复变函数 积分

合集下载

复变函数积分的概念与性质

复变函数积分的概念与性质
详细描述
在复数域内,任意两个封闭曲线的积分值相等,即积分与路径无关。这一性质在解决复 变函数问题时非常重要,因为它允许我们选择任意路径进行积分计算,而不影响最终结
果。
积分与函数运算的结合性
总结词
复变函数积分具有与函数运算的结合性 ,即对函数的积分可以与函数的运算同 时进行。
VS
详细描述
在进行复变函数积分时,我们可以将函数 的运算(如加法、乘法、指数等)与积分 操作结合进行。这一性质使得在解决复杂 的复变函数问题时,我们可以简化计算过 程,提高解题效率。
复变函数
定义在复数域上的函数,即对于每一 个复数$z$,都有一个实数或复数与 之对应。
复变函数的极限与连续性
极限
当复数$z$趋近于某一点时,复变函数$f(z)$的值的变化趋势。
连续性
如果对于复数域内任意一点$z$,当$z$趋近于该点时,$f(z)$的值都趋近于该点的极限值,则称函数在该点连续。
复变函数的积分
总结词
安培环路定律是描述磁场分布的重要定理,通过复变 函数积分可以得到电流产生的磁场分布。
详细描述
根据安培环路定律,磁场线与电流线相交,且穿过电流 线的磁通量等于零。通过复变函数积分,可以将磁场表 示为电流分布的函数,从而计算磁场强度、磁感应强度 等物理量。
波动方程的初值问题
总结词
波动方程是描述波动现象的基本方程, 通过复变函数积分可以求解波动方程 的初值问题。
THANKS FOR WATCHING
感谢您的观看
分可表示为 (int f(z(t)) |dz(t)| dt),其中 (dz(t)) 是 (z(t)) 的微分。
极坐标法
要点一
总结词
利用复数在极坐标下的表示形式,通过计算极坐标下的面 积来计算复变函数的积分。

复变函数积分计算方法

复变函数积分计算方法

一.复变函数积分计算方法:
1. 线积分法,udy vdx i vdy udx z f c c c ++-=⎰⎰⎰
)( 2. 参数方程法,就是将积分线段分成几段,每一段尽可能简单,并且可以用一个参数式表达出来。

参考课本37页例3.1(2) 3. 原函数法,要用此方法必须保证函数f(z)在单连通区域D 内解析,求出f(z)的原函数G
(z ),则)z ()z ()(00G G dt t f z z -=⎰
4. 柯西积分公式,)z (2z -z z)(00
if dz f c π=⎰,用这种方法的关键是找出函数)z (f ,有时候要进行一些变形。

二.课本难点
课本47页例3.10(2) 他在解答过程中,有一步是令2)z ()z (i e f z +=,开始看的时候很难看明白是为什么,后来细心一想,原来他用了一个很巧妙的变换:
2
2222)()z /()])(z [()1z (111i z i e i z i e dz e z c z c z c -+=-+=+⎰⎰⎰ 这样就可以凑成柯西积分公式的形式,令2)z ()z (i e f z +=,就可以轻松使用柯西积分公式求出答案。

作业题很多都要用到这个技巧。

三.错误更正
课本55页作业6(3)的答案是i e π,课本答案e π是错误的。

四.规律总结
在做作业过程中,我找到以下两个公式:
ishz iz =sin
ithz iz =tan
特别是z=1的时候,有sini=ish1,tani=ith1
上面的公式根据定义就可以证明。

复变函数积分的概念

复变函数积分的概念
物理应用
复变函数积分在物理学的应用中,如何更好地解释和推导 物理现象,是未来研究的一个重要方向。
THANKS
感谢观看
波动方程的求解
波动方程
数值解法
复变函数积分在求解波动方程中发挥了关键 作用。波动方程描述了波动现象的基本规律, 通过复变函数积分,可以求解波动方程的解, 从而得到波动过程的详细描述。
对于难以解析求解的波动方程,复变函数积 分还可以与其他数值方法结合,如有限差分 法、有限元法等,提供高效的数值解法,用 于模拟和分析复杂的波动现象。
特性,为电路设计和优化提供指导。
06
总结与展望
复变函数积分的重要性
数学基础
复变函数积分是数学分析的一个 重要分支,它为解决复数域上的 微积分问题提供了基础。
应用广泛
复变函数积分在物理学、工程学、 经济学等领域有着广泛的应用, 如量子力学、电路分析、金融建 模等。
理论价值
复变函数积分对于研究复函数的 性质、解析函数的性质以及全纯 函数的性质等具有理论价值。
特殊函数的积分
指数函数
对于任何实数a,函数e^(az)在全复平面上的 积分等于2π乘以a的整数倍。
对数函数
对于任何非零实数a,函数log(a)(z)在全复平面上的 积分等于2πi乘以a的整数倍。
三角函数
对于任何实数k,函数sin(kz)和cos(kz)在全复 平面上的积分都等于0。
04
复变函数积分的物理意义
路径积分的量子化
在量子力学的路径积分表述中,复变函数积分用于计算粒子在各种路径上的贡 献,从而实现量子态的演化。
其他领域的应用
流体力学中的涡旋场
复变函数积分在流体力学中被用于描述涡旋场的性质,如旋度的计算。

