”为2,不符合题意. 所以1t =.②当PB=3时, 可得14(12)3t -+=,或(12)143t +-=, 解得111733t t ==或. 而当113t =时,PA=1172533⨯-=,PA<PB ,点P 到线段AB 的“靠近距离”为73,不符合题意. 所以173t =. 综上所述,所以1t =或173t =. 【点睛】本题考查了新定义,一元一次方程的应用,数轴上两点间的距离,理解点到线段的“靠近距离”的定义,进行分类讨论是解题的关键.28.每件服装的标价是200元【解析】【分析】设每件服装的标价是x元,根据该服装的进价不变,即可得出关于x的一元一次方程,此题得解.【详解】设每件服装的标价是x元,根据题意得,0.5x+20=0.8x-40解得x=200答:每件服装的标价是200元.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.29.(1)见解析;(2)见解析;(3)OA,PC的长度,PH<PC<OC.【解析】【分析】(1)利用三角板过点P画∠OPC=90°即可;(2)利用网格特点,过点P画∠PHO=90°即可;(3)利用点到直线的距离可以判断线段PH的长度是点P到OA的距离,PC是点C到直线OB 的距离,根据垂线段最短即可确定线段PC、PH、OC的大小关系.【详解】(1)如图所示;(2)如图所示;(3) 线段PH的长度是点P到OA的距离,PC是点C到直线OB的距离,根据垂线段最短可知PH<PC<OC,故答案为OA,PC,PH<PC<OC.【点睛】本题主要考查了基本作图----作已知直线的垂线,另外还需利用点到直线的距离才可解决问题.30.(1)3;(2)﹣6.【解析】【分析】(1)原式从左到右依次计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】(1)原式121238=⨯⨯=; (2)原式1427143169⎛⎫=-+⨯-+=--+=- ⎪⎝⎭. 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.31.海路长240千米,公路长280千米.【解析】【分析】根据题意列方程求解即可.【详解】设:汽车行驶x 小时,则轮船行驶(x-3)小时,根据题意可列方程,24x=40(x-3)-40,解方程得,x=10,∴公路长40(x-3)=280千米,海路长为24x=240千米.【点睛】本题考查一元一次方程的应用,解题的关键是根据题意找出等量关系.32.(1)1x =;(2)75x =【解析】【分析】(1)根据解一元一次方程的步骤依次去括号、移项、合并同类项、系数化为1,据此计算可得;(2)根据解一元一次方程的步骤依次去分母、去括号、移项、合并同类项、系数化为1,据此计算可得.【详解】解:(1)523(2)x x -=--去括号得:523+6x x -=-移项得:5+36+2x x =合并同类项得:88x =系数化为1得:1x =(2)321143x x ---= 去分母得:()()1233421x x --=-去括号得: 129+384x x -=-移项得: 3-84-12+9x x =-合并同类项得: -57x =-系数化为1得: 75x =【点睛】 本题主要考查解一元一次方程,解一元一次方程的一般步骤:分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a 形式转化.33.25. 【解析】【分析】 根据3A+6B 的值与x 无关,令含x 的项系数为0,解关于y 的一元一次方程即可求得y 的值.【详解】解:∵A =2x 2+3xy -2x -1,B =-x 2+xy -1,∴3A +6B=15xy-6x-9=(15y-6)x-9,要使3A+6B 的值与x 的值无关,则15y-6=0,解得:y=25. 【点睛】 本题考查整式的加减,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,运用方程思想解题.四、压轴题34.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15【解析】【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解;(3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解.【详解】解:(1)∵|m ﹣12|+(n +3)2=0,∴m ﹣12=0,n +3=0,∴m =12,n =﹣3;故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n ,∴AB =3m n -=5, ∴玩具火车的长为:5个单位长度,故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁,根据题意可得方程组为:40116y x x y x y-=+⎧⎨-=-⎩ , 解得:1264x y =⎧⎨=⎩ , 答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关,∴12﹣2k =0,∴k =6∴3PQ ﹣kB ′A =45﹣30=15【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.35.(1)2,14;(2)B ;(3)21()3-,45;(4)21()n a -;(5)29- 【解析】【分析】(1)利用题中的新定义计算即可求出值;(2)利用题中的新定义计算即可求出值;(3)将原式变形即可得到结果;(4)根据题意确定出所求即可;(5)原式变形后,计算即可求出值.【详解】 (1)3111111222222⎛⎫=÷÷=÷= ⎪⎝⎭, ()()()()()4111222221224-=-÷-÷-÷-=⨯⨯=, 故答案为:2,14; (2)A .任何非零数的2次商都等于1,说法正确,符合题意;B .对于任何正整数n ,当n 为奇数时,()111n --=-;当n 为偶数时,()111n --=,原说法错误,不符合题意;C .除零外的互为相反数的两个数的偶数次商都相等,奇数次商互为相反数,说法正确,符合题意;D .负数的奇数次商结果是负数,负数的偶数次商结果是正数,说法正确,符合题意. 故选:B ;(3)()()()()()433333-=-÷-÷-÷-111()()33=⨯-⨯- 21()3=-; 611111115555555⎛⎫=÷÷÷÷÷ ⎪⎝⎭ 15555=⨯⨯⨯⨯45=; 故答案为:21()3-,45;(4)由(3)得到规律:21()n n a a -=,所以,将一个非零有理数a 的n 次商写成乘方(幂)的形式等于21()n a -, 故答案为:21()n a -;(5)201923420201111162366⎛⎫⎛⎫⎛⎫⎛⎫÷-÷---⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()2019324220202112366---⎛⎫=÷-÷---⨯ ⎪⎝⎭201820181111162966⎛⎫⎛⎫⎛⎫=⨯-⨯-⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 201811161866⎛⎫⎛⎫=--⨯⨯ ⎪ ⎪⎝⎭⎝⎭ 11186=-- 29=-. 【点睛】本题考查了有理数的混合运算,新定义的理解与运用;熟练掌握运算法则是解本题的关键.对新定义,其实就是多个数的除法运算,要注意运算顺序.36.111=10111011-⨯,()111=11n n n n -++;(1)20192020;(2)10094040【解析】【分析】归纳总结得到一般性规律,写出第10个等式及第n 个等式即可;。

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word 版 含解析)一、选择题1.下列各组单项式中,是同类项的一组是( ) A .3x 3y 与3xy 3B .2ab 2与-3a 2bC .a 2与b 2D .2xy 与3 yx2.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点 3.3-的倒数是( ) A .3B .13C .13-D .3-4.某车间原计划用13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成了任务,而且还多生产60件.设原计划每小时生产x 个零件,则所列方程为( ) A .1312(10)60x x =++ B .12(10)1360x x +=+ C .60101312x x +-= D .60101213x x+-= 5.如果整式x n ﹣3﹣5x 2+2是关于x 的三次三项式,那么n 等于( ) A .3B .4C .5D .66.下列各式中与a b c --的值不相等的是( )A .()a b c -+B .()a b c --C .()()a b c -+-D .()()c b a ---7.截止到今年6月初,东海县共拥有镇村公交线路28条,投入镇村公交42辆,每天发班236班次,日行程5286公里,方便了98. 46万农村人口的出行.数据“98. 46万”可以用科学记数法表示为() A .498.4610⨯B .49.84610⨯C .59.84610⨯D .60.984610⨯8.倒数是-2的数是( ) A .-2B .12-C .12D .29.下列各项中,是同类项的是( ) A .xy -与2yxB .2ab 与2abcC .2x y 与2x zD .2a b 与2ab10.某小组计划做一批中国结,如果每人做6个,那么比计划多做9个;如果每人做4个,那么比计划少做7个.设计划做个“中国结”,可列方程为( ). A .B .C .D .11.下列方程为一元一次方程的是( ) A .12y y+= B .x+2=3yC .22x x =D .3y=212.多项式343553m n m n -+的项数和次数分别为( )A .2,7B .3,8C .2,8D .3,713.下列运算中,结果正确的是( )A .3a 2+4a 2=7a 4B .4m 2n+2mn 2=6m 2nC .2x ﹣12x =32x D .2a 2﹣a 2=214.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒15.对于下列说法,正确的是( ) A .过一点有且只有一条直线与已知直线平行 B .不相交的两条直线叫做平行线 C .相等的角是对顶角D .将一根木条固定在墙上,只需打两个钉子就可以了,这种做法的依据是两点确定一条直线二、填空题16.有理数中,最大的负整数是____.17.如图,线段AB a =,CD b =,则AD BC +=______.(用含a ,b 的式子表示)18.若单项式322m x y-与3-x y 的差仍是单项式,则m 的值为__________.19.计算: x(x-2y) =______________20.在2π,3.14,0,0.1010010001(每两个1之间依次增加1个0),23中,无理数有_________个.21.一个数的平方为16,这个数是 .22.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.23.实验室里,水平圆桌面上有甲乙丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,用两根相同的管子在容器的5cm 高度处连接(即管子底端离容器底5cm),现三个容器中,只有甲中有水,水位高1cm ,如图所示.若每分钟同时向乙和丙注入相同量的水,开始注水1分钟,乙的水位高度为56cm ,则开始注入________分钟的水量后,甲与乙的水位高度之差是16cm.24.若 2230α'∠=︒,则α∠的余角等于________.25.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.三、解答题26.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ; ②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离; (2)在(1)所画图中, ①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 . 27.解方程 (1)528x +=- (2)4352x x -=+ (3)()4232x x -=-- (4)2151136x x +--= 28.如图,直线AB 、CD 相交于点O ,BOD ∠与∠BOE 互为余角,18BOE ∠=︒.求AOC ∠的度数.29.阳光集团新进了20台电视机和30台电饭煲,计划将这50台电器调配给下属的甲、乙两个商店销售,其中40台给甲商店,10台给乙商店.两个商店销售这两种电器每台的利润(元)如下表:电视机 电饭煲 甲商店/元 100 60 乙商店/元8050(1)设集团调配给甲商店x 台电视机,则调配给甲商店电饭煲 台,调配给乙商店电视机 台、电饭煲 台; (2)求出x 的取值范围;(3)如果阳光集团卖出这50台电器想要获得的总利润为3650元,请求出x 的值. 30.先化简,再求值:2(3a 2b ﹣2ab 2)﹣3(﹣ab 2+3a 2b ),其中|a ﹣1|+(b+2)2=0. 31.如图,射线OM 上有三点,,A B C ,满足40OA =cm ,30AB =cm ,20BC =cm.点P 从点O 出发,沿OM 方向以2cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点,P Q 停止运动. (1)若点Q 运动速度为3cm/秒,经过多长时间,P Q 两点相遇?(2)当2PB PA =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点,E F ,求OB APEF-的值.32.如图,在方格纸中,A 、B 、C 为3个格点,点C 在直线AB 外.(1)仅用直尺,过点C 画AB 的垂线m 和平行线n ; (2)请直接写出(1)中直线m 、n 的位置关系.33.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .36.一般情况下2323a b a b++=+是不成立的,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b++=+成立的一对数,a b 为“相伴数对”,记为(),a b .(1)若()1,b 为“相伴数对”,试求b 的值;(2)请写出一个“相伴数对”(),a b ,其中0a ≠,且1a ≠,并说明理由; (3)已知(),m n 是“相伴数对”,试说明91,4m n ⎛⎫⎪⎝+⎭-也是“相伴数对”. 37.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB . (1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.38.点O 在直线AD 上,在直线AD 的同侧,作射线OB OC OM ,,平分AOC ∠. (1)如图1,若40AOB ∠=,60COD ∠=,直接写出BOC ∠的度数为 ,BOM ∠的度数为 ;(2)如图2,若12BOM COD ∠=∠,求BOC ∠的度数; (3)若AOC ∠和AOB ∠互为余角且304560AOC ∠≠,,,ON 平分BOD ∠,试画出图形探究BOM ∠与CON ∠之间的数量关系,并说明理由.39.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.40.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°: (1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.已知点O 为直线AB 上的一点,∠EOF 为直角,OC 平分∠BOE , (1)如图1,若∠AOE=45°,写出∠COF 等于多少度;(2)如图1,若∠AOE=()090n n ︒<<,求∠COF 的度效(用含n 的代数式表示); (3)如图2,若∠AOE=()90180n n ︒<<,OD 平分∠AOC,且∠AOD-∠BOF=45°,求n 的值.43.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求PQAB的值.(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1CD AB 2=,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】A. 33x y 与33xy 中相同字母的指数不相同,故不是同类项;B. 22ab 与23a b -中相同字母的指数不相同,故不是同类项;C. 2a 与2b 中所含字母不相同,故不是同类项;D. 2xy -与3yx 中所含字母相同,相同字母的指数相同,故是同类项; 故选D.点睛:本题考查了利用同类项的定义,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,据此判断即可.2.B解析:B 【解析】 【分析】根据平行公理、线段的性质、对顶角的性质、线段中点的性质进行判断即可. 【详解】解:A 、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误; B 、两点之间的所有连线中,线段最短,说法正确; C 、相等的角是对顶角,说法错误;D 、若AC=BC ,则点C 是线段AB 的中点,说法错误,应是若AC=BC=12AB ,则点C 是线段AB 的中点,故此选项错误;故答案为B . 【点睛】本题主要考查了平行公理、对顶角的性质、线段的性质,熟练应用课本知识、灵活应用定理是解答本题的关键.3.C解析:C 【解析】 【分析】由互为倒数的两数之积为1,即可求解. 【详解】∵1313⎛⎫-⨯-= ⎪⎝⎭,∴3-的倒数是13-. 故选C4.B解析:B 【解析】 【分析】实际生产12小时的零件比原计划13小时生产的零件多60件,根据生产总量=生产效率乘以时间即可列出方程 【详解】实际生产12小时的零件数量是12(x+10)件, 原计划13小时生产的零件数量是13x 件, 由此得到方程12(10)1360x x +=+, 故选:B. 【点睛】此题考查列方程解决实际问题,正确理解原计划与实际生产的工作量之间的关系是解题的关键.5.D解析:D 【解析】 【详解】根据题意得到n ﹣3=3,即可求出n 的值. 解:由题意得:n ﹣3=3, 解得:n=6. 故选D6.B解析:B 【解析】 【分析】根据去括号法逐一计算即可.【详解】A. a b +c a b c -=--(),正确;B. ()a b c a b c --=-+,错误;C. ()()a b c a b c -+-=--,正确;D. ()()c b a a b c ---=--,正确;故答案为:B .【点睛】本题考查了去括号法的应用,掌握去括号法逐一计算是解题的关键.7.C解析:C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将98.46万用科学记数法表示为59.84610⨯.故选:C .【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.B解析:B【解析】【分析】根据倒数的定义:两个数的乘积是1,则这两个数互为倒数可求解.【详解】解: 12()12-⨯-= ∴倒数是-2的数是12-故选:B【点睛】本题考查了倒数,熟练掌握倒数的定义是解题的关键.9.A解析:A【解析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A .﹣xy 与2yx ,所含字母相同,相同字母的指数也相同,是同类项.故选项A 符合题意;B .2ab 与2abc ,所含字母不相同,不是同类项.故选项B 不符合题意;C .x 2y 与x 2z ,所含字母不相同,不是同类项.故选项C 不符合题意;D .a 2b 与ab 2,所含字母相同,相同字母的指数不相同,不是同类项.故选项D 不符合题意.故选A .【点睛】本题考查了同类项,关键是理解同类项定义中的两个“相同”:相同字母的指数相同. 10.B解析:B【解析】【分析】计划做个“中国结”,根据题意可用两种方式表示出参与制作的人数,根据人数不变这一等量关系即可列出方程.【详解】计划做个“中国结”,由题意可得,故选B.【点睛】本题考查了一元一次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.11.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.【详解】解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.12.B【解析】【分析】根据多项式项数和次数的定义即可求解.【详解】多项式343553m n m n -+的项数为3,次数为8,故选B.【点睛】此题主要考查多项式,解题的关键是熟知多项式项数和次数的定义.13.C解析:C【解析】【分析】将选项A ,C ,D 合并同类项,判断出选项B 中左边两项不是同类项,不能合并,即可得出结论,【详解】解:A 、3a 2+4a 2=7a 2,故选项A 不符合题意;B 、4m 2n 与2mn 2不是同类项,不能合并,故选项B 不符合题意;C.、2x -12x =32x ,故选项C 符合题意; D 、2a 2-a 2=a 2,故选项D 不符合题意;故选C .【点睛】本题考查同类项的意义,合并同类项的法则,解题关键是掌握合并同类项法则.14.C解析:C【解析】【分析】设∠B ′FE =x ,根据折叠的性质得∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,则∠BFC =x−24°,再由第2次折叠得到∠C ′FB =∠BFC =x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A ′EF =180°−∠B ′FE =112°,所以∠AEF =112°.【详解】如图,设∠B ′FE =x ,∵纸条沿EF 折叠,∴∠BFE =∠B ′FE =x ,∠AEF =∠A ′EF ,∴∠BFC =∠BFE−∠CFE =x−24°,∵纸条沿BF 折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.15.D解析:D【解析】【分析】分别利用平行公理、平行线的定义、对顶角的定义以及两点确定一条直线对各选项进行判断.【详解】解:A.过直线外一点有且只有一条直线与已知直线平行,故此选项错误;B.在同一平面内,不相交的两条直线叫做平行线,故此选项错误;C.相等的角不一定是对顶角,故此选项错误;D.用两根钉子固定一根木条,体现数学事实是两点确定一条直线,故本选项正确;故选:D.【点睛】本题考查平行公理、平行线的定义,对顶角的定义以及两点确定一条直线.熟练掌握相关定义是解决此题的关键.二、填空题16.-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.解析:-1.【解析】【分析】最大的负整数是-1.【详解】在有理数中,最大的负整数是-1.故答案为-1.【点睛】本题考查了有理数,解题的关键是掌握最大的负整数是-1.17.【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故解析:a b【解析】【分析】观察图形可知AD+BC=AC+CD+BD+CD=AB+CD,再代入计算即可求解.【详解】∵AB=a,CD=b,∴AD+BC=AC+CD+BD+CD=AB+CD=a+b.故答案为:a+b.【点睛】本题考查了两点间的距离,列代数式,关键是根据图形得到AD+BC=AB+CD.18.【解析】【分析】根据题意可知单项式与是同类项,从而可求出m的值.【详解】解:∵若单项式与的差仍是单项式,∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】解析:3【解析】【分析】根据题意可知单项式322m x y-与3-x y 是同类项,从而可求出m 的值. 【详解】解:∵若单项式322m x y-与3-x y 的差仍是单项式, ∴这两个单项式是同类项,∴m-2=1解得:m=3.故答案为:3.【点睛】本题考查合并同类项和单项式,解题关键是能根据题意得出m=3. 19.x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 解析:x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:2(2)2x x y x xy -=-;故答案为:22x xy -.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 20.【解析】【分析】无理数就是无限不循环小数,由此即可解答.【详解】解:在,,,(每两个之间依次增加个),中,无理数有,,(每两个之间依次增加个)两个,故答案是:2.【点睛】此题主要考查解析:2【解析】【分析】 无理数就是无限不循环小数,由此即可解答.【详解】解:在2π,3.14,0,0.1010010001(每两个1之间依次增加1个0),23中,无理数有2π,0,0.1010010001(每两个1之间依次增加1个0)两个,故答案是:2.【点睛】 此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.21.【解析】【分析】【详解】解:这个数是解析:【解析】【分析】【详解】解:2(4)16,±=∴这个数是4±22.5或4.5【解析】【分析】分两种情况得到C 点所表示的数,再根据中点坐标公式可求AC 的中点所表示的数.【详解】解:∵B 为5,BC=3,∴C 点为2或8,∴AC 的中点所表示的数是(1+2)÷解析:5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.【详解】解:∵B为5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷2=1.5或(1+8)÷2=4.5.故答案为:1.5或4.5.【点睛】本题考查了数轴,解题的关键是确定C点所表示的数,注意分类思想的应用.23.1,,.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(解析:1,75, 17340.【解析】【分析】先根据题意算出乙和丙每分钟注水量,随着时间变化可以分三种情况讨论,①当甲比乙高,②乙比加高,③乙溢出到甲后,乙比甲高.【详解】试题分析:∵甲、乙、丙三个圆柱形容器(容器足够高),底面半径之比为1:2:1,∴甲、乙、丙三个圆柱形容器的底面积之比为1:4:1,∵每分钟同时向乙和丙注入相同量的水,注水1分钟,乙的水位上升56 cm,∴注水1分钟,丙的水位上升510463⨯=cm,①当甲比乙高16cm时,此时乙中水位高56cm,用时1分;②当乙比甲水位高16cm 时,乙应为76cm,757=665÷分,当丙的高度到5cm时,此时用时为5÷103=32分,因为73<52,所以75分乙比甲高16cm. ③当丙高5cm 时,此时乙中水高535624⨯=cm ,在这之后丙中的水流入乙中,乙每分钟水位上升55263⨯=cm ,当乙的水位达到5cm 时开始流向甲,此时用时为355+5243⎛⎫-÷ ⎪⎝⎭=154分,甲水位每分上升1020233⨯=cm ,当甲的水位高为546cm 时,乙比甲高16cm ,此时用时155201734146340⎛⎫+-÷= ⎪⎝⎭分; 综上,开始注入1,75,17340分钟的水量后,甲与乙的水位高度之差是16cm. 【点睛】本题考查圆柱体与水流变化的结合,关键在于找到三个分类节点.24.【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵的余角为.故答案为:.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此解析:'6730︒【解析】【分析】根据余角的定义,即和为90°的两角叫互为余角,列算式求解即可.【详解】解:∵ 2230α'∠=︒α∠的余角为9022306730''-︒=︒.故答案为:'6730︒.【点睛】本题考查余角的定义及度、分、秒之间的运算,掌握定义是解答此题的关键.25.-8【解析】【分析】将a=-2,b=3代入a ※b=a2+2ab 计算可得结果.【详解】(-2)※3=(-2)2+2×(-2)×3=4-12=-8,故答案为:-8【点睛】本题主要考查有理解析:-8【解析】【分析】将a=-2,b=3代入a※b=a2+2ab计算可得结果.【详解】(-2)※3=(-2)2+2×(-2)×3=4-12=-8,故答案为:-8【点睛】本题主要考查有理数的混合运算,解题的关键是掌握新定义规定的运算法则,有理数的混合运算顺序与运算法则.三、解答题26.(1)①答案见解析;②答案见解析;③答案见解析;④答案见解析;(2)①垂直;②<,垂线段最短.【解析】【分析】(1)①画射线AC即可;②画线段BC即可;③过点B作AC的平行线BD即可;④过B作BE⊥AC于E即可;(2)①根据平行线的性质得到BD⊥BE;②根据垂线段最短即可得出结论.【详解】(1)①如图所示,射线AC就是所求图形;②如图所示,线段BC就是所求图形;③如图所示,直线BD就是所求图形;④如图所示,线段BE就是所求图形.(2)①∵BD ∥AC ,∠BEC =90°,∴∠DBE =180°-∠BEC =180°-90°=90°,∴BD ⊥BE.故答案为:垂直.②∵BE ⊥AC ,∴BE <BC .理由如下:垂线段最短.故答案为:<,垂线段最短.【点睛】本题考查了作图﹣复杂作图、垂线、点到直线的距离、垂线段最短,解答本题的关键是充分利用网格.27.(1)x=-2;(2)x=4;(3)x=2;(4)x=-3【解析】【分析】(1)先移项合并同类项,再系数化1;(2)先移项合并同类项,再系数化1;(3)先去括号,再移项合并同类项,最后系数化1;(4)先去分母,再去括号,然后一项合并类项,最后在系数化1.【详解】解:(1)528x +=-,移项合并同类项得:5x=-10系数化1得:x=-2;(2)4352x x -=+移项合并同类项得:2x=8系数化1得:x=4;(3)()4232x x -=--去括号得:4-x=2-6+3x移项合并同类项得:4x=8系数化1得:x=2;(4)2151136x x +--= 去分母得:2(2x+1)-(5x-1)=6去括号得:4x+2-5x+1=6移项合并同类项得:-x=3系数化1得:x=-3【点睛】本题考查的是解一元一次方程,熟知解一元一次方程的步骤是解题的关键.28.72°.【解析】【分析】根据余角定义可得∠BOD =90°−18°=72°,再根据对顶角相等可得∠AOC =∠BOD =72°.【详解】解:BOD ∴∠与∠BOE 互为余角90BOD BOE ∴∠+∠=︒又18BOE ∠=︒90901872BOD BOE ∴∠=︒-∠=︒-︒=︒AOC ∠与BOD ∠是对顶角72AOC BOD ∴∠=∠=︒【点睛】此题主要考查了对顶角和余角,关键是掌握对顶角相等.29.(1)(40-x ),(20-x ),(x -10);(2)10≤x ≤20;(3)15.【解析】【分析】(1)50台电器调配40台给甲商店,10台给乙商店,设调配给甲商店x 台电视机,则调配给甲商店电饭煲40-x 台,调配给乙商店电视机20-x 台、电饭煲x-10台;(2)根据调配的电器数都是大于等于0的列不等式组解答即可;(3)根据总利润为3650元列方程解答即可.【详解】(1)(40-x ),(20-x ),(x -10);(2)∵0400200100x x x x ≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩ ∴0402010x x x x ≥⎧⎪≤⎪⎨≤⎪⎪≥⎩ ∴10≤x ≤20; (3)根据题意可得,100x +60(40-x )+80(20-x )+50(x -10)=3650,解题, x =15 ,【点睛】本题考查一元一次方程的应用,解题的关键是根据总利润列出方程.30.2【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可求出值.【详解】原式=6a 2b ﹣4ab 2+3ab 2﹣9a 2b=﹣ab 2﹣3a 2b ,由题意得:a=1,b=﹣2,则原式=﹣4+6=2.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练掌握整式加减的运算法则是解本题的关键31.(1)18秒相遇;(2)Q 的运动速度为11cm/s 或者115cm/s ;(3)2. 【解析】【分析】(1)设运动时间为t 秒,先求出OC=90,根据速度乘以时间得到OP=2t ,CQ=3t ,再根据相遇公式路程和等于距离列方程解答即可;(2)先求出线段OB 的长度得到中点Q 所表示的数,再根据2PB PA =只存在两种情况,求出点P 的运动时间即点Q 的运动时间即可得到速度;(3)分别求出OB 、AP 及EF 的长,即可代入计算得到答案.【详解】(1)设运动时间为t 秒,此时OP=2t ,OQ=3t ,∵40OA =cm ,30AB =cm ,20BC =cm ,∴OC=OA+AB+BC=90cm ,∴2t+3t=90,t=18,∴经过18秒,P Q 两点相遇;(2)∵点Q 运动到的位置恰好是线段OB 的中点,OB=40+30=70,∴点Q 表示的数是35,此时CQ=90-35=55,由2PB PA =,可分两种情况:①当点P 在OA 上时,得PA=AB=30,此时OP=OA-PA=10,点P 运动的时间为1052=s , ∴点Q 的运动速度=55115=cm/s ; ②当点P 在AB 上时,AB=3PA ,∴PA=10,此时OP=OA+PA=50,点P 的运动时间是50252=s , ∴点Q 的运动速度=5511255=cm/s ,综上,点Q的运动速度是11cm/s或者115cm/s;(3)设运动时间是a秒,此时OP=2a,AP=2a-40,∵点E是OP的中点,∴OE=a,∵点F是AB的中点,AB=30,∴BF=15,∴EF=OB-OE-BF=70-a-15=55-a,∴OB APEF-=70(240)255aa--=-.【点睛】此题考查数轴上的点的运动问题,数轴上两点之间的距离公式,两点的中点公式,在点运动过程中注意分情况解决问题的方法.32.(1)见解析;(2)直线m⊥n.【解析】【分析】(1)如图,取格点E、F,作直线CF和直线EC即可;(2)根据所画图形直接解答即可.【详解】解:(1)如图,直线m,直线n即为所求;(2)直线m⊥n.【点睛】本题考查了利用格点作已知直线的平行线和垂线,属于基本作图题型,熟练掌握网格中作平行线和垂线的方法是解题关键.33.BP的长为7cm或3cm.【解析】【分析】分点C在线段AB上和点C在线段AB的延长线上两种情况,作出图形,先求得AC的长,再利用线段中点的定义求出PC的长,最后即可求出BP的长.【详解】解:当点C在线段AB上时,如图1:。

