大学物理同步训练(第2版)
大学物理(二)练习册答案
1 大学物理(二)练习册参考解答第12章真空中的静电场一、选择题1(D),2(C),3(C),4(A),5(C),6(B),7(C),8(D),9(D),10(B),二、填空题(1). 电场强度和电势,0/q F E=,l E q W U aaò×==00d /(U 0=0). (2). ()042e /q q+,q 1、q 2、q 3、q 4 ;(3). 0,l / (2e 0);(4). s R / (2e 0) ;(5). 0 ;(6). ÷÷øöççèæ-p 00114r r qe ;(7). -2³103 V ;(8). ÷÷øöççèæ-p a br r q q 11400e (9). 0,pE sin a ;(10). ()i a x A2+-.三、计算题1. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.解:设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为l =q / L ,在x 处取一电荷元d q = l d x = q d x / L ,它在P 点的场强:()204d d x d L qE -+p =e ()204d x d L L xq -+p =e 总场强为ò+p =Lx d L x Lq E 020)(d 4-e ()d L d q +p =04e 方向沿x 轴,即杆的延长线方向.2.一个细玻璃棒被弯成半径为R 的半圆形,沿其上半部分均匀分布有电荷+Q ,沿其下半部分均匀分布有电荷-Q ,如图所示.试求圆心O 处的电场强度.解:把所有电荷都当作正电荷处理. 在q 处取微小电荷d q = l d l = 2Q d q / p 它在O 处产生场强Ldq P +Q-QROxyPLdd qx (L+d -x ) d ExOq e e d 24d d 20220RQRq E p =p =按q 角变化,将d E 分解成二个分量:分解成二个分量:q q e q d sin 2sin d d 202RQE E x p ==q q e q d cos 2cos d d 202RQE E y p -=-=对各分量分别积分,积分时考虑到一半是负电荷对各分量分别积分,积分时考虑到一半是负电荷úûùêëé-p =òòpp p q q q q e 2/2/0202d sin d sin 2R QE x =0 2022/2/0202d cos d cos 2R Q R QE y e q q q q e pp p p -=úûùêëé-p -=òò所以所以j R Q j E i E E y x202e p -=+=3. “无限长”均匀带电的半圆柱面,半径为R ,设半圆柱面沿轴线OO'单位长度上的电荷为l ,试求轴线上一点的电场强度.,试求轴线上一点的电场强度.解:设坐标系如图所示.将半圆柱面划分成许多窄条.d l 宽的窄条的电荷线密度为荷线密度为q l l l d d d p=p =l R取q 位置处的一条,它在轴线上一点产生的场强为位置处的一条,它在轴线上一点产生的场强为q e l e l d 22d d 020RR E p =p =如图所示. 它在x 、y 轴上的二个分量为:轴上的二个分量为:d E x =d E sin q , d E y =-d E cos q 对各分量分别积分对各分量分别积分 R R E x 02002d sin 2e lq q e l pp =p =ò 0d c o s 202=p -=òp q q e lRE y场强场强 i Rj E i E E y x02e lp =+=4. 实验表明,在靠近地面处有相当强的电场,电场强度E垂直于地面向下,大小约为100 N/C ;在离地面1.5 km 高的地方,E也是垂直于地面向下的,大小约为25 N/C . (1) 假设地面上各处E都是垂直于地面向下,试计算从地面到此高度大气中电荷的平均体密度;体密度;(2) 假设地表面内电场强度为零,假设地表面内电场强度为零,且地球表面处的电场强度完全是由均匀分布在地表面且地球表面处的电场强度完全是由均匀分布在地表面的电荷产生,求地面上的电荷面密度.(已知:真空介电常量0e =8.85³10-12 C 2²N -1²m -2) d qR Oxyqd qqq d E y y d l d q R q O d E xx d EOR’O'解:(1) 设电荷的平均体密度为r ,取圆柱形高斯面如图(1)(侧面垂直底面,底面D S 平行地面)上下底面处的上下底面处的 场强分别为E 1和E 2,则通过高斯面的电场强度通量为:,则通过高斯面的电场强度通量为:òòE²S d =E 2D S -E 1D S =(E 2-E 1) D S 高斯面S 包围的电荷∑q i =h D S r由高斯定理(E 2-E 1) D S =h D S r /e∴ () E Eh121-=er =4.43³10-13 C/m 3(2) 设地面面电荷密度为s .由于电荷只分布在地表面,所以电力线终止于地面,取高斯面如图(2) 由高斯定理由高斯定理òòE ²S d =åi 01q e-E D S =SD se1∴ s=-e 0 E =-8.9³10-10 C/m 35. 一半径为R 的带电球体,其电荷体密度分布为的带电球体,其电荷体密度分布为r =Ar (r ≤R ) , r =0 (r >R ), A 为一常量.试求球体内外的场强分布.为一常量.试求球体内外的场强分布.解:在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为的薄球壳,该壳内所包含的电荷为 r r Ar V q d 4d d 2p ×==r在半径为r 的球面内包含的总电荷为的球面内包含的总电荷为 403d 4Ar r Ar dV q rV p =p ==òòr (r ≤R) 以该球面为高斯面,按高斯定理有以该球面为高斯面,按高斯定理有 0421/4e Ar r E p =p ×得到得到 ()0214/e ArE =, (r ≤R ) 方向沿径向,A >0时向外, A <0时向里.时向里.在球体外作一半径为r 的同心高斯球面,按高斯定理有的同心高斯球面,按高斯定理有0422/4e AR r E p =p ×得到得到 ()20424/rAR E e =, (r >R ) 方向沿径向,A >0时向外,A <0时向里.时向里.6. 如图所示,一厚为b 的“无限大”带电平板的“无限大”带电平板 , 其电荷体密度分布为r =kx (0≤x ≤b ),式中,式中k 为一正的常量.求:为一正的常量.求: (1) 平板外两侧任一点P 1和P 2处的电场强度大小;处的电场强度大小;(2) 平板内任一点P 处的电场强度;处的电场强度; (3) 场强为零的点在何处?场强为零的点在何处?解:解: (1) 由对称分析知,平板外两侧场强大小处处相等、方向垂直于平面且背离平面.设场强大小为E .作一柱形高斯面垂直于平面.其底面大小为S ,如图所示.,如图所示.E(2)xbP 1 P 2Px OSE 2D SE 1(1) h按高斯定理åò=×0e /d q S E S ,即,即 020002d d 12e e r e kSbx x kSxS SEb b ===òò得到得到 E = k b kb 2 / (4e 0) (板外两侧) (2) 过P 点垂直平板作一柱形高斯面,底面为S .设该处场强为E ¢,如图所示.按高斯定理有定理有()022ee k S bx d x kSSE Ex==+¢ò得到得到 ÷÷øöççèæ-=¢22220b x k E e (0≤x ≤b ) (3) E ¢=0,必须是0222=-bx , 可得2/b x =7. 一“无限大”平面,中部有一半径为R 的圆孔,设平面上均匀带电,电荷面密度为s .如图所示,试求通过小孔中心O 并与平面垂直的直线上各点的场强和电势(选O 点的电势为零).解:将题中的电荷分布看作为面密度为s 的大平面和面密度为-s 的圆盘叠加的的圆盘叠加的 结果.选x 轴垂直于平面,坐标原点O在圆盘中心,大平面在x 处产生的场强为处产生的场强为 i xx E012e σ=圆盘在该处的场强为圆盘在该处的场强为i x R x x E÷÷øöççèæ+--=2202112e σ ∴ i xR xE E E 220212+=+=e σ 该点电势为该点电势为()22222d 2xRR xR xx U x+-=+=òe se s8. 一半径为R 的“无限长”圆柱形带电体,其电荷体密度为r =Ar (r ≤R ),式中A 为常量.试求:求:(1) 圆柱体内、外各点场强大小分布;圆柱体内、外各点场强大小分布; (2) 选与圆柱轴线的距离为l (l >R ) 处为电势零点,计算圆柱体内、外各点的电势分布.解:(1) 取半径为r 、高为h 的高斯圆柱面(如图所示).面上各点场强大小为E 并垂直于柱面.则穿过该柱面的电场强度通量为:面.则穿过该柱面的电场强度通量为:xS P SE ESSEd xb E ¢sOROxPòp =×SrhE S E2d 为求高斯面内的电荷,r <R 时,取一半径为r ¢,厚d r ¢、高h 的圆筒,其电荷为的圆筒,其电荷为r r Ah V ¢¢p =d 2d 2r则包围在高斯面内的总电荷为则包围在高斯面内的总电荷为3/2d 2d 32Ahrr r Ah V rVp =¢¢p =òòr由高斯定理得由高斯定理得 ()033/22e Ahr rhE p =p 解出解出 ()023/e Ar E = (r ≤R ) r >R 时,包围在高斯面内总电荷为:时,包围在高斯面内总电荷为:3/2d 2d 32AhRrrAh VRVp=¢¢p=òòr由高斯定理由高斯定理 ()033/22e A h R r h E p =p 解出解出 ()r AR E 033/e = (r >R ) (2) 计算电势分布计算电势分布r ≤R 时 òòò×+==lRRrlrrr AR r r A r E U d 3d 3d 0320e e()Rl AR rR A ln 3903330e e +-=r >R 时 rl AR rr AR rE Ulrl rln3d 3d 033e e =×==òò9.