第二章复变函数的积分

第二章复变函数的积分

f (z)dz lim f (k )(zk zk1)
l
积分n函 数k1
积分路径 一般来说,复变函数的积分值与积分路径有关.
2、复变函数积分计算方法
n
f (z)dz lim f (k )(zk zk1) n k 1
l
1)将复变函数的路积分化为两个实变函数的线积分
2)参数积分法
若积分曲线的参数方程z=z(t) ( ),dz z'(t)dt


f (z)dz f [z(t)]z'(t)dt
l
(极坐标法,通常用来计算积分路径为圆弧时的情况)
通常思路:
积分路径l为圆弧: 宗量用指数形式表示:
z z0
z z0 ei
n
n
f (z)dz f (z)dz;l lk
l
k 1 lk
k 1
f (z)dz f (z)dz
lAB
lBA

f (z)dz

l
f (z) dz ; dz
dx2 dy2 ds
l
Ms; M f (z) , s l的长度
用来求积分的估计值
r
1
z3 z
2
dz

z3 z r 1 z2
dz
(1)
z3
z r 1 z2
dz M
dz M
z r
ds Ms
z r
(2)
由(1)(2)式,得:
z3 dz Ms
z r 1 z2
M

1
r
3
r
2
s ds 2 r z r

复变函数 第三章 复变函数的积分

复变函数 第三章 复变函数的积分
C

{ u [ x ( t ), y ( t )] i [ v [ x ( t ), y ( t )]]}( x ' ( t ) iy ' ( t )) dt
i v x t,y () t) xt ' () u (()() x ty t) yt ' () } d t {(()


f[ z ( t)] z '( t) dt fz ( ) d z f [ z ( t ) ] zt ' ( ) d t
C

( 3 . 6 )
用(3.6)式计算复变函数的积分,是从积分路径的 参数方程着手,称为参数方程法.
例3.1 计算 z d z ,C : 从原点到点 3 4 i 的直线 . C y x3 t, 0t 1 , 解 直线方程为 A y 4 t ,
C C
u ( x , y ) d x v ( x , y ) d y iv ( x , y ) d x u ( x , y ) d y
C C


C
f ( z )d z
结 论 1 : 当是 fz () 连 续 函 数 , C 是 光 滑 曲 线 时 , () d z 一 定 存 在 。 fz 结 论 2 : () d z 可 以 通 过 两 个 二 元 实 函 数 的 fz
k k
证明 令 z x iy x x x y y y k k k k k k 1 k k k 1
n
k n k k k k k k
n
u (k, x v(k, y k) k k) k
k 1 k 1 n n
k 1 n

3第三章 复变函数的积分3第三章 复变函数的积分

3第三章 复变函数的积分3第三章 复变函数的积分

1第三章 复变函数的积分复变函数积分是研究解析函数的一个重要工具。

解析函数的许多重要性质,诸如“解析函数的导函数连续”及“解析函数的任意阶导数都存在”这些表面上看来只与微分学有关的命题,却是通过解析函数的复积分表示证明的,这是复变函数论在方法上的一个特点。

同时,复变函数积分理论既是解析函数的应用推广,也是后面留数计算的理论基础。

§3.1 复变函数积分的概念1 积分的定义复变函数积分主要考察沿复平面上曲线的积分。

今后除特别声明,当谈到曲线时一律是指光滑或逐段光滑的曲线,其中逐段光滑的简单闭曲线简称为围线或周线或闭路。

在第一章中曾定义了曲线的方向,这里回顾并作更仔细些的说明:对于光滑或逐段光滑的开曲线,只要指明了其起点和终点,从起点到终点,也就算规定了该曲线的正方向C ;对于光滑或逐段光滑的闭曲线C ,沿着曲线的某方向前进,如果C 的内部区域在左方,则规定该方向为C 的正方向(就记为C ),反之,称为C 的负方向(记为-C )(或等价地说,对于光滑或逐段光滑的闭曲线,规定逆时针方向为闭曲线的正方向,顺时针为方向为闭曲线的负方向);若光滑或逐段光滑的曲线C 的参数方程为)()()(t iy t x t z z +==,)(βα≤≤tt 为实参数,则规定t 增加的方向为正方向,即由)(αz a =到)(βz b =的方向为正方向。