苏教版七年级上册数学 期末试卷易错题(Word版 含答案)

苏教版七年级上册数学 期末试卷易错题(Word版 含答案)

苏教版七年级上册数学 期末试卷易错题(Word 版 含答案)一、选择题1.下列运用等式的性质,变形不正确的是: A .若x y =,则55x y +=+ B .若x y =,则ax ay = C .若x y =,则x ya a= D .若a bc c=(c ≠0),则a b = 2.钟面上8:45时,时针与分针形成的角度为( ) A .7.5° B .15° C .30° D .45°3.下列说法不正确的是( ) A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短4.如图的平面展开图折叠成正方体后,相对面上的数都互为相反数,那么a 的值是( )A .1B .-2C .3D .b -5.12-的倒数是( ) A .B .C .12-D .126.﹣3的相反数为( ) A .﹣3B .﹣13C .13D .37.将7760000用科学记数法表示为( ) A .57.7610⨯B .67.7610⨯C .677.610⨯D .77.7610⨯8.下列叙述中正确的是( )①线段AB 可表示为线段BA; ② 射线AB 可表示为射线BA; ③ 直线AB 可表示为直线BA; ④ 射线AB 和射线BA 是同一条射线. A .①②③④B .②③C .①③D .①②③9.下列方程变形中,正确的是( )A .方程3221x x -=+,移项,得3212x x -=-+B .方程()3251x x -=--,去括号,得3251x x -=--C .方程2332t =,系数化为1,得1t = D .方程110.20.5x x--=,整理得36x = 10.下面四个图形中,∠1=∠2一定成立的是( )A.B.C.D.11.小红在计算23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭时,拿出 1 张等边三角形纸片按如图所示方式进行操作.①如图1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操作;③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述操作.可得23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近的数是()A.13B.12C.23D.112.若关于x的一元一次方程mx=6的解为x=-2,则m的值为()A.-3 B.3 C.13D.1613.把方程213148x x--=-去分母后,正确的结果是()A.2x-1=1-(3-x)B.2(2x-1)=1-(3-x)C.2(2x-1)=8-3+x D.2(2x-1)=8-3-x14.下列各图中,可以是一个正方体的平面展开图的是( )A.B.C.D.15.某小组计划做一批中国结,如果每人做6个,那么比计划多做了9个,如果每人做4个,那么比计划少7个,设计划做x个“中国结”,可列方程( )A.9764x x--=B.96x-=74x+C.x9x+764+=D.x9x764+-=二、填空题16.如图是一个正方形的展开图,则这个正方体与“诚”字所在面相对的面上的字是_______.17.据统计,我市常住人口56.3万人,数据563000用科学计数法表示为__________. 18.比较大小:π1-+ _________3-(填“<”或“=”或“>”). 19.若代数式2a-b 的值是4,则多项式2-a+12b 的值是_______________ . 20.如图,OC 是∠AOB 的平分线,如果∠AOB=130°,∠BOD=24°48',那么∠COD=_____.21.一个角的度数为2018',则这个角的补角的度数是________.22.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.23.单项式23x y-的系数是____.24.2018年12月8日2时23分,我国的探月卫星“嫦娥四号”由长征三号乙运载火箭在西昌卫星发射中心成功发射,并成功飞向距地球约384400000m 月球.384400000用科学记数法可表示为______. 25.若单项式12m a b -与212na b 的和仍是单项式,则m n 的值是______. 三、解答题26.计算:(1)715|4|--- (2)42112(3)6⎛⎫--⨯-÷-⎪⎝⎭27.如图,已知直线l 和直线外三点A ,B ,C ,按下列要求画图: (1)画射线CB 交直线l 于点F ; (2)连接BA ;(3)在直线l 上确定点E ,使得AE+CE 最小.28.计算题(1)(3)78--+-- (2)2211-3--6-3()(2)32⨯-+-÷. 29.先化简,再求值:2a 2b ﹣3ab 2﹣2(a 2b +ab 2),其中a =1,b =﹣2.30.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.31.运动场环形跑道周长400米,小红跑步的速度是爷爷的53倍,小红在爷爷前面20米,他们沿跑道的同一方向同时出发,5min 后小红第一次与爷爷相遇.小红和爷爷跑步的速度各是多少?32.已知:如图,点P 是数轴上表示-2与-1两数的点为端点的线段的中点.(1)数轴上点P 表示的数为 ;(2)在数轴上距离点P 为2.5个单位长度的点表示的数为 ;(3)如图,若点P 是线段AB (点A 在点B 的左侧)的中点,且点A 表示的数为m ,那么点B 表示的数是 .(用含m 的代数式表示)33.如果两个角之差的绝对值等于45°,则称这两个角互为“半余角”,即若|∠α-∠β |=45°,则称∠α、∠β互为半余角.(注:本题中的角是指大于0°且小于180°的角)(1)若∠A =80°,则∠A 的半余角的度数为 ;(2)如图1,将一长方形纸片ABCD 沿着MN 折叠(点M 在线段AD 上,点N 在线段CD 上)使点D 落在点D ′处,若∠AMD ′与∠DMN 互为“半余角”,求∠DMN 的度数; (3)在(2)的条件下,再将纸片沿着PM 折叠(点P 在线段BC 上),点A 、B 分别落在点A ′、B ′处,如图2.若∠AMP 比∠DMN 大5°,求∠A ′MD ′的度数.四、压轴题34.(阅读理解)如果点M ,N 在数轴上分别表示实数m ,n ,在数轴上M ,N 两点之间的距离表示为MN m n(m n)=->或MN n m(n m)=->或m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.()1点A 表示的数为______,点B 表示的数为______.()2用含t 的代数式表示P 到点A 和点C 的距离:PA =______,PC =______.()3当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q 点到达C 点后,立即以同样的速度返回,运动到终点A ,在点Q 开始运动后,P 、Q 两点之间的距离能否为2个单位?如果能,请求出此时点P 表示的数;如果不能,请说明理由.35.点A 、B 在数轴上分别表示数,a b ,A 、B 两点之间的距离记为AB .我们可以得到AB a b =-:(1)数轴上表示2和5的两点之间的距离是 ;数轴上表示-2和-5两点之间的距离是 ;数轴上表示1和a 的两点之间的距离是 .(2)若点A 、B 在数轴上分别表示数-1和5,有一只电子蚂蚁在数轴上从左向右运动,设电子蚂蚁在数轴上的点C 对应的数为c .①求电子蚂蚁在点A 的左侧运动时AC BC +的值,请用含c 的代数式表示; ②求电子蚂蚁在运动的过程中恰好使得1511c c ,c 表示的数是多少? ③在电子蚂蚁在运动的过程中,探索15c c 的最小值是 .36.某市两超市在元旦节期间分别推出如下促销方式: 甲超市:全场均按八八折优惠;乙超市:购物不超过200元,不给于优惠;超过了200元而不超过500元一律打九折;超过500元时,其中的500元优惠10%,超过500元的部分打八折; 已知两家超市相同商品的标价都一样.(1)当一次性购物总额是400元时,甲、乙两家超市实付款分别是多少? (2)当购物总额是多少时,甲、乙两家超市实付款相同?(3)某顾客在乙超市购物实际付款482元,试问该顾客的选择划算吗?试说明理由. 37.(1)如图,已知点C 在线段AB 上,且6AC cm =,4BC cm =,点M 、N 分别是AC 、BC 的中点,求线段MN 的长度;(2)若点C 是线段AB 上任意一点,且AC a =,BC b =,点M 、N 分别是AC 、BC 的中点,请直接写出线段MN 的长度;(结果用含a 、b 的代数式表示)(3)在(2)中,把点C 是线段AB 上任意一点改为:点C 是直线AB 上任意一点,其他条件不变,则线段MN 的长度会变化吗?若有变化,求出结果.38.如图,A 、B 、C 三点在数轴上,点A 表示的数为10-,点B 表示的数为14,点C 为线段AB 的中点.动点P 在数轴上,且点P 表示的数为x .(1)求点C 表示的数;(2)点P 从点A 出发,向终点B 运动.设BP 中点为M .请用含x 的整式表示线段MC 的长.(3)在(2)的条件下,当x 为何值时,2AP CM PC -=?39.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).40.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 41.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值42.已知,,a b 满足()2440a b a -+-=,分别对应着数轴上的,A B 两点. (1)a = ,b = ,并在数轴上面出,A B 两点;(2)若点P 从点A 出发,以每秒3个单位长度向x 轴正半轴运动,求运动时间为多少时,点P 到点A 的距离是点P 到点B 距离的2倍;(3)数轴上还有一点C 的坐标为30,若点P 和点Q 同时从点A 和点B 出发,分别以每秒3个单位长度和每秒1个单位长度的速度向C 点运动,P 点到达C 点后,再立刻以同样的速度返回,运动到终点A ,点Q 到达点C 后停止运动.求点P 和点Q 运动多少秒时,,P Q 两点之间的距离为4,并求此时点Q 对应的数.43.设A 、B 、C 是数轴上的三个点,且点C 在A 、B 之间,它们对应的数分别为x A 、x B 、x C .(1)若AC =CB ,则点C 叫做线段AB 的中点,已知C 是AB 的中点. ①若x A =1,x B =5,则x c = ; ②若x A =﹣1,x B =﹣5,则x C = ;③一般的,将x C 用x A 和x B 表示出来为x C = ;④若x C =1,将点A 向右平移5个单位,恰好与点B 重合,则x A = ; (2)若AC =λCB (其中λ>0).①当x A =﹣2,x B =4,λ=13时,x C = . ②一般的,将x C 用x A 、x B 和λ表示出来为x C = .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立. 【详解】A 、若x =y ,则x +5=y +5,此选项正确;B 、若x y =,则ax ay =,此选项正确;C 、若x =y ,当a ≠0时x ya a=不成立,故此选项错误; D 、若a bc c =,则a b =(c ≠0),则 a =b ,此选项正确; 故选:C . 【点睛】本题主要考查了等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.2.A解析:A 【解析】试题解析:钟面上8:45时,分针指向9,时针在8和9之间,夹角的度数为:4530307.5.60-⨯= 故选A.3.C解析:C 【解析】 【分析】根据对顶角的性质,补角的定义,线段、直线的定义和性质判断即可.【详解】解:A、B、D选项均正确,C选项,一个角的补角不一定大于这个角,只有当这个角为锐角时,其补角大于这个角,当这个角为直角时,其补角等于这个角,当这个角为钝角时,其补角小于这个角,C说法错误.故选:C【点睛】本题考查了角、线段、直线的基本概念,了解相关的性质和定义是解题的关键.4.A解析:A【解析】【分析】由展开图可知a的相对面为1-,根据题意可得a的值.【详解】解:因为相对面上的数都互为相反数,由展开图可知a的相对面为1-,所以a的值为1.故选:A【点睛】本题考查了正方体的展开图,熟练掌握展开图与立体图之间的关系是解题的关键.5.A解析:A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A6.D解析:D【解析】【分析】根据相反数的定义:只有符号不同的两个数称互为相反数计算即可.【详解】解:﹣3的相反数是3.故选:D.【点睛】此题考查求一个数的相反数,解题关键在于掌握相反数的概念.7.B解析:B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】7760000的小数点向左移动6位得到7.76, 所以7760000用科学记数法表示为7.76×106, 故选B . 【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.8.C解析:C 【解析】 【分析】依据线段、射线以及直线的概念进行判断,即可得出正确结论. 【详解】解:①线段AB 可表示为线段BA ,正确; ②射线AB 不可表示为射线BA ,错误; ③直线AB 可表示为直线BA ,正确; ④射线AB 和射线BA 不是同一条射线,错误; 故选:C . 【点睛】本题主要考查了线段、射线以及直线的概念,解题时注意:射线用两个大写字母表示时,端点的字母放在前边.9.D解析:D 【解析】 【分析】根据解方程的步骤逐一对选项进行分析即可. 【详解】A . 方程3221x x -=+,移项,得3212x x -=+,故A 选项错误;B . 方程()3251x x -=--,去括号,得325+5-=-x x ,故B 选项错误;C . 方程2332t =,系数化为1,得94t =,故C 选项错误;D . 方程110.20.5x x --=,去分母得()5121--=x x ,去括号,移项,合并同类项得:36x =,故D 选项正确.故选:D【点睛】本题主要考查解一元一次方程,掌握解一元一次方程的步骤是解题的关键. 10.B解析:B【解析】试题分析:A .∠1、∠2是邻补角,∠1+∠2=180°;故本选项错误;B .∠1、∠2是对顶角,根据其定义;故本选项正确;C .根据平行线的性质:同位角相等,同旁内角互补,内错角相等;故本选项错误;D .根据三角形的外角一定大于与它不相邻的内角;故本选项错误.故选B .考点:对顶角、邻补角;平行线的性质;三角形的外角性质.11.A解析:A【解析】【分析】设大三角形的面积为1,先求原算式3倍的值,将其值转化为三角形的面积和,利用面积求解.【详解】解:设大三角形的面积为1,则第一次操作后每个小三角形的面积为14,第二次操作后每个小三角形的面积为214,第三次操作后每个小三角形面积为314⎛⎫ ⎪⎝⎭,第四次操作后每个小三角形面积为414,……第2020次操作后每个小三角形面积为202014,算式23202011114444⎛⎫⎛⎫⎛⎫++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭相当于图1中的阴影部分面积和.将这个算式扩大3倍,得232020111133334444⎛⎫⎛⎫⎛⎫⨯+⨯+⨯++⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,此时该算式相当于图2中阴影部分面积和,这个和等于大三角形面积减去1个剩余空白小三角形面积,即2020114,则原算式的值为202011113343.所以23202011114444⎛⎫⎛⎫⎛⎫++++⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值最接近13.故选:A.【点睛】本题考查借助图形来计算的方法就是数形结合的运用,观察算式特征和图形的关系,将算式值转化为面积值是解答此题的关键.12.A解析:A【解析】【分析】将x=-2代入方程mx=6,得到关于m的一元一次方程,解方程即可求出m的值.【详解】∵关于x的一元一次方程mx=6的解为x=-2,∴﹣2m=6,解得:m=-3.故选:A.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.13.C解析:C【解析】分析:方程两边乘以8去分母得到结果,即可做出判断.详解:方程去分母得:2(2x﹣1)=8﹣3+x.故选C.点睛:本题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,将x系数化为1,即可求出解.14.C解析:C【分析】根据正方体的展开图特征逐一判断即可.【详解】A不是正方体的展开图,故不符合题意;B不是正方体的展开图, 故不符合题意;C是正方体的展开图,故符合题意;D不是正方体的展开图,故不符合题意;故选C.【点睛】此题考查的是正方体的展开图的判断,掌握正方体的展开图特征是解决此题的关键.15.D解析:D【解析】【分析】根据题意,利用人数不变列方程即可.【详解】解:由题意可知:97 64x x+-=,故选D.【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.二、填空题16.友【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“善”是相对面,“诚”与解析:友【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“爱”与“善”是相对面,“诚”与“友”是相对面,“信”与“国”是相对面.故答案为: 友.【点睛】本题考查了正方体相对两个面上的文字,掌握正方体的空间图形,从相对面入手是解题的关键.17.【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于解析:55.6310【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.确定a×10n(1≤|a|<10,n为整数)中n的值,由于4320000有7位,所以可以确定n=7-1=6.【详解】解:563000=5.63×105,故答案为:5.63×105.【点睛】本题考查科学记数法,解题关键是熟记规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.18.>【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵,且,∴,故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.【解析】【分析】根据两个负数比较大小,绝对值大的反而小,即可得到答案.【详解】解:∵1(1)ππ-+=--,且13π-<,∴13π-+>-,故答案为:>.【点睛】本题考查了实数的大小比较,解题的关键是掌握实数比较大小的法则.19.0【解析】【分析】根据题意,有,则,然后利用整体代入法进行求解,即可得到答案.【详解】解:根据题意,有,∴,∴;故答案为:0.【点睛】本题考查了求代数式的值,解题的关键是得到,熟解析:0【解析】【分析】根据题意,有24a b -=,则122a b -=,然后利用整体代入法进行求解,即可得到答案. 【详解】解:根据题意,有24a b -=, ∴122a b -=, ∴1122()22022a b a b -+=--=-=; 故答案为:0.【点睛】 本题考查了求代数式的值,解题的关键是得到122a b -=,熟练运用整体代入法进行解题. 20.2°【分析】由角平分线定义,求出∠BOC 的度数,然后利用角的和差关系,即可得到答案.【详解】解:∵OC 是∠AOB 的平分线,∠AOB=130°,∴,∴;故答案为:.【点睛】解析:2°【解析】【分析】由角平分线定义,求出∠BOC 的度数,然后利用角的和差关系,即可得到答案.【详解】解:∵OC 是∠AOB 的平分线,∠AOB=130°, ∴111306522BOC AOB ∠=∠=⨯︒=︒, ∴652448'4012'40.2COD BOC BOD ∠=∠-∠=︒-︒=︒=︒;故答案为:40.2︒.【点睛】 本题考查了角的计算,利用角平分线的性质得出∠BOC 是解题关键,又利用了角的和差. 21.159°42′【解析】【分析】利用补角的定义直接计算求解即可.【详解】解:故答案为:159°42′【点睛】本题考查补角的定义和角度的计算,掌握概念和1°=60′是本题的解题关键. 解析:159°42′【解析】【分析】利用补角的定义直接计算求解即可.【详解】解:180-2018=15942''故答案为:159°42′本题考查补角的定义和角度的计算,掌握概念和1°=60′是本题的解题关键.22.2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段A B外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要解析:2或6.【解析】【分析】要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.【详解】解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.点A、B表示的数分别为﹣3、1,AB=4.第一种情况:在AB外,AC=4+2=6;第二种情况:在AB内,AC=4﹣2=2.故填2或6.考点:两点间的距离;数轴.23.-【解析】【分析】单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数; 单项式的系数:单项式中的数字因数.【详解】单项式-的系数是: -.故答案为-【点睛】本题考核知解析:-13【解析】【分析】 单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数;单项式的系数:单项式中的数字因数.【详解】单项式-2x y 3的系数是: -1 3. 故答案为-1 3【点睛】本题考核知识点:单项式的系数.解题关键点:理解单项式的系数的意义. 24.【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1解析:83.84410⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:384400000=83.84410⨯故答案为:83.84410⨯【点睛】考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.25.8【解析】【分析】根据题意得出单项式与是同类项,从而得出两单项式所含的字母a 、b 的指数分别相同,从而列出关于m 、n 的方程,再解方程即可求出答案.【详解】解:∵单项式与的和仍是单项式解析:8【解析】【分析】根据题意得出单项式12m a b -与212n a b 是同类项,从而得出两单项式所含的字母a 、b 的指数分别相同,从而列出关于m 、n 的方程,再解方程即可求出答案.【详解】 解:∵单项式12m a b -与212n a b 的和仍是单项式 ∴单项式12m a b -与212n a b 是同类项 ∴m-1=22=n ⎧⎨⎩∴m=3n=2⎧⎨⎩ ∴3=2=8m n故答案为:8.【点睛】本题考查了同类项的定义,所含字母相同,并且相同字母的指数也相同,解题的关键是灵活运用定义.三、解答题26.(1)12-;(2)107;【解析】【分析】(1)先去掉绝对值后即可计算,(2)根据有理数的运算法则即可计算.【详解】解:(1)原式=7-15-4=−12;(2)原式=-1-2×9×(-6)=-1+108=107【点睛】本题考查有理数的混合运算,涉及绝对值的性质,属于简单题,熟悉有理数运算法则,注意运算的优先级是解题关键..27.答案见解析【解析】【分析】根据射线的定义、线段的定义进行作图,E 点即AC 与直线l 的交点.【点睛】本题考查的知识点是射线的定义和线段的定义,以及两点之间线段最短的基本事实. 28.(1)2;(2)-6.【解析】【分析】(1)先括号、去绝对值,再根据有理数加减混合运算法则计算即可;(2)先计算绝对值和平方,再根据有理数混合运算法则计算即可.【详解】(1)原式=3+7-8=2.(2)原式=-9-6+1+4×2=-15+1+8=-6.【点睛】本题考查有理数混合运算,熟练掌握运算法则是解题关键.29.﹣5ab2,﹣20.【解析】【分析】先将原式去括号、合并同类项化简,再将a和b的值代入计算可得.【详解】原式=2a2b﹣3ab2﹣2a2b﹣2ab2=﹣5ab2,当a=1,b=﹣2时,原式=﹣5×1×(﹣2)2=﹣5×4=﹣20.【点睛】本题主要考查整式的加减-化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.30.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB 为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD 互补,∴ ∠AOD=180°-∠3=130°.∵OE 平分∠AOD ,∴ ∠2=∠AOD=65°. 【点睛】考点:角平分线的性质、角度的计算.31.小红速度为190 米/分,爷爷速度为114米/分.【解析】【分析】由题意得第一次与爷爷相遇,必定小红比爷爷多跑一圈,所以小红的路程=爷爷的路程+400-20,由该等式列成方程解出即可.【详解】解:设爷爷的速度为x 米/分,小红的速度为53x 米/分. 5·53x =5x +400-20 251538033x x -=103803x = x =11453x =190 米/分. 答: 小红速度为190 米/分,爷爷速度为114米/分.【点睛】本题考查一元一次方程的应用,关键在于读题列出方程.32.(1)-1.5;(2)1或-4;(3)-3-m .【解析】【分析】(1)设点P 表示的数为x.根据点P 是数轴上表示-2与-1两数的点为端点的线段的中点,得到-1-x =x -(-2),解方程即可;(2)设点P 表示的数为x.则( 1.5) 2.5x --=,解方程即可;(3)设B表示的数为y,则m+y=2×(-1.5),求出y的表达式即可.【详解】(1)设点P表示的数为x.∵点P是数轴上表示-2与-1两数的点为端点的线段的中点,∴-1-x=x-(-2),解得:x=-1.5.故答案为:-1.5.x--=,(2)设点P表示的数为x.则( 1.5) 2.5x+=,∴ 1.5 2.5∴x+1.5=±2.5,∴x+1.5=2.5或x+1.5=-2.5∴x=1或x=-4.(3)设B表示的数为y,则m+y=2×(-1.5),∴m+y=-3,∴y=-3-m.【点睛】本题考查了一元一次方程应用.根据题意得出相等关系是解答本题的关键. 33.(1)35°或125°;(2)45°或75°;(3)10°或130°.【解析】【分析】(1)设∠A的半余角的度数为x°,根据半余角的定义列方程求解即可;(2)设∠DMN为x°.根据折叠的性质和半余角的定义解答即可;(3)分两种情况讨论:①当∠DMN=45°时,∠DMD'=90°,∠AMP=50°,∠DMA'=80°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.②当∠DMN=75°时,∠DMD'=150°,∠AMP=80°,∠DMA'=20°,根据∠A′MD′=∠DMD'-∠DMA'计算即可.【详解】(1)设∠A的半余角的度数为x°,根据题意得:|80°-x|=45°80°-x=±45°∴x=80°±45°,∴x=35°或125°.(2)设∠DMN为x°,根据折叠的性质得到∠D'MN=∠DMN=x°.∴∠AMD'=180°-2x.∵∠AMD′与∠DMN互为“半余角”,∴|180°-2x-x|=45°,∴|180°-3x|=45°,∴180°-3x=45°或180°-3x=-45°,解得:x =45°或x =75°.(3)分两种情况讨论:①当∠DMN =45°时,∠D 'MN =45°,∴∠DMD '=90°,∠AMP =∠A 'MP =45°+5°=50°,∴∠DMA '=180°-2∠AMP =80°,∴∠A ′MD ′=∠DMD '-∠DMA '=90°-80°=10°.②当∠DMN =75°时,∠D 'MN =75°,∴∠DMD '=150°,∠AMP =∠A 'MP =75°+5°=80°,∴∠DMA '=180°-2∠AMP =20°,∴∠A ′MD ′=∠DMD '-∠DMA '=150°-20°=130°.综上所述:∠A ′MD ′的度数为10°或130°.【点睛】本题考查了一元一次方程的应用以及折叠的性质.理解“半余角”的定义是解答本题的关键.四、压轴题34.(1)2412--;;(2)2t ;362t -;(3)P 、Q 两点之间的距离能为2,此时点P 点Q 表示的数分别是2-,2,2226,33. 【解析】【分析】 ()1因为点A 在原点左侧且到原点的距离为24个单位长度,所以点A 表示数24-;点B 在点A 右侧且与点A 的距离为12个单位长度,故点B 表示:241212-+=-;()2因为点P 从点A 出发,以每秒运动2两个单位长度的速度向终点C 运动,则t 秒后点P 表示数242t(0t 18-+≤≤,令242t 12-+=,则t 18=时点P 运动到点C),而点A 表示数24-,点C 表示数12,所以()PA 242t 242t =-+--=,PC 242t 12362t =-+-=-;()3以点Q 作为参考,则点P 可理解为从点B 出发,设点Q 运动了m 秒,那么m 秒后点Q 表示的数是244m -+,点P 表示的数是122m -+,再分两种情况讨论:①点Q 运动到点C 之前;②点Q 运动到点C 之后.【详解】()1设A 表示的数为x ,设B 表示的数是y . x 24=,x 0<∴x 24=-又y x 12-=y 241212.∴=-+=-故答案为24-;12-.()2由题意可知:t 秒后点P 表示的数是()242t 0t 18-+≤≤,点A 表示数24-,点C表示数12。