一真空二极管,其主要构件是一个半径R 1=5³10-4 m 的圆柱形阴极A 和一个套在阴极外的半径R 2=4.5³10-3 m 的同轴圆筒形阳极B ,如图所示.阳极电势比阴极高300 300 VV ,忽略边缘效应. 求电子刚从阴极射出时所受的电场力.(基本电荷e =1.6³10-19 C) 解:与阴极同轴作半径为r (R 1<r <R 2 )的单位长度的圆柱形高斯面,设阴极上电荷线密度为l .按高斯定理有.按高斯定理有 2p rE = l / e 0 得到得到 E = l / (2p e 0r ) (R 1<r <R 2) 方向沿半径指向轴线.两极之间电势差方向沿半径指向轴线.两极之间电势差òòp -=×=-21d 2d 0R R BAB A rr r E U U el120ln 2R R elp -=得到得到()120/ln 2R R UUAB-=p e l, 所以所以 ()rR R UUE AB1/ln 12×-=在阴极表面处电子受电场力的大小为在阴极表面处电子受电场力的大小为 ()()11211/c R RR UUeReE F AB×-===4.37³10-14 N 方向沿半径指向阳极.方向沿半径指向阳极.RrhABR 2 R 1四 研讨题1. 真空中点电荷q 的静电场场强大小为的静电场场强大小为 241rq E pe=式中r 为场点离点电荷的距离.当r →0时,E →∞,这一推论显然是没有物理意义的,应如何解释?何解释?参考解答:参考解答:点电荷的场强公式仅适用于点电荷,当r →0时,任何带电体都不能视为点电荷,所以点电荷场强公式已不适用.点电荷场强公式已不适用.若仍用此式求场强E ,其结论必然是错误的.当r →0时,需要具体考虑带电体的大小和电荷分布,这样求得的E 就有确定值.就有确定值.2. 用静电场的环路定理证明电场线如图分布的电场不可能是静电场.参考解答:参考解答:证:在电场中作如图所示的扇形环路abcda .在ab 和cd 段场强方向与路径方向垂直.在bc 和da 段场强大小不相等(电力线疏密程度不同)而路径相等.因而同)而路径相等.因而d d d ¹×¢-×=×òòòc ba d l E l E l E 按静电场环路定理应有0d =×òl E , 此场不满足静电场环路定理,所以不可能是静电场.此场不满足静电场环路定理,所以不可能是静电场.3. 如果只知道电场中某点的场强,能否求出该点的电势?如果只知道电场中某点的电势,能否求出该点的场强?为什么?能否求出该点的场强?为什么?参考解答:参考解答:由电势的定义:由电势的定义: ò×=零势点场点l E U d式中E为所选场点到零势点的积分路径上各点的场强,所以,如果只知道电场中某点的场强,而不知道路径上各点的场强表达式,不能求出该点的电势。
大学物理第二版习题答案
13级应用化学(2)班物理习题详解习题精解1-1某质点的速度为j t i v 82-=,已知t=0时它经过点(3,7),则该质点的运动方程为( )A.j t i t 242-B.()()j t i t 74322+-+ C.j 8- D.不能确定解:本题答案为B.因为 dt rd v =所以 ()dt j t i r d82-=于是有()d t j t i r d t rr ⎰⎰-=0820即 j t i t r r2042-=-亦即 ()j t i t j i r 24273-=-- 故 ()()j t i t r 74322+-+=1-2 一质点在平面上作曲线运动,1t 时刻位置矢量为j i r 621+-=,2t 时刻的位置矢量为j i r 422+=,求:(1)在12t t t -=∆时间内质点的位移矢量式;(2)该段时间内位移的大小和方向;(3)在坐标图上画出21,r r及r∆。
解 (1)在12t t t -=∆时间内质点的位移矢量式为()()m j i r r r 2412-=-=∆ (2)该段时间内位移的大小 ()()m r 522422=+=∆该段时间内位移的方向与轴的夹角为 ︒-=⎪⎭⎫⎝⎛-=-6.2642tan 1α (3)坐标图上的表示如图1.1所示1-3某质点作直线运动,其运动方程为214x t t =+- ,其中x 以m 计,t 以s 计,求:(1)第3s 末质点的位置;(2)头3s 的位移大小;(3)头3s 内经过的路程。
解 (1)第3s 末质点的位置为2(3)14334()x m =+⨯-=(2)头3s 的位移大小为 ()(3)03()x x m -=(3)因为质点做反向运动是有()0v t =,所以令0dxdt=,即420,2t t s -==因此头3s 内经过的路程为 (3)(2)(2)(0)45515()x x x x m -+-=-+-=1-4 已知某质点的运动方程为22,2x t y t ==-,式中t 以s 计,x 和y 以m 计。
《大学物理学(第二版)》(李乃伯主编)第一至第五单元课后习题指导
《物理学(第二版)》(李迺伯主编)第一章:过关测试第一关1.判断下列哪一种说法是正确的A.你用手关一扇门,此门可以看成质点;B.开枪后子弹在空中飞行,子弹可看成质点;C.讨论地球自转,地球可看成质点;D.一列火车在半径为800m的圆轨道上行驶,火车可看成质点。
答案:B2.下列哪一种说法是正确的A.加速度恒定不变时,物体的运动方向必定不变;B.平均速率等于平均速度的大小;C.不论加速度如何,平均速率的表达式总可以写成。
上式中为初始速率,为末了速率;D.运动物体的速率不变时,速度可以变化。
答案:D3.某质点的运动学方程为,以为单位,以为单位。
则该质点作A.匀加速直线运动,加速度为正值;B.匀加速直线运动,加速度为负值;C.变加速直线运动,加速度为正值;D.变加速直线运动,加速度为负值。
答案:D (解:速度加速度)4.质点作匀加速圆周运动,它的A.切向加速度的大小和方向都在变化;B.法向加速度的大小和方向都在变化;C.法向加速度的方向变化,大小不变;D.切向加速度的方向不变,大小变化。
答案:B5.气球正在上升,气球下系有一重物,当气球上升到离地面100 m高处,系绳突然断裂,最后重物下落到地面。
与另一物体从100 m高处自由下落到地面的运动相比,下列结论正确的是A.运动的时间相同;B.运动的路程相同;C.运动的位移相同;D.落地时的速度相同。
答案:C(解:由于重物在100 m高处有向上的初速度,先上升,到达最高点后再下落。
与物体从100 m高处自由落体到地面的运动相比,运动的时间、路程,落地时的速度均不相同,仅位移相同。
)6.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时A.小球受到重力、绳的拉力和向心力的作用;B.小球受到重力、绳的拉力和离心力的作用;C.绳子的拉力可能为零;D.小球可能处于受力平衡状态。
答案:C(解:小球所受合力的法向分量有时称作向心力,它是“合力的分量”,不是其它物体施加的,故A不正确。
大学物理同步训练第2版第七章静电场中的导体详解
第七章 静电场中的导体和电介质一、选择题1. (★★)一个不带电的空腔导体球壳,内半径为R 。
在腔内离球心的距离为a 处(a <R )放一点电荷+q ,如图1所示。
用导线把球壳接地后,再把地线撤去。
选无穷远处为电势零点,则球心O 处的电势为(A )q 2πε0a ⁄ (B )0(C )−q 4πε0R ⁄ (D )q 4πε0⁄∙(1a ⁄−1R ⁄)答案:D分析:由静电平衡的知识可知:①当空腔导体内放入点电荷+q 时,空腔导体的内表面会带上等量异号的电荷−q ,由电荷守恒可知不带电的空腔导体的外表面带有的+q 电荷;②当球壳接地后,球壳电势变为零,故球壳外表面电量变为零。
因此接地后去掉地线,该体系的电荷分布如图所示,球壳内表面带有−q 的电量,外表面不带电。
由电势叠加原理可得球心O 处的电势为V O =q 4πε0a +∫dq 4πε0R 内=q 4πε0a +14πε0R ∫dq 内=q 4πε0(1a −1R ) 故选项D 正确。
注:式中∫dq 内=−q 为内表面的电量之和。
【补充】带电量为Q 半径为R 的球面(电荷分布无论均匀或不均匀)在球心处产生的电势为V =Q 4πε0R ⁄。
2. 三块互相平行的导体板之间的距离d 1和d 2比板间面积线度小得多,如果d 2=2d 1,外面二板用导线连接,中间板上带电。
设左右两面上电荷面密度分别为σ1和σ2,如图2所示,则σ1σ2⁄为(A )1 (B )2 (C )3 (D )4答案:B分析:【知识点】达到静电平衡的导体:①内部电场强度为E =0,表面附近电场强度垂直于导体表面,大小为E =σε0⁄,其中σ为导体表面电荷面密度;②导体是一个等势体,导体表面为等势面;③导体内部处处无净电荷,即电荷只分布在导体的表面上,电荷面密度与导体表面的曲率有关,曲率越大(越尖)电荷面密度越大。
由静电平衡的知识点①可知,中间导体板左侧电场强度为σ1ε0⁄,右侧为σ2ε0⁄;由静电平衡的知识点②可知,用导线连接起来的左右两个导体板等势,即中间导体板与左右两导体板的电势差U 相同,由U =Ed 可得σ1ε0⁄∙d 1=σ2ε0⁄∙d 2,故σ1σ2⁄=d 2d 1⁄=2,故选项B 正确。
大学物理课后习题册答案 第二版王建邦主编
参考答案 第一章1-1 已知质点运动学方程分量式为2x t =262y t =- (1)求轨道方程,并画出轨迹图;(2)求1t =到2t =之间的∆r ,r ∆和v ;(本题中x ,y的单位是m ,t 的单位是s ,v 的单位为1s m -⋅。
)[答案] (1)262x y =-,(2)26-i j ,0,26-i j .(1)由质点在水平方向、竖直方向的位置-时间函数关系:2x t=262y t =-消去t ,得轨道方程为262x y =-轨迹为抛物线,如题1-1图所示。