定义3.1.1 复变函数的积分 设有向曲线C :)(t z z =,βα≤≤t ,以)(αz a =为起点,)(βz b =为终点,)(z f 沿C 有定义。

在C 上沿着C 从a 到b 的方向(此为实参数t 增大的方向,作为C 的正方向)任取1-n 个分点:b z z z z a n n ==-,,,,110 ,把曲线C 分成n 个小弧段。

在每个小弧段上任取一点k ζ,作和∑=∆=nk k k n z f S 1)(ζ,其中1--=∆k k k z z z ,记{}n z z ∆∆=,,max 1 λ,若0→λ时(分点无限增多,且这些弧段长度的最大值趋于零时),上述和式的极限存在,极限值为J (即不论怎样沿C 正向分割C ,也不论在每个小弧段的什么位置上取k ζ,当0→λ时n S 都趋于同一个数J ),则称)(z f 沿C 可积,称J 为)(z f 沿C (从a 到b )的积分,并记为⎰=Cdz z f J )(,即为∑⎰=→∆=nk k kCz f dz z f 1)(lim )(ζλ。

复变函数的积分及其性质

复变函数的积分及其性质

从形式上可以看成是
f ( z ) u iv 与 dz dx idy 相乘后求积分得到:
C f ( z )dz C (u iv )(dx idy ) udx ivdx iudy vdy C
udx vdy i vdx udy .
, zn b,
y
b
C
1 2
(2)取近似值
在每个弧段 zk 1 z k ( k 1, 2,
f k zk 1 z k
z k 1 z k z k z k 1
a a z0z1 z2 o
k z k zk 1
zn1
x
, n)上任意取一点 k ,
f k zk zk 1 f k zk
z1 z2
k z k zk 1
C z n 1
B
o
x
则称f ( z )在曲线C上可积,极限值称为 函数 f ( z ) 沿曲线 C 的积分,记为

C
f ( z )dz
5
注意:
1:对 C 的分法无关 2:与 k 的取法无关
说明:
(1) 用
C
f ( z )dz表示f ( z )沿着曲线C的负向的积分
1 2i , 所以 n1 dz ( z z0 ) 0, z z0 r
n 0, n 0.
12
例3
计算
zdz
c
的值。
C 为:(1)从原点到 z0 1 i 的直线段.
(2) 沿从原点到
z1 1的直线段 c 2
与从 z1 到 z0 的直线段 c3 所 连接的折线.
k 1
n
[u( k ,k )xk v( k ,k )yk ]

第二章复变函数的积分

第二章复变函数的积分

第二章 复变函数的积分在微积分学中,微分法与积分法是研究函数性质的重要方法。

同样,在复变函数中,积分法也跟微分法一样是研究复变函数性质十分重要的方法和解决实际问题的有力工具。

§2.1 复变函数积分的概念一、复变函数的积分设C 为平面上给定的一条光滑(或按段光滑)曲线。

若选定C 的两个可能方向中的一个作为正方向,那么就把C 理解为带有方向的曲线,称为有向曲线。

设曲线C 的两个端点为A 与B ,如果从A 到B 的方向作为C 的正方向,那么从B 到A 的方向就是C 的负方向,并把它记作-C 。

在今后的讨论中,常把两个端点中的一个作为起点,另一个作为终点。

除特殊声明外,正方向总是指从起点到终点的方向。

关于简单闭曲线的正方向是指当曲线上的点P 顺此方向沿该曲线前进时,临近P 点的曲线内部始终位于P 点的左方。

与之相反的方向就是曲线的负方向。

若光滑或逐段光滑的曲线C 的参数方程为)()()(t iy t x t z z +==,)(βα≤≤t (2.1) t 为实参数,则规定t 增加的方向为正方向,即由)(αz a =到)(βz b =的方向为正方向。

定义2.1 设函数)(z f w =定义在区域D 内,C 为区域D 内起点为A 终点为B 的一条光滑有向曲线,把曲线C 任意分成n 个弧段,设分点为:B z z z z z A n n ==-,...,,,1210 在每个小弧段上任取一点k ζ(图3.1),作和∑=∆=nk k k n z f S 1)(ζ其中1--=∆k k k z z z ,记=∆k s 的长度,}Δ{max 1k nk s δ≤≤=。

