最新换热器温度控制系统简单控制系统
换热器温度控制系统
1.E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。
为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。
1.1换热器概述换热器工作状态如何,可用几项工作指标加以衡量。
常用的工作指标主要有漏损率、换热效率和温度效率。
它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。
换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。
换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。
1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。
管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。
在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。
第12章_简单控制系统
XD%
TD /℃
进料
回流F
塔顶产品
P/ MPa
苯-二甲苯的T-x图
Q入,X入,T
入
QZ 蒸汽 塔底产品
XD%
精馏过程示意图
苯-二甲苯的P-x图
塔顶易挥发组分纯度XD、塔顶温度TD、塔顶压力P三者之
间的关系为: XD= f (TD,P),两个独立变量。
12
12.2.2 被控变量的选择 2、被控变量选择的一般原则
答:拿一个对被控变量影响较显著的变量来控制。
K大一些,T小一些,τ最好为0。 测量仪表的选用和安装 执行器的选用和安装
4
第三个问题:以什么方式控制? 答:没有标准答案(选择合适的调节规律) 最常用的调节规律: 位式控制、P、PI、PD、PID
(需要充分理解各种调节规律的特点和适用场合)
后续问题:如何整定PID参数? 答:临界比例度法+经验 衰减曲线法+经验 经验凑试法 最好的方法就是“经验”
干扰作用与控制作用之间的关系
控制质量:系统的过渡过程形式——超调量、衰减比、
余差、过渡时间、振荡周期
对象特性:(1)系统的输入输出关系
(2)分为对象静态性质和对象动态性质
(3)考察对象特性对控制质量的影响,用以选择操纵变量
16
12.2.3 操纵变量的选择
3、对象稳态性质对控制质量的影响
Y 绝对放大系数 X
器,与图 2 相比,控制通道滞后较大,对干燥温度校正作用
灵敏度次之。
方案Ⅲ :蒸汽流量要经过换热器的热量交换去改变空
气温度,滞后最大,对干燥温度校正作用灵敏度最差。 综合考虑应选择方案II,以旁路空气量为操纵变量。
25
12.2.4 控制器控制规律的选择
化学工程0801化工仪表与自动化7.8习题解答
(4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用
强而频繁、负荷变化大、对控制质量要求较高的场合。
13、【p167图7-23 a,b】确定两个系统中执行器的正、反作用及控制器
的正、反作用。(30分)
(a)为一加热器出口物料温度控制系统,要求物料温度不能太低,
否则容易结晶。
(b)为一加热器出口物料温度控制系统,要求物料温度不能过高,
否则容易分解
换热器 温度控制系统a
换热器 温度控制系统b
容易分解,所以平时加热剂阀门是关的,有信号时才开加热剂阀门。
答 : 串级控制系统的目的是为了高精度地稳定主变量,对主变量要求 较高,一般不允许有余差,所以主控制器一般选择比例积分控制规律, 当对象滞后较大时,也可引入适当的微分作用。
串级控制系统中对副变量的要求不严。在控制过程中,副变量是不 断跟随主控制器的输出变化而变化的,所以副控制器一般采用比例控制 规律就行了,必要时引入适当的积分作用,而微分作用一般是不需要 的。 16.什么是前馈控制系统?它有什么特点?
反应器温度控制系统 答:简单控制系统的典型方块图为:
对象 控制器
执行器
测量变送装置
干扰 被控变量 给定值 偏差
所谓简单控制系统,通常是指由一个被控对象、一个检测元件及 变送器、 一个控制器和一个执行器所构成的单闭环控制系统,因此 有时也称为单回路控制系统。
被控对象:反应器 被控变量:反应器内物料的温度 操纵变量:蒸汽流量
被控对象环节:T(温度)“+” 加热剂(操纵变量)增加时,物料温度(被控变量)也增 加 控制 器 环节:控制 阀 环节----受控对象环节---控制器环 节,这三个环节构 成的开环系统各环节静态放大系数极性(符号)相乘。 ★ 相乘必须为负的原则来确定控制器的正、反作用方式。 所以控制器选定方向:“—” [ ★ 正 → 正 → 负 同理:(b) 执行器:气开“+” 被控对象:T(温度下降)为“—” 控制器:选定方向“+” 14.【p167】图7-24为液体储糟,需要对液体加以自动控制。为安全起 见,储糟内液体严格禁止溢出。试确定控制阀的气开、气关型式和控制 器的正、反作用。 (1)选择流入量Qi为操纵变量; (2)选择流出量Qo为操纵变量;