(2)将质点的位矢分量式:2x t =262y t =-代入位矢()()()t x t y t ==+r r i j ,可得质点的位置矢量22(62)t t =+-r i j 。
代入时间参量t ,得质点在某一时刻的位置r 。
由质点位移和平均速度的定义,可求得21∆=-r r r 21r r r ∆=- t∆=∆r v1-2 如图1-2所示,一足球运动员在正对球门前25.0m 处以120.0m s -⋅的初速/y率罚任意球,已知球门高为3.44m 。
若要在垂直于球门竖直平面内将足球直接踢进球门,问他应在与地面成什么角度的范围内踢出足球(足球可视为质点)?[答案] 171.1169.92θ≥≥,127.9218.89θ≥≥. 以踢球点为坐标原点取平面坐标系xOy 。
按高中物理,设斜抛小球初速度0v ,斜抛仰角0θ,写出小球水平方向、竖直方向的位置-时间函数关系:00cos x v t θ= (1)2001sin 2y v t gt θ=- (2)消去t 得足球的轨迹方程 202200tan 2cos gy x x v θθ=-依题意以25.0x m =,120.0v m s -=⋅及3.440m y ≥≥代入后,可解得 171.1169.92θ≥≥ 127.9218.89θ≥≥。
1-3 一质点在xy 平面内运动,在某一时刻它的位置矢量(45)m =-+r i j ,经5s t ∆=后,其位移(68)m ∆=-r i j 。
大学物理同步训练第2版第三章刚体定轴转动详解
mg
3g 1 cos L 1 1 1 cos mL2 2 2 2 3 L
可知当 从 0 至 90 度的过程中,角速度从小到大。 5. (☆)如图 3 所示,A、B 为两个相同的绕着轻绳的定滑轮。A 滑 轮挂一质量为 m 的物体,B 滑轮受拉力 G,而且 G=mg。设 A、B 两 滑轮的角加速度分别为βA 和βB,不计滑轮轴的摩擦,则有 (A) A B (C) A B 答案:C 分析: (定性)由于物体 m 有向下的加速度,故作用于物体上的绳子张力小于 mg,即小于 右边绳子的张力(=mg) ,故 A 滑轮受到的力矩小于 B 滑轮,故 A B 。 (定量)设圆盘转动惯量为 I ,参考计算题第 1 题的计算过程,可得 A、B 圆盘的转动角加 速度为 (B) A B (D)开始时 A B ,以后 A B
mg TA ma mgR mgR A ; GR I B B TA R I A 2 I mR I R a A
故 A B 。 6. 一轻绳跨过一具有水平光滑轴、转动惯量为 J 的定滑轮, 绳的两端分别悬 有质量为 m1 和 m2 的物体 (m1<m2) , 如图 4 所示。 绳与轮之间无相对滑动。 若某时刻滑轮沿逆时针方向转动,则绳中的张力 (A)处处相等 (C)右边大于左边 答案:C 分析: (定性)由于重的物体 m2 最终必然下落,可知圆盘最后将做顺时针转动,因此圆盘 受到的合外力矩应为顺时针,即右边绳子的张力要大于左边绳子的张力。 (定量)参考课本例题( (★)阿特伍德机:P84,例 3-5)可得 (B)左边大于右边 (D)无法判断哪边大
A J B A
6. (☆)如图 10 所示,一静止的均匀细棒,长为 L,质量为 m1,可绕通过棒的端点且垂直 于棒长的光滑固定轴 O 在水平面内转动,转动惯量为 m1L2/3。一质量为 m、速率为 v 的子 弹在水平面内沿与棒垂直的方向射出并穿出棒的自由端,设穿过棒后子弹的速率为 v/2,则 此时棒的角速度应为 答案: 。
大学物理同步训练1-15章(第2版)-2
质点运动学答案一、选择题1、C2、C3、B4、B5、B6、A7、D8、C 二、填空题1、42、3m s ;9m s3、2m;6m 4/s/s5、239y x =+ 6、7、s t ∆;02tυ∆ 8、6.28m; 0;0; 6.28m/s 9、圆周运动;匀速率圆周运动 10、3.811、sin sin R ti R tj ωωωω-+;0;半径为R 的圆周 三、计算题(2)(1)(2)(1)(1.5)(1)(1)00640, 1.511(2)2642x x x xtdxt dtt ss x x x x m sms tt s υυυυυ∆-=∆=∆==-==∆=-+-=∆=∆=⨯位移==令第二秒内路程平均速率=m 时,=-=-2s负号表示速度方向沿平均速度x 轴负向2223058.365.12x y t n tn gtd a dt a ga t s ma m s ma ss υυυυ⎧=⎪⎨=⎪⎩=========时,3、2222222464(34)164002.5t n t n dsst t dt d sa t dtt t a R R m a s a Rm a s R mυυυ==+==++========当t=2s 时m=20s4、解:0230300044002232()3114366vttv xttx dv a dt dv adt dv adt t dtv v t dx v dt dx vdtdx vdt v t dt x x v t t t t =====+====+=++=++⎰⎰⎰⎰⎰⎰质点动力学答案一、选择题1、C2、C 二、填空题1、980J2、9J 三、计算题1、解:0220322202213624txtF a tmd tdtt dx t dtx t dx t dtW Fdx t t dt Jυυυ==========⎰⎰⎰⎰⎰⎰2、解:()2215030145W Fdx x x dx J ==+=⎰⎰刚体定轴转动习题答案一、选择题 1、(A ) 2、(C )3(C )4、(A )5、 (C) 6、 (C) 7、(B ) 8、(A ) 9、(B ) 10、(B ) 二、填空题1、答:刚体的质量、刚体的质量分布、刚体的转轴的位置。
大学物理同步训练第09章热力学基础
第九章 热力学基础一、选择题1. 如图1所示,一定量的理想气体,由平衡状态A 变到平衡状态B (p A =p B ),则无论经过的是什么过程,系统必然(A )对外做正功(B )内能增加 (C )从外界吸热(D )向外界放热答案:B分析:功和热量为过程量,其大小、正负与过程有关,故A 、C 、D 选项错误;内能(温度)为状态量,与过程无关。
由图可知,B 点内能高于A 点(由内能公式E =ipV 2⁄可得,式中i 为气体分子自由度,见《气体动理论》选择题1)。
2. 对于室温下的单原子分子理想气体,在等压膨胀的情况下,系统对外所做的功与从外界吸收的热量之比W Q ⁄等于(A )23⁄(B )12⁄ (C )25⁄ (D )27⁄ 答案:C分析:由等压过程公式∆Q:∆E:∆W =(i +2):i:2可得W Q ⁄=2(3+2)=25⁄⁄。
3. 压强、体积、温度都相等的常温下的氧气和氦气,分别在等压过程中吸收了相等的热量,它们对外做的功之比为(A )1:1(B )5:9 (C )5:7 (D )9:5 答案:C分析:(参考选择题2)可得∆W =2i +2∆Q → ∆W O 2∆W He =2∆Q (i O 2+2)⁄2∆Q (i He +2)⁄=3+25+2=57 关于自由度i 可参考《气体动理论》选择题1。
4. 在下列理想气体过程中,哪些过程可能发生?(A )等体积加热时,内能减少,同时压强升高(B )等温压缩时,压强升高,同时吸热(C )等压压缩时,内能增加,同时吸热(D )绝热压缩时,压强升高,同时内能增加答案:D分析:热力学第一定律∆Q =∆E +∆W (其中∆Q 为系统吸收的热量,∆E 为系统内能的增量,∆W 为系统对外所做的功)。
等体过程,∆W =0,吸收热量∆Q >0,则∆E >0,系统内能增加,故A 错误;等温压缩,∆W <0,温度不变即∆E =0,故∆Q <0,系统放热,故B 错误;等压压缩,∆W <0,由等压过程公式(见选择题2)可知∆E <0,∆Q <0,系统内能减小,且系统放热,故C 错误;绝热压缩时,∆Q =0,∆W <0,故∆E >0,系统内能增加,由绝热过程曲线可知压强升高,故D 正确。
大学物理II练习册答案3课件
大学物理练习三一.选择题1.一力学系统由两个质点组成,它们之间只有引力作用。
若两质点所受外力的矢量和为零,则此系统 [ ] (A) 动量、机械能以及对一轴的角动量都守恒。
(B) 动量、机械能守恒,但角动量是否守恒不能断定。
(C) 动量守恒,但机械能和角动量守恒与否不能断定。
(D) 动量和角动量守恒,但机械能是否守恒不能断定。
解:[ C ] 按守恒条件:∑=0iF 动量守恒,但∑≠0i M 角动量不守恒, 机械能不能断定是否守恒。
2.如图所示,有一个小物体,置于一个光滑的水平桌面上,有一绳其一端连结此物体,另一端穿过桌面中心的小孔,该物体原以角速度ω在距孔为R 的圆周上转动,今将绳从小孔往下拉。
则物体 [ ] (A)动能不变,动量改变。
(B)动量不变,动能改变。
(C)角动量不变,动量不变。
(D)角动量改变,动量改变。
(E)角动量不变,动能、动量都改变。
解:[ E ] 因对o 点,合外力矩为0,角动量守恒3.有两个半径相同,质量相等的细圆环A 和B 。
A 环的质量分布均匀,B 环的质量分布不均匀。
它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则 [ ] (A)A J >B J (B) A J < B J (C) A J =B J (D) 不能确定A J 、B J 哪个大。
解:[ C ] 细圆环的转动惯量与质量是否均匀分布无关⎰==220mR dmR J4.光滑的水平桌面上,有一长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O 自由转动,其转动惯量为31m L 2,起初杆静止。
桌面上有两个质量均为m的小球,各自在垂直于杆的方向上,正对着杆的一端,以相同的速率v 相向运动,如图所示。