当n 无限增加,且δ趋于零时,如果不论对C 的分法及k ζ的取法如何,当n S 有唯一极限,那么称这个极限值为函数)(z f 沿曲线C 的积分,记作∑⎰=→=nk k kδCz ζf dz z f 1Δ)(lim )( (2.2)图2.1C 称为积分路径,⎰Cdz z f )(表示沿C 的正方向的积分,⎰-C dz z f )(表示沿C的负方向的积分。

复变函数的积分

复变函数的积分


θ =
π- m R θmin - - m R θmax 2mR
θmin
代入 I 可得: I = π ε R
- m R θmin
-
- m R θmax
=
πε 2m
- m R θmin - - m R θmax 0
2mR
CR

若 m < 0, lim f (z) m z z = 0 则要求当 z 在下半平面趋于 ∞ 时, f (z) 一致趋于 0。 R∞ 上一章提到的积分(见下)就是利用 π < θ ≤ π 的任一段大圆弧上 CR 上的积分为 0。当然还要利用一个闭合回 2 路的积分为 0 把积分化为沿 z + 1 = r θ0 (固定 θ0 = 2 π, r 从 0 到无穷)进行。至于什么条件下沿闭合路径积 3 分为 0,下一节就将讨论。
L
,
t2
f (z) z = f [z(t)] z(t) =
L
f [z(t)] z′ (t) t ⟹ 实部与虚部两个一元函数的积分
t1
复变函数积分的性质
◼ 若曲线 L = L1 + L2 + ... + Ln,则
n
f (z) z = f (z) z
L k=1 Lk
Sn = f (ξk) Δ zk 的极限
k=1 n max {Δ zk }
lim
Sn = f (z) z
L
(1.1)
存在,则称极限值为 f (z) 在 L上的积分,记为: ∫ L f (z) z。
注意极限存在须与 1. 弧段的分法 2. ξk 在 zk-1 到 zk 间的取法 无关

复变函数的积分

复变函数的积分


zi = 2
1 dz= 2 1 z(z + 1)

=0 1 1 1 , 因为 和 都在 z i ≤ 上解析 z z+i 2
zi = 2
1 1 1 1 1 dz 2z + i 2z i 1 z
根据Cauchy积分定理得 积分定理得 根据
1 原式= 2
zi =
1 1 ∫ 1 z i dz = 2 2πi = πi.
1 1 1 ∫C z i dz ≤ ∫C z i ds = ∫C 3t + (4t 1)i ds
=∫
C
1 ds = ∫ 2 2 C (3t ) + (4t 1)
1 4 9 25 t + 25 25
2
ds
1 5 25 dz ≤ ∫ ds = . 故∫ C z i C3 3
例 5 计算∫ Re zdz,
= i.
1
1
0
x
注意1 注意 一般不能把起点为α, 终点为β 的 f (z)的积
分记成∫ f (z)dz, 因这是曲线积分, 要受积分路线
α
β
, 的限制 必须记作∫ f (z)dz.
C
注意2 注意 从例5 可以看出,曲线积分∫ zdz与积分路 可以看出,
C
Байду номын сангаас
径无关, 与积分路径有关。 径无关,但曲线积分∫ Re(z)dz与积分路径有关。
1 i 2π dz = n ∫ (cos nθ i sin nθ )dθ = 0; n+1 (z z0 ) r 0
1 2πi, n = 0, dz = 所以 ∫ n+1 (z z0 ) n ≠ 0. 0, zz0 =r

复变函数积分计算公式

复变函数积分计算公式

复变函数积分计算公式一、复变函数的积分定义复变函数f(z)的积分定义为:∫f(z)dz = ∫[u(x, y)dx - v(x, y)dy] + i∫[u(x, y)dy + v(x, y)dx]其中,u(x,y)和v(x,y)为复变函数f(z)的实部和虚部分别对x和y 的偏导数。

1.第一类曲线积分公式设C是定义在[a,b]上的光滑曲线,而f(z)是C上的复变函数,则复变函数f(z)沿C的积分表示为:∫f(z)dz = ∫f(z(t))z'(t)dt其中,z(t)表示C上的参数方程,z'(t)表示z(t)对t的导数。

2.第二类曲线积分公式设C是封闭的简单光滑曲线,内部有有向单位法向量n,并设f(z)是C内的解析函数,则复变函数f(z)沿C的积分表示为:∫f(z)dz = 2πi Res[f(z), a]其中,a表示C内的任意一个孤立奇点,Res[f(z), a]表示f(z)在a 处的留数。