热交换器温度控制系统课程设计
热交换器温度控制系统一.控制系统组成由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
图1换热器出口温度控制系统流程图控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。
二、设计控制系统选取方案根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。
以下是通过对换热器过程控制系统的分析,确定合适的控制系统。
换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。
换热器温度控制系统的设计过程控制系统与装置课程设计(论文)--大学毕业设计论文
过程控制系统与装置课程设计(论文)题目:换热器温度控制系统的设计课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器学号学生姓名专业班级课程设计(论文)题目换热器温度控制系统的设计课程设计(论文)任务在某生产过程中,冷物料通过热交换器用热水(工业废水)和蒸汽对进行加热,工艺要求出口温度为140±2℃。
当用热水加热不能满足出口温要求时,则在同时使用蒸气加热,试设计换热器温度控制系统。
1.技术要求:测量范围:0-180℃控制温度:140±2℃最大偏差:5℃;2.说明书要求:确定控制方案并绘制原理结构图、方框图;选择传感器、变送器、控制器、执行器,给出具体型号;确定控制器的控制规律以及控制器正反作用方式;若设计由计算机实现的数字控制系统应给出系统硬件电气连接图及序流程图;编写设计说明书。
指导教师评语及成绩成绩:指导教师签字:年月日目录第1章换热器温度控制系统设计概述 .......................................................................第2章换热器温度控制系统设计方案论证 .................................................................第3章系统内容设计.....................................................................................................3.1 温度传感器的选择 ...............................................3.2 流量变送器的选择 ...............................................3.3 调节器的选择 ...................................................3.4 执行器的选择 ...................................................3.5 变送器的选择 ...................................................3.6 调节阀的选择 ...................................................第4章系统性能分析. (X)4.1参数整定........................................................4.2.控制算法的确定 (X)第5章课程设计总结 (XX)参考文献 (XX)第1章换热器温度控制系统设计概述换热器的应用广泛,比如中央空调系统,机械润滑油冷却系统,制药消毒系统,饮料行业消毒系统,船用冷却,化工行业特殊介质冷却系统日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。
简单控制系统
第7章简朴控制系统随着现代石油化工等过程装置的日益大型化、复杂化,智能仪表和计算机控制系统的日益普及,各类控制系统特别是复杂控制和先进控制系统在生产过程中的作用越来越显得重要。
目前,占控制系统绝大多数的仍然是简朴控制系统,简朴控制系统也是各类复杂控制和先进控制系统的基础。
因此,掌握简朴控制系统的基本原理和设计方法非常重要。
由于简朴控制系统的工作原理在前述章节已做介绍与讨论,本章以简朴控制系统的设计、投运与整定为重要内容。
7.1 简朴控制系统结构与组成从第一章已知,自动控制系统是由被控对象和自动化装置两大部分组成,即测量元件及变送器自动化装置自动控制器(调节器)自动控制系统(起控制作用)执行器(控制阀)被控对象受控制的物理装置(生产设备)(对象)由于构成自动控制系统的这两大部分(重要是指自动化装置)的数量、连接方式及其目的不同,自动控制系统可以有许多类型。
所谓简朴控制系统,通常是指由一个测量元件及变送器、一个控制器、一个控制阀和一个对象所构成的单闭环控制系统,因此也称为单回路控制系统。