当两小球同时与杆的两个端点发生完全非弹性碰撞后与杆粘在一起转动,则这一系统碰撞后的转动角速度为 [ ](A)L v 32. (B) L v 54 (C)L v 76 (D) Lv 98解:[ C ]角动量守恒二.填空题1.绕定轴转动的飞轮均匀地减速,t = 0时角速度ω0 =5 rad/s ,t = 20s 时角速度ω=0.8ω0,则飞轮的角加速度β= ,t=0到t=100s 时间内飞轮所转过的角度θ= 。
南华大学大物练习册二参考答案教材
第二章 运动的守恒量和守恒定律练 习 一一. 选择题1. 关于质心,有以下几种说法,你认为正确的应该是( C )(A ) 质心与重心总是重合的; (B ) 任何物体的质心都在该物体内部; (C ) 物体一定有质心,但不一定有重心; (D ) 质心是质量集中之处,质心处一定有质量分布。
2. 任何一个质点系,其质心的运动只决定于( D )(A )该质点系所受到的内力和外力; (B) 该质点系所受到的外力;(C) 该质点系所受到的内力及初始条件; (D) 该质点系所受到的外力及初始条件。
3.从一个质量均匀分布的半径为R 的圆盘中挖出一个半径为2R 的小圆盘,两圆盘中心的距离恰好也为2R 。
如以两圆盘中心的连线为x 轴,以大圆盘中心为坐标原点,则该圆盘质心位置的x 坐标应为( B ) (A )R 4; (B) R 6; (C) R 8; (D R12。
4. 质量为10 kg 的物体,开始的速度为2m/s ,由于受到外力作用,经一段时间后速度变为6 m/s ,而且方向转过90度,则该物体在此段时间内受到的冲量大小为 ( B ) (A )s N ⋅820; (B) s N ⋅1020; (C) s N ⋅620; (D) s N ⋅520。
二、 填空题1. 有一人造地球卫星,质量为m ,在地球表面上空2倍于地球半径R 的高度沿圆轨道运行,用m 、R 、引力常数G 和地球的质量M 表示,则卫星的动量大小为RGMm3。
2.三艘质量相等的小船在水平湖面上鱼贯而行,速度均等于0v ,如果从中间小船上同时以相对于地球的速度v 将两个质量均为m 的物体分别抛到前后两船上,设速度v 和0v 的方向在同一直线上,问中间小船在抛出物体前后的速度大小有什么变化:大小不变。
3. 如图1所示,两块并排的木块A 和B ,质量分别为m 1和m 2,静止地放在光滑的水平面上,一子弹水平地穿过两木块。
设子弹穿过两木块所用的时间分别为∆t 1和∆t 2,木块对子弹的阻力为恒力F ,则子弹穿出后,木块A 的速度大小为 1A BF t m m ⋅∆+,木块B 的速度大小为12F t A BBF t m m m ⋅∆⋅∆++。
大学物理2练习册答案
大学物理2练习册答案问题1:简谐振子的周期公式是什么?答案:简谐振子的周期 \( T \) 可以通过公式 \( T =2\pi\sqrt{\frac{m}{k}} \) 来计算,其中 \( m \) 是振子的质量,\( k \) 是弹簧的劲度系数。
问题2:描述牛顿第二定律的表达式,并给出一个应用实例。
答案:牛顿第二定律的表达式是 \( F = ma \),其中 \( F \) 是作用在物体上的合力,\( m \) 是物体的质量,\( a \) 是物体的加速度。
应用实例:当一个质量为2kg的物体受到10N的力作用时,它的加速度将是 \( 5 m/s^2 \)。
问题3:解释什么是角动量守恒定律,并给出一个例子。
答案:角动量守恒定律指的是,如果没有外力矩作用于一个系统,那么这个系统的总角动量保持不变。
例如,一个旋转的冰上舞者在收缩手臂时,由于半径减小,角速度会增加,以保持角动量守恒。
问题4:解释什么是电场强度,并给出其计算公式。
答案:电场强度是一个矢量量,表示在电场中某一点单位正电荷所受到的电场力。
其计算公式是 \( E = \frac{F}{q} \),其中 \( E \) 是电场强度,\( F \) 是电荷 \( q \) 所受的电场力。
问题5:什么是电流的微观表达式?答案:电流的微观表达式是 \( I = nqAv \),其中 \( I \) 是电流,\( n \) 是单位体积内的电荷数,\( q \) 是单个电荷的电荷量,\( A \) 是导体的横截面积,\( v \) 是电荷的漂移速度。
问题6:解释什么是磁感应强度,并给出其单位。
答案:磁感应强度是一个矢量量,表示磁场在空间某点的强度和方向。
其单位是特斯拉(T)。
问题7:什么是电磁波?描述其基本特性。
答案:电磁波是由变化的电场和磁场相互作用产生的波动现象。
电磁波的基本特性包括:它们可以在真空中传播,具有波长、频率和速度,且电磁波的速度在真空中等于光速 \( c \)。
大学物理学第二版习题解答
大学物理学习题答案习题一答案习题一1.1 简要回答下列问题:(1)位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等?(2)平均速度和平均速率有何区别?在什么情况下二者的量值相等?(3)瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么?(4)质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5)r ∆v 和r ∆v 有区别吗?v ∆v 和v ∆v 有区别吗?0dv dt =v 和0d v dt=v 各代表什么运动? (6)设质点的运动方程为:()x x t =,()y y t =,在计算质点的速度和加速度时,有人先求出r =dr v dt=及22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =及a = 你认为两种方法哪一种正确?两者区别何在? (7)如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性的?(8)“物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度也一定为零.”这种说法正确吗?(9)任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么?(10)质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变?(11)一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何?1.2一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。
解:(1)最初s 2内的位移为为:(2)(0)000(/)x x x m s ∆=-=-=最初s 2内的平均速度为:00(/)2ave x v m s t ∆===∆ t 时刻的瞬时速度为:()44dx v t t dt==-s 2末的瞬时速度为:(2)4424/v m s =-⨯=-(2)s 1末到s 3末的平均加速度为:2(3)(1)804/22ave v v v a m s t ∆---====-∆ (3)s 3末的瞬时加速度为:2(44)4(/)dv d t a m s dt dt-===-。
大学物理第二版习题答案_罗益民_北邮出版社 (2)
习 题 解 答第8章 机械振动8-1 解:取固定坐标xOy ,坐标原点O 在水面上(图题所示)设货轮静止不动时,货轮上的A 点恰在水面上,则浮力为S ρga .这时 ga s Mg ρ= 往下沉一点时,合力 )(y a g s Mg F +-=ρ gy s ρ-=. 又 22d d t yMMa F == 故0d d 22=+gy s ty M ρ022=+y M gs dtdy ρ 故作简谐振动M g s ρω=2)(35.68.910102101022223334s g s M T =⨯⨯⨯⨯⨯===πρπωπ8-2 解:取物体A 为研究对象,建立坐标Ox 轴沿斜面向下,原点取在平衡位置处,即在初始位置斜下方距离l 0处,此时:)(1.0sin 0m kmg l ==θ(1) (1) A 物体共受三力;重mg, 支持力N, 张力T.不计滑轮质量时,有 T =kx列出A 在任一位置x 处的牛顿方程式220d d )(sin sin txm x l k mg T mg =+-=-θθ将(1)式代入上式,整理后得0d d 22=+x mkt x 习题8-1图故物体A 的运动是简谐振动,且)rad/s (7==mkω 由初始条件,000⎩⎨⎧=-=v l x 求得,1.00⎩⎨⎧===πϕml A 故物体A 的运动方程为x =0.1cos(7t+π)m(2) 当考虑滑轮质量时,两段绳子中张力数值不等,如图所示,分别为T 1、T 2,则对A 列出任一位置x 处的牛顿方程式为:221d d sin txm T mg =-θ (2)对滑轮列出转动方程为:22221d d 2121t x Mr r a Mr J r T r T =⎪⎭⎫ ⎝⎛==-β (3)式中,T 2=k (l 0+x ) (4)由式(3)、(4)知2201d d 21)(txM x l k T ++=代入(2)式知 22021)(sin dtxd m M x l k mg ⎪⎭⎫ ⎝⎛+=+-θ又由(1)式知0sin kl mg =θ故0d d )21(22=++kx t xm M即0)2(d d 22=++x m M ktxm M k +=22ω可见,物体A 仍作简谐振动,此时圆频率为:rad/s)(7.52=+=m M k ω由于初始条件:0,000=-=v l x可知,A 、ϕ不变,故物体A 的运动方程为:m t x )7.5cos(1.0π+=习题8-2图由以上可知:弹簧在斜面上的运动,仍为简谐振动,但平衡位置发生了变化,滑轮的质量改变了系统的振动频率.8-3 解:简谐振动的振动表达式:)cos(ϕω+=t A x由题图可知,m 1042-⨯=A ,当t=0时,将m 1022-⨯=x 代入简谐振动表达式,得:21cos =ϕ 由)sin(ϕωωυ+-=t A ,当t=0时,ϕωυsin A -= 由图可知,υ>0,即0sin <ϕ,故由21cos =ϕ,取3πϕ-= 又因:t=1s 时,,1022m x -⨯=将其入代简谐振动表达式,得213cos ,3cos 42=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=πωπω由t=1s 时,⎪⎭⎫⎝⎛--=3sin πωωυA <0知,03sin >⎪⎭⎫ ⎝⎛-πω,取33ππω=-,即 s 32πω= 质点作简谐振动的振动表达式为m t x ⎪⎭⎫ ⎝⎛-⨯=-332cos 1042ππ8-4 解:以该球的球心为原点,假设微粒在某一任意时刻位于遂道中的位矢为r,由高斯定理可知304R rQ E πε=,则微粒在此处受电场力为:r R Qq F 304πε-=式中,负号表明电场F的方向与r的正方向相反,指向球心.