3.圆弧积分公式对于参数方程z(t) = a + re^(it),其中t∈[θ1, θ2],a为圆心,r为半径,则复变函数f(z)沿圆弧C的积分表示为:∫f(z)dz = ∫f(a + re^(it))ire^(it)dt4.辐角积分公式设f(z)是C所在区域的解析函数,它在z=a处有极点,则复变函数f(z)沿C的积分表示为:∫f(z)dz = i∫R[f(z) - f(a)]dz其中,C是以a为圆心的环形曲线,R是C所围成的圆环区域。

5.亚纯函数积分公式设f(z)是C所在区域的亚纯函数,它在z=a处有一级极点∫f(z)dz = 2πiI(C, a)其中,I(C,a)为C围绕a的索引。

三、复变函数积分计算技巧1.选择适当的路径进行积分,常常选择直线、弧线或封闭曲线。

2.利用柯西-黎曼条件和柯西-黎曼方程进行变量转换和求导。

3.利用留数定理计算包括奇点与不同路径的积分。

4.利用对称性和奇偶性简化积分计算。

复变函数(3.1.3)--复变函数的积分概念

复变函数(3.1.3)--复变函数的积分概念

明。记为曲线上两个分点与之间弧段的弧长,则有
n
n
n
f ( k ) Δ zk | f ( k ) Δ zk | | f ( k ) | Δ sk .
k =1
k =1
k =1
于是,两端取极限,得
C f (z)d z C | f (z) | d s.
4

C | f (z) | d s ML.
0
0
;
� � � z d z = z d z + z d z
C
C2
C3
(2)
� � = 1t d t + 1(1- i t)id t
0
0
=
1 2
+
� � �12
+
i
� � �= 1+
i.

图 4.2
在此例中,说明对同一个被积函数,起点终点也一样,但积分结果不相同。这说明此
积分与积分路径有关。
3
1.3 积分的基本性质
任意分成 个弧段,其分点为 , ,任取 。由于
所以,
因为二元函数 都连续,所以,复变函数积分本质上就是高等数学当中第二型线积分的组合. 故,由微积分学中第二型线积分的存在性定理知,当 无限增大且弧段长度的最大值 趋于零 时,不论对 的分法如何,也不论点 的取法如何,上式右端两个和式的极限都是存在的,而 且
例 3.2 计算 的值,其中 分别为 (1) 沿从原点到点 的直线段 ;
C3C:2z:=z 1=z1+zt=,10i0t1,0 tt 1 1
(2) 沿从原点到点的直线段,与从到的直线段所
Байду номын сангаас
连接成的折线。

复变函数的积分方法

复变函数的积分方法

复变函数的积分方法一、引言复变函数是数学中的重要概念,它与实变函数有着很大的区别。

复变函数的积分方法是研究复变函数在复平面上的积分性质和计算积分值的方法。

本文将介绍一些常见的复变函数的积分方法。

二、复变函数的积分定义在复变函数中,积分是对函数的一种运算,类似于实变函数中的积分。

复变函数的积分定义如下:设f(z)是定义在复平面上的一个函数,如果存在一个复数C,使得对于给定曲线γ上的任意两个点A和B,都有:∫[A,B]f(z)dz = C那么我们就说f(z)在曲线γ上是可积的,并且称C为f(z)沿曲线γ的积分。