苏教版七年级上册数学 期末试卷测试题(Word版 含解析)

苏教版七年级上册数学 期末试卷测试题(Word版 含解析)

操作.可得
1 4
1 4
2
1 4
3
1 4
2020
的值最接近的数是(

A. 1 3
B. 1 2
C. 2 3
8.下列各数中,比-4 小的数是( )
D.1
A. 2.5
B. 5
9.2020 的绝对值等于( )
C.0
D.2
A.2020
B.-2020
C. 1 2020
D. 1 2020
10.如果向北走 2 m,记作+2 m,那么-5 m 表示( )
(1)图 1 是显示部分代数式的“等和格”,可得 a=_______(含 b 的代数式表示); (2)图 2 是显示部分代数式的“等和格”,可得 a=__________,b=__________; (3)图 3 是显示部分代数式的“等和格”,求 b 的值。(写出具体求解过程)
C. a -1

D.1 -a
A.
B.
C.
D.
7.小红在计算
1 4
1 4
2
1 4
3
1 4
2020
时,拿出
1
张等边三角形纸片按如图所示方
式进行操作.
①如图 1,把 1 个等边三角形等分成 4 个完全相同的等边三角形,完成第 1 次操作;
②如图 2,再把①中最上面的三角形等分成 4 个完全相同的等边三角形,完成第 2 次操 作; ③如图 3,再把②中最上面的三角形等分成 4 个完全相同的等边三角形,······依次重复上述
三、解答题
26.解下列方程:(1) 7x 6 16 3x ;(2)1 2y 5 3 y .
6
4
27.将正整数 1 至 2019 按照一定规律排成下表:

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word 版 含解析)一、选择题1.若关于x 的方程2x ﹣m=x ﹣2的解为x=3,则m 的值是( ) A .5B .﹣5C .7D .﹣72.下列运用等式性质进行变形:①如果a =b ,那么a ﹣c =b ﹣c ;②如果ac =bc ,那么a =b ;③由2x +3=4,得2x =4﹣3;④由7y =﹣8,得y =﹣,其中正确的有( ) A .1个 B .2个 C .3个 D .4个 3.下列几何体三视图相同的是( )A .圆柱B .圆锥C .三棱柱D .球体 4.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a5.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个6.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m 7.已知关于x 的方程250x a -+=的解是2x =-,则a 的值为( ) A .-2B .-1C .1D .28.如图是一个几何体的表面展开图,这个几何体是( )A .B .C .D .9.2020的绝对值等于( )A .2020B .-2020C .12020D .12020-10.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( ) A .①②B .①③C .②④D .③④11.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( ) A .()31003xx +-=100 B .10033xx -+ =100 C .()31001003xx --= D .10031003xx --= 12.将方程21101136x x ++-=去分母,得( ) A .2(2x +1)﹣10x +1=6 B .2(2x +1)﹣10x ﹣1=1 C .2(2x +1)﹣(10x +1)=6 D .2(2x +1)﹣10x +1=1 13.在钟表上,下列时刻的时针和分针所成的角为90°的是( )A .2点25分B .3点30分C .6点45分D .9点14.若关于x y 、的单项式33nx y -与22mx y 的和是单项式,则()nm n -的值是 ( ) A .-1B .-2C .1D .215.下列各数:-1,2π,4.112134,0,227,3.14,其中有理数有( )A .6个B .5个C .4个D .3个二、填空题16.写出一个含a 的代数式,使a 不论取什么值,这个代数式的值总是负数__. 17.若3842α'∠=︒,则α∠的余角等于_______. 18.0的绝对值是_____.19.已知222x y -+的值是 5,则 22x y -的值为________.20.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .21.如图,三个一样大小的小长方形沿“竖-横-竖”排列在一个长为10,宽为8的大长方形中,则图中一个小长方形的宽为______.22.点A 、B 、C 在同一条数轴上,其中点A 、B 表示的数分别为﹣3、1,若BC =2,则AC 等于_____.23.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____. 24.如果一个角的余角等于它本身,那么这个角的补角等于__________度. 25.216x -的系数是________ 三、解答题26.如图,OC 是一条射线,OD 、OE 分别是AOC ∠和BOC ∠的平分线.(1)如图①,当80AOB ∠=︒时,则DOE ∠的度数为________________;(2)如图②,当射线OC 在AOB ∠内绕O 点旋转时,∠BOE 、EOD ∠、DOA ∠三角之间有怎样的数量关系?并说明理由;(3)当射线OC 在AOB ∠外如图③所示位置时,(2)中三个角:∠BOE 、EOD ∠、DOA ∠之间数量关系的结论是否还成立?给出结论并说明理由;(4)当射线OC 在AOB ∠外如图④所示位置时,∠BOE 、EOD ∠、DOA ∠之间数量关系是____________.27.已知线段AB =12cm ,C 为线段AB 上一点,BC =5cm ,点D 为AC 的中点,求DB 的长度.28.如图,A ,B 两地相距450千米,两地之间有一个加油站O ,且AO =270千米,一辆轿车从A 地出发,以每小时90千米的速度开往B 地,一辆客车从B 地出发,以每小时60千米的速度开往A 地,两车同时出发,设出发时间为t 小时. (1)经过几小时两车相遇?(2)当出发2小时时,轿车和客车分别距离加油站O 多远? (3)经过几小时,两车相距50千米?29.有以下运算程序,如图所示:比如,输入数对(2,1),输出W =2.(1)若输入数对(1,﹣2),则输出W = ;(2)分别输入数对(m ,﹣n )和(﹣n ,m ),输出的结果分别是W 1,W 2,试比较W 1,W 2的大小,并说明理由;(3)设a =|x ﹣2|,b =|x ﹣3|,若输入数对(a ,b )之后,输出W =26,求a +b 的值. 30.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭31.计算:(1)﹣2÷8×(﹣12); (2)2312(3)()19---⨯-+.32.先化简,再求值:()()22224333a b ab aba b ---+.其中 1a =-、 2b =-.33.先化简,再求值:22225(3)4(3)a b ab ab a b ---+,其中a 、b 满足21(1)2a -与12b +互为相反数. 四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

苏教版初一数学上册期末易错题难.docx

苏教版初一数学上册期末易错题难.docx

1.如果飞机上升2000 米记为 +2000 米,那么— 1000 米表示.2.单项式-2ab2的系数是;次数;多项式 2x 2 y 3x2 y 2 1 的次数3是,各项系数的和.两个三次多项式的和的次数一定是两个二次多项式的和的次数一定是3.已知关于 x、 y 的多项式kx23x ky4x2 5 y 2 ,当k=时,这个多项式不含二次项;当 k=时,这个多项式不含y.4.“ m的倒数与 3 的平方差”,用代数式表示为;当 m=-1 时,该代数式的值为.5.若5xy m 1与2x n y3是同类项,则m+n=___________.6.一个多项式加上 3 x2x 2得到 x21,这个多项式是.7.三个连续的奇数,中间的一个是2n+1 ,则三个数的和为8.若代数式2x23x 1 的值是 3 ,则代数式4x26x7 的值是当 x=1 时,代数式ax3bx 5 的值为9 ,那当x=-1代数式ax 3bx5的值为9.写出一个含有字母 a 的代数式,使字母 a 不论取什么值,这个代数式的值总是正数.你所写的代数式是.写出一个含有字母 a 的代数式,使字母 a 不论取什么值,这个代数式的值总是负数.你所写的代数式是.10下列代数式的值中,一定是正数的是().( x+1)2B .|x+1|C.(-x)2+ 1 D .- x2+ 1A11.若 x表示一个两位数,y 也表示一个两位数,小明想用x 、 y 来组成一个四位数,且把x 放在 y的左边则代数式是.如果苹果每千克 a 元,橘子每千克b元,那么3a5b 表示.12.如果 2x3 a 1 6 0 是一元一次方程,那么 a,方程的解为 x13.若3a m 2b4与 a 5b n 1的和仍是一个单项式,则m +n14.若 a、 b 互为相反数, c、 d 互为倒数,则2(a b)cd5__________15. 3个奇数的和63, 3 个奇数若最小奇数是2n- 1,三个奇数的和是16.若a8 ,b 5 且a+ b> 0,那么a-b=17.22. 8° =°′ ;12 ° 24′ =____________°18.2点30 分,与分所成的角度, 2点20 分,与分所成的角度,1点40 分,与分所成的角度,10点 50 分,与分所成的角度19.上等米每千克售价x 元,次等米每千克售价y 元,取上等米 a 千克和次等米 b 千克,混合后的大米每千克售价20某初中班的每一个同学都将自己的相片向全班其他同学各送一表示留念。

苏教版七年级上册数学 期末试卷试卷(word版含答案)

苏教版七年级上册数学 期末试卷试卷(word版含答案)

苏教版七年级上册数学 期末试卷试卷(word 版含答案)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( )A .两点之间,线段最短B .过一点有无数条直线C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离2.如图,图1是AD ∥BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中∠CFE=18°,则图2中∠AEF 的度数为( )A .120°B .108°C .126°D .114° 3.下列说法不正确的是( ) A .对顶角相等 B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短 4.有理数a 、b 在数轴上的位置如图所示,则化简||2||a b a b --+的结果为( )A .3a b +B .3a b --C .3a b +D .3a b --5.如图,将一段标有0~60均匀刻度的绳子铺平后折叠(绳子无弹性),使绳子自身的一部分重叠,然后在重叠部分沿绳子垂直方向剪断,将绳子分为A 、B 、C 三段,若这三段的长度由短到长的比为1:2:3,则折痕对应的刻度不可能是( )A .20B .25C .30D .356.图中几何体的主视图是( )A.B.C.D.7.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是()A.高B.铁C.开D.通8.如图,某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.经过一点,有无数条直线C.垂线段最短D.经过两点,有且只有一条直线9.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为()元.A.100 B.140 C.90 D.12010.如图所示的正方体的展开图是()A.B.C.D.11.将7760000用科学记数法表示为()A.5⨯D.77.761077.610⨯⨯B.67.76107.7610⨯C.612.如图,点C 是AB 的中点,点D 是BC 的中点,则下列等式中正确的有( )①CD AC DB =-②CD AD BC =-③2BD AD AB =- ④13CD AB = A .4个 B .3个 C .2个 D .1个13.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m14.让人欲罢不能的主题曲,让人潸然泪下的小故事,让人惊叹不已的演出阵容《我和我的祖国》首日票房超过285000000元,数字285000000科学记数法可表示为( ) A .2.85×109 B .2.85×108 C .28.5×108 D .2.85×10615.下列各图中,可以是一个正方体的平面展开图的是( )A .B .C .D .二、填空题16.一组“数值转换机”按下面的程序计算,如果输入的数是10,那么输出的结果为19,要使输出的结果为17,则输入的最小正整数是______.17.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)18.计算: x(x-2y) =______________19.若3a b -=,则代数式221b a -+的值等于________.20.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.21.如图,一副三角尺有公共的顶点A ,则 DAB EAC ∠-∠=________.22.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________.23.若规定这样一种运算法则a ※b=a 2+2ab ,例如3※(-2) = 32+ 2× 3×(-2) =-3 ,则 (-2) ※3 的值为_______________.24.下列各数:3.141592、1.010010001、..4.21、π、813中,无理数有_______个 25.若单项式64x y -与2n x y 的和仍为单项式,则21n 的值为________. 三、解答题26.计算:(1)()20201|4|23-+-+⨯- (2)()157246812⎛⎫--+⨯- ⎪⎝⎭27.如图,已知线段AB ,延长AB 到C ,点D 是线段AB 的中点,点E 是线段BC 的中点.(1)若5BD =,4BC =,求线段EC 、AC 的长;(2)试说明:2AC DE =.28.计算题(1)(3)78--+--(2)2211-3--6-3()(2)32⨯-+-÷. 29.计算:(1)()157-724912⎛⎫+⨯- ⎪⎝⎭(2)1377-1-244812⎛⎫⎛⎫÷+ ⎪ ⎪⎝⎭⎝⎭30.某小组计划做一批“中国结”如果每人做 5 个,那么比计划多了 9 个;如果每人做 4 个,那么比 计划少了 15 个.该小组共有多少人?计划做多少个“中国结”? 小明和小红在认真思考后,根据题意分别列出了以下两个不同的方程:①59415x x -=+;②91554y y +-= (1)①中的x 表示 ;②中的y 表示 . (2)请选择其中一种方法,写出完整的解答过程.31.如图,直线l 上有A 、B 两点,线段AB =10cm .点C 在直线l 上,且满足BC =4cm ,点P 为线段AC 的中点,求线段BP 的长.32.已知:如图,直线AB 、CD 相交于点O ,EO ⊥CD 于O .(1)若∠AOC=36°,求∠BOE 的度数;(2)若∠BOD :∠BOC=1:5,求∠AOE 的度数;(3)在(2)的条件下,请你过点O 画直线MN ⊥AB ,并在直线MN 上取一点F (点F 与O 不重合),然后直接写出∠EOF 的度数.33.按要求画图:如图,在同一平面内有三点A 、B 、C .(1)画直线AB 和射线BC ;(2)连接线段AC ,取线段AC 的中点D ;(3)画出点D 到直线AB 的垂线段DE .四、压轴题34.探索、研究:仪器箱按如图方式堆放(自下而上依次为第1层、第2层、…),受堆放条件限制,堆放时应符合下列条件:每层堆放仪器箱的个数a n 与层数n 之间满足关系式a n =n²−32n+247,1⩽n<16,n 为整数。