由上式及牛顿定律,得:04d d 04d d 043022302230=+⇒=+=+r mRQqt r r R Qq t r mr RQqF πεπεπε令 mR Qq3024πεω=则 0d d 222=+r trω习题8-3图故微粒作简谐振动,平衡点在球心处.由ωπ2=T知: QqmR T 3042πεπ=8-5 解:(1)取弹簧原长所在位置为O '点.当弹簧挂上物体A 时,处于静止位置P 点,有:P O k Mg =将A 与B 粘合后,挂在弹簧下端,静止平衡所在位置O 点,取O 点为原坐标原点如图题8-5所示,则有:g m M O O k )(+='设当B 与A 粘在一起后,在其运动过程的任一位置,弹簧形变量x O O +',则A 、B 系统所受合力为:kx x O O k g m M F -=+'-+=)()(即 0d d )(22=++kx txm M可见A 与B 作简谐和振动. (2) 由上式知,rad/s)(10=+=mM kω以B 与A 相碰点为计时起点,此时A 与B 在P 点,由图题8-5可知kmgk Mg g k m M P O O O OP =-+='-'= 则t=0时,m 02.00-=-=-=kmgOP x (负号表P 点在O 点上方) 又B 与A 为非弹性碰撞,碰撞前B 的速度为:m/s 2220101=-='gh υυ 碰撞后,A 、B 的共同速度为:m/s 4.0010=+'=mM m υυ (方向向上)则t=0时,⎩⎨⎧=-=sm mx /4.002.000υ可求得:)m (0447.022020=+=ωυx Aπωυϕ65.0arctan 00=⎪⎪⎭⎫⎝⎛-=x 可知A 与B 振动系统的振动表达式为:m t x )65.010cos(0447.0π+=习题8.5图(3) 弹簧所受的最大拉力,应是弹簧最大形变时的弹力,最大形变为:m A g kmM A O O x 1447.0=++=+'=∆则最大拉力 N 4.72max ==x k F ∆ 8-6 解:(1) 已知A=0.24m, 22ππω==T ,如选x 轴向下为正方向. 已知初始条件0m,12.000<=υx 即 3,21c o s ,c o s24.012.0πϕϕϕ±=== 而 ,0sin ,0sin 0><-=ϕϕωυA 取3πϕ=,故:m t x ⎪⎭⎫ ⎝⎛+=32cos 24.0ππ(2) 如图题所示坐标中,在平衡位置上方0.12m, 即x=-0.12m 处,有32322132cos πππππ±=+-=⎪⎭⎫ ⎝⎛+t t因为所求时间为最短时间,故物体从初始位置向上运动,0<υ.故0)32sin(>+ππt则取3232πππ=+t可得:s t 32min =(3) 物体在平衡位置上方0.12m 处所受合外力0.3N x m =-=ωF ,指向平衡位置.8-7 解:子弹射入木块为完全非弹性碰撞,设u 为子弹射入木块后二者共同速度,由动量定理可知:m/s)(0.2=+=υmM mu不计摩擦,弹簧压缩过程中系统机械能守恒,即:20221)(21kx u m M =+ (x 0为弹簧最大形变量) m u kmM x 20100.5-⨯=+=由此简谐振动的振幅 20100.5-⨯==x A 系统圆频率rad/s)(40=+=mM kω习题8-6图若取物体静止时的位置O (平衡位置)为坐标原点,Ox 轴水平向右为正,则初始条件为: t =0时,x =0,0m/s 0.20>==u υ由,sin ,cos 00ϕωυϕA A x -==得:2πϕ-=则木块与子弹二者作简谐振动,其振动表达式为:m t x )240cos(100.52π-⨯=-8-8 解:当物体m 1向右移动x 时,左方弹簧伸长x ,右方弹簧缩短x ,但它们物体的作用方向是相同的,均与物体的位移方向相反,即)(21x k x k F +-=令F =-kx ,有:N/m 421=+=k k k 由 kmT π2= 得)kg (1.0442212211≈==ππkT k T m则粘上油泥块后,新的振动系统质量为:kg 20.021=+m m新的周期 )s (4.12212=+=km m T π在平衡位置时,m 2与m 1发生完全非弹性碰撞. 碰撞前,m 1的速度m/s 10.0111πωυ==A 设碰撞后,m 1和m 2共同速度为υ. 根据动量守恒定律,υυ)(2111m m m +=则m/s 05.0)(2111πυυ=+=m m m新的振幅 m)(035.0222===πυωυTA 8-9 解:(1)由振动方程)25sin(60.0π-=t x 知,5(rad/s)m,6.0==ωA故振动周期: )s (26.1)s (256.1522≈===πωπT (2) t=0时,由振动方程得:)25cos(0.3|m60.0000=-==-==πυt dt dx x t (3) 由旋转矢量法知,此时的位相:3πϕ-=速度 m/s)(6.2m/s )23(560.0sin =-⨯⨯-=-=ϕωυA 加速度 )m /s (5.7m /s 21560.0cos 2222-=⨯⨯-=-=ϕωA a 所受力 N)(5.1N )5.7(2.0-=-⨯==ma F(4)设质点在x 处的动能与势能相等,由于简谐振动能量守恒,即:221kA E E E p k ==+ 故有: )21(21212kA E E E p k ===即 22212121kA kx ⨯=可得: m)(42.022±=±=A x 8-10 解:(1)砝码运动到最高点时,加速度最大,方向向下,由牛顿第二定律,有:N mg ma -=maxN 是平板对砝码的支持力.故N)(74.1)4()()(22max =-=-=-=vA g m A g m a g m N πω砝码对板的正压力与N 大小相等,方向相反.砝码运动到最低点时,加速度也是最大,但方向向上,由牛顿第二定律,有:mg N ma -'=max故 N)(1.8)4()(22max =+=+='A v g m a g m N π 砝码对板的正压力与板对砝码的支持力N '大小相等,方向相反. (2)当N=0时,砝码开始脱离平板,故此时的振幅应满足条件:m)(062.040)4(22max max 2===-=v g A vA g m N ππ(3) 由22max 4vg A π=,可知,2max v A 与成反比,当v v 2='时,m 0155.041max max=='A A 8-11 解:(1)设振子过平衡位置时的速度为υ,由机械能守恒,有:222121υm kA = A mk=υ 由水平方向动量定理: ⇒='+υm u m m )(υm m mu '+=此后,系统振幅为A ',由机械能守恒,有:22)(2121u m m A k '+=' 得: A m m mA '+='有: km m T '+='π2 (2)碰撞前后系统总能量变化为:)21()1(2121212222kA m m m m m m kA kA A k E '+'-=-'+=-'=∆ 式中,负号表示能量损耗,这是泥团与物体的非弹性碰撞所致.(3)当m 达到振幅A 时,m '竖直落在m 上,碰撞前后系统在水平方向的动量均为零,因而系统的振幅仍为A ,周期为km m '+π2,系统的振动总能量不变,为221kA (非弹性碰撞损耗的能量为源于碰撞前m '的动能). 物体系统过平衡位置时的速度υ'由:22)(2121υ''+=m m kA 得:A m m k'+±='υ8-12 解:(1)由放置矢量法可知,振子从2A 运动到2A -的位置处,角相位的最小变化为:3πϕ∆=则圆频率 rad/s 3π∆ϕ∆ω==t 周期 s T 62==ωπ由初始状态,在图示坐标中,初始条件为:m)(1.00m1.000=⇒⎩⎨⎧=-=A x υ则振幅 m 1.022020=+=ωυx A习题8-12图(2)因为E E p 41=又 2221,21kA E kx E p == 故 )21(412122kA kx =得: m)(05.0±=x 根据题意,振子在平衡位置的下方,取x =-0.05m.