三、复变函数的积分方法1. 直线积分直线积分是最常见的一种复变函数的积分方法。

它是沿着一条直线对复变函数进行积分。

直线积分的计算方法是将直线分成若干小段,然后对每一小段进行积分,最后将所有小段的积分值相加得到整个直线的积分值。

2. 曲线积分曲线积分是复变函数的另一种常见的积分方法。

它是沿着一条曲线对复变函数进行积分。

曲线积分的计算方法是将曲线分成若干小段,然后对每一小段进行积分,最后将所有小段的积分值相加得到整个曲线的积分值。

3. 围道积分围道积分是复变函数的一种特殊的积分方法。

它是沿着一个围道对复变函数进行积分。

围道积分的计算方法是将围道分成若干小段,然后对每一小段进行积分,最后将所有小段的积分值相加得到整个围道的积分值。

围道积分的计算方法比直线积分和曲线积分要复杂一些,需要使用复变函数的柯西-黎曼积分定理等相关定理。

四、复变函数的积分应用复变函数的积分方法在数学和物理中有着广泛的应用。

它可以用来计算复变函数的积分值,求解一些特殊的微分方程,研究复杂的物理现象等。

在数学中,复变函数的积分方法可以用来计算复变函数的奇点,判断函数是否解析,计算函数的留数等。

在物理中,复变函数的积分方法可以用来计算电场、磁场等物理量的积分,求解电磁场的边界值问题,研究光学现象等。

五、总结复变函数的积分方法是研究复变函数的重要内容,它在数学和物理中有着广泛的应用。

第二章 复变函数的积分

第二章  复变函数的积分
第二章 复变函数的积分
一.复变函数的积分
(复平面的路径积分) 复平面的路径积分)
∫ f (z )dz ≡ lim ∑ f (ξ )(z
l n →∞ k =1 k
l l
n
k
− z k −1 ) ≡ lim ∑ f (ξ k )dz k n→∞
k =1
n
∫ f (z )dz = ∫ u (x, y )dx − v(x. y )dy + i ∫ v(x, y )dx + u (x. y )dy
ez I =∫ 2 dz c ( z + 1) 2
z 2
2π i (n−1) f (ξ ) ∫ (ξ − z)n dξ = (n −1)! f (z) l
例:计算
z = a (> 1)
解:
I=∫
c1
e z /( z − i ) 2 e /( z + i) dz dz + ∫ 2 2 c2 ( z + i) ( z − i)
1
I 2 = ∫ xdz + ∫ xdz =
0
1
1+i
i
1 ∫ 0idy + ∫ xdx = 2 0 0
直线参数方程 : z = (1 + i)t或( y = x)
1
I 3 = ∫ t (1 + i )dt = 1 + i 2 0
(可见积分与路径有关)
例2
1+i
z 2 dz = ? 1)沿折线 0—1---1+i ∫
= 2π i [e z /( z + i) 2 ]′z =i + 2π i [e z /( z − i ) 2 ]′z = −i

复变函数积分(总结)

复变函数积分(总结)

z1
z0
f ( z )dz G( z1 ) G(z0 )
z0 , z1分别为C的起点,终点;G( z ) 为 f ( z ) 原函数
分部积分公式仍成立
若积分曲线 C 为闭曲线

C
f ( z )dz
首先,判定被积函数 f (z ) 解析的情况
(1) 若被积函数 f ( z ) 在积分闭曲线C 所围成的区域内解析, 则
注意:C1为负向的圆周

sinz z dz 2i sinz z 0 0 c1
sinz 对于 dz z c2
si nz 在积分曲线C1所围成的区域内恰有一 个奇点, z z 0 (分母 z 0 为零的点)
sinz z dz 2i sinz z 0 0 c2
(3) 若被积函数 f ( z ) 在积分闭曲线C 围成的区域D内 包含多个奇点z1 , z 2 ,..., z n :
作 n 条分别包含奇点z1 , z 2 ,...,z n 的闭曲线C1,C 2 ,...,C n , 使它们与C一起满足复合闭路定理 的条件

C
f ( z )dz = C f ( z )dz k
1 ( 2) C为正向圆周z 1 2
z ( z 1)(z 1) 2 dz c
解: 被积函数
z 1
z 在积分曲线所围成的区域内只有一个奇点 2 ( z 1)(z 1)
分母 z 1为零的点
z ( z 1) 2 z z 1 ( z 1)(z 1) 2
?????
sinz dz 例2: z c c1 c2
c1 : z 1 负向
c2 : z 3正向
sinz sinz dz sinz dz 解: z c z dz c1 z c2 c c1 2