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word 版 含解析)一、选择题1.下列说法错误的是( )A .2的相反数是2-B .3的倒数是13C .3-的绝对值是3D .11-,0,4这三个数中最小的数是0 2.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -=D .22232a b ba a b -=- 3.用代数式表示“a 的2倍与b 的差的平方”,正确的是( ) A .22(a b)-B .22a b -C .2(2a b)-D .2(a 2b)- 4.小淇在某月的日历中圈出相邻的三个数,算出它们的和是19,那么这三个数的位置可能是( ) A . B .C .D .5.下列各组代数式中,不是同类项的是( )A .2与-5B .-0.5xy 2与3x 2yC .-3t 与200tD .ab 2与-8b 2a6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 7.已知点A 、B 、C 、D 在同一条直线上,线段8AB =,C 是AB 的中点, 1.5DB =.则线段CD 的长为( )A .2.5B .3.5C .2.5或5.5D .3.5或5.5 8.在一列数:123n a a a a ⋯,,,中,12=7=1a a ,, 从第三个数开始,每一个数都等于它前两个数之积的个位数字,则这个数中的第2018个数是()A .1B .3C .7D .99.下列叙述中正确的是( )①线段AB 可表示为线段BA; ② 射线AB 可表示为射线BA;③ 直线AB 可表示为直线BA; ④ 射线AB 和射线BA 是同一条射线.A .①②③④B .②③C .①③D .①②③10.一个正方体的表面展开图可以是下列图形中的( )A .B .C .D .11.下列生活、生产现象:①用两个钉子就可以把木条固定在墙上;②从A 地到B 地架设电线,总是尽可能沿着线段架设;③植树时,只要定出两颗树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中可用“两点之间,线段最短”来解释的现象有( )A .①②B .①③C .②④D .③④12.已知下列方程:①22x x -=;②0.3x =1;③512x x =+;④x 2﹣4x =3;⑤x =6;⑥x +2y =0.其中一元一次方程的个数是( ) A .2 B .3C .4D .5 13.画如图所示物体的主视图,正确的是( )A .B .C .D .14.一船在静水中的速度为20km /h ,水流速度为4km /h ,从甲码头顺流航行到乙码头,再返回甲码头共用5h.若设甲、乙两码头的距离为xkm ,则下列方程正确的是( )A .()()204x 204x 15++-=B .20x 4x 5+=C .x x 5204+=D .x x 5204204+=+- 15.下列说法正确的是( )A .两点之间的距离是两点间的线段B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题16.若关于x 的方程5x ﹣1=2x +a 的解与方程4x +3=7的解互为相反数,则a =________.17.列各数中:(5)+-,|2020|-,4π-,0,2019(2020)-,负数有________个. 18.植树节,只要定出两棵树的位置,就能确定这一行树所在的直线,这是因为两点确定_______条直线.19.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .20.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是_____℃.21.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .22.已知1x =-是方程23ax a =-的解,则a =__________.23.若关于x 的方程1322020x x b +=+的解是2x =,则关于y 的方程1(1)32(1)2020y y b -+=-+的解是__________. 24.计算:3-|-5|=____________.25.若a 、b 为实数,且()2320a b ++-=,则b a 的值是_________ 三、解答题26.如图,数轴上线段AB =2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度也向右匀速运动.(1)运动t 秒后,点B 表示的数是 ;点C 表示的数是 .(用含有t 的代数式表示)(2)求运动多少秒后,BC =4(单位长度);(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式4BD AP PC -=,若存在,求线段PD 的长;若不存在,请说明理由.27.如图,COD ∠为平角,,2AO OE AOC DOE ⊥∠=∠,求AOC ∠的度数.28.一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?29.如图,已知线段AB 上有一点C ,点M ,N 分别是线段AC ,BC 中点,若AB a ,AC b =,且a ,b 满足()210402b a -+-=.(1)求线段AB ,AC 的长度;(2)求线段MN 的长度. 30.(1)如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站C ,使它到A 、B 两村庄的距离的和最小,请在图中画出点C 的位置,并保留作图痕迹.(探索)(2)如图,C 、B 两个村庄在一条笔直的马路的两端,村庄A 在马路外,要在马路上建一个垃圾站O ,使得AO +BO +CO 最小,请在图中画出点O 的位置.(3)如图,现有A 、B 、C 、D 四个村庄,如果要建一个垃圾站O ,使得AO +BO +CO +DO 最小,请在图中画出点O 的位置.31.如图,射线OM 上有三点,,A B C ,满足40OA =cm ,30AB =cm ,20BC =cm.点P 从点O 出发,沿OM 方向以2cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点,P Q 停止运动.(1)若点Q 运动速度为3cm/秒,经过多长时间,P Q 两点相遇?(2)当2PB PA =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度;(3)自点P 运动到线段AB 上时,分别取OP 和AB 的中点,E F ,求OB AP EF-的值.32.如图所示的几何体是由几个相同的小正方形排成两行组成的.(1)填空:这个几何体由_______个小正方体组成.(2)画出该几何体的三个视图.33.如图,A 、B 、C 是正方形网格中的三个格点.(1)①画射线AC ;②画线段BC ;③过点B 画AC 的平行线BD ;④在射线AC 上取一点E ,画线段BE ,使其长度表示点B 到AC 的距离;(2)在(1)所画图中,①BD 与BE 的位置关系为 ;②线段BE 与BC 的大小关系为BE BC (填“>”、“<”或“=”),理由是 .四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.如图①,点O 为直线AB 上一点,过点O 作射线OC ,将一直角三角板如图摆放(90MON ∠=).(1)若35BOC ∠=,求MOC ∠的大小.(2)将图①中的三角板绕点O 旋转一定的角度得图②,使边OM 恰好平分BOC ∠,问:ON 是否平分AOC ∠?请说明理由.(3)将图①中的三角板绕点O 旋转一定的角度得图③,使边ON 在BOC ∠的内部,如果50BOC ∠=,则BOM ∠与NOC ∠之间存在怎样的数量关系?请说明理由.36.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =37.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.38.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.39.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有 条. (2)总结规律:一条直线上有n 个点,线段共有 条.(3)拓展探究:具有公共端点的两条射线OA 、OB 形成1个角∠AOB (∠AOB <180°);在∠AOB 内部再加一条射线OC ,此时具有公共端点的三条射线OA 、OB 、OC 共形成3个角;以此类推,具有公共端点的n 条射线OA 、OB 、OC…共形成 个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?40.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数;(3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.41.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.42.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.43.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2=,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据相反数的定义,倒数的定义,绝对值的意义,以及有理数比较大小,分别对每个选项进行判断,即可得到答案.【详解】解:A、2的相反数是2-,正确;B、3的倒数是13,正确;C、3-的绝对值是3,正确;D 、11-,0,4这三个数中最小的数是11-,故D 错误;故选:D.【点睛】本题考查了相反数、倒数的定,绝对值的意义,以及比较有理数的大小,解题的关键数熟记定义.2.D解析:D【解析】【分析】根据整式的加减,合并同类项得出结果即可判断.【详解】A. 32a b +不能计算,故错误;B. 2a a a +=,故错误;C. 2ab ab ab -=,故错误;D. 22232a b ba a b -=-,正确,故选D.【点睛】此题主要考察整式的加减,根据合并同类项的法则是解题的关键.3.C解析:C【解析】【分析】a 的2倍为2a ,a 的2倍与b 的差为2a-b ,然后再平方即可.【详解】依题意得:(2a-b)2,故选C .【点睛】本题考查了列代数式的知识,列代数式的关键是正确理解文字语言中的关键词,比如该题中的“倍”、“差”等,从而明确其中的运算关系,正确地列出代数式.4.B解析:B【解析】【分析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.【详解】解:A 、设最小的数是x .x+x+7+x+7+1=19∴x=43,故本选项错误;B、设最小的数是x.x+x+6+x+7=19,∴x=2,故本选项正确.C、设最小的数是x.x+x+1+x+7=19,∴x=113,故本选项错误.D、设最小的数是x.x+x+1+x+8=19,∴x=103,故本选项错误.故选:B.【点睛】本题考查一元一次方程的应用,需要学生具备理解题意能力,关键知道日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.5.B解析:B【解析】【分析】同类项定义:单项式所含字母及字母指数相同的是同类项,单个数也是同类项.根据定义即可判断选择项.【详解】A是两个常数,是同类项;B中两项所含字母相同但相同字母的指数不同,不是同类项;C和D所含字母相同且相同字母的指数也相同的项,是同类项.故选:B.【点睛】本题考查同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项.注意同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同.6.B解析:B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,7.C解析:C【解析】【分析】当点D在线段AB的延长线上时,当点D在线段AB上时,由线段的和差和线段中点的定义即可得到结论.如图1,∵C是线段AB的中点,若AB=8,∴BC=12AB=4,∵BD=1.5,∴CD=5.5;如图2,∵C是线段AB的中点,若AB=8,∴BC=12AB=4,∵BD=1.5,∴CD=2.5,综上所述,线段CD的长为2.5或5.5.故选C.【点睛】本题考查了两点间的距离,利用了线段的和差,线段中点的性质,分类讨论是解题关键.8.A解析:A【解析】【详解】a1=7,a2=1,a3=7,a4=7,a5=9,a6=3,a7=7,a8=1,a9=7,…不难发现此组数据为6个一循环,2018÷6=336…2,所以第2018个数是1.故选A.【点睛】本题考查了规律型——数字的变化类,此类问题关键在于找出数据循环的规律.9.C解析:C【解析】【分析】依据线段、射线以及直线的概念进行判断,即可得出正确结论.【详解】解:①线段AB可表示为线段BA,正确;②射线AB不可表示为射线BA,错误;③直线AB可表示为直线BA,正确;④射线AB和射线BA不是同一条射线,错误;【点睛】本题主要考查了线段、射线以及直线的概念,解题时注意:射线用两个大写字母表示时,端点的字母放在前边.10.C解析:C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】A ,B ,D 折叠后有一行两个面无法折起来,从而缺少面,不能折成正方体,只有C 是一个正方体的表面展开图.故选C .11.C解析:C【解析】【分析】【详解】试题分析:直接利用直线的性质以及两点确定一条直线的性质分析得出答案.解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A 地到B 地架设电线,总是尽可能沿着线段AB 架设,根据是两点之间线段最短; (3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选C .考点:直线的性质:两点确定一条直线.12.B解析:B【解析】【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.【详解】解:①x−2=2x 是分式方程,故①错误; ②0.3x=1,即0.3x-1=0,符合一元一次方程的定义.故②正确; ③2x =5x+1,即9x+2=0,符合一元一次方程的定义.故③正确; ④x 2-4x=3的未知数的最高次数是2,它属于一元二次方程.故④错误;⑤x=6,即x-6=0,符合一元一次方程的定义.故⑤正确;⑥x+2y=0中含有2个未知数,属于二元一次方程.故⑥错误.综上所述,一元一次方程的个数是3个.故选B .【点睛】本题考查了一元一次方程的一般形式,掌握只含有一个未知数,且未知数的指数是1,一次项系数不是0是关键.13.A解析:A【解析】【分析】直接利用三视图解题即可【详解】解:从正面看得到的图形是A .故选:A .【点睛】本题考查三视图,基础知识扎实是解题关键14.D解析:D【解析】【分析】由题意可得顺水中的速度为(20+4)km/h ,逆水中的速度为(20﹣4)km/h ,根据“从甲码头顺流航行到乙码头,再返回甲码头共用5h ”可得顺水行驶x 千米的时间+逆水行驶x 千米的时间=5h ,根据等量关系代入相应数据列出方程即可.【详解】若设甲、乙两码头的距离为xkm ,由题意得:204204x x +=+-5. 故选D .【点睛】本题考查了由实际问题抽象出一元一次方程,关键是正确理解题意,抓住题目中的关键语句,列出方程.15.D解析:D【解析】试题分析:根据线段、垂线、平行线的相关概念和性质判断.解:A 、两点之间的距离是指两点间的线段长度,而不是线段本身,错误;B 、在同一平面内,与同一条直线垂直的两条直线平行,错误;C 、同一平面内,过直线外一点有且只有一条直线与已知直线平行,应强调“直线外”,错误;D、这是垂线的性质,正确.故选D.考点:平行公理及推论;线段的性质:两点之间线段最短;垂线.二、填空题16.-4 ,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可. 【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a解析:-4,【解析】【分析】先解出4x+3=7方程的值,将相反数算出来再代入5x﹣1=2x+a中算出a即可.【详解】由方程4x+3=7,解得x=1;将x=-1代入5x﹣1=2x+a,解得a=-4.【点睛】本题考查方程的解及相反数的概念,关键在于掌握相关知识点.17.3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:,,负数有:,,,共3个故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次解析:3【解析】【分析】先将原数化简,然后根据负数的定义进行判断.【详解】解:(5)5+-=-,20202020-=,负数有:(5)+-,4π-,2019(2020)-,共3个 故答案为:3【点睛】本题考查负数的定义,求一个数的绝对值,双重符号的化简,负数的奇次幂是负数,掌握相关法则是本题的解题关键. 18.一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答解析:一【解析】【分析】经过两点有且只有一条直线.根据直线的性质,可得答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”用数学知识解释其道理是:两点确定一条直线,故答案为:一.【点睛】本题考查了直线的性质,熟练掌握直线的性质是解题的关键.19.12或24【解析】【分析】根据绳子对折后用线段AB 表示,可得绳子长是AB 的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A 点对折,当AP解析:12或24【解析】【分析】点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 20.-1【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案.详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理解析:-1【解析】分析:由题意可得算式:-5+4,利用有理数的加法法则运算,即可求得答案.详解:根据题意得:-5+4=-1(℃),∴调高4℃后的温度是-1℃.故答案为-1.点睛:此题考查了有理数的加法的运算法则.此题比较简单,注意理解题意,得到算式-5+4是解题的关键.21.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A 点对折,当AP=13AB 时,三条绳子长度一样均为8,此时绳子原长度为24cm ; 当AP=23AB 时,AP 的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm. ∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 22.1【解析】【分析】直接把代入,即可求出a 的值.【详解】解:把代入,则,解得:;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 解析:1【解析】【分析】直接把1x =-代入23ax a =-,即可求出a 的值.【详解】解:把1x =-代入23ax a =-,则2(1)3a a ⨯-=-,解得:1a =;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程.23.【解析】【分析】将方程看成关于(y+1)的方程即可进行计算即可.【详解】解:∵关于的方程的解是∴关于的方程的解∴故答案为:【点睛】本题考查了方程的解的概念,准确理解方程的解是解题解析:3y=【解析】【分析】将方程1(1)32(1)2020y y b-+=-+看成关于(y+1)的方程即可进行计算即可.【详解】解:∵关于x的方程1322020x x b+=+的解是2x=∴关于()-1y的方程1(1)32(1)2020y y b-+=-+的解12y-=∴3y=故答案为:3y=【点睛】本题考查了方程的解的概念,准确理解方程的解是解题的关键.24.-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法解析:-2【解析】【分析】先化简绝对值,然后再进行减法运算即可得.【详解】解:3-|-5|=3-5=3+(-5)=-2,故答案为-2.【点睛】本题考查了有理数的绝对值值,有理数的减法运算,熟练掌握相关的运算法则是解题的关键.25.9【解析】【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式计算求出a 和b 的值,即可求得的值.【详解】解:因为,所以,解得,则.故答案为:9【点睛】本题考查绝对值的非解析:9【解析】【分析】根据几个非负数的和为0时,这几个非负数都为0列出算式计算求出a 和b 的值,即可求得b a 的值.【详解】 解:因为()2320a b ++-=,所以30,20a b +=-=,解得3,2a b =-=,则2(3)9b a =-=.故答案为:9【点睛】本题考查绝对值的非负性、乘方的符号法则以及有理数的乘方运算.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键. 三、解答题26.(1)-6+6t ;10+2t ;(2)5t =,3t =;(3)PD =185或143【解析】【分析】(1)根据题意列出代数式即可. (2)根据题意分点B 在点C 左边和右边两种情况,列出方程解出即可.(3)随着点B 的运动大概,分别讨论当点B 和点C 重合、点C 在A 和B 之间及点A 与点C 重合的情况.【详解】(1)点B 表示的数是-6+6t ;点C 表示的数是10+2t.(2)66(102)4t t -+-+=661024t t -+--=或661024t t -+--=-∴5t = 或 3t =(3)设未运动前P 点表示的数是x,则运动t 秒后,A 点表示的数是86t -+B 点表示的数是-6+6tC 点表示的数是10+2tD 点表示的数是14+2tP 点表示的数是x+6t则BD=14+2t-(-6+6t)=20-4tAP=x+6t-(-8+6t)=x+8 PC=6(102)x t t +-+ (P 点可能在C 点左侧,也可能在右侧)PD=14+2t-(x+6t)=14-(4t+x)∵4BD AP PC -=∴20-4t-(x+8)=46(102)x t t +-+∴12-(4t+x )=4(4t+x)-40 或 12-(4t+x )=40-4(4t+x)∴4t+x=525 或 4t+x=283∴PD=14+2t -(x+6t)=14-(4t+x)=185或143. 【点睛】本题考查了两点间的距离,并综合了数轴、一次元一次方程,关键在于分类讨论,列出对应方程.27.60°【解析】【分析】根据∠COD 为平角,AO ⊥OE ,可知∠AOC+∠DOE 的度数,从而可求答案.【详解】解:∵∠COD 为平角,AO ⊥OE∴∠AOC+∠DOE=180°-90°=90°又∵∠AOC=2∠DOE∴3∠DOE=90°,即∠DOE=30°∴∠AOC=60°【点睛】本题考查的是平角,直角和角之间的关系,能够明白角与角之间的关系是解题的关键. 28.乙还需做3天.【解析】试题分析:等量关系为:甲的工作量+乙的工作量=1,列出方程,再求解即可.试题解析:设乙还需做x 天. 由题意得:3311288x ++=, 解之得:x=3.答:乙还需做3天. 考点:一元一次方程的应用.29.(1)10AB =,8AC =;(2)5【解析】【分析】(1)根据非负性即可求解;(2)根据中点的性质即可求解.【详解】(1)解:由题意得:10a =,8b =;10AB =,8AC =.(2)∵M 为AC 中点,8AC =, ∴142MC AC ==. 又∵10AB =,∴1082BC AB AC =-=-=,又∵N 为BC 中点, ∴112CN BC ==, ∴415MN MC CN =+=+=.【点睛】此题主要考查线段间的数量关系,解题的关键是熟知非负性及中点的性质.30.(1)见解析;(2)见解析;(3)见解析【解析】【分析】(1)根据两点之间线段最短,连接AB ,交l 于点C 即可;(2)根据BO+CO=BC为定长,故需保证AO最小即可,根据垂线段最短,过点A作AO⊥BC于O即可;(3)根据两点之间线段最短,故连接AC、BD交于点O即可.【详解】解:(1)连接AB,交l于点C,此时AC+BC=AB,根据两点之间线段最短,AB即为AC+BC的最小值,如下图所示:点C即为所求;(2)∵点O在BC上∴BO+CO=BC∴AO+BO+CO=AO+BC,而BC为定长,∴当AO+BO+CO最小时,AO也最小过点A作AO⊥BC于O,根据垂线段最短,此时AO最小,AO+BO+CO也最小,如下图所示:点O即为所求;(3)根据两点之间线段最短,若使AO+CO最小,连接AC,点O应在线段AC上;若使BO+DO最小,连接BD,点O应在线段BD上,∴点O应为AC和BD的交点如下图所示:点O即为所求.【点睛】此题考查的是两点之间线段最短和垂线段最短的应用,掌握根据两点之间线段最短和垂线段最短,找出最值所需点是解决此题的关键.31.(1)18秒相遇;(2)Q的运动速度为11cm/s或者115cm/s;(3)2.【解析】【分析】(1)设运动时间为t 秒,先求出OC=90,根据速度乘以时间得到OP=2t ,CQ=3t ,再根据相遇公式路程和等于距离列方程解答即可;(2)先求出线段OB 的长度得到中点Q 所表示的数,再根据2PB PA =只存在两种情况,求出点P 的运动时间即点Q 的运动时间即可得到速度;(3)分别求出OB 、AP 及EF 的长,即可代入计算得到答案.【详解】(1)设运动时间为t 秒,此时OP=2t ,OQ=3t ,∵40OA =cm ,30AB =cm ,20BC =cm ,∴OC=OA+AB+BC=90cm ,∴2t+3t=90,t=18,∴经过18秒,P Q 两点相遇;(2)∵点Q 运动到的位置恰好是线段OB 的中点,OB=40+30=70,∴点Q 表示的数是35,此时CQ=90-35=55,由2PB PA =,可分两种情况:①当点P 在OA 上时,得PA=AB=30,此时OP=OA-PA=10,点P 运动的时间为1052=s , ∴点Q 的运动速度=55115=cm/s ; ②当点P 在AB 上时,AB=3PA ,∴PA=10,此时OP=OA+PA=50,点P 的运动时间是50252=s , ∴点Q 的运动速度=5511255=cm/s , 综上,点Q 的运动速度是11cm/s 或者115cm/s ; (3)设运动时间是a 秒,此时OP=2a ,AP=2a-40,∵点E 是OP 的中点,∴OE=a ,∵点F 是AB 的中点,AB=30,∴BF=15,∴EF=OB-OE-BF=70-a-15=55-a , ∴OB AP EF -=70(240)255a a--=-. 【点睛】 此题考查数轴上的点的运动问题,数轴上两点之间的距离公式,两点的中点公式,在点运动过程中注意分情况解决问题的方法.。

苏教版数学七年级上册 期末试卷易错题(Word版 含答案)

苏教版数学七年级上册 期末试卷易错题(Word版 含答案)

苏教版数学七年级上册 期末试卷易错题(Word 版 含答案)一、选择题1.一件毛衣先按成本提高50%标价,再以8折出售,获利70元,求这件毛衣的成本是多少元,若设成本是x 元,可列方程为( ) A .0.8x +70=(1+50%)x B .0.8 x -70=(1+50%)x C .x +70=0.8×(1+50%)x D .x -70=0.8×(1+50%)x2.将一个无盖正方体形状的盒子的表面沿某些棱剪开,展开后不能得到的平面图形是( ) A .B .C .D .3.下列四个数:22,3.3030030003,,0.5,3.147π--,其中是无理数有( )A .1个B .2个C .3个D .4个4.在一个不透明的布袋中,装有一个简单几何体模型,甲乙两人在摸后各说出了它的一个特征,甲:它有曲面;乙:它有顶点。

该几何体模型可能是( ) A .球B .三棱锥C .圆锥D .圆柱5.下列运算正确的是A .325a b ab +=B .2a a a +=C .22ab ab -= D .22232a b ba a b -=-6.12-的倒数是( ) A .B .C .12-D .127.若要使得算式-3□0.5的值最大,则“□”中填入的运算符号是( ) A .+B .-C .×D .÷8.下列各数是无理数的是( ) A .﹣2B .227C .0.010010001D .π9.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61°10.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a11.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( ) A .-4 B .-2 C .2 D .4 12.对于代数式3m +的值,下列说法正确的是( ) A .比3大B .比3小C .比m 大D .比m 小13.下列各图是正方体展开图的是( ) A .B .C .D .14.3-的绝对值是( ) A .3-B .13-C .3D .3±15.下列计算正确的是( ) A .325a b ab += B .532y y -= C .277a a a +=D .22232x y yx x y -=二、填空题16.在-4,0,π,1.010010001,-227,1.3•这6个数中,无理数有______个. 17.如图,已知线段AB =8,若O 是AB 的中点,点M 在线段AB 上,OM =1,则线段BM 的长度为_____.18.如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站P ,使它到两个村庄A 、B 的距离和最小,小丽认为在图中连接AB 与l 的交点就是抽水站P 的位置,你认为这里用到的数学基本事实是_________________________________.19.今年冬季某天测得的最高气温是9℃,最低气温是1-℃,则当日温差是________℃ 20.如图,AB ,CD 相交于点O ,EO AB ⊥,则1∠与2∠互为_______角.21.如图,点B 是线段AC 上的点,点D 是线段BC 的中点,若4AB cm =,10AC cm =,则CD =___________cm .22.单项式312xy -的次数是___. 23.-6的相反数是 .24.若单项式42m a b 与22n ab -是同类项,则m n -=_______.25.如图所示,在P Q 、处把绳子AB 剪断,且::2:3:4AP PQ QB =,若剪断的各段绳子中最长的一段为16cm ,则绳子的原长为___________三、解答题26.如图是由一些棱长都为1cm 的小正方体组合成的简单几何体.(1)画该几何体的主视图、左视图和俯视图;(2)如果在这个几何体上再添加一些小正方体,并保持俯视图和左视图不变,最多可以再添加 块小正方体.27.小红周日花了76元买了四种食品,如下表格记录了她的支出,其中部分金额被油渍污染.若鲜奶和酸奶一共买了10盒,鲜奶4元/盒,酸奶5元/盒,则小红当天买了几盒鲜奶?28.点A、O、B、C从左向右依次在数轴上的位置如图所示,点O在原点,点A、B、C表示的数分别是a、b、c .(1)若a=﹣2,b=4,c=8,D为AB中点,F为BC中点,求DF的长.(2)若点A到原点的距离为3,B为AC的中点.①用b的代数式表示c;②数轴上B、C两点之间有一动点M,点M表示的数为x,无论点M运动到何处,代数式|x﹣c|﹣5|x﹣a|+bx+cx 的值都不变,求b的值.29.如图,点O为直线AB上一点,过点O作射线OC,使∠BOC=135°,将一个含45°角的直角三角板的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角板绕着点O逆时针旋转90°,如图2所示,此时∠BOM=;在图2中,OM是否平分∠CON?请说明理由;(2)接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在∠AOC 的内部,请探究:∠AOM与∠CON之间的数量关系,并说明理由;(3)将图1中的三角板绕点O按每秒4.5°的速度沿逆时针方向旋转一周,在旋转的过程中,当旋转到第秒时,∠COM与∠CON互补.30. a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(-2)=32+2×3×(-2)=-3(1)试求(-2)※3的值(2)若1※x=3,求x的值(3)若(-2)※x=-2+x,求x的值.31.用相同的小立方体搭一个几何体,从正面、上面看到的形状图如图所示,从上面看到的形状图中小正方形的字母表示在该位置上小立方体的个数,请回答下列问题:(1)a ,b ,c 各表示的数字是几?(2)这个几何体最多由几个小立方体搭成?最少呢?(3)当1d e ==,2f =时,画出这个几何体从左面看得到的形状图.32.已知方程532x x -=与方程2463k x x +-=的解互为相反数,求5417k ⎛⎫- ⎪⎝⎭的值. 33.(1)化简:(53)2(2)a a b a b --+-(2)先化简,再求值:222(2)2(2)x xy x xy --+,其中12x =,1y =- 四、压轴题34.[ 问题提出 ]一个边长为 ncm(n ⩾3)的正方体木块,在它的表面涂上颜色,然后切成边长为1cm 的小正方体木块,没有涂上颜色的有多少块?只有一面涂上颜色的有多少块?有两面涂上颜色的有多少块?有三面涂上颜色的多少块?[ 问题探究 ]我们先从特殊的情况入手 (1)当n=3时,如图(1)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有1×1×1=1个小正方体; 一面涂色的:在面上,每个面上有1个,共有6个; 两面涂色的:在棱上,每个棱上有1个,共有12个; 三面涂色的:在顶点处,每个顶点处有1个,共有8个. (2)当n=4时,如图(2)没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有2×2×2=8个小正方体: 一面涂色的:在面上,每个面上有4个,正方体共有 个面,因此一面涂色的共有 个; 两面涂色的:在棱上,每个棱上有2个,正方体共有 条棱,因此两面涂色的共有 个; 三面涂色的:在顶点处,每个顶点处有1个,正方体共有 个顶点,因此三面涂色的共有 个… [ 问题解决 ]一个边长为ncm(n ⩾3)的正方体木块,没有涂色的:把这个正方形的表层“剥去”剩下的正方体,有______个小正方体;一面涂色的:在面上,共有______个; 两面涂色的:在棱上,共有______个; 三面涂色的:在顶点处,共______个。