根据振动系统的能量守恒定律:222212121kA m kx =+υ 故 )s m (091.0122-⋅±=-±=x A ωυ根据题意,取m/s 091.0-=υ 再由 )sin()cos(ϕωωυϕω+-=+=t A t t A x)cos(d d 2ϕωω+-==t A tva x 2ω-= 得: )m/s (055.02=a(3)t=0时,(J)108.681)21(41413222-⨯====mA kA E E p ω (J)102183)21(43433222-⨯====mA kA E E k ω(J)108.273-⨯=+=p k E E E (4)由简谐振动的振动表达式)cos(ϕω+=t A x 当t=0时,0m/s 091.0m,05.000<-=-=υx ,可得:πϕ32= 又 3,10.0πω==m A故 m t x )323cos(1.0ππ+= 8-13 解:(1)据题意,两质点振动方程分别为:mt x mt x Q P )3cos(1000.2)3cos(1000.522ππππ-⨯=+⨯=--(2)P 、Q 两质点的速度及加速度表达分别为:)m/s )(3sin(1000.52ππωυ+⨯⨯-==-t dt dx P P )m/s )(3sin(1000.22ππωυ-⨯⨯-==-t dt dx QQ )m/s )(3cos(1000.5222ππωυ+⨯⨯-==-t dt d a P P )m/s )(3cos(1000.2222ππωυ-⨯⨯-==-t dtd a Q Q当t=1s 时,有:)(m/s 1087.9/32cos 1000.2)(m/s 1068.24/34cos 1000.5(m/s)1044.5/32sin 1000.2(m/s)1060.13/34sin 1000.5(m)1000.132cos 1000.2)(m 105.234cos1000.5222222222222222222------------⨯=⨯⨯-=⨯=⨯⨯-=⨯-=⨯⨯-=⨯=⨯⨯-=⨯-=⨯=⨯=⨯=s m a s m a s m s m m x m x Q P Q P Q P ππππππυππυππ(3)由相位差32)3(3)()(πππϕϕϕωϕωϕ∆=--=-=+-+=Q P Q P t t 可见,P 点的相比Q 点的相位超前32π. 8-14 解:(1)由题意得初始条件:⎪⎩⎪⎨⎧<=02100υA x 可得:3πϕ=(由旋转矢量法可证出)在平衡位置的动能就是质点的总能量)J (1008.3212152222-⨯====⇒=A m kA E m k m kωωω可求得:s rad m E A /221πω==则振动表达式为:m t x )32cos(1000.52ππ+⨯=-(2) 初始位置势能)32(cos 21212222ππω+==t A m kx E P 当t=0时,3cos 21222πωA m E P =J J 6222221071.73cos )1000.5()2(1000.121---⨯=⨯⨯⨯⨯⨯=ππ 8-15 解:(1)由初始条件:⎩⎨⎧<⨯=-0102.1010υm x 可知,3πϕ=且 22ππω==v则振动表达式为:m t x )32cos(24.0ππ+=当t=0.5s 时,m m x 21000.6)3212cos(24.0-⨯-=+⨯=ππ(2) t=0.5s 时,小球所受力:(N)1048.1)(32-⨯=-==x m ma f ω因t=0.5s 时,小球的位置在m x 21000.6-⨯-=处,即小球在x 轴负方向,而f 的方向是沿x 轴正方向,总是指向平衡位置.(3) 从初始位置m x 10102.1-⨯=到m x 1102.1-⨯-=所需最短时间设为t ,由旋转矢量法知,πϕπϕ32,3,0±=±=处处x x 习题8-15图)s (3223=⇒⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧==t t πωπω(4) 因为 )32sin(24.02)sin(πππϕωωυ+⨯-=+-=t t A )32cos(24.04)cos(22πππϕωω+⨯-=+-=t t A a 在s t m x 32102.11=⨯-=-处 )32cos(24.04)3322cos(24.04/1026.3/)3322sin(24.022212ππππππαπππυ+⨯-=+⨯⨯-=⨯-=+⨯⨯-=-t s m s m (5) t=4s 时, 22)]32sin([2121ππωυ+-==t A m m E k (J)1033.5J)342(sin 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯=πππ)32(cos 21212222ππω+==t A m kx E P (J)1077.1J)342(cos 24.0)2(01.0214222-⨯=+⨯⨯⨯⨯⨯=πππ(J)107.10J 101.77J 1033.5-4-44⨯=⨯+⨯=+=-P k E E E 总 8-16 解:设两质点的振动表达式分别为:)cos()cos(2211ϕωϕω+=+=t A x t A x由图题可知,一质点在21Ax =处时对应的相位为: 32/arccos 1πϕω==+A A t同理:另一质点在相遇处时,对应的相位为:习题8-16图352/arccos2πϕω==+A A t 故相位差)()(12ϕωϕωϕ∆+-+=t tπππϕϕ3433512=-=-= 若21υυ与的方向与上述情况相反,故用同样的方法,可得:πππϕϕϕ∆32)3(312=--=-= 8-17 解:由图题8-17(图在课本上P 200)所示曲线可以看出,两个简谐振动的振幅相同,即m 05.021==A A ,周期均匀s 1.0=T ,因而圆频率为:ππω202==T由x -t 曲线可知,简谐振动1在t=0时,,010=x 且010>υ,故可求得振动1的初位相πϕ2310=.同样,简谐振动2在t=0时,πϕυ==-=202020,0,05.0可知m x 故简谐振动1、2的振动表达式分别为:mt x t x )20cos(05.0)2320cos(05.021ππππ+=+=因此,合振动的振幅和初相位分别为: m A A A A A 210202122211025)cos(2-⨯=-++=ϕϕ2021012021010cos cos sin sin arctanϕϕϕϕϕA A A A ++=ππ4541arctan 或== 但由x-t 曲线知,t=0时,πϕ45,05.021应取因此-=+=x x x . 故合振动的振动表达式:m t x )4520cos(10252ππ+⨯=-8-18 解:(1)它们的合振动幅度初相位分别为:)cos(212212221ϕϕ-++=A A A A Am )535cos(06.005.0206.005.022ππ-⨯⨯⨯++=m 0892.0=22112211cos cos sin sin arctanϕϕϕϕϕA A A A ++=316819.15.2arctan 5cos06.053cos 05.05sin06.053sin 05.0'︒===++=rad ππππ (2)当πϕϕk 21±=-,即ππϕπϕ53221+±=+±=k k 时,31x x +的振幅最大;当πϕϕ)12(2+±=-k ,即5)12()12(2ππϕϕ++±=++±=k k 时,32x x +的振幅最小.(3)以上两小问的结果可用旋转矢量法表示,如图题8-18所示.8-19 解:根据题意画出振幅矢量合成图,如习题8-19图所示.由习题8-19图及余弦定理可知cm 233.172023.172030cos 22212122⨯⨯⨯-+=︒-+=AA A A A 0.10m cm 10== 又因为)cos(cos 12ϕϕϕ∆-=0103.172)100300(4002)(2122212=⨯⨯+-=+-=A A A A A若2πϕ∆=,即第一、第二两个振动的相位差为2π第9章波动习题解答9-1 解:首先写出S 点的振动方程 若选向上为正方向,则有:0c o s 02.001.0ϕ=- 21cos 0-=ϕ ,0s i n 00>-=ϕωυA 0sin 0<ϕ即 πϕ320-=或π34初始相位 πϕ320-=则 m t y s )32cos(02.0πω-= 再建立如图题9-1(a)所示坐标系,坐标原点选在S 点,沿x 轴正向取任一P 点,该点振动位相将落后于S 点,滞后时间为: uxt =∆ 习题8-19图习题9-1图则该波的波动方程为:m ux t y ⎥⎦⎤⎢⎣⎡--=πω32)(cos 02.0 若坐标原点不选在S 点,如习题9-1图(b )所示,P 点仍选在S 点右方,则P 点振动落后于S 点的时间为: uLx t -=∆ 则该波的波方程为:m u L x t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0 若P 点选在S 点左侧,P 点比S 点超前时间为uxL -,如习题9-1图(c)所示,则 ⎥⎦⎤⎢⎣⎡--+=πω32)(cos 02.0u x L t y ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0u L x t ∴不管P 点在S 点左边还是右边,波动方程为: ⎥⎦⎤⎢⎣⎡---=πω32)(cos 02.0u L x t y 9-2 解(1)由习题9-2图可知, 波长 m 8.0=λ 振幅 A=0.5m 频率 Hz 125Hz 8.0100===λuv 周期 s 10813-⨯==vT ππυω2502== (2)平面简谐波标准波动方程为:⎥⎦⎤⎢⎣⎡+-=ϕω)(cos ux t A y 由图可知,当t=0,x=0时,y=A=0.5m ,故0=ϕ。
《大学物理学》(赵近芳 主编)第二版 课后习题答案物理答案文库
经典电视剧搞笑对白默认分类 2008-04-12 17:48:16 阅读558 评论0 字号:大中小订阅我们浪费掉了太多的青春,那是一段如此自以为是、又如此狼狈不堪的青春岁月,有欢笑,也有泪水;有朝气,也有颓废;有甜蜜,也有荒唐;有自信,也有迷茫。
我们敏感,我们偏执,我们顽固到底地故作坚强;我们轻易的伤害别人,也轻易的被别人所伤,我们追逐于颓废的快乐,陶醉于寂寞的美丽;我们坚信自己与众不同,坚信世界会因我而改变;我们觉醒其实我们已经不再年轻,我们前途或许也不再是无限的,其实它又何曾是无限的?曾经在某一瞬间,我们都以为自己长大了。
但是有一天,我们终于发现,长大的含义除了欲望,还有勇气、责任、坚强以及某种必须的牺牲。
在生活面前我们还都是孩子,其实我们从未长大,还不懂爱和被爱。
巴拉万先生已经很不高兴了,那么大笔款子跟人欧洲调来调去,下不了崽儿净听故事,我都不好意思跟人家见面了。