第三章 复变函数的积分

第三章  复变函数的积分

第三章 复变函数的积分复变函数的积分(简称复积分)是研究解析函数的有力工具,解析函数许多重要的性质都需要利用复积分来证明.本章主要介绍复变函数积分的定义、性质与基本计算方法,解析函数积分的基本定理——柯西-古萨定理及其推广,柯西积分公式及其推论以及解析函数与调和函数的关系.柯西-古萨定理和柯西积分公式是复变函数的理论基础,以后各章都直接地或间接地用到它们.§3.1 复变函数积分的概念1.复变函数积分的定义在介绍复变函数积分的定义之前,首先介绍有向曲线的概念.设平面上光滑或分段光滑曲线C 的两个端点为A 和B .对曲线C 而言,有两个可能方向:从点A 到点B 和从点B 到点A .若规定其中一个方向(例如从点A 到点B 的方向)为正方向,则称C 为 有向曲线.此时称点A 为曲线C 的起点,点B 为曲线C 的终点.若正方向指从起点到终点的方向,那么从终点B 到起点A 的方向则称为曲线C 的负方向,记作C -.定义3.1 设C 为一条光滑或分段光滑的有向曲线,其中A 为起点,B 为终点.函数f (z )在曲线C 上有定义.现沿着C 按从点A 到点B 的方向在C 上依次任取分点:A =z 0,z 1,…,z n -1,z n =B ,图3.1将曲线C 划分成 n 个小弧段.在每个小弧段1k k z z -(k =1,2,…,n )上任取一点,k ξ,并作和式1().nn k k k S f z ξ==∆∑其中1k k k z z z -∆=-.记λ为n 个小弧段长度中的最大值.当λ趋向于零时,若不论对曲线C 的分法及点k ξ的取法如何,n S 极限存在,则称函数f (z )沿曲线C 可积,并称这个极限值为函数f (z )沿曲线C 的积分.记作1()d lim (),nkkk Cf z z f z λξ→==∆∑⎰f (z )称为被积函数,f (z )d z 称为被积表达式.若C 为闭曲线,则函数f (z )沿曲线C 的积分记作()d Cf z z ⎰.2.复变函数积分的性质性质3.1(方向性)若函数f (z )沿曲线C 可积,则()d ()d .CC f z z f z z -=-⎰⎰ (3.1)性质3.2(线性性)若函数f (z )和g (z )沿曲线C 可积,则(()())d ()d ()d ,CCCf zg z z f z z g z z αβαβ+=+⎰⎰⎰ (3.2)其中αβ,为任意常数.性质3.3(对积分路径的可加性)若函数f (z )沿曲线C 可积,曲线C 由曲线段12,,,n C C C ,依次首尾相接而成,则12()d ()d ()d ()d .nCC C C f z z f z z f z z f z z =+++⎰⎰⎰⎰(3.3)性质3.4(积分不等式)若函数f (z )沿曲线C 可积,且对z C ∀∈,满足()f z M ≤, 曲线C 的长度为L ,则()d ()d ,CCf z z f z s ML ≤≤⎰⎰(3.4)其中d d s z ==, 为曲线C 的弧微分.事实上,记k s ∆为z k -1与z k 之间的弧长,有111()()().nn nkkk k k k k k k f zf z f s ξξξ===∆≤∆≤∆∑∑∑令0λ→,两端取极限,得到()d ()d .CCf z z f z s ≤⎰⎰又由于11(),nnk k k k k f s M s ML ξ==∆≤∆=∑∑所以有()d ()d .CCf z z f z s ML ≤≤⎰⎰3.复变函数积分的基本计算方法定理3.1 若函数f (z )=u (x,y )+iv (x,y )沿曲线C 连续,则f (z )沿C 可积,且()d d d d d .CCCf z z u x v y i v x v y =-++⎰⎰⎰ (3.5)证明:设11,,,,k k k k k k k k k k k k z x iy i x x x y y y ξζη--=+=+∆=-∆=-则11111()()()().k k k k k k k k k k k k k z z z x iy x iy x x i y y x i y -----∆=-=+-+=-+-=∆∆从而1111()((,)(,))()((,)(,))((,)(,)).nnkk k k k k k k k k nk k k k k k k nk k k k k k k f z u iv x i y u x v y i v x u y ξζηζηζηζηζηζη====∆=+∆+∆=∆-∆+∆+∆∑∑∑∑上式右端的两个和数是两个实函数的第二类曲线积分的积分和.已知f (z ) 沿C 连续,所以必有u 、v 都沿C 连续,于是这两个第二类曲线积分都存在.因此积分存在()d Cf z z ⎰,且()d d d d d .CCCf z z u x v y i v x u y =-++⎰⎰⎰注(3.5)式可以看作是f (z )=u +iv 与d z =d x +i d y 相乘后得到:()d ()(d d )d d d d d d d d d .CCCCCf z z u iv x i y u x iv x iu y v yu x v y i v x u x u y =++=++-=-+++⎰⎰⎰⎰⎰定理3.1给出的条件仅仅是积分()d Cf z z ⎰存在的充分条件.该定理告诉我们,复变函数积分的计算问题可以化为其实部和虚部两个二元实函数第二类曲线积分的计算问题.