图7-l所示的液位控制系统与图7-2所示的温度控制系统都是简朴控制系统的例子。
图7-1所示的液位控制系统中,贮槽是被控对象,液位是被控变量,变送器LT将反映液位高低的信号送往液位控制器LC。
控制器的输出信号送往执行器,改变控制阀开度使贮槽输出流量发生变化以维持液位稳定。
图7-1 液位控制系统图7-2 温度控制系统图7-2所示的温度控制系统,是通过改变进入换热器的载热体流量,以维持换热器出口物料的温度在工艺规定的数值上。
需要说明的是在本系统中画出了变送器LT及TT这个环节,根据第一章中所介绍的控制流程图,按自控设计规范,测量变送环节是被省略不画的,所以在本书以后的控制系统图中,也将不再画出测量、变送环节,但要注旨在实际的系统中总是存在这一环节,只是在画图时被省略罢了。
图7-3是图7-1和图7-2所示控制系统的方块图,也简朴控制系统的典型方块图。
换热器温度控制系统设计
换热器温度控制系统设计热交换器是工业生产中常用的设备之一,用于传递热量并调节流体温度。
热交换器温度控制系统的设计是为了确保热交换器能够稳定运行并提供所需的热量。
本文将介绍热交换器温度控制系统的设计要点和步骤。
1.系统需求分析在开始设计热交换器温度控制系统之前,首先需要对系统的需求进行分析。
这包括流体的类型、流量、温度范围以及所需的温度稳定性等。
根据这些需求,选择合适的控制器和传感器。
2.传感器选择传感器是热交换器温度控制系统中非常重要的组成部分,用来监测流体的温度并传输给控制器。
常用的温度传感器有热电偶和热敏电阻。
选择适合的传感器需要考虑精度、响应时间以及耐高温等因素。
3.控制器选择控制器是热交换器温度控制系统的核心部分,用于读取传感器的信号并根据设定的温度范围进行控制。
常用的控制器包括PID控制器和模糊控制器。
选择控制器时需要考虑可调节的参数、控制精度以及响应速度。
4.控制策略选择合适的控制策略是确保热交换器温度控制系统稳定运行的关键。
常用的控制策略有开环控制和闭环控制。
开环控制根据预先设定的参数进行控制,闭环控制根据传感器反馈的信息进行调节。
根据实际需求选择合适的控制策略。
5.温度设定和调节根据系统需求,设置所需的温度范围和稳定性。
通过控制器对热交换器的供热和冷却进行调节,以保持流体温度在设定的范围内。
6.安全保护热交换器温度控制系统设计中需要考虑安全保护措施,以防止超温和意外故障。
例如,可以设置过温报警和自动断电装置,当温度超出设定范围或发生故障时,及时停止热交换器的运行。
7.控制系统调试和优化在完成热交换器温度控制系统的设计和安装后,需要进行调试和优化,以确保系统的性能和稳定性。
在调试过程中,根据实际情况调整控制器的参数,以达到所需的温度控制效果。
总结:热交换器温度控制系统的设计需要从系统需求分析、传感器选择、控制器选择、控制策略、温度设定和调节、安全保护等方面进行考虑。
通过合理的设计和调试优化,可以确保热交换器能够稳定运行并提供所需的热量。
换热器出口温度单回路控制
换热器出口温度单回路控制(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、概述换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
本次课程设计我要完成换热器出口温度单回路控制系统设计,单回路控制系统又称简单控制系统,是指由一个控制对象、一个检测元件及变送器、一个调节器和一个执行器所构成的闭合系统,方框图如下:图1、单回路控制系统方框图单回路控制系统结构简单、易于分析设计,投资少、便于施工,并能满足一般生产过程的控制要求,因此在生产中得到广泛应用。
设计一个控制系统,首先应对被控对象做全面的了解。
除被控对象的动静态特性外,对于工艺过程、设备等也需要比较深入的了解;在此基础上,确定正确的控制方案,包括合理选择被控变量与操纵变量,选择合适的检测变送原件及检测位置,选用恰当的执行器、调节器以及调机器控制规律等;最后将调节器的参数整定到最佳值。
2、换热器温度控制原理以及控制方案的确定换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象组成的闭合回路。
被调参数经检测元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器,调节器对偏差信号进行运算处理后输出控制作用。
换热器温度控制系统的工艺流程如下:冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使冷流体的出口温度升高。
冷流体通过循环泵流经换热器的壳程,出口温度稳定在设定值附近。
热流体通过多级泵流经换热器的管程,与冷流体热交换后流回蓄水池,循环使用。
从控制任务要求可知,换热器温度控制系统是单点、恒值控制。
且题目要求用单回路控制系统,控制范围和控制精度要求一般,功能上无特殊要求,采用广泛使用的PID 控制。