你们唬弄别的洋鬼子我不管,巴拉万先生不合适,人那么热爱中国,要拨了奶子汽车人家给了,咱都是有身份的人,你们要是有难处,我给赵办李办打电话!(大妈:见天一通电话呀,不带重样的,这瘸子到底是干什么的?答:2国务院瘸办的负责人)这馆子忒小啊!不错!看什么菜谱啊,你们这都有什么呀?我们这有海参有大虾。
没劲最不爱吃这个了!那还有肉丸子蹄筋黄花鱼,忒俗气了老吃这个都吃腻了。
那你们想吃什么吧?炒豆角闷扁豆烧茄子。
时令菜一概没有想吃家吃去。
小馆子是不灵,什么都不全。
想好了叫我。
等会儿,还是我来吧,咱凑合点得了。
来个京酱肉丝,熘肉片,青椒肉丝,黄闷鸡块儿,再来个火爆腰花。
得嘞全是下饭的菜,给我来二斤米饭再来三瓶啤酒。
一共78!还8干吗呀?70得了!那不行!不是,这干吗呀?我来!别别别,我来吧!我来我来我来。
(摸口袋,翻包)咱们还来这套啊?不是,我来我来我来。
方言付钱!不是,不合适这是兄弟的地盘。
爱谁谁谁;孙子蒙你;你怎么还这德行啊;没这么踩乎人啊,这是社会主义国家,人民当家作主,我们说了算;滚蛋,没你这样的啊;小心看眼里拔不出来啊;这可是解放区的天一年土二年洋,三年不认爹和娘;十亿人民九亿侃,还有一亿在发展;狗咬尿泡空欢喜;雄纠纠气昂昂跨过咸菜缸;苍天无眼,小人当道,时运不济,怀才不遇;我日他个姐,俺没嫖娼是娼嫖俺;这都是哥们玩剩下的;哥哥祖上搁明朝就是锦衣卫的干活;属桃的皮烂肉不烂算白活;掏掏灰扑落扑落脏刷遍漆,扣上美地因拆那,全当新的卖咯——许逊,学董存瑞,摔他——你就是学黄继光也没戏——许逊,快学小兵张嘎里的胖墩儿,咱急了咬他——哟呵,土豆烧熟了,再加牛肉,不须放屁,试看天地翻覆你是我手里的风筝没有我你怎么能独自翱翔你是要文斗还是武斗我他妈要文攻武卫别毁人家了你就是将来我们祖国和民族的希望我们就是注定那个所谓垮掉的一带千村薜荔人遗矢,万户萧疏鬼唱歌。
大学物理同步训练第2版第一章质点运动学详解
6. (不做要求)一质点沿 x 轴运动,其速度与时间的关系为 v t 4 ,式中 v 的单位为
2
m/s, t 的单位为 s。 当 t=3s 时, 质点位于 x=9m 处, 则质点的位置与时间的关系为 答案: x t / 3 4t 12
3
。
分析:由定义 v dx / dt t 4 可得
d 2x d 2 y d 2z d 2r dv dv 2 2 (5) (1) (2) ( 3) (4) dt dt dt 2 dt dt dt 2
(A)只有(1)正确 (C)只有(4) (6)正确 答案:B 分析:由加速度的定义 (B)只有(1) (5)正确
v2 R
d 2s dt 2
v dx / dt 3 12t 6t 2
v(0) 3 m/s
2 3
a dv / dt 12 12t 0 t * 1 , v(1) 3 12 6 9 m/s
3. (★)一质点沿直线运动,其运动学方程为 x 5 3t t (SI) ,则在 t 由 1s 至 3s 的时 间间隔内, 质点的位移大小为 答案:2m; 6m 分析:位移 x x(3) x(1) 5 27 27 5 3 1 2 m,大小为 2m; ; 在 t 由 1s 至 3s 的时间间隔内, 质点走过的路程为 。
dx 0 dt
(B)
dx 0 dt
(C)
d (x 2 ) 0 dt
(D)
d (x 2 ) 0 dt
dx 1 d ( x 2 ) 可知 C 选项正确。 dt 2 dt
2. 质点以 v(t ) 沿 x 轴运动, dv / dt 是非零常数。当 t 0 时, v 0 ;当 t 0 时, vdv / dt (A)小于 0 答案:C
大学物理II练习册答案4资料讲解
大学物理I I练习册答案4大学物理练习 四一.选择题: 1.下列几种说法:(1) 所有惯性系对物理基本规律都是等价的。
(2) 在真空中,光的速度与光的频率、光源的运动状态无关。
(3) 在任何惯性系中,光在真空中沿任何方向的传播速率都相同。
其中那些说法是正确的: [ ] (A) 只有(1)、(2)是正确的.(B) 只有(1)、(3)是正确的. (C) 只有(2)、(3)是正确的. (D) 三种说法都是正确的.解: [ D ]2.一火箭的固定长度为L ,相对于地面作匀速直线运动,速度为v 1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速度为v 2的子弹。
在火箭上测得子弹从射出到击中靶的时间间隔是: [ ] (A)21v v L + (B)2v L (C)12v v L - (D)211)/(1c v v L -(c 表示真空中光速)解:[ B ] 在火箭上测得子弹从射出到击中靶的时间间隔是火箭的固定长度除以子弹相对于火箭的速度。
3.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中是否同时发生?关于这两个问题的正确答案是: [ ] (A)(1)同时,(2)不同时。
(B)(1)不同时,(2)同时。
(C)(1)同时,(2)同时。
(D) 不(1)同时,(2)不同时。
解:[ A ]发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是同时发生。
在某惯性系中发生于同一时刻、不同地点的的两个事件,它们在其它惯性系中不是同时发生。
4.K 系与K '系是坐标轴相互平行的两个惯性系,K '系相对于K 系沿Ox 轴正方向匀速运动。
一根刚性尺静止在K '系中,与O ’x ’轴成 30°角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质点动力学答案一、选择题1、C2、C 二、填空题1、980J2、9J 三、计算题1、解:00220322202213624txtF a tmd tdttdx t dtx tdx t dtW Fdx t t dt Jυυυ==========⎰⎰⎰⎰⎰⎰2、解:()2215030145W Fdx x x dx J ==+=⎰⎰质点运动学答案一、选择题1、C2、C3、B4、B5、B6、A7、D8、C 二、填空题1、42、3m s ;9m s3、2m;6m 4/s/s5、239yx =+ 6、 7、st∆;02tυ∆ 8、6.28m; 0;0; 6.28m/s 9、圆周运动;匀速率圆周运动 10、3.811、sin sin R ti R tjωωωω-+;0;半径为R 的圆周三、计算题(2)(1)(2)(1)(1.5)(1)(1)00640, 1.511(2)2642x x x x tdx tdtt ss x x x x m s mstt s υυυυυ∆-=∆=∆==-==∆=-+-=∆=∆=⨯位移==令第二秒内路程平均速率=m 时,=-=-2s负号表示速度方向沿平均速度x 轴负向刚体定轴转动习题答案一、选择题 1、(A ) 2、(C )3(C )4、(A )5、 (C) 6、 (C) 7、(B ) 8、(A ) 9、(B ) 10、(B ) 二、填空题1、答:刚体的质量、刚体的质量分布、刚体的转轴的位置。
2、14ml 23、lg 43,lg 23 4、 2ω0 5、ωωωω--B A A J )( 6、MLm 23v.7、L76v8、02ωmrJ J+三、计算题1、解:对水桶和圆柱形辘轳分别用牛顿运动定律和转动定律列方程mg -T =ma ① 1分 TR =J β ② 1分 a =R β ③ 1分由此可得 T =m (g -a )=m ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-J TR g /2那么 mg J mRT =⎪⎪⎭⎫⎝⎛+21 将 J =21MR 2代入上式,得mM m M g T 2+=2分 图2分2、解:(1) 各物体受力情况如图 图2分T -mg =ma 1分 mg -T '=m a ' 1分 T ' (3r )-Tr =14mr 2β 2分 a =r β 1分 a '=(3r )β 1分 由上述方程组解得:β=g / (12r )=16.33 rad ²s -2 2分3、解:以小球为研究对象,由转动定律βJ M =得:水平位置时:lg ml mgl ==002ββ 5分杆与水平方向夹角为60°时:' a ' m ´g静电场答案选择题1、C2、 B3、A 和D4、 C5、 C6、A7、 C8、 A9、 B 10、A 11、D 12、 B 13、 D 填空题1、单位正试验电荷置于该点时所受到的2、2N / C ; 向下3、-2ε0E 0 / 3 ; 4ε0E 0 / 34、包围在曲面内的净电荷 ;曲面外电荷5、高斯面上各点6、qQ / (4πε0R ) .7、-3.2³10-15 J ;2³104 V 8、-140 V . 9、⎪⎪⎭⎫⎝⎛-πa b r r q q 11400ε.计算题1、解: 选取圆心O 为原点,坐标Oxy 如图所示,其中Ox 轴沿半圆环的对称轴.在环上任意取一小段圆弧d l =R d θ,其上电荷d q =(Q d l ) / (πR )=(Q d θ) / π,它在O 点产生的场强为202204d 4d d R Q R q E εθεπ=π= 在x 、y 轴方向的两个分量 θθεθd c o s 4c o s 202R Q dE dE x π== θθεθd s i n 4s i n 202RQ dE dEyπ==对两个分量分别积分2022/2/2022d cos 4RQ RQ dE E x x εθθεπ=π==⎰⎰ππ-2分0d s i n 42/2/202=π==⎰⎰ππ-θθεRQ dEE yy由此得i RQi E E x2022επ==i为x 轴正向的单位矢量.2、解:r ≤R 时,在球内作一半径为r 的高斯球面,按高斯定理有3123414r E r πρε=π得 r E 013ερ=1E方向沿半径向外.r >R 时,x在球体外作半径为r 的高斯球面,按高斯定理有022/4εq E r =π334R q πρ=得20320234rRrq E ερε=π=2E方向沿半径向外.3、 解:设坐标原点位于杆中心O 点,x 轴沿杆的方向,如图所示.