(完整word版)苏教版初一数学上册期末易错题(难)

(完整word版)苏教版初一数学上册期末易错题(难)

1.如果飞机上升2000米记为+2000米,那么—1000米表示 .2.单项式-322ab 的系数是 ; 次数 ;多项式132222--y x y x 的次数是 ,各项系数的和 .两个三次多项式的和的次数一定是 两个二次多项式的和的次数一定是3.已知关于x 、y 的多项式254322-++-+y x ky x kx ,当k= 时,这个多项式不含二次项;当k= 时,这个多项式不含y .4.“m 的倒数与3的平方差”,用代数式表示为 ;当m= -1时,该代数式的值为 .5.若15+m xy 与32y x n -是同类项,则m+n=___________.6.一个多项式加上223x x -+-得到12-x ,这个多项式是 .7. 三个连续的奇数,中间的一个是 2n+1,则三个数的和为 8.若代数式2231x x -+的值是3,则代数式2467x x -++的值是当x=1时,代数式53++bx ax 的值为9-,那 当x=-1代数式53++bx ax 的值为9.写出一个含有字母a 的代数式,使字母a 不论取什么值,这个代数式的值总是正数.你所写的代数式是 .写出一个含有字母a 的代数式,使字母a 不论取什么值,这个代数式的值总是负数.你所写的代数式是 .10 下列代数式的值中,一定是正数的是 ( )A .错误!2B .错误!C .错误!2+1D .-x 2+111. 若x 表示一个两位数, y 也表示一个两位数,小明想用 x 、 y 来组成一个四位数,且把 x 放在 y 的左边则代数式是 .如果苹果每千克a 元,橘子每千克b 元,那么35a b +表示 .12 .如果06213=+-a x 是一元一次方程,那么=a ,方程的解为=x 13.若15423-+-n m b a b a 与的和仍是一个单项式,则m +=n 14。

若a 、b 互为相反数,c 、d 互为倒数,则=-++5)(2cd b a __________15。

苏教版七年级数学上册 期末试卷测试卷 (word版,含解析)

苏教版七年级数学上册 期末试卷测试卷 (word版,含解析)

苏教版七年级数学上册 期末试卷测试卷 (word 版,含解析)一、选择题1.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120202.下列说法正确的是( )A .过一点有且仅有一条直线与已知直线平行B .两点之间的所有连线中,线段最短C .相等的角是对顶角D .若AC=BC ,则点C 是线段AB 的中点3.按图中程序计算,若输出的值为9,则输入的数是( )A .289B .2C .1-D .2或1-4.自南京地铁四号线开通以来,最高单日线路客运量是 2017 年 12 月 7 日的 191000 人次,数字 191000 用科学计数法表示为( )A .19.1×410B .1.91×510C .19.1×510D .0.191×610 5.下列运算正确的是 A .325a b ab +=B .2a a a +=C .22ab ab -=D .22232a b ba a b -=-6.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( )A .-3B .3C .13D .167.下列各组中的两个单项式,属于同类项的一组是( )A .23x y 与23xyB .3x 与3xC .22与2aD .5与-38.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .4 9.已知:如图,AB ⊥CD ,垂足为O ,EF 为过点O 的一条直线,则∠1与∠2的关系一定成立的是( )A.相等B.互余C.互补D.不确定10.如图,几何体的名称是()A.长方体B.三角形C.棱锥D.棱柱11.某商品在进价的基础上提价 70 元后出售,之后打七五折促销,获利 30 元,则商品进价为()元.A.100 B.140 C.90 D.12012.下列方程为一元一次方程的是()A.12yy+=B.x+2=3y C.22x x=D.3y=213.如图所示的几何体的左视图是()A.B.C.D.14.3-的绝对值是()A.3-B.13-C.3D.3±15.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为()A.B.C .D .二、填空题16.(0.33)--________13--.(用“>”“<”或“=”填空) 17.要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是_____.18.数轴上有A 、B 、C 三点,A 、B 两点所表示的数如图所示,若BC =3,则AC 的中点所表示的数是_______.19.一个数的绝对值是2,则这个数是_____.20.如图,C 为线段AB 的中点,D 在线段CB 上,且8,6DA DB ==,则CD =__________.21.若关于x 的方程3k-5x+9=0的解是非负数,则k 的取值范围为______ .22.如图,在三角形ABC 中,90B ∠=︒,6AB cm =,8BC cm =,点D 是AB 的中点,点P 从C 点出发,先以每秒2cm 的速度运动到B ,然后以每秒1cm 的速度从B 运动到A .当点P 运动时间t = _______秒时,三角形PCD 的面积为26cm .23.若代数式M =5x 2﹣2x ﹣1,N =4x 2﹣2x ﹣3,则M ,N 的大小关系是M ___N (填“>”“<”或“=”)24.如图,一根绳子对折以后用线段AB 表示,在线段AB 的三等分点处将绳子剪短,若所得三段绳长的 最大长度为 8cm ,则这根绳子原长为________cm .25.若关于x 的方程1322020x x b +=+的解是2x =,则关于y 的方程1(1)32(1)2020y y b -+=-+的解是__________. 三、解答题26.计算下列各题:(1)1021(2)11-+--⨯(2)2019111(3)69--÷-⨯ 27.《九章算术》中有“盈不足术”的问题,原文如下:“今有共买羊,人出五,不足四十五;人出七,不足三.问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出5文,则差45文;每人出7文,则差3文.(1)设人数为x ,则用含x 的代数式表示羊价为___________或___________;(2)求人数和羊价各是多少?28.画出如图所示物体的主视图、左视图、俯视图.29.在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点O 画AD 的平行线CE ,过点B 画CD 的垂线,垂足为F ;(2)四边形ABCD 的面积为____________30.解下列方程(1)235x +=;(2) 913.7-(12)-4.37x -=.31.如图,点C 是AB 上一点,点D 是AC 的中点,若12AB =,7BD =,求CB 的长.32.如图,点O 在直线AB 上,OC 、OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =150°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .(请用含α的代数式表示)33.我们定义:若两个角差的绝对值等于60,则称这两个角互为“正角”,其中一个角是另一个角的“正角”,如:1110∠=,250∠=,|12|60-=∠∠,则1∠和2∠互为“正角”.如图,已知120AOB ∠=,射线OC 平分AOB ∠, EOF ∠在AOB ∠的内部,若60EOF ∠=,则图中互为“正角”的共有___________对.四、压轴题34.如图,已知数轴上两点A ,B 表示的数分别为﹣2,6,用符号“AB ”来表示点A 和点B 之间的距离.(1)求AB 的值;(2)若在数轴上存在一点C ,使AC =3BC ,求点C 表示的数;(3)在(2)的条件下,点C 位于A 、B 两点之间.点A 以1个单位/秒的速度沿着数轴的正方向运动,2秒后点C 以2个单位/秒的速度也沿着数轴的正方向运动,到达B 点处立刻返回沿着数轴的负方向运动,直到点A 到达点B ,两个点同时停止运动.设点A 运动的时间为t ,在此过程中存在t 使得AC =3BC 仍成立,求t 的值.35.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”); ()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.36.如图,点A 、B 是数轴上的两个点,它们分别表示的数是2-和1. 点A 与点B 之间的距离表示为AB .(1)AB= .(2)点P 是数轴上A 点右侧的一个动点,它表示的数是x ,满足217x x ++-=,求x 的值.(3)点C 为6. 若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动.请问:BC AB -的值是否随着运动时间t (秒)的变化而改变? 若变化,请说明理由;若不变,请求其值.37.已知A ,B 在数轴上对应的数分别用a ,b 表示,且点B 距离原点10个单位长度,且位于原点左侧,将点B 先向右平移35个单位长度,再向左平移5个单位长度,得到点A ,P 是数轴上的一个动点.(1)在数轴上标出A 、B 的位置,并求出A 、B 之间的距离;(2)已知线段OB 上有点C 且6BC =,当数轴上有点P 满足2PB PC =时,求P 点对应的数;(3)动点P 从原点开始第一次向左移动1个单位长度,第二次向右移动3个单位长度,第三次向左移动5个单位长度,第四次向右移动7个单位长度,…点P 能移动到与A 或B 重合的位置吗?若不能,请说明理由.若能,第几次移动与哪一点重合?38.(理解新知)如图①,已知AOB ∠,在AOB ∠内部画射线OC ,得到三个角,分别为AOC ∠,BOC ∠,AOB ∠,若这三个角中有一个角是另外一个角的两倍,则称射线OC 为AOB ∠的“二倍角线”.(1)一个角的角平分线______这个角的“二倍角线”(填“是”或“不是”)(2)若60AOB ∠=︒,射线OC 为AOB ∠的“二倍角线”,则AOC ∠的大小是______;(解决问题)如图②,己知60AOB ∠=︒,射线OP 从OA 出发,以20︒/秒的速度绕O 点逆时针旋转;射线OQ 从OB 出发,以10︒/秒的速度绕O 点顺时针旋转,射线OP ,OQ 同时出发,当其中一条射线回到出发位置的时候,整个运动随之停止,设运动的时间为t 秒.(3)当射线OP ,OQ 旋转到同一条直线上时,求t 的值;(4)若OA ,OP ,OQ 三条射线中,一条射线恰好是以另外两条射线为边组成的角的“二倍角线”,直接写出t 所有可能的值______.39.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.40.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F 分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.41.如图1,射线OC 在∠AOB 的内部,图中共有3个角:∠AOB 、∠AOC 和∠BOC,若其中有一个角的度数是另一个角度数的三倍,则称射线OC 是∠AOB 的“奇分线”,如图2,∠MPN=42°:(1)过点P 作射线PQ,若射线PQ 是∠MPN 的“奇分线”,求∠MPQ ;(2)若射线PE 绕点P 从PN 位置开始,以每秒8°的速度顺时针旋转,当∠EPN 首次等于180°时停止旋转,设旋转的时间为t (秒).当t 为何值时,射线PN 是∠EPM 的“奇分线”?42.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.43.射线OA、OB、OC、OD、OE有公共端点O.(1)若OA与OE在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n<72),OB平分∠AOE,OD平分∠COE(如图2),求∠BOD的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC绕点O在∠AOD内部旋转(不与OA、OD重合).探求:射线OC从OA转到OD的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.2.B解析:B【解析】【分析】根据平行公理、线段的性质、对顶角的性质、线段中点的性质进行判断即可.【详解】解:A、过直线外一点有且仅有一条直线与已知直线平行,故此选项错误;B、两点之间的所有连线中,线段最短,说法正确;C、相等的角是对顶角,说法错误;D、若AC=BC,则点C是线段AB的中点,说法错误,应是若AC=BC=12AB,则点C是线段AB的中点,故此选项错误;故答案为B.【点睛】本题主要考查了平行公理、对顶角的性质、线段的性质,熟练应用课本知识、灵活应用定理是解答本题的关键.3.D解析:D【解析】【分析】设输入的数为x,根据计算程序列出方程,求出方程的解即可得到x的值.【详解】解:设输入的数为x,输出为9,根据计算程序中得:(2x-1)2=9,开方得:2x-1=3或2x-1=-3,解得:x=2或x=-1,故选D.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算的计算方法.4.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】191000=1.91×105,故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.D解析:D【解析】【分析】根据整式的加减,合并同类项得出结果即可判断.【详解】A. 32a b +不能计算,故错误;B. 2a a a +=,故错误;C. 2ab ab ab -=,故错误;D. 22232a b ba a b -=-,正确,故选D.【点睛】此题主要考察整式的加减,根据合并同类项的法则是解题的关键.6.A解析:A【解析】【分析】将x =-2代入方程mx =6,得到关于m 的一元一次方程,解方程即可求出m 的值.【详解】∵关于x 的一元一次方程mx =6的解为x =-2,∴﹣2m =6,解得:m =-3.故选:A.【点睛】本题考查了一元一次方程的解的定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.7.D解析:D【解析】【分析】所含字母相同,相同字母的指数也相同的项叫同类项,由此可确定.【详解】A 选项,相同字母的指数不同,不是同类项,A 错误;B 选项,3x字母出现在分母上,不是整式,更不是单项式,B 错误; C 选项,不含有相同字母,C 错误;D 选项,都是数字,故是同类项,D 正确.【点睛】本题考查了同类项,熟练掌握同类项的定义是解题的关键. 8.C解析:C【解析】【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.9.B解析:B【解析】【分析】根据图形可看出,∠2的对顶角∠COE与∠1互余,那么∠1与∠2就互余.【详解】解:图中,∠2=∠COE(对顶角相等),又∵AB⊥CD,∴∠1+∠COE=90°,∴∠1+∠2=90°,∴两角互余.故选:B.【点睛】本题考查了余角和垂线的定义以及对顶角相等的性质.10.C解析:C【解析】【分析】根据简单几何体的特点即可判断.【详解】图中的几何体为三棱锥故选C.【点睛】此题主要考查几何体的命名,解题的关键是熟知棱锥的特点.11.C解析:C【解析】【分析】设该商品进价为x元,则售价为(x+70)×75%,进一步利用售价-进价=利润列出方程解答即可.【详解】设该商品进价为x元,由题意得(x+70)×75%-x=30,解得:x=90,答:该商品进价为90元.故选:C .【点睛】此题考查一元一次方程的实际运用,掌握销售问题中基本数量关系是解决问题的关键.12.D解析:D【解析】【分析】直接利用一元一次方程的定义分别分析得出答案.【详解】解:A. 12y y+=是分式方程,不符合题意 B. x+2=3y,是二元一次方程,不符合题意C. 22x x =,是一元二次方程,不符合题意D. 3y=2,是一元一次方程,正确故选:D【点睛】此题主要考查了一元一次方程的定义,正确把握定义是解题关键.13.C解析:C【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看是一个矩形,矩形的中间是一条横着的线,故选:C .【点睛】本题考查了简单组合体的三视图,属于基础题,掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.14.C解析:C【解析】【分析】利用绝对值的定义求解即可.【详解】解:3-的绝对值是3.故选:C.【点睛】本题主要考查了绝对值,解题的关键是熟记绝对值的定义.15.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D.【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.二、填空题16.>【解析】【分析】根据去括号和绝对值的算法解题即可.【详解】-(-0.33)=0.33,,∴0.33>.故答案为:>.【点睛】本题考查了绝对值、正负性的综合题型,关键在于掌握定义解析:>【解析】【分析】根据去括号和绝对值的算法解题即可.【详解】-(-0.33)=0.33,11--=-,33∴0.33>1 3 .故答案为:>.【点睛】本题考查了绝对值、正负性的综合题型,关键在于掌握定义性质.17.两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本解析:两点确定一条直线【解析】【分析】根据两点确定一条直线解答.【详解】解:要在墙壁上固定一根小木条,至少需要两枚钉子,其数学原理是:两点确定一条直线,故答案为两点确定一条直线.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.18.5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.【详解】解:∵B为5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷解析:5或4.5【解析】【分析】分两种情况得到C点所表示的数,再根据中点坐标公式可求AC的中点所表示的数.【详解】解:∵B为5,BC=3,∴C点为2或8,∴AC的中点所表示的数是(1+2)÷2=1.5或(1+8)÷2=4.5.故答案为:1.5或4.5.【点睛】本题考查了数轴,解题的关键是确定C点所表示的数,注意分类思想的应用.19.±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.解析:±2.【解析】【分析】根据互为相反数的两个数的绝对值相等解答.【详解】解:一个数的绝对值是2,则这个数是±2.故答案为:±2.【点睛】本题考点:绝对值.20.1【解析】【分析】根据可知AB的长度,再根据为线段的中点,可知AC的长度,从而可求答案. 【详解】∵∴AB=DA+DB=8+6=14∵为线段的中点∴∴CD=DA-AC=8-7=1故解析:1【解析】【分析】根据8,6DA DB ==可知AB 的长度,再根据C 为线段AB 的中点,可知AC 的长度,从而可求答案.【详解】∵8,6DA DB ==∴AB=DA+DB=8+6=14∵C 为线段AB 的中点 ∴1=72AC BC AB ==∴CD=DA -AC=8-7=1故答案为1.【点睛】 本题考查的是线段中点的性质,熟知线段中点的性质是解题的关键.21.k≥3.【解析】【分析】先求出x 的值,然后根据x 为非负数,解不等式,求出k 的取值范围.【详解】解方程得:x=3k+9,则解得:.故答案为.【点睛】考查解一元一次不等式,一元一次解析:k≥3.【解析】【分析】先求出x 的值,然后根据x 为非负数,解不等式,求出k 的取值范围.【详解】解方程得:x =3k +9,则390k +≥,解得:3k ≥-.故答案为3k ≥-.【点睛】考查解一元一次不等式,一元一次方程的解,解一元一次方程,根据方程列出不等式是解题的关键.22.2或5.5或8.5【解析】【分析】分为两种情况讨论:当点P 在BC 上时,当点P 在AB 上时,根据三角形的面积公式建立方程求出其解即可.【详解】∵,,点是的中点∴BD=3cm,如图,点P 在B解析:2或5.5或8.5【解析】【分析】分为两种情况讨论:当点P 在BC 上时,当点P 在AB 上时,根据三角形的面积公式建立方程求出其解即可.【详解】∵6AB cm =,8BC cm =,点D 是AB 的中点∴BD=3cm,如图,点P 在BC 上时,CP=2t ,∵三角形PCD 的面积为26cm .∴12CP×BD=6,即12×2t×3=6 解得t=2s ,当P 运动到B 时,时间为8÷2=4s如图,当点P 在AB 上时,BP 1=t-4,DP 1= BP 1-BD=t-4-3=t-7∵三角形PCD 的面积为26cm .∴12DP 1×BC=6,即12×(t-7)×8=6 解得t=8.5s同理BP2=t-4,DP2= BD- BP2=3-(t-4)=7-t ∵三角形PCD的面积为26cm.∴12DP1×BC=6,即12×(7-t)×8=6解得t=5.5s综上,当点P运动时间t 2或5.5或8.5秒时,三角形PCD的面积为26cm.故答案为:2或5.5或8.5.【点睛】本题考查了直角三角形的性质的运用,三角形的面积公式的运用,解答时灵活运用三角形的面积公式求解是关键.23.>.【解析】【分析】首先计算出、的差,再分析差的正负性可得答案.【详解】M﹣N=5x2﹣2x﹣1﹣(4x2﹣2x﹣3),=5x2﹣2x﹣1﹣4x2+2x+3,=x2+2>0,∴M>N解析:>.【解析】【分析】首先计算出M、N的差,再分析差的正负性可得答案.【详解】M﹣N=5x2﹣2x﹣1﹣(4x2﹣2x﹣3),=5x2﹣2x﹣1﹣4x2+2x+3,=x2+2>0,∴M>N,故答案为:>.【点睛】此题主要考查了整式的加减,关键是注意去括号时符号的变化.24.12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP解析:12或24【解析】【分析】根据绳子对折后用线段AB表示,可得绳子长是AB的2倍,分两种情况讨论,根据三等分点得出线段之间的关系,由最长段为8进行求解.【详解】解:设绳子沿A点对折,当AP=13AB时,三条绳子长度一样均为8,此时绳子原长度为24cm;当AP=23AB时,AP的2倍段最长为8cm,则AP=4,∴PB=2,此时绳子原长度为12cm.∴绳子原长为12或24.故答案为:12或24.【点睛】本题考查了线段的度量,根据题意得出线段之间的和差及倍分关系是解答此题的关键. 25.【解析】【分析】将方程看成关于(y+1)的方程即可进行计算即可.【详解】解:∵关于的方程的解是∴关于的方程的解∴故答案为:【点睛】本题考查了方程的解的概念,准确理解方程的解是解题解析:3y【解析】【分析】将方程1(1)32(1)2020y y b -+=-+看成关于(y+1)的方程即可进行计算即可. 【详解】 解:∵关于x 的方程1322020x x b +=+的解是2x = ∴关于()-1y 的方程1(1)32(1)2020y y b -+=-+的解12y -= ∴3y =故答案为:3y =【点睛】本题考查了方程的解的概念,准确理解方程的解是解题的关键. 三、解答题26.(1)33;(2)12-. 【解析】【分析】(1)先计算乘法,再去括号,最后进行有理数加减混合运算;(2)先算乘方和小括号内的乘法,再计算除法,最后计算加法运算.【详解】解:(1)1021(2)11-+--⨯=1021(22)-+--=1122+=33(2)2019111(3)69--÷-⨯ =111()63--÷- 11(3)6=--⨯- 112=-+ 12=- 【点睛】本题考查含有乘方的有理数混合运算,解题关键是熟练掌握运算顺序和运算法则.27.(1)545x +, 73x + ;(2)人数21人,羊价150文.【解析】【分析】(1)设合伙人为x 人,根据“若每人出5文,还差45文;若每人出7文,还差3文”,即可用含x 的代数式表示出羊的总钱数,(2)由(1)中两个代数式都表示羊的总钱数,它们相等解之即可得出结论.【详解】(1)设人数为x ,则用含x 的代数式表示羊的总价格为(545x +)文或(73x +)文; (2)解:设人数为x54573x x +=+57345x x -=-242x -=-21x =2154510545150⨯+=+=(文)21731473150⨯+=+=(文)答:人数21人,羊价150文.【点睛】本题考查一元一次方程组的应用,解题关键是找准等量关系,正确列出一元一次方程.28.详见解析.【解析】【分析】主视图是从几何体的正面看所得到的图形,左视图是从几何体的左边看所得到的图形,俯视图是从几何体的上面看所得到的图形.【详解】解:如图所示:【点睛】本题考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.29.(1)见解析;(2)20【解析】【分析】(1)根据平行线、垂线的定义即可作图;(2)根据割补法即可求解.【详解】(1)如下图:(2)S 四边形ABCD =6×6-12×4×3-12×2×1-12×6×3=36-6-1-9=20 【点睛】 此题主要考查几何图形基础,解题的关键是熟知平行线、垂线及三角形的面积公式.30.(1)x=1;(2)x=132-【解析】【分析】(1)移项、合并同类项、系数化1即可;(2)去分母、去括号、移项、合并同类项、系数化1即可.【详解】解:(1)235x +=移项、合并同类项,得22x =系数化1,得1x =(2) ()913.712 4.37x --=- 去分母,得()95.991230.1x --=-去括号,得95.991830.1x -+=-移项,得1830.1995.9x =-+-合并同类项,得18117x =-系数化1,得132x =-【点睛】此题考查的是解一元一次方程,掌握解一元一次方程的一般步骤是解决此题的关键. 31.【解析】【分析】首先根据AB 和BD 求出AD ,然后根据中点的性质求出AC ,即可得出CB.【详解】∵12AB =,7BD =,∴1275AD AB BD =-=-=.∵点D 是AC 的中点,∴22510AC AD ==⨯=.∴12102CB AB AC =-=-=.【点睛】此题主要考查线段的求解,熟练掌握,即可解题. 32.(1)∠AOC =60°,(2)360°﹣2α.【解析】【分析】(1)利用垂直的定义和角的和差关系可得∠COE ,由角平分线的性质可得∠BOE ,然后根据平角的定义解答即可;(2)根据垂直的定义和角的和差关系可得∠COE ,由角平分线的性质可得∠BOE ,然后利用平角的定义求解即可.【详解】解:(1)∵OC ⊥OD ,∴∠DOC =90°,∵∠DOE =150°,∴∠COE =∠DOE ﹣∠COD =150°﹣90°=60°,∵射线OE 平分∠BOC ,∴∠COE =∠BOE =60°,∴∠AOC =180°﹣∠COE ﹣∠BOE =180°﹣60°﹣60°=60°,(2)∵OC ⊥OD ,∴∠DOC =90°,∵∠DOE =α,∴∠COE =∠DOE ﹣∠COD =α﹣90°,∵射线OE 平分∠BOC ,∴∠COE =∠BOE =α﹣90°,∴∠AOC =180°﹣∠COE ﹣∠BOE =180°﹣(α﹣90°)﹣(α﹣90°)=360°﹣2α,故答案为:360°﹣2α.【点睛】本题考查了垂直的定义、角平分线的性质、平角的定义和角的和差关系,属于基本题型,熟练掌握基本知识是解题关键.33.7【解析】【分析】根据互为“正角”的定义进行解答即可.【详解】解:∵120AOB ∠=︒,射线OC 平分AOB ∠,∴1602AOC BOC AOB ∠=∠=∠=︒ ∵60,AOB AOC BOC ∠-∠=∠=︒∴AOB AOC ∠∠、互为“正角”;∵60AOB BOC AOC ∠-∠=∠=︒∴AOB BOC ∠∠、互为“正角”;∵1206060,AOB EOF ∠-∠=︒-︒=︒∴AOB EOF ∠∠、互为“正角”;∵60,AOF AOE EOF ∠-∠=∠=︒∴AOF AOE ∠∠、互为“正角”;∵60,AOF COF AOC ∠-∠=∠=︒∴AOF COF ∠∠、互为“正角”;∵60,BOE BOF EOF ∠-∠=∠=︒∴BOE BOF ∠∠、互为“正角”;∵60,BOE EOC BOC ∠-∠=∠=︒∴BOE EOC ∠∠、互为“正角”;故共有7对角互为“正角”故答案为:7【点睛】本题考查了新型定义及角的和差关系,掌握角的和差是解题的关键.四、压轴题34.(1)8;(2)4或10;(3)t 的值为167和329【解析】【分析】(1)由数轴上点B 在点A 的右侧,故用点B 的坐标减去点A 的坐标即可得到AB 的值; (2)设点C 表示的数为x ,再根据AC=3BC ,列绝对值方程并求解即可;(3)点C 位于A ,B 两点之间,分两种情况来讨论:点C 到达B 之前,即2<t<3时;点C 到达B 之后,即t>3时,然后列方程并解方程再结合进行取舍即可.【详解】解:(1)∵数轴上两点A ,B 表示的数分别为﹣2,6∴AB =6﹣(﹣2)=8答:AB 的值为8.(2)设点C 表示的数为x ,由题意得|x ﹣(﹣2)|=3|x ﹣6|∴|x +2|=3|x ﹣6|∴x +2=3x ﹣18或x +2=18﹣3x∴x =10或x =4答:点C 表示的数为4或10.(3)∵点C 位于A ,B 两点之间,∴点C 表示的数为4,点A 运动t 秒后所表示的数为﹣2+t ,①点C 到达B 之前,即2<t <3时,点C 表示的数为4+2(t ﹣2)=2t∴AC =t +2,BC =6﹣2t∴t +2=3(2t ﹣6)解得t =167②点C 到达B 之后,即t >3时,点C 表示的数为6﹣2(t ﹣3)=12﹣2t∴AC =|﹣2+t ﹣(12﹣2t )|=|3t ﹣14|,BC =6﹣(12﹣2t )=2t ﹣6∴|3t ﹣14|=3(2t ﹣6)解得t =329或t =43,其中43<3不符合题意舍去 答:t 的值为167和329 【点睛】本题考查了数轴上的动点问题,列一元一次方程和绝对值方程进行求解,是解答本题的关键.35.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可,(2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可,(4)根据(3)的结果计算即可.【详解】(1)观察数轴可知,4a =-,1b =,6c =.故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =,则若将数轴在点B 处折叠,点A 与点C 能重合.故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +.(4)5AB t =+,∴3153AB t =+.又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC -的值不会随时间t 的变化而变化,值为10.【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.36.(1)3.(2)存在.x 的值为3.(3)不变,为2.【解析】【分析】(1)根据非负数的性质和数轴上两点间距离即可求解;(2)分两种情况讨论,根据数轴上两点间的距离公式列方程即可求解;(3)先确定运动t 秒后,A 、B 、C 三点对应的数,再根据数轴上两点间的距离公式列方程即可求解.【详解】解:(1)∵点A 、B 是数轴上的两个点,它们分别表示的数是2-和1∴A,B 两点之间的距离是1-(-2)=3.故答案为3.(2)存在.理由如下:①若P 点在A 、B 之间,x+2+1-x=7,此方程不成立;②若P 点在B 点右侧,x+2+x-1=7,解得x=3.答:存在.x 的值为3.(3)BC AB -的值不随运动时间t (秒)的变化而改变,为定值,是2.理由如下: 运动t 秒后,A 点表示的数为-2-t,B 点表示的数为1+2t,C 点表示的数为6+5t.所以AB=1+2t-(-2-t)=3+3t.BC=6+5t-(1+2t)=5+3t.所以BC-AB=5+3t-3-3t=2.【点睛】本题考查了一元一次方程、数轴、非负数、两点之间的距离,解决本题的关键是数轴上动点的运动情况.37.(1)A 、B 位置见解析,A 、B 之间距离为30;(2)2或-6;(3)第20次P 与A 重合;点P 与点B 不重合.【解析】【分析】(1)点B 距离原点10个单位长度,且位于原点左侧,得到点B 表示的数,再根据平移的过程得到点A 表示的数,在数轴上表示出A 、B 的位置,根据数轴上两点间的距离公式,求出A 、B 之间的距离即可;。