图2 PID 控制系统原理图PID 控制是偏差比例(P )、偏差积分(I )、偏差微分(D )控制的简称。
简单控制系统
1.选择直接参数作为被控变量 能直接反映生产过程中产品的产量和质量,以及安全运行的 参数的称为直接参数。 大多数情况下,被控变量的选择往往是显而易见的。对于以 温度、压力、流量、液位为操作指标的生产过程,很明显被控变 量就是温度、压力、流量、液位。这是很容易理解的,也无需多 加讨论。如前面章节中所介绍过的锅炉汽包水位控制系统和换热 器出口温度控制系统,其被控量的选择即属于这一类型。
1.平衡状态
当流入系统的蒸汽传递给冷流体的热量使被加热物料的出口温度T维 持在所要求的温度值时,设蒸汽的流量及品质保持不变,冷流体的流量 及品质也保持不变,则控制系统处于平衡状态,并将保持这个动态平衡, 直至有新的扰动量发生,或人们对被加热物料的出口温度有新的要求。
2.扰动分析 该系统的主要扰动如下所述。
3.基本步骤 (1)初步设计。初步设计的主要目的是上报审批,并为订货做准备。 (2)施工图设计。施工图设计是在项目和方案获批后,为工程施工 提供有关内容的详细的设计资料。 (3)设计文件和责任签字。设计文件和责任签字包括设计、校核、 审核、审定、各相关专业负责人员的会签等,以严格把关,明确责任, 保持协调。 (4)参与施工和试车。设计代表应该到现场配合施工,并参加试车 和考核。 (5)设计回访。在生产装置正常运行一段时间后,应去现场了解情 况,听取意见,总结经验。
(1)确定控制方案。首先要确定整个设计项目的自动化水平,然 后才能进行各个具体控制系统方案的讨论确定。对于比较大的控制系 统工程,更要从实际情况出发,反复多方论证,以避免大的失误。控 制系统的方案设计是整个设计的核心,是关键的第一步。要通过广泛 的调研和反复的论证来确定控制方案,它包括被控变量的选择与确认、 操纵变量的选择与确认、检测点的初步选择、绘制出带控制点的工艺 流程图和编写初步控制方案设计说明书等内容。
换热器温度控制系统的设计
1换热器温度控制系统的组成与特点1.1换热器的组成换热器温度控制系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
1.2系统控制过程的特点换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器,调节器对偏差信号进行运算处理后输出控制作用。
换热器的温度控制系统工艺流程如下:冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
1.3引起换热器出口温度变化的扰动因素简要概括起来,引起换热器出口温度变化的扰动因素主要有:(1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。
热流体的温度主要受到加热炉加热温度和管路散热的影响。
(2)冷流体的流量和温度的扰动。
冷流体的流量主要受到离心泵的压头、转速和阀门的开度等因素的影响。
(3)加热炉的启停机的影响。
(4)室内温度与管路内气体变化和阀门开度的影响。
2.1 换热器温度控制原理介绍图2.1为蒸汽水换热器的工作原理图。
加热介质为蒸汽,冷流体为水,控制目标是T ,T 1~T 3 温度传感器 M 电动调节阀图2.1 换热器温度控制原理图其工作原理为:温度传感器T 测量换热器出水温度,把信号传送至DDC 现场控制器,此为温度控制的主回路。
换热器温度控制方案
换热器温度控制方案换热器是工业生产中常见的设备,用于将热能从一个介质传递到另一个介质。
在实际应用中,为了确保换热器的效率和安全性,温度的控制是非常重要的。
本文将探讨几种常见的换热器温度控制方案,并对其优缺点进行分析。
首先,我们来介绍一种常见的控制方案——比例控制。
比例控制是通过调节冷却介质流量或加热介质流量的比例来控制换热器的温度。
这种方法简单直接,易于实施。
然而,由于比例控制只能调节流量,而不能对介质的温度进行直接控制,所以在某些情况下,可能无法满足精确控制的要求。
为了更好地控制换热器温度,反馈控制是一种更高级的控制方案。
反馈控制是通过测量换热器的出口温度,并根据测量结果调整加热或冷却介质的流量。
这种方式可以实现对温度的精确控制,提高系统响应速度和控制精度。
然而,反馈控制需要实时监测和计算,对硬件和算法要求较高,增加了系统的复杂性和成本。
除了比例控制和反馈控制,前馈控制也是一种常见的控制方案。
前馈控制是提前根据进口温度和流量变化预测出口温度的变化,并根据预测结果进行相应的调整。
这种方法可以在温度变化前就采取控制行动,提前消除变化带来的影响。
前馈控制在应对外部扰动和预测未来变化方面具有一定的优势。
然而,由于前馈控制无法准确预测所有变化情况,仍然需要与反馈控制结合使用。
在实际应用中,智能控制技术的发展也为温度控制带来了新的方案。
例如,基于人工智能的控制算法可以实时学习和优化系统的控制策略,在保证温度稳定的同时,提高系统的能效和自适应能力。
此外,传感器技术的进步也为温度控制提供了更多的数据来源,使得控制更加精确和可靠。