细杆的电荷线密度λ=q / (2l ),在x 处取电荷元d q = λd x =q d x / (2l ),它在P 点产生的电势为()()x a l l x q x a l q U P -+π=-+π=008d 4d d εε整个杆上电荷在P 点产生的电势()⎰--+π=llP x a l xlq U d 80ε()ll x a l lq --+π-=ln 80ε⎪⎭⎫ ⎝⎛+π=a l l q21ln 80ε4、解:设内球上所带电荷为Q ,则两球间的电场强度的大小为204rQ E επ=(R 1<r <R 2)两球的电势差 ⎰⎰π==21212124d R R R R rdr Q r E U ε⎪⎪⎭⎫ ⎝⎛-π=210114R R Qε ∴ 12122104R R U R R Q -π=ε=2.14³10-9 C静电场中的导体和电介质答案选择题1、. D2、 B3、 B4、 D5、 D6、C7、A8、 D9、 D 10、 C 11、[ D ] 填空题1、 )2/()(21S Q Q + ; )2/()(21S Q Q - ; )S /()Q Q (212-; )2/()(21S Q Q +2、)4/()(22R Q q π+ 3、 9.1³105 C 4、 U 0 5、无极分子;电偶极子6、 E D rεε0= 7、εr ; 1 ; εr 8、σ ; σ / ( ε 0ε r )9、不变 ,减小 计算题1、图示为一半径为a 的、带有正电荷Q 的导体球.球外有一内半径为b 、外半径为c 的不带电的同心导体球壳.设无限远处为电势零点,试求内球和球壳的电势.解:球壳内表面将出现负的感生电荷-Q ,外表面为正的感生电荷Q .按电势叠加原理(也可由高斯定理求场强,用场强的线积分计算)导体球的电势为c Qb Qa QU 0001444εεεπ+π-π=Q abc ac bc ab ⎪⎪⎭⎫⎝⎛-+=04πε 球壳电势 cQU 024επ=2、 一空气平行板电容器,两极板面积均为S ,板间距离为d (d 远小于极板线度),在两极板间平行地插入一面积也是S 、厚度为t (<d )的金属片,如图所示. 试求:(1) 电容C 的值(2) 金属片放在两极板间的位置对电容值有无影响?解:设极板上分别带电荷+q 和-q ;金属片与A 板距离为d 1,与B 板距离为d 2;金属片与A 板间场强为 )/(01S q E ε=金属板与B 板间场强为 )/(02S q E ε= 金属片内部场强为 0='E 则两极板间的电势差为 2211d E d E U U B A +=- )(210d d Sq+=ε)(0t d Sq-=ε由此得 )/()/(0t d S U Uq C B A-=-=ε因C 值仅与d 、t 有关,与d 1、d 2无关,故金属片的安放位置对电容值 无影响. 3、 三个电容器如图联接,其中C 1 = 10³10-6 F ,C 2 = 5³10-6 F ,C 3 = 4³10-6 F ,当A 、B 间电压U =100 V 时,试求:(1) A 、B 之间的电容;(2) 当C 3被击穿时,在电容C 1上的电荷和电压各变为多少?解:(1) =+++=321321)(C C C C C C C 3.16³10-6 F(2) C 1上电压升到U = 100 V ,电荷增加到==U C Q 111³10-3 C4、 一平行板电容器,其极板面积为S ,两板间距离为d (d <<S ),中间充有两种各向同性的均匀电介质,其界面与极板平行,相对介电常量分别为εr 1和εr 2,厚度分别为d 1和d 2,且d 1+d 2=d ,如图所示.设两极板上所带电荷分别为+Q 和-Q ,求: (1) 电容器的电容.(2) 电容器储存的能量.解:(1) 两极板间电位移的大小为 D =σ=Q / S 在介质中的场强大小分别为E 1 = D / (ε0εr 1) = Q / (ε0εr 1S ) E 2 = D / (ε0εr 2) = Q / (ε0εr 2S )⎪⎪⎭⎫ ⎝⎛+=+=22110221112r r d d S Q d E d E U εεε()S d d Q r r r r 2101221εεεεε+= 电容 C = Q / U 121221210r r r r d d S εεεεε+=(2) 电场能量 21221CUW =()SQd d r r r r 210212212εεεεε+=恒定磁场答案一 选择题1.解:选取以O 为圆心以r 为半径宽度为dr 的圆环的微元 圆环所带电量为rdr dq πσ2= )(2122R R Q-=πσ圆环以角速度ω绕O 转动时等效的圆电流为rdr rdrTdq dI σωππσω===22圆电流在P 点的磁感应强度d B 232230232220)(2)(2x r drr x r dIr dB +=+=σωμμ整个转盘在P 点的磁感应强度B)]()[(21)(222122222221222023223021xR xx R xx R x R x r drr dBB R R +-+++-+=+==⎰⎰σωμσωμ方向沿x 轴正方向2.解:54321B B B B B B ++++=2014R I B πμ=方向向外;202024221R I R I B μμ==方向向里;03=B;101044221R I R I B μμ==方向向里;1054R I B πμ=方向向外102010204444R I R I R I R I B μμπμπμ--+=方向向外3.解:各边受力:(1)B l d I F d ⨯=21dx x I I dF πμ21021=⇒dld I I F +=⇒ln 22101πμ方向:竖直向下(2)θπμθtan )(2tan 21022l l d I I l BI F +== 方向:水平相右(3)B l d I F d ⨯=23dl xII dF πμ21023=⇒⎰+=⇒ld dx dx I I F θπμcos 22103d l d I I F +=⇒lncos 22103θπμ 方向:垂直杆斜向上θπμt a n ln22103d l d I I F x +-= dl d I I F y +=ln22103πμ0=y F θπμt a n )ln(2210dl d dl l I I F x +-+=方向水平相左4.解:(1)n I R S I m 241π== 21sin()42M m B R IB t k ππω=⨯=-(2)max f =电磁感应答案一.选择题1. B2. A3.D4.A5.D6.D7.D 8A 9.D 10.B 二.填空题 1.t r m nIωωμsin 2π 2.229R B ω ;O 点3.导线端点;导线中点 4. 221R B ω;沿曲线由外指向中心5.答案见图.6.20 J 7. 1:2 ;1:28.2A 9.不能 三.计算题1.解:长直导线在如图坐标x 处所产生的磁场为)(20xIB π=μ)d (20⎰⎰+==bd dxx IaBdS πμΦ)l n (20dbd Ia+π=μ∴εtI d b d a dt d d d ])(ln[20+π=Φ=μ2. 解:t 时刻通过半圆的磁通量为t rBm ωπcos 22=Φ2sin 2tr B dtd m ωωπε=Φ-=LORtr B Ri 2sin 2ωωπε==3.解:建立坐标(如图)则:xIB π=20μ, B方向⊙εd x xI x B d )1(2v d v 0π==με⎰⎰+π==x x I ba d )1(2v d a0μ☜ab a I +π=ln 2v0μ4.解:(1) B a U U U E O OE 221ω=-=(2) 添加辅助线OF ,由于整个△OEF 内感应电动势为零,所以OFEF OE ☜☜☜=+即可直接由辅助线上的电动势 OF 来代替OE 、EF 两段内的电动势.aa OF 245cos 2=︒=B a a B U U U F O OF 22)2(21ωω==-=(3) O 点电势最高 .《机械振动》答案一、选择题CDBBB CACAA DC 二、填空题1、n T /2、T 4,2/2S3、0sin A ωϕ,-02cos ϕωA4、2rad/s ,0,t x 2cos 2=(SI ),212N ,负方向I C DvO5、10cm ,π32,4.8s ,)32125cos(1.0ππ+=t x (SI )6、如图所示7、k m π221+,02x mk8、mk π1,mk π19、238kA10、π 三、计算题1、 解:处于平衡位置时,弹簧的伸长量L ∆满足如下关系Mg L k =∆(1)对滑块m ,M 进行受力分析,设绳子的张力为T ,则当滑块M 位移为x 时,有Ma T Mg =- a m T L x k '=+∆+-)(由于绳子不可伸长,故有a a =',则上述两式联立消去T 并考虑(1)式可得a m M kx )(+=-由上式可知滑块M 做简谐振动,其振动原频率为mM k +=ω已知0=t 时滑块M 处于负的最大位移处,即M 滑块的振幅及初相为kMg L A =∆=,πϕ=则可得M 滑块的运动方程⎪⎪⎭⎫⎝⎛++=πt m M kk Mg x cos (SI )2、 解:设该质点的简谐运动方程为)cos(ϕω+=t A x (SI )则可以知道该质点的速度满足)2cos(πϕωωυ++=t A (SI )由图可以看出速度振幅为10=A ω,利用旋转矢量法可得速度方程的初相与圆频率为ππϕ322=+→ 6πϕ=14433tωππ∆Φ===∆ → 1030/3A ππ==因此可以得到该质点的振动方程30cos 36x t πππ⎛⎫=+ ⎪⎝⎭(SI ) 3、 解:如图所示,画出旋转矢量图,可以知道质点从2/A 处(速度为正)运动到2/A 处(速度为正)时旋转矢量转过的角度为π1219=∆Φ已知旋转矢量的旋转角速度(即质点振动圆频率)为4/πω=,故需要的时间为319=∆Φ=∆ωt (s )4、 解:将振动方程2x 写为t x πcos 32=(SI )画出三个旋转矢量,如右图所示。