苏教版七年级上册数学 期末试卷试卷(word版含答案)

苏教版七年级上册数学 期末试卷试卷(word版含答案)

苏教版七年级上册数学 期末试卷试卷(word 版含答案)一、选择题1.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120202.如图,点C 是线段AB 上一点,点D 是线段AC 的中点,则下列等式不成立的是( )A .AD +BD =AB B .BD ﹣CD =CBC .AB =2ACD .AD =12AC 3.2020的相反数是( )A .2020B .﹣2020C .12020D .﹣120204.如图是正方体的展开图,则原正方体相对两个面上的数字和最小是( )A .8B .7C .6D .45.2019年是中华人民共和国成立70周年,10月1日上午在天安门举行了盛大的阅兵式和群众游行,约有115000名官兵和群众参与,是我们每个中国人的骄傲.将115000用科学计数法表示为( )A .115×103B .11.5×104C .1.15×105D .0.115×1066.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定7.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a 8.在 3.14、227、 0、π、1.6这 5个数中,无理数的个数有( ) A .1 个B .2 个C .3 个D .4 个 9.下列算式中,运算结果为负数的是( ) A .()3--B .()33--C .()23-D .3-- 10.小明同学用手中一副三角尺想摆成α∠与β∠互余,下面摆放方式中符合要求的是( ).A .B .C .D .11.如果a 和14-b 互为相反数,那么多项式()()2210723b a a b -++--的值是 ( )A .-4B .-2C .2D .4 12.下列运算正确的是( )A .332(2)-=-B .22(3)3-=-C .323233-⨯=-⨯D .2332-=- 13.某商品原价为m 元,由于供不应求,先提价30%进行销售,后因供应逐步充足,价格又一次性降价30%,售价为n 元,则m ,n 的大小关系为( )A .m n =B .0.91n m =C .30%n m =-D .30%n m =-14.如图是由几个小立方块所搭成的几何体的俯视图,小正方形中的数字表示在该位置小立方块的个数,则这个几何体的主视图为( )A .B .C .D .15.下列说法中,正确的是( )A .单项式232ab -的次数是2,系数为92- B .2341x y x -+-是三次三项式,常数项是1C .单项式a 的系数是1,次数是0D .单项式223x y -的系数是2-,次数是3 二、填空题16.,,,A B C D 是长方形纸片的四个顶点,点E F H 、、分别是边AB BC AD 、、上的三点,连结EF FH 、.(1)将长方形纸片ABCD 按图①所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,点'B 在FC '上,则EFH ∠的度数为 ;(2)将长方形纸片ABCD 按图②所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、, 若''18∠=︒B FC , 求EFH ∠的度数;(3)将长方形纸片ABCD 按图③所示的方式折叠,FE FH 、为折痕,点B C D 、、折叠后的对应点分别为''B C D '、、,若EFH m ∠=,求''B FC ∠的度数为 .17.一个几何体的主视图、左视图、俯视图都是相同的图形,这样的几何体可以是___________(写出一个符合条件的即可).18.定义一种对正整数n 的“F ”运算:①当n 为奇数时,F (n )=3n +1;②当n 为偶数时,F (n )2kn =(其中k 是使F (n )为奇数的正整数)……,两种运算交替重复进行,例如,取n =13,则:若n =24,则第100次“F ”运算的结果是________.19.青藏高原面积约为2 500 000方千米,将2 500 000用科学记数法表示应为______.20.若4550a ∠=︒',则a ∠的余角为______.21.若2|3|(2)0x y ++-=,则2x y +的值为___________.22.若221x x -+的值是4,则2245x x --的值是_________.23.如图,将图沿虚线折起来,得到一个正方体,那么“3”的对面是_______(填编号)24.按照下图程序计算:若输入的数是 -3 ,则输出的数是________25.如图,从A 到B 有多条道路,人们通常会走中间的直路,而不走其他的路,这其中的道理是 .三、解答题26.解下列方程:(1)3(1)4(21)8x x --+=(2)12123x x -+-= 27.解下列方程:(1)3(45)7x x --=; (2)5121136x x +-=-. 28.某市电力部门对居民用电按月收费,标准如下:①用电不超过100度的,每度收费0.5元;②用电超过100度的,超过部分每度收费0.8元.请根据上述收费标准解答下列问题:(1)小明家1月份用电140度,应交电费______________元;(2)小明家2月交电费98元,则他家2月份用电多少度?29.如图,射线OM 上有三点A 、B 、C ,满足20OA cm =,60AB cm =,BC 10cm =,点P 从点O 出发,沿OM 方向以1/cm s 的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2/cm s ,经过多长时间P 、Q 两点相遇?(2)当2PA PB =时,点Q 运动到的位置恰好是线段OB 的中点,求点Q 的运动速度; (3)设运动时间为xs ,当点P 运动到线段AB 上时,分别取OP 和AB 的中点E 、F ,则2OC AP EF --=____________cm .30.如图,所有小正方形的边长都为1,点O 、P 均在格点上,点P 是∠AOB 的边 OB 上一点,直线PC ⊥OA ,垂足为点C .(1)过点 P 画 OB 的垂线,交OA 于点D ;(2)线段 的长度是点O 到直线PD 的距离;(3)根据所画图形,判断∠OPC ∠PDC (填“>”,“<”或“=”),理由是 .31.计算(1)48(2)(4)-+÷-⨯-(2)21513146326⎛⎫⎛⎫--+++- ⎪ ⎪⎝⎭⎝⎭32.先化简,再求值:()()2222 4333a b ab ab a b ---+.其中 1a =-、 2b =-.33.有三条长度均为a 的线段,分别按以下要求画圆.(1)如图①,以该线段为直径画一个圆,记该圆的周长为C 1;如图②,在该线段上任取一点,再分别以两条小线段为直径画两个圆,这两个圆的周长的和为C 2,请指出C 1和C 2的数量关系,并说明理由;(2)如图③,当a =11时,以该线段为直径画一个大圆,再在大圆内画若千小圆,这些小圆的直径都和大圆的直径在同一条直线上,且小圆的直径的和等于大圆的直径,那么图中所有小圆的周长的和为 .(直接填写答案,结果保留π)四、压轴题34.如图:在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,a 是多项式2241x x --+的一次项系数,b 是最小的正整数,单项式2412x y -的次数为.c()1a =________,b =________,c =________;()2若将数轴在点B 处折叠,则点A 与点C ________重合(填“能”或“不能”); ()3点A ,B ,C 开始在数轴上运动,若点C 以每秒1个单位长度的速度向右运动,同时,点A 和点B 分别以每秒3个单位长度和2个单位长度的速度向左运动,t 秒钟过后,若点A 与点B 之间的距离表示为AB ,点B 与点C 之间的距离表示为BC ,则AB =________,BC =________(用含t 的代数式表示);()4请问:3AB BC -的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由.36.如图,数轴上A ,B 两点对应的数分别为4-,-1(1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =37.问题情境:在平面直角坐标系xOy 中有不重合的两点A (x 1,y 1)和点B (x 2,y 2),小明在学习中发现,若x 1=x 2,则AB ∥y 轴,且线段AB 的长度为|y 1﹣y 2|;若y 1=y 2,则AB ∥x 轴,且线段AB 的长度为|x 1﹣x 2|;(应用):(1)若点A (﹣1,1)、B (2,1),则AB ∥x 轴,AB 的长度为 .(2)若点C (1,0),且CD ∥y 轴,且CD=2,则点D 的坐标为 .(拓展):我们规定:平面直角坐标系中任意不重合的两点M (x 1,y 1),N (x 2,y 2)之间的折线距离为d (M ,N )=|x 1﹣x 2|+|y 1﹣y 2|;例如:图1中,点M (﹣1,1)与点N (1,﹣2)之间的折线距离为d (M ,N )=|﹣1﹣1|+|1﹣(﹣2)|=2+3=5.解决下列问题:(1)已知E (2,0),若F (﹣1,﹣2),求d (E ,F );(2)如图2,已知E (2,0),H (1,t ),若d (E ,H )=3,求t 的值;(3)如图3,已知P (3,3),点Q 在x 轴上,且三角形OPQ 的面积为3,求d (P ,Q ).38.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a 的值.39.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .40.已知线段AD =80,点B 、点C 都是线段AD 上的点.(1)如图1,若点M 为AB 的中点,点N 为BD 的中点,求线段MN 的长;(2)如图2,若BC =10,点E 是线段AC 的中点,点F 是线段BD 的中点,求EF 的长; (3)如图3,若AB =5,BC =10,点P 、Q 分别从B 、C 出发向点D 运动,运动速度分别为每秒移动1个单位和每秒移动4个单位,运动时间为t 秒,点E 为AQ 的中点,点F 为PD 的中点,若PE =QF ,求t 的值.41.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.42.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,<+且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.43.射线OA 、OB 、OC 、OD 、OE 有公共端点O .(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B .【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.2.C解析:C【解析】【分析】根据图形和题意可以分别判断各个选项是否正确.【详解】解:由图可得,AD +BD =AB ,故选项A 中的结论成立,BD ﹣CD =CB ,故选项B 中的结论成立,∵点C 是线段AB 上一点,∴AB 不一定时AC 的二倍,故选项C 中的结论不成立, ∵D 是线段AC 的中点,∴12AD AC,故选项D 中的结论成立, 故选:C .【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用数形结合的思想解答. 3.B解析:B【解析】【分析】根据相反数的定义可直接得出结论.【详解】解:2020的相反数是−2020.故选:B.【点睛】本题考查了相反数的定义,题目比较简单,掌握相反数的定义是解决本题的关键.4.C解析:C【解析】【分析】确定原正方体相对两个面上的数字,即可求出和的最小值.【详解】解:由题意,2和6是相对的两个面;3和4是相对两个面;1和5是相对的2个面,因为2+6=8,3+4=7,1+5=6,所以原正方体相对两个面上的数字和最小的是6.故选:C.【点睛】本题考查了正方体相对两个面上的文字,解决本题的关键是根据相对的面的特点得到相对的两个面上的数字.5.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将115000用科学记数法表示为:1.15×105.故选C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.B解析:B【解析】【分析】分别列方程求出两件衣服的进价,然后可得两件衣服分别赚了多少和赔了多少,则两件衣服总的盈亏就可求出.【详解】设第一件衣服的进价为x,依题意得:x(1+25%)=90,解得:x=72,所以赚了解90−72=18元;设第二件衣服的进价为y,依题意得:y(1−25%)=150,解得:y=120,所以赔了120−90=30元,所以两件衣服一共赔了12元.故选:B.【点睛】解决本题的关键是要知道两件衣服的进价,知道了进价,就可求出总盈亏.7.C解析:C【解析】【分析】根据数轴得出-3<a<-2,再逐个判断即可.【详解】A、∵从数轴可知:-3<a<-2,∴2<-a<3,故本选项不符合题意;B、∵从数轴可知:-3<a<-2,∴2<a<3,故本选项不符合题意;C、∵从数轴可知:-3<a<-2,∴2<a<3,∴1<|a|-1<2,故本选项符合题意;D、∵从数轴可知:-3<a<-2,∴3<1 –a<4,故本选项不符合题意;故选:C.【点睛】本题考查了数轴和绝对值、有理数的大小,能根据数轴得出-3<a<-2是解此题的关键.8.A解析:A【解析】【分析】根据无理数的定义确定即可.【详解】解:在 3.14、227、 0、π、1.6这 5个数中,π为无理数,共1个.故选:A.【点睛】本题考查实数的分类,无限不循环的小数为无理数.9.D解析:D【解析】【分析】根据有理数的运算即可依次求解判断.【详解】A. ()3--=3>0,故错误;B. ()33--=27>0,故错误;C. ()23-=9,>0,故错误;D. 3--=-3<0,故正确;故选D.【点睛】此题主要考查有理数的运算,解题的关键是熟知有理数的运算法则.10.A解析:A【解析】试题解析:A、∠α+∠β=180°-90°=90°,则∠α与∠β互余,选项正确;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β不互余,故本选项错误;D、∠α和∠β互补,故本选项错误.故选A.11.A解析:A【解析】【分析】根据相反数的性质并整理可得a4b-=-1,然后去括号、合并同类项,再利用整体代入法求值即可.【详解】解:∵a和14b-互为相反数,∴a+14b-=0整理,得a4b-=-1()()2210723b a a b-++--=242071421b a a b -++--=3121a b --=()341a b --=()311⨯--=-4故选A .【点睛】此题考查的是相反数的性质和整式的化简求值题,掌握相反数的性质、去括号法则和合并同类项法则是解决此题的关键.12.A解析:A【解析】【分析】根据幂的乘法运算法则判断即可.【详解】A. 332(2)-=-=-8,选项正确;B. 22(3)9,39-=-=-,选项错误;C. 323224,3327,-⨯=--⨯=-选项错误;D. 2339,28,-=--=-选项错误;故选A.【点睛】本题考查幂的乘方运算法则,关键在于熟练掌握运算方法.13.B解析:B【解析】【分析】首先表示出提价30%的价格,进而表示出降价30%的价格即可得出答案.【详解】解:∵商品原价为m 元,先提价30%进行销售,∴价格是: m (1+30%)∵再一次性降价30% ,∴售价为:n= m (1+30%) (1-30%) =0.91m故选: B .【点睛】此题主要考查了一元一次方程的应用,根据已知得出升降价后实际价格是解题关键.14.D解析:D【解析】【分析】根据各层小正方体的个数,然后得出三视图中主视图的形状,即可得出答案.【详解】解:综合三视图,这个几何体中,根据各层小正方体的个数可得:主视图一共三列,左边一列1个正方体,右边一列1个正方体,中间一列有3个正方体,故选D .【点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.15.A解析:A【解析】【分析】根据单项式与多项式的次数的定义以及多项式的项数的定义求解即可.【详解】解:A . 单项式232ab -的次数是2,系数为92-,此选项正确; B . 2341x y x -+-是三次三项式,常数项是-1,此选项错误;C . 单项式a 的系数是1,次数是1,此选项错误;D . 单项式223x y -的系数是23-,次数是3,此选项错误. 故选:A .【点睛】本题考查的知识点是单项式与多项式的有关定义,熟记各定义是解此题的关键.二、填空题16.(1)90°;(2)99°;(3)180°-2m°【解析】【分析】(1)由折叠的性质可得,,在由角的构成可求答案;(2)由折叠的性质可设,再根据角的构成就可求出答案;(3)方法同(2),将解析:(1)90°;(2)99°;(3)180°-2m°【解析】【分析】(1)由折叠的性质可得,BFE B FE CFH C FH ''∠=∠=,∠∠,在由角的构成可求答案;(2)由折叠的性质可设,=BFE B FE x C FH CFH y ''===∠∠∠∠,再根据角的构成就可求出答案;(3)方法同(2),将(2)中的18B FC ''=∠换成=EFH m ∠即可求解.【详解】解:(1)∵沿EF ,FH 折叠,∴BFE B FE CFH C FH ''∠=∠=,∠∠∵点B '在FC '上, ∴()11=+=180=9022EFH BFB CFC ''⨯∠∠∠, 故答案为90°;(2)∵沿EF ,FH 折叠,∴可设,=BFE B FE x C FH CFH y ''===∠∠∠∠,∵2x+18°+2y=180°,∴x+y=81°∴∠EFH=x+18°+y=99°,故答案为99°;(3)∵沿EF ,FH 折叠∴可设,=BFE B FE x C FH CFH y ''===∠∠∠∠∴∠EFH=180°-∠BFE-∠CFH=180°-(x+y )即180x y m +=︒-又∵∠EFH EFB B FC C FH x B FC y ''''''=-+=-+∠∠∠∠∠∴()=1801802B FC x y EFH m m m ''=+---=-∠∠故答案为:1802m -【点睛】本题考查的是倒角的能力,能够清晰的看出题干中角的构成是解题的关键.17.答案不唯一,如正方体、球体【解析】【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【详解】依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故填解析:答案不唯一,如正方体、球体【解析】【分析】三视图都相同的几何体是:正方体,三视图均为正方形;球体,三视图均为圆.【详解】依题意,主视图、左视图以及俯视图都相同的几何体是正方体或球体.故填:正方体、球体(答案不唯一).【点睛】本题考查由三视图确定几何体的形状,主要考查学生空间想象能力和对立体图形的认识. 18.4【解析】【分析】计算n=24时的情况,将结果列出来找到规律解题即可.【详解】若n=1,第一次结果为3n+1=4,第2次“F 运算”的结果是:=1; 若n=24,第1次结果为:,第2次解析:4【解析】【分析】计算n =24时的情况,将结果列出来找到规律解题即可.【详解】若n=1,第一次结果为3n+1=4,第2次“F 运算”的结果是: 242=1;若n=24,第1次结果为:32432=,第2次结果为:3×3+1=10,第3次结果为:11052=,第4次结果为:3×5+1=16,第5次结果为:41612=,第6次结果为:3×1+1=4,第7次结果为:2412=,第8次结果为: 3×1+1=4,…可以看出,从第5次开始,结果就只是1,4两个数轮流出现,且当次数为奇数时,结果是1,次数是偶数时,结果是4,而100次是偶数,因此最后结果是4.故答案为:4.【点睛】本题为找规律的题型,关键在于列出结果找到规律.19.【解析】【分析】科学计数法就是把一个数写成的形式,其中,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,,由的范围可知,可得结论.【详解】解:.故答案为解析:62.510⨯【解析】【分析】科学计数法就是把一个数写成10n a ⨯的形式,其中110a ≤<,用科学计数法表示较大数时,n 为非负整数,且n 的值等于原数中整数部分的位数减去1,716n ,由 a 的范围可知 2.5a =,可得结论.【详解】解:62500000 2.510=⨯.故答案为:62.510⨯.【点睛】本题考查了科学计数法,熟练掌握科学计数法的表示方法是解题的关键.20.【解析】【分析】根据余角的定义(两个角的和为,则这两个角互为余角)可求解.【详解】解:,所以的余角为.故答案为:.【点睛】本题考查了余角,熟练掌握余角的定义是解题的解析:4410'︒【解析】【分析】根据余角的定义(两个角的和为90︒,则这两个角互为余角)可求解.【详解】解:9045041504︒'='︒︒-,所以a ∠的余角为4410'︒.故答案为:4410'︒.【点睛】本题考查了余角,熟练掌握余角的定义是解题的21.【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【详解】解:∵,∴x+3=0,y −2=0,解得:x =−3,y =2,故x +2y =−3+4=1.故答案解析:1【解析】【分析】直接利用偶次方的性质以及绝对值的性质得出x ,y 的值,进而得出答案.【详解】解:∵2|3|(2)0x y ++-=,∴x +3=0,y−2=0,解得:x =−3,y =2,故x +2y =−3+4=1.故答案是:1.【点睛】此题主要考查了偶次方的性质以及绝对值的性质,正确得出x ,y 的值是解题关键. 22.1【解析】【分析】根据题意,得到,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵,∴,∴;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到,熟练运用整解析:1【解析】【分析】根据题意,得到223x x -=,然后利用整体代入法进行求解,即可得到答案.【详解】解:∵2214x x -+=,∴223x x -=,∴222452(2)52351x x x x --=--=⨯-=;故答案为:1.【点睛】本题考查了求代数式的值,解题的关键是正确得到223x x -=,熟练运用整体代入法进行解题. 23.6【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形, ∴在此正方体上与“3”相解析:6【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答.【详解】解:∵正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,∴在此正方体上与“3”相对的面上的数字是“6”.故答案为:6.【点睛】本题考查了正方体的展开图形,解题关键是从相对面入手进行分析及解答问题.24.4【解析】【分析】设输入数为x ,观察程序图可得运算程序为(x+1)2,将x= -3代入列式求解即可.【详解】解:根据题意得,当输入数为-3,则输出的数为:(-3+1)2=4.故答案为:解析:4【解析】【分析】设输入数为x ,观察程序图可得运算程序为(x+1)2,将x= -3代入列式求解即可.【详解】解:根据题意得,当输入数为-3,则输出的数为:(-3+1)2=4.故答案为:4.【点睛】本题考查了有理数的混合运算,解答本题的关键就是弄清楚程序图图给出的计算程序.25.两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.解析:两点之间线段最短【解析】试题分析:根据两点之间线段最短解答.解:道理是:两点之间线段最短.故答案为两点之间线段最短.考点:线段的性质:两点之间线段最短.三、解答题26.(1)3x =-;(2)13x =.【解析】【分析】(1)根据等式的基本性质,去括号、移项、合并同类项、系数化1即可;(2)根据等式的基本性质,去分母、去括号、移项、合并同类项、系数化1即可.【详解】解下列方程:(1)3(1)4(21)8x x --+=解:33848x x ---=5843x -=++515x -=3x =-(2)12123x x -+-= 解:3(1)62(2)x x --=+ 33642x x --=+32436x x -=++13x =【点睛】本题考查解一元一次方程,解题关键是:等式性质是解方程的依据.27.(1)2x =-;(2)512x =【解析】【分析】(1)解一元一次方程,先去括号,移项,合并同类项,最后系数化1;(2)解一元一次方程,去分母,去括号,移项,合并同类项,最后系数化1.【详解】解:(1)3(45)7x x --= 3457x x -+=3475x x -=-2x -=2x =-;(2)5121136x x +-=- 2(51)6(21)x x +=--102621x x +=-+102621x x +=-+125x =.512x =. 【点睛】本题考查解一元一次方程,掌握解方程的步骤准确计算是本题的解题关键.28.(1)82(2)160度;【解析】【分析】(1)根据总电价=0.5×用电度数以及总电价=100×0.5+(用电度数−100)×0.8,代入数据即可得出结论;(2)先确认小明家2月交电费98元时,用电量大于100度,根据总电价=100×0.5+(用电度数−100)×0.8即可得出关于x 的一元一次方程,解之即可得出结论.【详解】:解:(1)100×0.5=50(元),100×0.5+(140−100)×0.8=82(元)故答案是:82;(2)因为当月用电量为100度时,应收费50元,而小明家2月交电费90元,所以小明家2月份用电量超过100度.设小明家2月份用电x 度,根据题意,得:100×0.5+0.8×(x−100)=98,解方程,得:x =160.答:小明家2月份用电160度.【点睛】本题考查了一元一次方程的应用,根据数量关系总价=单价×数量列出一元一次方程是解题的关键.29.(1)经过30s ,P 、Q 两点相遇(2)答案不唯一,具体见解析(3)10【解析】【分析】(1)设经过t 秒时间P 、Q 两点相遇,根据OP+CQ=OA+AB+AC 列出方程即可解决问题; (2)分两种情形求解即可;(3)用t 表示AP 、EF 的长,代入化简即可解决问题;【详解】(1)设运动时间为t ,则290t t +=,30t =;所以经过30s ,P 、Q 两点相遇 (2)当点P 在线段AB 上时,如下图,AP+PB=60,∴AP=40,OP=50,∴P 用时50s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为56/cm s ;当点P 在线段AB 的延长线上时,如下图,AP=2PB,∴AP=120,OP=140,∴P 用时140s,∵Q 是OB 中点,∴CQ=50,点Q 的运动速度为514/cm s ;(3)如下图,由题可知,OC=90,AP=x-20,EF=OF-OE=OF-12OP=50-12x, ∴2OC AP EF --=90-(x-20)-2(50-12x)=10 【点睛】本题考查两点间距离、路程、速度、时间之间的关系等知识,解题的关键是理解题意,找到等量关系,注意分类讨论是解题关键.30.(1)详见解析;(2)OP ;(3)= ,同角的余角相等【解析】【分析】(1)过点P 作PD ⊥OB ,交OA 于点D 即可;(2)根据点到直线距离的定义即可得出结论;(3)根据同角的余角相等即可得出结论.【详解】解:(1)如图即为所求:(2)∵PD ⊥OB∴线段OP 的长度是点O 到直线PD 的距离故答案为:OP(3)∵PC ⊥OA∴∠PDC+∠CPD=90°∵PD ⊥OB∴∠OPC+∠CPD=90°∴∠OPC =∠PDC故答案为:= ,同角的余角相等【点睛】本题考查网格线内基本作图、点到直线的距离的定义及同角的余角相等,熟知相关知识点灵活应用是解答此题的关键.31.(1)12;(2)79. 【解析】【分析】(1)按照整数的运算法则运算即可.(2)按照分数的运算法则运算即可.【详解】(1) ()()48(2)(4)44441612-+÷-⨯-=-+-⨯-=-+=. (2) 2151313104181912874632612121212361236369⎛⎫⎛⎫⎛⎫--+++-=--+++=+== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【点睛】本题考查有理数的运算法则,关键在于掌握基础计算方法.32.223a b ab -; 2-【解析】【分析】原式去括号合并得到最简结果,将a ,b 值代入计算即可求值.【详解】 解:()()2222 4333a b ab ab a b ---+2222 12439a b ab ab a b =-+-22 3a b ab =-,当 1a =-、 2b =-时,原式()()()()()()22 31212=642=-⨯---⨯----=-.【点睛】本题考查了整式的加减化简求值,掌握去括号和合并同类项法则是解答此题的关键.33.(1)C 1=C 2,理由详见解析;(2)11π.【解析】【分析】(1)设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,根据圆的周长公式C d π=得到C 1=πa ,C 2=π(a 1+a 2)=πa ,从而得到C 1和C 2的相等;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,然后根据圆的周长公式得到C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=a π,即可求解.【详解】解:(1)C 1=C 2.理由如下:设线段a 分长的两段为a 1、a 2,则a 1+a 2=a ,∵C 1=πa ,C 2=πa 1+πa 2=π(a 1+a 2)=πa ,∴C 1=C 2;(2)设小圆的直径分别为d 1、d 2、d 3,…,d n ,则d 1+d 2+d 3+…+d n =a =11,∵C 1+C 2+C 3+…+C n =πd 1+πd 2+πd 3+…+πd n =π(d 1+d 2+d 3+…+d n )=11π.故答案为:11π.【点睛】本题主要考查圆的周长,掌握圆的周长公式是解题的关键.四、压轴题34.(1)4-,1,6;(2)能;(3)5t +,53t +;(4)3AB BC -的值不会随时间t 的变化而变化,值为10【解析】【分析】(1)由一次项系数、最小的正整数、单项式次数的定义回答即可,(2)计算线段长度,若AB BC =则重叠,(3)线段长度就用两点表示的数相减,用较大的数减较小的数即可,(4)根据(3)的结果计算即可.【详解】(1)观察数轴可知,4a =-,1b =,6c =.故答案为:4-;1;6.(2)()145AB =--=,615BC =-=,AB BC =,则若将数轴在点B 处折叠,点A 与点C 能重合.故答案为:能.(3)经过t 秒后43a t =--,12b t =-,6c t =+,则5AB a b t =-=+,53BC b c t =-=+.故答案为:5t +;53t +.(4)5AB t =+,∴3153AB t =+.又53BC t =+,∴()()315353AB BC t t -=+-+15353t t =+--10=.故3AB BC的值不会随时间t的变化而变化,值为10.【点睛】本题考查列代数式求值,有理数的概念及分类,多项式的项与次数,单项式的系数与次数,在数轴上表示实数,解题的关键是用字母表示线段长度.35.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.。