综上所述,换热器温度的控制方案多种多样,每种方案都有自己的优缺点。
在选择控制方案时,需要根据具体的应用需求、控制精度要求和系统复杂性等因素进行综合考量。
未来随着技术的进一步发展,相信会出现更多高效、智能的控制方案,为换热器温度控制提供更多选择和可能性。
换热器温度控制系统设计
换热器温度控制系统设计热交换器是工业生产中常见的设备,用于传递热量。
为了保证热交换器的高效运行,需要设计一个温度控制系统,使得热交换器内的温度始终保持在合适的范围内。
本文将从系统的硬件组成、控制策略、控制算法和性能评价四个方面对热交换器温度控制系统进行设计。
1.系统的硬件组成热交换器温度控制系统的硬件组成包括传感器、执行器和控制器。
传感器用于实时测量热交换器内的温度,常用的传感器包括热电偶和温度传感器。
执行器通过控制热交换器内的冷却或加热装置,来调节温度。
常用的执行器包括冷却水泵和加热器。
控制器负责采集传感器的数据,并根据控制策略进行控制,常用的控制器包括PLC和单片机。
2.控制策略热交换器温度控制系统的常用控制策略包括比例控制、比例积分控制和模糊控制。
比例控制是基于测量值与设定值之间的误差进行控制的,根据误差的大小来调节执行器,使得误差逐渐减小,温度稳定在设定值附近。
比例积分控制在比例控制的基础上增加了对误差的积分项。
积分项的作用是累积误差,并在误差连续一段时间内较大时进行补偿。
这种控制策略可以更好地消除系统的定常误差,使得温度更加稳定。
模糊控制是一种基于人类智慧的控制方法。
它通过建立模糊规则来描述输入变量和输出变量之间的关系。
根据传感器测量到的温度值和设定值,模糊控制器会根据事先设定的模糊规则来决定执行器的控制信号,从而实现温度的控制。
3.控制算法在选择控制算法时,可以采用经典的PID控制算法或者先进的自适应控制算法。
PID控制算法是一种常见的经典控制算法。
它根据误差的大小和变化率来计算控制信号,并通过加权比例、积分和微分项来调节执行器,最终实现温度的控制。
自适应控制算法是一种先进的控制算法,它能够根据实际的系统动态特性,自动调整控制参数。
自适应控制算法通过建立数学模型来描述系统,并根据系统的响应来修正控制参数,从而实现更好的控制效果。
4.性能评价热交换器温度控制系统的性能评价主要包括控制精度、稳定性和快速性。
简单控制系统组成原理及分析
简单控制系统组成原理及分析当前,随着生产过程及装备的现代化和计算机技术的应用日益普及.各方面对自动控制的要求越来越多,越来越高,但占控制系统总数绝大部分的仍然是简单控制系统,通常达80%以上。
另外,掌握好简单控制系统也是进一步学习复杂控制系统和先进控制系统的必要基础。
第一、系统组成原理简单控制系统是由一个调节器、一个变送器(测量仪表)、一个执行器(调节阀)和一个被控制物理对象所组成的控制系统。
图3-1是一个典型的简单控制系统,图3-2是该系统的方块图。
山于控制系统信号流只有一个回路,因此也称为单回路控制系统。
在图3一1中,蒸汽是热载体,用来加热冷流体,改变蒸汽流量来调节被加热物料的出口温度是最为常见的换热器控制方案。
T表示被加热介质的出口温度,是该控制系统的被控变量。
该控制系统的日的就是使T被控制在工艺条件所要求的某个固定的数值上;TT,表示温度测量并将其变换为TC可接受信号的仪表;Tc表示用来控制温度的调节器,气动调节阀是执行器;换热器是被控物理对象。
它们一起组成了换热器温度控制系统。
下面简要介绍控制系统的各个组成部分。
1)被控对象从图3-2看到,该控制系统由一个被控变量,即换热器中被加热介质的出口温度T,有时也称为被调变量或受控变量;一个被控对象,即换热器;一个调节变量,即热载体蒸汽的流量,有时也称为控制变量或操纵变量。
调节变址是被控对象的输人信号,被控变量是被控对本图由:自力式压力调节阀:/提供象的输出信号。
从控制方块图的角度看,被控对象换热器只有一个输人信号和一个输出信号。
换热器中其他对被控变旦T具有影响作用的因素都看作为干扰,干扰有时在方块图上不标出。
2)调节器实际的调一节器包括方块图中的比较部分和调节器方块两个部分,即用虚线框起来的部分。
调节器可以是电动II型、III型或S型调节器.甚至是工控计算机。
它们的输出信号都是电信号,可通过一只电/气转换器将信号送至气动调节阀,也可以直接将电信号送至带电气阀门定位器的气动调节阀。
换热器温度控制系统课程设计
换热器温度控制系统课程设计一、设计背景及目的1.1 设计背景换热器是工业生产中常见的设备,其主要作用是将热量从一个物质传递到另一个物质中。
在换热器的使用过程中,为了保证其正常运行和安全性,需要对换热器进行温度控制。
因此,本课程设计旨在设计一种能够实现换热器温度控制的系统。
1.2 设计目的本课程设计旨在通过对换热器温度控制系统的设计与实现,培养学生对自动控制原理和电气控制技术的理解和应用能力,提高学生对工业自动化技术的认识和应用水平。
二、设计内容2.1 系统结构本系统采用分层结构,包括上位机、下位机、传感器、执行机构等四个部分。