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word版 含解析)

苏教版数学七年级上册 期末试卷(Word 版 含解析) 一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( )A .两点之间,线段最短B .过一点有无数条直线C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离2.如图,将△ABC 沿BC 方向平移2cm 得到△DEF ,若△ABC 的周长为15cm ,则四边形ABFD 的周长等于( )A .17 cmB .18 cmC .19 cmD .20 cm 3.单项式24x y 3-的次数是( ) A .43- B .1 C .2 D .3 4.己知x=2是关于x 的一元一次方程ax-6+a=0 的解,则a 的值为( )A .2B .2-C .1D .05.某商店以90元相同的售价卖出2件不同的衬衫,其中一件盈利25%,另一件亏损25%.商店卖出这两件衬衫的盈亏情况是( )A .赚了B .亏了C .不赚也不亏D .无法确定6.有理数 a 在数轴上的位置如图所示,下列各数中,可能在 1 到 2 之间的是( )A .-aB .aC .a -1D .1 -a7.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A .6(m ﹣n )B .3(m +n )C .4nD .4m8.下列图形,不是柱体的是( )A .B .C .D .9.若关于x 的一元一次方程mx =6的解为x =-2,则m 的值为( )A .-3B .3C .13D .1610.如图是一个正方体的展开图,折好以后与“学”相对面上的字是( )A .祝B .同C .快D .乐11.下列说法正确的是( )A .如果ab ac =,那么b c =B .如果22x a b =-,那么x a b =-C .如果a b = 那么23a b +=+D .如果b c a a =,那么b c = 12.-5的相反数是( )A .15B .±5C .5D .-15 13.3-的绝对值是( )A .3-B .13- C .3 D .3±14.关于零的叙述,错误的是( )A .零大于一切负数B .零的绝对值和相反数都等于本身C .n 为正整数,则00n =D .零没有倒数,也没有相反数.15.下列说法中正确的有( )①经过两点有且只有一条直线;②连接两点的线段叫两点的距离;③两点之间的所有连线中,垂线段最短;④过直线外一点有且只有一条直线与已知直线平行.A .0个B .1个C .2个D .3个二、填空题16.若单项式2a m b 4与-3ab 2n 是同类项,则m -n =__.17.某同学在电脑中打出如下排列的若干个2、0: 202202220222202222202222220,若将上面一组数字依此规律连续复制得到一系列数字,那么前2020个数字中共有__________个0.18.已知a +2b =3,则7+6b +3a =________.19.点A 在数轴上距离原点2个单位长度,将点沿着数轴向右移动3个单位长度得到点B ,则点B 表示的数是_____.20.已知220x y +-=,则124x y --的值等于______.21.如果关于x 方程ax b 0+=的解是x=0.5,那么方程bx 0a -=的解是____________.22.已知关于x 的一元一次方程2020342019x a x +=+的解为4x =,那么关于y 的一元一次方程2020(1)34(1)2019y a y -+=-+的解为y =___________.23.已知x +y =3,xy =1,则代数式(5x +2)﹣(3xy ﹣5y )的值_____.24.若关于x 的方程1322020x x b +=+的解是2x =,则关于y 的方程1(1)32(1)2020y y b -+=-+的解是__________. 25.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为_____.(用方位角来表示)三、解答题26.计算:(1)()20201|4|23-+-+⨯- (2)()157246812⎛⎫--+⨯- ⎪⎝⎭27.如图,已知三角形ABC ,D 为AB 边上一点.(1) 过点D 画线段BC 的平行线DE ,交AC 于点E ;过点A 画线段BC 的垂线AH ,垂足为点H .(2)用符号语言分别描述直线DE 与线段BC 及直线AH 与线段BC 的位置关系.(3)比较大小:线段BH 线段BA ,理由为 .28.线段AB=20cm ,M 是线段AB 的中点,C 是线段AB 的延长线上的点,AC=3BC ,D 是线段BA 的延长线上的点,且DB=AC .(1)求线段BC ,DC 的长;(2)试说明M 是线段DC 的中点.29.如图,在数轴上,点A 表示10-,点B 表示11,点C 表示18.动点P 从点A 出发,沿数轴正方向以每秒2个单位的速度匀速运动;同时,动点Q 从点C 出发,沿数轴负方向以每秒1个单位的速度匀速运动.设运动时间为t 秒.(1)当t 为何值时,P 、Q 两点相遇?相遇点M 所对应的数是多少?(2)在点Q 出发后到达点B 之前,求t 为何值时,点P 到点O 的距离与点Q 到点B 的距离相等;(3)在点P 向右运动的过程中,N 是AP 的中点,在点P 到达点C 之前,求2CN PC -的值.30.已知方程532x x -=与方程2463k x x +-=的解互为相反数,求5417k ⎛⎫- ⎪⎝⎭的值. 31.天然气被公认是地球上最干净的化石能源,逐渐被广泛用于生产、生活中,2019年1月1日起,某天然气有限公司对居民生活用天然气进行调整,下表为2018年、2019年两年的阶梯价格 阶梯 用户年用气量(单位:立方米)2018年单价 (单位:元/立方米) 2019年单价 (单位:元/立方米) 第一阶梯0-300(含) a 3 第二阶梯300-600(含) 0.5a + 3.5 第三阶梯 600以上 1.5a +5 (1)甲用户家2018年用气总量为280立方米,则总费用为 元(用含a 的代数式表示); (2)乙用户家2018年用气总量为450立方米,总费用为1200元,求a 的值;(3)在(2)的条件下,丙用户家2018年和2019年共用天然气1200立方米,2018年用气量大于2019年用气量,总费用为3625元,求该用户2018年和2019年分别用气多少立方米?32.计算:(1)25)(277+-()-(-)-; (2)315(2)()3-⨯÷-. 33.将一副直角三角板按如图1摆放在直线AD 上(直角三角板OBC 和直角三角板MON ,OBC 90∠=,BOC 45∠=,MON 90∠=,MNO 30)∠=,保持三角板OBC 不动,将三角板MON 绕点O 以每秒8的速度顺时针方向旋转t 秒45(0t ).4<< ()1如图2,NOD ∠=______度(用含t 的式子表示);()2在旋转的过程中,是否存在t 的值,使NOD 4COM ∠∠=?若存在,请求出t 的值;若不存在,请说明理由.()3直线AD 的位置不变,若在三角板MON 开始顺时针旋转的同时,另一个三角板OBC 也绕点O 以每秒2的速度顺时针旋转.①当t =______秒时,COM 15∠=;②请直接写出在旋转过程中,NOD ∠与BOM ∠的数量关系(关系式中不能含t).四、压轴题34.在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版七年级上册数学 期末试卷易错题(Word 版 含答案)一、选择题1.现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因( ) A .两点之间,线段最短 B .过一点有无数条直线 C .两点确定一条直线D .两点之间线段的长度,叫做这两点之间的距离2.如图,点A 、O 、D 在一条直线上,此图中大于0︒且小于180︒的角的个数是( )A .3个B .4个C .5个D .6个3.如图1是//AD BC 的一张纸条,按图1→图2→图3,把这一纸条先沿EF 折叠并压平,再沿BF 折叠并压平,若图3中24CFE ∠=︒,则图2中AEF ∠的度数为( )A .120︒B .108︒C .112︒D .114︒ 4.下列四个数中,最小的数是()A .5B .0C .1-D .4- 5.已知23a +与5互为相反数,那么a 的值是( ) A .1B .-3C .-4D .-16.下列说法不正确的是( )A .对顶角相等B .两点确定一条直线C .一个角的补角一定大于这个角D .两点之间线段最短7.图中几何体的主视图是( )A .B .C .D .8.如图是一个正方体的表面展开图,折叠成正方体后与“安”相对的一面字是( )A .高B .铁C .开D .通9.如图,将长方形ABCD 沿线段OG 折叠到''OB C G 的位置,'OGC ∠等于100°,则'DGC ∠的度数为( )A .20°B .30°C .40°D .50°10.下列叙述中正确的是( )①线段AB 可表示为线段BA; ② 射线AB 可表示为射线BA; ③ 直线AB 可表示为直线BA; ④ 射线AB 和射线BA 是同一条射线. A .①②③④B .②③C .①③D .①②③11.下列平面图形不能够围成正方体的是( ) A .B .C .D .12.如图,若AB ,CD 相交于点O ,过点O 作OE CD ⊥,则下列结论不正确的是A .1∠与2∠互为余角B .3∠与2∠互为余角C .3∠与AOD ∠互为补角D .EOD ∠与BOC ∠是对顶角13.据报道,2019年建成的某新机场将满足年旅客吞吐量45 000 000人次的需求.将45000 000用科学记数法表示应为( ) A .0.45×108B .45×106C .4.5×107D .4.5×10614.如图所示的几何体的左视图是( )A .B .C .D .15.下列说法正确的是( ) A .两点之间的距离是两点间的线段 B .与同一条直线垂直的两条直线也垂直C .同一平面内,过一点有且只有一条直线与已知直线平行D .同一平面内,过一点有且只有一条直线与已知直线垂直二、填空题16.一个角的的余角为30°15′,则这个角的补角的度数为________. 17.如图是一个数值运算程序,若输出的数为1,则输入的数为__________.18.计算: x(x-2y) =______________19.已知∠α=25°15′,∠β=25.15°,则∠α_______∠β(填“>”,“<”或“=”). 20.若一个多边形的内角和是900º,则这个多边形是 边形. 21.如图是一把剪刀,若∠AOB+∠COD =60°,则∠BOD =____°.22.线段AB=10cm ,BC=5cm ,A 、B 、C 三点在同一条直线上,则AC=______. 23.计算:33--=______.24.将一副三角板如图放置(两个三角板的直角顶点重合),若28β∠=︒,则α∠=______︒.25.已知1x =-是方程23ax a =-的解,则a =__________.三、解答题26.如图,数轴上线段AB =2(单位长度),CD =4(单位长度),点A 在数轴上表示的数是﹣8,点C 在数轴上表示的数是10.若线段AB 以6个单位长度/秒的速度向右匀速运动,同时线段CD 以2个单位长度/秒的速度也向右匀速运动.(1)运动t 秒后,点B 表示的数是 ;点C 表示的数是 .(用含有t 的代数式表示)(2)求运动多少秒后,BC =4(单位长度);(3)P 是线段AB 上一点,当B 点运动到线段CD 上时,是否存在关系式4BD AP PC -=,若存在,求线段PD 的长;若不存在,请说明理由.27.如图,点O 在直线AB 上,OC ⊥AB .在RtΔODE 中,∠ODE=90°,∠DOE=30°,先将ΔODE 一边OE 与OC 重合(如图1),然后将ΔODE 绕点O 按顺时针方向旋转(如图2),当OE 与OC 重合时停止旋转.(1)当∠AOD=80°时,则旋转角∠COE 的大小为____________ ; (2)当OD 在OC 与OB 之间时,求∠AOD -∠COE 的值;(3)在ΔODE 的旋转过程中,若∠AOE=4∠COD 时,求旋转角∠COE 的大小.28.计算:(1)1+(―2)+|-3|; (2)2115524326⎛⎫-⨯-+⎪⎝⎭. 29.如图,直线AB 、CD 相交于点O ,OE 平分AOD ∠,FOC ∠=90°,∠1=40°.求∠2和∠3的度数.30.如图:点A 、C 、E 、B 、D 在一直线上,AB=CD ,点E 是CB 的中点,那么点E 是否为AD 中点?试说明理由.31.解方程:(1)()()23319x x --+=(2)2151146x x +--=- 32.解方程(1)5x ﹣1=3(x +1)(2)2151136x x +--= 33.先化简,后求值.(1)化简:()()22222212a b ababa b +--+-(2)当()221320b a -++=时,求上式的值.四、压轴题34.已知:b 是最小的正整数,且a 、b 、c 满足()250c a b -++=,请回答问题. (1)请直接写出a 、b 、c 的值.a =b =c =(2)a 、b 、c 所对应的点分别为A 、B 、C ,点P 为一动点,其对应的数为x ,点P 在0到2之间运动时(即0≤x≤2时),请化简式子:1125x x x (请写出化简过程).(3)在(1)(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC -AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.35.如图,数轴上点A ,B 表示的有理数分别为6-,3,点P 是射线AB 上的一个动点(不与点A ,B 重合),M 是线段AP 靠近点A 的三等分点,N 是线段BP 靠近点B 的三等分点.(1)若点P 表示的有理数是0,那么MN 的长为________;若点P 表示的有理数是6,那么MN 的长为________;(2)点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长是否发生改变?若不改变,请写出求MN 的长的过程;若改变,请说明理由. 36.如图,数轴上A ,B 两点对应的数分别为4-,-1 (1)求线段AB 长度(2)若点D 在数轴上,且3DA DB =,求点D 对应的数(3)若点A 的速度为7个单位长度/秒,点B 的速度为2个单位长度/秒,点O 的速度为1个单位长度/秒,点A ,B ,O 同时向右运动,几秒后,3?OA OB =37.已知x =﹣3是关于x 的方程(k +3)x +2=3x ﹣2k 的解. (1)求k 的值;(2)在(1)的条件下,已知线段AB =6cm ,点C 是线段AB 上一点,且BC =kAC ,若点D 是AC 的中点,求线段CD 的长.(3)在(2)的条件下,已知点A 所表示的数为﹣2,有一动点P 从点A 开始以2个单位长度每秒的速度沿数轴向左匀速运动,同时另一动点Q 从点B 开始以4个单位长度每秒的速度沿数轴向左匀速运动,当时间为多少秒时,有PD =2QD ?38.如图,OC 是AOB ∠的角平分线,OD OB ⊥,OE 是BOD ∠的角平分线,85AOE ∠=(1)求COE ∠;(2)COE ∠绕O 点以每秒5的速度逆时针方向旋转t 秒(013t <<),t 为何值时AOC DOE ∠=∠;(3)射线OC 绕O 点以每秒10的速度逆时针方向旋转,射线OE 绕O 点以每秒5的速度顺时针方向旋转,若射线OC OE 、同时开始旋转m 秒(024.5m <<)后得到45AOC EOB ∠=∠,求m 的值. 39.如图1,点A ,B ,C ,D 为直线l 上从左到右顺次的4个点.(1) ①直线l上以A,B,C,D为端点的线段共有条;②若AC=5cm,BD=6cm,BC=1cm,点P为直线l上一点,则PA+PD的最小值为 cm;(2)若点A在直线l上向左运动,线段BD在直线l上向右运动,M,N分别为AC,BD的中点(如图2),请指出在此过程中线段AD,BC,MN有何数量关系并说明理由;(3)若C是AD的一个三等分点,DC>AC,且AD=9cm,E,F两点同时从C,D出发,分别以2cm/s,1cm/s的速度沿直线l向左运动,Q为EF的中点,设运动时间为t,当AQ+AE+AF=32AD时,请直接写出t的值.40.小明在一条直线上选了若干个点,通过数线段的条数,发现其中蕴含了一定的规律,下边是他的探究过程及联想到的一些相关实际问题.(1)一条直线上有2个点,线段共有1条;一条直线上有3个点,线段共有1+2=3条;一条直线上有4个点,线段共有1+2+3=6条…一条直线上有10个点,线段共有条.(2)总结规律:一条直线上有n个点,线段共有条.(3)拓展探究:具有公共端点的两条射线OA、OB形成1个角∠AOB(∠AOB<180°);在∠AOB内部再加一条射线OC,此时具有公共端点的三条射线OA、OB、OC共形成3个角;以此类推,具有公共端点的n条射线OA、OB、OC…共形成个角(4)解决问题:曲沃县某学校九年级1班有45名学生毕业留影时,全体同学拍1张集体照,每2名学生拍1张两人照,共拍了多少张照片?如果照片上的每位同学都需要1张照片留作纪念,又应该冲印多少张纸质照片?41.如图,点O在直线AB上,OC⊥AB,△ODE中,∠ODE=90°,∠EOD=60°,先将△ODE一边OE与OC重合,然后绕点O顺时针方向旋转,当OE与OB重合时停止旋转.(1)当OD在OA与OC之间,且∠COD=20°时,则∠AOE=______;(2)试探索:在△ODE旋转过程中,∠AOD与∠COE大小的差是否发生变化?若不变,请求出这个差值;若变化,请说明理由;(3)在△ODE的旋转过程中,若∠AOE=7∠COD,试求∠AOE的大小.42.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.43.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据两点之间,线段最短解答即可.【详解】解:现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,其原因是两点之间,线段最短,故选:A.【点睛】本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.2.C解析:C【解析】【分析】根据图形依次写出0︒且小于180︒的角即可求解.【详解】大于0°小于180°的角有∠AOB,∠AOC,∠BOC,∠BOD,∠COD,共5个.故选C.【点睛】此题主要考查了角的定义,即由一个顶点射出的两条射线组成一个角.3.C解析:C【解析】【分析】设∠B′FE=x,根据折叠的性质得∠BFE=∠B′FE=x,∠AEF=∠A′EF,则∠BFC=x−24°,再由第2次折叠得到∠C′FB=∠BFC=x−24°,于是利用平角定义可计算出x =68°,接着根据平行线的性质得∠A′EF=180°−∠B′FE=112°,所以∠AEF=112°.【详解】如图,设∠B′FE=x,∵纸条沿EF折叠,∴∠BFE=∠B′FE=x,∠AEF=∠A′EF,∴∠BFC=∠BFE−∠CFE=x−24°,∵纸条沿BF折叠,∴∠C′FB=∠BFC=x−24°,而∠B′FE+∠BFE+∠C′FE=180°,∴x+x+x−24°=180°,解得x=68°,∵A′D′∥B′C′,∴∠A′EF=180°−∠B′FE=180°−68°=112°,∴∠AEF=112°.故选:C.【点睛】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.解决本题的关键是画出折叠前后得图形.4.D解析:D【解析】【分析】按照正数大于0,0大于负数,两个负数比大小,绝对值大的反而小的法则进行数的大小比较,从而求解.【详解】解:由题意可得:-4<-1<0<5故选:D【点睛】本题考查有理数的大小比较,掌握正数大于0,0大于负数,两个负数比大小,绝对值大的反而小是本题的解题关键.5.C解析:C【解析】【分析】由互为相反数的两个数和为0可得a的值.【详解】a+与5互为相反数解:23∴++=a2350a=-.解得4故选:C【点睛】本题考查了相反数,熟练掌握相反数的性质是解题的关键.6.C解析:C【解析】【分析】根据对顶角的性质,补角的定义,线段、直线的定义和性质判断即可.【详解】解:A、B、D选项均正确,C选项,一个角的补角不一定大于这个角,只有当这个角为锐角时,其补角大于这个角,当这个角为直角时,其补角等于这个角,当这个角为钝角时,其补角小于这个角,C说法错误.故选:C【点睛】本题考查了角、线段、直线的基本概念,了解相关的性质和定义是解题的关键.7.B解析:B【解析】【分析】根据主视图是从物体的正面去观察所得到的,根据看到的图形进行选择即可.【详解】因为球在长方体的中间,从正面看上去看到的是一个长方形和圆形,且圆在正方形的中间部位,故答案选B.【点睛】本题考查的是物体的三视图,知道主视图是从正面去观察物体是解题的关键.8.D解析:D【解析】【分析】根据正方体的表面展开图中,相对面之间一定相隔一个正方形的特点选出答案即可.【详解】因为正方体的表面展开图中,相对的面之间一定相隔一个正方形,所以“安”字的对面是是“通”字,故答案选D.【点睛】本题考查的是正方体的展开图,熟知正方体的表面展开图的特点是解题的关键.9.A解析:A【解析】由折叠的可知∠OGC=∠OGC′=100°,∴∠OGD=180°-∠OGC=80°,∴∠DGC′=∠OGC′-∠OGD=100°-80°=20°,故选 A.10.C解析:C【解析】【分析】依据线段、射线以及直线的概念进行判断,即可得出正确结论.【详解】解:①线段AB 可表示为线段BA ,正确;②射线AB 不可表示为射线BA ,错误;③直线AB 可表示为直线BA ,正确;④射线AB 和射线BA 不是同一条射线,错误;故选:C .【点睛】本题主要考查了线段、射线以及直线的概念,解题时注意:射线用两个大写字母表示时,端点的字母放在前边.11.B解析:B【解析】【分析】直接利用正方体的表面展开图特点判断即可.【详解】根据正方体展开图的特点可判断A 属于“1、3、2”的格式,能围成正方体,D 属于“1,4,1”格式,能围成正方体,C 、属于“2,2,2”的格式也能围成正方体,B 、不能围成正方体.故选B .【点睛】本题主要考查展开图折叠成几何体的知识点.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.注意只要有“田”字格的展开图都不是正方体的表面展开图.12.D解析:D【解析】【分析】根据余角、邻补角、对顶角的定义即可求解.【详解】由图可知,∵OE CD ⊥∴ 1∠与2∠互为余角,A 正确;3∠与2∠互为余角,B正确;∠与AOD3∠互为补角,C正确;∠是对顶角,故D错误;AOD∠与BOC故选D.【点睛】此题主要考查相交线,解题的关键是熟知余角、邻补角、对顶角的定义.13.C解析:C【解析】【分析】用科学记数法表示较大数时的形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:45 000 000=4.5×107,故选:C.【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.14.C解析:C【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看是一个矩形,矩形的中间是一条横着的线,故选:C.【点睛】本题考查了简单组合体的三视图,属于基础题,掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.15.D解析:D【解析】试题分析:根据线段、垂线、平行线的相关概念和性质判断.解:A、两点之间的距离是指两点间的线段长度,而不是线段本身,错误;B、在同一平面内,与同一条直线垂直的两条直线平行,错误;C、同一平面内,过直线外一点有且只有一条直线与已知直线平行,应强调“直线外”,错误;D、这是垂线的性质,正确.故选D.考点:平行公理及推论;线段的性质:两点之间线段最短;垂线.二、填空题16.120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故解析:120°15′【解析】【分析】根据余角、补角的定义列式计算即可.【详解】根据题意:这个角的=90°-30°15′=59°45′;这个角的补角=180°-59°45′=120°15′.故答案为: 120°15′.【点睛】本题考查余角、补角的定义,关键在于熟记定义.17.【解析】【分析】设输入的数是x,根据题意得出方程(x2-1)÷3=1,求出即可.【详解】解:设输入的数是x,则根据题意得:(x2-1)÷3=1,x2-1=3,x=±2,故答案为:±解析:2【解析】【分析】设输入的数是x,根据题意得出方程(x2-1)÷3=1,求出即可.【详解】解:设输入的数是x,则根据题意得:(x2-1)÷3=1,x 2-1=3,x=±2,故答案为:±2.【点睛】本题考查平方根的意义及求一个数的平方根,解题关键是能根据题意得出方程.18.x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:;故答案为:.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 解析:x²-2xy【解析】【分析】根据单项式乘以多项式,直接去括号,即可得到答案.【详解】解:2(2)2x x y x xy -=-;故答案为:22x xy -.【点睛】本题考查了单项式乘以多项式,解题的关键是掌握整式乘法的运算法则. 19.>【解析】【分析】首先把:∠β=25.15°化为25°9′,然后再比较即可.【详解】解:∠β=25.15°=25°9′,∵25°15′>25°9′,∴∠α>∠β,故答案为:>.【点解析:>【解析】【分析】首先把:∠β=25.15°化为25°9′,然后再比较即可.【详解】解:∠β=25.15°=25°9′,∵25°15′>25°9′,∴∠α>∠β,故答案为:>.【点睛】此题主要考查了度分秒的换算,关键是掌握1度=60分,即1°=60′,1分=60秒,即1′=60″.20.七【解析】【分析】根据多边形的内角和公式,列式求解即可.【详解】设这个多边形是边形,根据题意得,,解得.故答案为.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.解析:七【解析】【分析】n-⋅︒,列式求解即可.根据多边形的内角和公式()2180【详解】设这个多边形是n边形,根据题意得,()2180900n-⋅︒=︒,n=.解得7故答案为7.【点睛】本题主要考查了多边形的内角和公式,熟记公式是解题的关键.21.150【解析】【分析】根据对顶角相等得到∠AOB的度数,再根据邻补角的定义即可得出结论.【详解】∵∠AOB=∠COD ,∠AOB +∠COD=60°,∴∠AOB=∠COD=30°,∴∠BOD= 解析:150【解析】【分析】根据对顶角相等得到∠AOB 的度数,再根据邻补角的定义即可得出结论.【详解】∵∠AOB =∠COD ,∠AOB +∠COD =60°,∴∠AOB =∠COD =30°,∴∠BOD =180°-∠AOB =180°-30°=150°.故答案为150°.【点睛】本题考查了对顶角相等和邻补角的定义.求出∠AOB 的度数是解题的关键.22.cm 或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,=②当点C 在线段AB 的延长线上时,如图2,=故答案为:5 cm 或15 cm【点睛】解析:cm 或15 cm【解析】【分析】【详解】解:根据题意画出图形:①当点C 在线段AB 上时,如图1,AC AB BC =-=1055;cm -=②当点C 在线段AB 的延长线上时,如图2,AC AB BC =+=10515.cm +=故答案为:5 cm 或15 cm【点睛】本题考查线段的和与差,注意分类讨论是本题的解题关键.23.-6【解析】根据有理数减法法则进行计算即可.【详解】解: -6故答案为:-6【点睛】本题考查了有理数的减法,掌握有理数减法法则是解题的关键.解析:-6【解析】【分析】根据有理数减法法则进行计算即可.【详解】解: 33--=-6故答案为:-6【点睛】本题考查了有理数的减法,掌握有理数减法法则是解题的关键.24.152【解析】【分析】根据周角以及直角的定义进行解答即可.【详解】解:由图可知∵∴故答案为:152.【点睛】本题考查了周角及直角的定义,以及角度的和差关系,掌握角度的和差关系是解解析:152【解析】【分析】根据周角以及直角的定义进行解答即可.【详解】解:由图可知360-90-90-αβ∠=∠∵28β∠=︒∴360-90-90-28=152α∠=故答案为:152.本题考查了周角及直角的定义,以及角度的和差关系,掌握角度的和差关系是解题的关键. 25.1【解析】【分析】直接把代入,即可求出a 的值.【详解】解:把代入,则,解得:;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程. 解析:1【解析】【分析】直接把1x =-代入23ax a =-,即可求出a 的值.【详解】解:把1x =-代入23ax a =-,则2(1)3a a ⨯-=-,解得:1a =;故答案为:1.【点睛】本题考查了一元一次方程的解,解题的关键是熟练掌握解一元一次方程.三、解答题26.(1)-6+6t ;10+2t ;(2)5t =,3t =;(3)PD =185或143【解析】【分析】(1)根据题意列出代数式即可.(2)根据题意分点B 在点C 左边和右边两种情况,列出方程解出即可.(3)随着点B 的运动大概,分别讨论当点B 和点C 重合、点C 在A 和B 之间及点A 与点C 重合的情况.【详解】(1)点B 表示的数是-6+6t ;点C 表示的数是10+2t.(2)66(102)4t t -+-+=661024t t -+--=或661024t t -+--=-∴5t = 或 3t =(3)设未运动前P 点表示的数是x,则运动t 秒后,A 点表示的数是86t -+B 点表示的数是-6+6tC 点表示的数是10+2tD 点表示的数是14+2tP 点表示的数是x+6t则BD=14+2t-(-6+6t)=20-4tAP=x+6t-(-8+6t)=x+8 PC=6(102)x t t +-+ (P 点可能在C 点左侧,也可能在右侧)PD=14+2t-(x+6t)=14-(4t+x)∵4BD AP PC -=∴20-4t-(x+8)=46(102)x t t +-+∴12-(4t+x )=4(4t+x)-40 或 12-(4t+x )=40-4(4t+x)∴4t+x=525 或 4t+x=283∴PD=14+2t -(x+6t)=14-(4t+x)=185或143. 【点睛】本题考查了两点间的距离,并综合了数轴、一次元一次方程,关键在于分类讨论,列出对应方程.27.(1)20;(2)60°;(3)6°或70°.【解析】【分析】(1)根据旋转的性质,求出旋转角的度数,即可得到答案;(2)由旋转的性质可知,''D OD E OE ∠=∠,由(1)知'60AOD ∠=︒,根据角的和差关系,即可得到∠AOD -∠COE 的值;(3)根据题意,可分为两种情况进行分析:①OD 在OA 与OC 之间时;②OD 在OC 与OB 之间时;设∠COE 为x ,根据角的和差关系列出等式,分别求出答案即可.【详解】解:(1)由图1可知,∠AOD=903060︒-︒=︒,如图2,当∠AOD=80°时,有:∠COE=80°-60°=20°,故答案为:20°.(2)如图:由(1)知,'60AOD ∠=︒,由旋转的性质,可知''D OD E OE ∠=∠,∴''''60AOD COE AOD D OD E OE AOD ∠-∠=∠+∠-∠=∠=︒;(3)根据题意,设∠COE 为x ,则①如图,当OD 在OA 与OC 之间时,∴∠AOE=90°+x ,∠COD=30°x -,∵∠AOE=4∠COD ,∴904(30)x x ︒+=︒-,解得:6x =︒;②如图,当OD 在OC 与OB 之间时,∴∠AOE=90°+x ,∠COD=x 30-︒,∵∠AOE=4∠COD ,∴904(30)x x ︒+=-︒,解得:70x =︒;∴旋转角∠COE 的大小为:6°或70°.【点睛】本题考查了旋转的性质,以及角的有关计算的应用,能根据题意求出各个角的度数是解此题的关键,注意利用分类讨论的思想进行解题,题目比较好,难度不大.28.(1)2;(2)9.【解析】【分析】(1)有理数的加减混合运算,先将绝对值化简,然后计算;(2)有理数的混合运算,使用乘法分配律使得计算简便.【详解】 解:(1)1+(―2)+|-3|= 1—2+3= 2(2)2115524326⎛⎫-⨯-+ ⎪⎝⎭ =1152524+2424326-⨯⨯-⨯ = 25-8+12-20= 9【点睛】 本题考查有理数的混合运算及乘法分配律,掌握运算顺序及运算法则是本题的解题关键. 29.∠2=65°,∠3=50°.【解析】【分析】首先根据平角以及∠FOC 和∠1的度数求出∠3的度数,然后根据∠3的度数求出∠AOD 的度数,根据角平分线的性质求出∠2的度数.【详解】∵AB 为直线,∴∠3+∠FOC+∠1=180°.∵∠FOC=90°,∠1=40°,∴∠3=180°-90°-40°=50°.∵∠3与∠AOD 互补,∴ ∠AOD=180°-∠3=130°.∵OE 平分∠AOD ,∴ ∠2=∠AOD=65°.【点睛】考点:角平分线的性质、角度的计算.30.点E 是AD 的中点,理由见解析.【解析】【分析】从线段和差入手,抓住题目中的中点,完成证明即可.【详解】解:点E 是AD 的中点,理由如下:∵AB=CD ,AC+CB=CB+DB ,∴AC=BD .又∵点E 为BC 的中点,∴CE=EB ,∴AC+CE=EB+DB ,即AE=ED .又∵A ,E ,D 在一条直线上,∴点E 是AD 的中点.【点睛】考查了两点间的距离及中点的定义,利用中点的定义找出AE=ED 是解题的关键.31.(1)x=-18;(2)174x =【解析】【分析】(1)根据解一元一次方程的解法,去括号,移项合并,系数化为1即可求解;(1)根据解一元一次方程的解法,去分母,去括号,移项合并,系数化为1即可求解.【详解】解:(1)26339x x ---= 99x --=18x -=18x =-(2)解:()()32125112x x +--=-6310212x x +-+=-6101232x x -=---417x -=-174x = 【点睛】此题主要考查一元一次方程的求解,解题的关键是熟知其解法.32.(1)x =2;(2)x =﹣3.【解析】【分析】(1)去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.(2)去分母、去括号、移项、合并同类项、系数化为1,据此求出方程的解即可.【详解】解:(1)去括号,可得:5x ﹣1=3x +3,移项,合并同类项,可得:2x =4,系数化为1,可得:x =2.(2)去分母,可得:2(2x +1)﹣(5x ﹣1)=6,去括号,可得:4x +2﹣5x +1=6,移项,合并同类项,可得:﹣x =3,系数化为1,可得:x =﹣3.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.33.(1)2a b -1;(2)a=-2,b=12;1. 【解析】 试题分析:(1)首先根据去括号的法则将括号去掉,然后再进行合并同类项化简;(2)根据非负数的性质求出a 和b 的值,然后代入化简后的式子进行计算,得出答案. 试题解析:(1)原式=22a b +22ab -22ab +1-2a b -2=2a b -1(2)根据非负数的性质可得:2b -1=0,a+2=0 解得:a=-2,b=12 ∴原式=2a b -1=4×12-1=2-1=1. 考点:(1)化简求值;(2)非负数的性质四、压轴题34.(1)-1;1;5;(2)2x+12;(3)不变,理由见解析【解析】【分析】(1)根据b 是最小的正整数,即可确定b 的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a ,b ,c 的值;(2)根据x 的范围,确定x+1,x-3,5-x 的符号,然后根据绝对值的意义即可化简; (3)先求出BC=3t+4,AB=3t+2,从而得出BC-AB=2.【详解】解:(1)∵b 是最小的正整数,∴b=1.根据题意得:c-5=0且a+b=0,∴a=-1,b=1,c=5.故答案是:-1;1;5;(2)当0≤x≤1时,x+1>0,x-1≤0,x+5>0,则:|x+1|-|x-1|+2|x+5|=x+1-(1-x )+2(x+5)=x+1-1+x+2x+10=4x+10;当1<x≤2时,x+1>0,x-1>0,x+5>0.∴|x+1|-|x-1|+2|x+5|=x+1-(x-1)+2(x+5)=x+1-x+1+2x+10=2x+12;(3)不变.理由如下:t 秒时,点A 对应的数为-1-t ,点B 对应的数为2t+1,点C 对应的数为5t+5.∴BC=(5t+5)-(2t+1)=3t+4,AB=(2t+1)-(-1-t )=3t+2,∴BC-AB=(3t+4)-(3t+2)=2,即BC-AB 值的不随着时间t 的变化而改变.【点睛】本题考查了数轴与绝对值,通过数轴把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.35.(1)6;6;(2)不发生改变,MN为定值6,过程见解析【解析】【分析】(1)由点P表示的有理数可得出AP、BP的长度,根据三等分点的定义可得出MP、NP的长度,再由MN=MP+NP(或MN=MP-NP),即可求出MN的长度;(2)分-6<a<3及a>3两种情况考虑,由点P表示的有理数可得出AP、BP的长度(用含字母a的代数式表示),根据三等分点的定义可得出MP、NP的长度(用含字母a的代数式表示),再由MN=MP+NP(或MN=MP-NP),即可求出MN=6为固定值.【详解】解:(1)若点P表示的有理数是0(如图1),则AP=6,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=4,NP=23BP=2,∴MN=MP+NP=6;若点P表示的有理数是6(如图2),则AP=12,BP=3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=8,NP=23BP=2,∴MN=MP-NP=6.故答案为:6;6.(2)MN的长不会发生改变,理由如下:设点P表示的有理数是a(a>-6且a≠3).当-6<a<3时(如图1),AP=a+6,BP=3-a.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(3-a),∴MN=MP+NP=6;当a>3时(如图2),AP=a+6,BP=a-3.∵M是线段AP靠近点A的三等分点,N是线段BP靠近点B的三等分点.∴MP=23AP=23(a+6),NP=23BP=23(a-3), ∴MN=MP-NP=6. 综上所述:点P 在射线AB 上运动(不与点A ,B 重合)的过程中,MN 的长为定值6.【点睛】本题考查了两点间的距离,解题的关键是:(1)根据三点分点的定义找出MP 、NP 的长度;(2)分-6<a <3及a >3两种情况找出MP 、NP 的长度(用含字母a 的代数式表示).36.(1)3;(2)12或74-;(3)13秒或79秒 【解析】【分析】(1)根据数轴上两点间距离即可求解;(2)设点D 对应的数为x ,可得方程314x x +=+,解之即可;(3)设t 秒后,OA=3OB ,根据题意可得47312t t t t -+-=-+-,解之即可.【详解】解:(1)∵A 、B 两点对应的数分别为-4,-1,∴线段AB 的长度为:-1-(-4)=3;(2)设点D 对应的数为x ,∵DA=3DB , 则314x x +=+,则()314x x +=+或()314x x +=--,解得:x=12或x=74-, ∴点D 对应的数为12或74-; (3)设t 秒后,OA=3OB , 则有:47312t t t t -+-=-+-, 则4631t t -+=-+,则()4631t t -+=-+或()4631t t -+=--+,解得:t=13或t=79, ∴13秒或79秒后,OA=3OB . 【点睛】本题考查了一元一次方程的运用,数轴的运用和绝对值的运用,解题的关键是掌握数轴上两点之间距离的表示方法.。

相关文档
最新文档