其中上位机负责监测和控制整个系统;下位机负责接收上位机指令并控制执行机构;传感器负责采集温度信号;执行机构则根据下位机指令调节换热器内部水流量。
2.2 系统功能本系统主要包括以下功能:(1)实时监测换热器内部的温度变化,并将数据传输给上位机;(2)根据上位机发送的指令,下位机调节执行机构控制水流量,从而实现对换热器内部温度的控制;(3)当系统出现异常情况时,自动报警并停止运行。
2.3 系统设计2.3.1 上位机设计上位机采用C#语言编写,主要包括以下功能:(1)实时监测温度数据,并进行显示;(2)设置温度控制参数,并发送给下位机;(3)接收下位机状态信息,并进行显示;(4)当系统出现异常情况时,自动报警并停止运行。
2.3.2 下位机设计下位机采用单片机进行设计,主要包括以下功能:(1)接收上位机指令,并解析指令内容;(2)根据指令调节执行机构控制水流量;(3)采集执行机构状态信息,并发送给上位机。
2.3.3 传感器设计本系统采用PT100型号温度传感器进行温度信号采集。
该传感器具有精度高、稳定性好等优点。
2.3.4 执行机构设计本系统采用电磁阀作为执行元件。
电磁阀具有调节水流量的功能,可实现对换热器内部温度的控制。
三、系统实现3.1 系统硬件设计本系统采用单片机作为下位机控制核心,通过串口与上位机进行通信;采用PT100型号温度传感器进行温度信号采集;采用电磁阀作为执行元件,控制水流量。
第五章简单控制系统
现场工程整定法——条件:在工艺过程手操稳定的基础上进行。
1)经验法
2)衰减曲线法
3)临界比例度法 4)响应曲线法
控制器参数的工程整定
方法一:经验法 (长期的生产实践中总结出来的一种整定方法)
系统
温度 流量 压力 液面
δ(%)
20~60 40~100 30~70 20~80
参数
TI ( min) 3 ~10 0.1~1 0.4~3
简单控制系统的设计原则
被控变量的选择
方法一:选择能直接反映生产过程中产品产量和质量又易于 测量的参数作为被控变量,称为直接参数法。例如 温度、压力、液位、流量反映等生产工艺状态的参 数。
方法二:选择那些能间接反映产品产量和质量又与直接参数 有单值对应关系、易于测量的参数作为被控变量, 称为间接参数法。例如组分(某物质含量)、转化 率等。
选择操纵变量 加压空气流量f1(t) 浆液流量f2(t) 旁路空气流量f3(t) 烟道气流量f4(t)
加压空气
3
1
干
2
燥
浆液
塔
4
烟道气
空气
单回路控制系统工程设计实例
加压空气
1
FC
2 浆液
TC
3
干
燥
塔
空气
4
烟道气
温度控制系统 测温元件---热电阻温度计 变送器----温度变送器 控制阀----气关形式(对数流量特性) 控制器----PID控制 规律,反作用
2. 当不能用直接参数作为被控变量时,可选择一个与直接参数有 单值函数关系并满足如下条件的间接参数为被控变量。 ⑴ 满足工艺的合理性 ⑵ 具有尽可能大的灵敏度且线形好 ⑶ 测量变送装置的滞后小。
简单控制系统
这么一来,电极所测得旳信号与中和糟内溶 液旳pH值在时间上就延迟了一段时间。
图7-5所示为苯、甲苯二元系统中易挥发 组分苯旳百分浓度与温度之间旳关系。 易挥发组分旳浓度越高,相应旳温度越 低;相反,易挥发组分旳浓度越低,相 应旳温度越高。
当温度TD恒定时,组分xD和压力p之间也 存在着单值相应关系,如图7-6所示。 易挥发组分浓度越高,相应旳压力也越 高;反之,易挥发组分旳浓度越低,相 应旳压力也越低。
第十一章 简朴控制系统
第一节 系统旳构造与构成 第二节 被控变量旳选择 第三节 调整变量旳选择 第四节 测量元件特征旳影响 第五节 控制器控制规律旳选择 第六节 控制系统旳投运与参数整定
伴随生产过程自动化水平旳日益 提升,控制系统旳类型越来越多, 复杂程度旳差别也越来越大。本 章所述旳简朴控制系统是使用最 普遍(占85%左右)、构造最简 朴旳一种自动控制系统。
所以采用简朴控制系统时,一般只 能确保塔顶或塔底一端旳产品质量。 工艺要求确保塔顶产品质量,则选 塔顶温度作为被控变量;若工艺要 求确保塔底产品质量,则选塔底温 度作为被控变量。
假如工艺要求塔顶和塔底产品纯度 都要确保,则一般需要构成复杂控 制系统,增长解耦装置,处理相互 关联问题。
从上面旳举例中能够看出,要正确地选 择被控变量,必须了解工艺过程和工艺 特点对控制旳要求,仔细分析各变量之 间旳相互关系。选择被控变量时,一般 要遵照下列原则。
(l)被控变量应能代表一定旳工艺操作 指标或能反应工艺操作状态,一般都是 工艺过程中比较主要旳变量。
(2)被控变量在工艺操作过程中经常要 受到某些干扰影响而变化。为了维持被 控变量旳恒定,需要较频繁旳调整。
(3)尽量采用直接指标作为被控变量。 当无法取得直接指标信号,或其测量和 变送信号滞后很大时,可选择与直接指 标有单值相应关系旳间接指标作为被控 变量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录目录 (1)1、题目....................................................... 错误!未定义书签。
2、换热器概述................................................. 错误!未定义书签。
2.1换热器的用途........................................... 错误!未定义书签。
2.2换热器的工作原理及工艺流程图........................... 错误!未定义书签。
3、控制系统 (3)3.1控制系统的选择 (3)3.2工艺流程图和系统方框图 (3)4、被控对象特性研究 (4)4.1 被控变量的选择 (4)4.2 操纵变量的选择 (4)4.3 被控对象特性 (5)4.4 调节器的调节规律的选择 (6)5、过程检测控制仪表的选用 (7)5.1 测温元件及变送器 (7)5.2 执行器 (9)5.3 调节器 (10)5.4、仪表型号清单列表 (11)6、系统方块图 (11)7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (12)7.1调节控制参数 (12)7.2 PID参数整定及系统仿真 (13)7.3 系统性能分析 (15)8、参考文献 (16)1、题目热交换器出口温度的控制。
2、换热器概述2.1 换热器的用途换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
进行换热的目的主要有下列四种:①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。
由于换热目的的不同,其被控变量也不完全一样。
在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。
对于不同的工艺要求,被控变量也可以是流量、压力、液位等。
2.2 换热器的工作原理及工艺流程图换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
图2 换热器温度控制系统工艺流程图从传热过程的基本方程式可知,为了保证出口的温度平稳,满足工艺生产的要求,必须对传热量进行调节,调节传热量有以下几条途径:①、调节载热体的流量。
调节载热体流量大小,其实只是改变传热速率方程中的传热系数K和平均温差△Tm,对于载热体在加热过程中不发生相变的情况,主要是改变传热速率方程的热系数K;而对于载热体在传热过程中发生相变的情况,主要是改变传热方程中的△Tm。
②、调节传热平均温差△Tm。
这种控制方案滞后较小反应迅速,应用比较广泛。
③、调节传热面积F。
这种方案滞后较大,只有在某些必要的场合才采用。
④、将工艺介质分路。
该方案是一部分工艺介质经换热,另一部分走旁路。
在设计传热设备自动化控制方案时,要视具体传热设备的特点和工艺条件而定。
而在某些场合,当被加热工艺介质的出口温度较低,采用低压蒸汽作载热体,传热面积裕量又较大时,为了保证温度控制平稳及冷凝液排除畅通,往往以冷凝器流量作为操纵变量,调节传热面积,以保持出口温度恒定。
3、控制系统3.1控制系统的选择由于本次设计的任务控制换热器被加热物料出口温度,工艺过程主要就是冷热流体热交换,且外来干扰因素主要是载热体的流量变化,故选择单回路控制系统便可以达到预定的控制精度。
3.2 工艺流程图和系统方框图单回路控制系统又称为简单控制系统,是有一个被控对象、一个检测元件及变送器、一个调节器和一个控制器所构成的闭合系统。
单回路控制系统结构简单、易于分析设计,投资少、便于施工,并能满足一般的一般生产过程的控制要求,因此在生产过程中得到广泛的应用,其方框图如下图所示。
图1、单回路控制系统方框图其中,被控变量:被加热物料的出口温度;操纵变量:载热体的流量。
如图所示:测量元件及变送器对冷物料出口温度进行测量,得到测量值Ym并传送给调节器,调节器把Ym与内部给定值Ys比较得到偏差信号e按一定的调节运算规律计算出控制信号,并将控制信u号传送给执行器,执行器接收到控制信号u,自动的改变阀门的开度,改变蒸汽的流量。
4、被控对象特性研究换热器是传热设备中较为简单的一种,也是最常见的一种。
通常它两侧的介质(工艺介质和载热体)在换热过程中均无相变。
换热器换热的目的是保证工艺介质加热(或冷却)到一定温度。
为保证出口温度平稳,满足工艺要求,必须对传递的热量进行调节。
4.1 被控变量的选择影响一个生产过程正常操作的因素很多,但并非对所有影响因素都要进行控制.被控参数是一个输出参数,应为独立变量,与输入量之间应有单值函数关系.对于换热器过程控制系统,人们最关心的是对换热器中介质即冷流体的温度和压力的自动控制与调节,而在这两项当中,温度的自动调节又处于首位.因为出口水温直接影响产品质量、产量、效率及安全性,即本系统把换热器出口水温作为被控参数.4.2 操纵变量的选择在控制系统中,用来克服干扰对被控变量的影响,实现控制作用的变量就是操纵变量。
将出口温度维持在一定值,影响冷物料出口温度的有很多因素,比说冷物料的流量,载热体的流量,载热体的温度等。
冷物料是工艺所需要的,不能选用冷物料作为被控变量,而若选载热体温度作为操纵变量,改变其温度还需改变其他工艺过程如锅炉的温度,考虑工艺合理性,我选择对热流体流量进行控制,保证出口温度的稳定。
4.3 被控对象特性换热器系统在连续生产中,其控制原理可通过热量平衡方程和传热速率方程来分析,这个方案的控制流程图如图6。
图6 换热器的温度控制系统工艺流程图为了处理方便,不考虑传热过程中的热损失,根据能量守恒定律,热流体失去的热量应该等于冷流体吸收的热量,热量平衡方程为:11i o22o iq=G c T T G c T T=1122(-)(-)式中,q为传热速率(单位时间内传递的热量);G为质量流量;c为比热容;T为温度。
式中的下标处1为载热体;2为冷流体;i为入口;o为出口。
传热过程中的传热速率为:q KF T=∆式中,K为传热系数;F为传热面积;T∆为两流体间的平均温差。
其中,平均温差T∆对于逆流、单程的情况为对数平均值:i o o i121i1o122o2iT T T T T TT=T T TlnlnTT T∆-∆∆=-∆∆-1122(-)-(-)当1i 1o 2o 2iT T 133T T -≤≤-时,其误差在5%以内,可采用算术平均值来代替,算术平均值表示为: i 1oo i T T T T T ∆=122(-)+(-)2由于冷流体间的传热既符合热量平衡方程,又符合传热速率方程,因此有下列关系22o i G c T T KF T ∆22(-)=整理后得 o i 22KF T T T G c ∆=+22从上式可以看出,在传热面积F 、冷流体进口流量2G 、温度2i T 和比热容2c 一定的情况下,影响冷流体出口温度的因素主要是传热系数K 以及平均温差T ∆。
4.3 调节器调节规律的选择调节器的作用是对来自变送器的测量信号与给定值比较所产生的偏差e(t)进行比例(P)、比例积分(PI)、比例微分(PD)或比例积分微分(PID)运算,并输出信号到执行器。
选择调节器的控制规律是为了使调节器的特性与控制过程的特性能很好配合,使所设计的系统能满足生产工艺对控制质量指标的要求。
比例控制规律(P)是一种最基本的控制规律,其适用范围很广。
在一般情况下控制质量较高,但最后有余差。
对于过程控制通道容量较大,纯时延较小,负荷变化不大,工艺要求又不太高的场合,可选用比例控制作用。
比例控制规律(P)的微分方程数学模型为:()()p u t e t k =比例积分(PI)控制规律,结合了比例控制反应快,积分控制能消除余差。
但是当过程控制通道的纯时延和容量时延都较大时,由于积分作用容易引起较大的超调,可能出现持续振荡,所以要尽可能避免用比例积分控制规律,不然会降低控制质量。
通常对管道内的流量或压力控制,采用比例积分作用其效果甚好,所以应用较多。
比例积分(PI)控制规律的微分方程数学模型为:01(){()()}t p u t e t e t dt Tik =+⎰比例微分(PD)控制规律,由于引入微分,具有超前作用,对于被控过程具有较大容量时延的场合,会大大改善系统的控制质量。
但是对于时延很小,扰动频繁的系统,由于微分作用会使系统产生振荡,严重时会使系统发生事故,所以应尽可能不用微分作用。
比例微分(PD)控制规律的微分方程数学模型为:()(){()}d p de t u t e t dtk T =+ 比例积分微分(PID)作用是一种理想的控制作用,一般均能适应不同的过程特性。
当要求控制质量较高时,可选用这种控制作用的调节器。
比例积分微分(PID)控制规律的微分方程数学模型为:01()(){()()}t d p de t u t e t e t dt Ti dt k T =++⎰ 其中:()u t :为调节器的输出号p k :放大倍数i T :积分时间常数 dT :微分时间常数 ()e t :设定值与测量值偏差信号通过以上几种调节规律的分析及本系统是温度控制为被控参数,温度检测本身具有滞后性,为了弥补这个缺点,本系统选用比例积分微分(PID)控制规律。
5、过程检测控制仪表的选用5.1 测温元件及变送器根据生产实践和现场使用条件以及仪表的性能,我们选用普通热电偶测温仪表。
热电偶温度仪表是基于热电效应原理制成的测温仪器,它由热电偶、电测仪表和连接导线组成,其核心元件是热电偶。
热电偶温度计有以下特点:①测温精度高、性能稳定;②结构简单,易于制造,产品互换性好;③将温度信号转换为电信号,便于信号远传和实现多点切换测量;④测温范围广,可达-200~2000℃;⑤形式多样,适用于多种测温条件;被控温度在500℃以下,由[1]表3-5选用铂热电阻温度计,为了提高检测精度,应采用三线制接法,并配用DDZ-Ⅲ型热电偶温度变送器。
DDZ-Ⅲ型热电偶温度变送器主要性能指标如下:①测量范围最小量程3mV,最大量程60mV;零点迁移-50~+50mV。
②基本误差0.5%±③温度特性环境温度每变化25℃,附加误差不超过千分之五。
④恒流性能当负载电阻在0~100Ω范围变化时,附加误差不超过千分之五。