下面介绍另一种计算方法--- 参数方程法.设C 为一光滑或为分段光滑曲线,其参数方程为()()()(),z z t x t iy t a t b ==+≤≤参数t =a 时对应曲线C 的起点,t =b 时对应曲线C 的终点.设f (z )沿曲线C 连续,则(())((),())((),())()().f z t u x t y t iv x t y t u t iv t =+=+由定理3.1有()d d d d d (()()()())d (()()()())d ,CCCb baaf z z u x v y i v x u yu t x t v t y t t i u t y t v t x t t =-++''''=-++⎰⎰⎰⎰⎰容易验证Re((())())()()()(),Im((())())()()()().f z t z t u t x t v t y t f z t z t u t y t v t x t '''=-'''=+所以()d (())()d .baCf z z f z t z t t '=⎰⎰(3.6)例3.1 分别沿下列路径计算积分2d Cz z ⎰和Im()d Cz z ⎰.(1) C 为从原点(0,0)到(1,1)的直线段;(2) C 为从原点(0,0)到(1,0)再到(1,1)的直线段. 解: (1) C 的参数方程为:z =(1+i )t, t 从0到1 .11222033310d ((1))d((1))(1)((1))d (1)(1).33Cz z i t i t i i t t t i i =++=++⎛⎫+=+⋅= ⎪⎝⎭⎰⎰⎰(2) 这两直线段分别记为C 1和C 2,C 1的参数方程为:y =0, x 从0到1; C 2的参数方程为:x =1, y 从0到1.1122203312103d d (1)d(1)33122(1)1.3333Cz z x x iy iy x y i y iy i i i i =+++⎛⎫=+-+ ⎪⎝⎭-+=+--==⎰⎰⎰ ()111000Im()d 0d d 1i d .2Ciz z x y y i y y =++==⎰⎰⎰⎰ 例3.2 计算积分d Czz z⎰,其中C 为图3.2所示半圆环区域的正向边界.图3.2解:积分路径可分为四段,方程分别是:C 1:z =t (-2≤ t ≤ -1); C 2:z =,i e θθ从π到0; C 3:z =t (1≤ t ≤ 2);C 4:z =2,i e θθe 从0到π.于是有123412π2π10d d d d d e 2e d e d d 2d e 2e24411.333CC C C C i i i i i i z z z z z z z z z z z z z z zt t t i t ie t t θθθθθθθθ----=+++=+++=++-=⎰⎰⎰⎰⎰⎰⎰⎰⎰例3.3 计算积分101d ()n Cz z z +-⎰,其中C 为以z 0为中心,r 为半径的正向圆周,n 为整数.解:曲线C 的方程为:0(02π)i z z re θθ=+≤≤.从而有2π11(1)002π2πd e ()e d ed .e i n n i n Cin n in nzir I z z r i i r r θθθθθθ+++-==-==⎰⎰⎰⎰图3.3当n =0时,2πd 2πI i i θ==⎰当n ≠0时,2π(cos sin )d 0niI n i n rθθθ=-=⎰.所以有0102π,0;d 0,0.()n z z ri n zn z z +-==⎧=⎨≠-⎩⎰ (3.7) 由此可见,该积分与积分路线圆周的中心和半径无关,在后面还要多次用到这个结果,需记住.§3.2 柯西-古萨定理(C auchy-Gour s at)及其推广1.柯西-古萨定理首先我们来看看上一节所举的例题,例3.1中被积函数f (z )=z 2在z 平面上处处解析,它沿连接起点与终点的任何路径的积分值相同,也就是说,该积分与路径无关.即沿z 平面上任何闭曲线的积分为零.而例3.1中另一被积函数()Im()f z z =在z 平面上处处不解析,其积分值依赖于连接起点与终点的路径.由例3.3得积分1d 2π0Cz i z z =≠-⎰,曲线C 表示圆周:|z -z 0|=r >0.其中被积函数01()f z z z =-在z 平面上除去点z 0外处处解析,但这个区域是复连通区域.由此可见,积分值与路径是否无关,可能与被积函数的解析性及区域的单连通性有关.其实,在实函数的第二类曲线积分中就有积分值与路径无关的问题.由于复变函数的积分可以用相应的两个实函数的第二类曲线积分表示,因此对于复积分与路径无关的问题,我们很自然地会想到将其转化为实函数积分与路径无关的问题来讨论.假设函数f (z )=u +iv 在单连通域D 内处处解析,f '(z )在D 内连续,由第二章2.3节中的(2.9)式知u,v 对x,y 的偏导数在D 内连续.设z =x +iy ,C 为D 内任一条简单闭曲线.则由(3.5)式,有()d d d d d .CCCf z z u x v y i v x u y =-++⎰⎰⎰记G 为C 所围区域,由格林(Green)公式有d d d d ,G Cv u u x v y x y x y ⎛⎫∂∂-=-- ⎪∂∂⎝⎭⎰⎰⎰ 由于f (z )=u +iv 在D 内解析,所以u 、v 在D 内处处都满足柯西-黎曼方程,即,.u v v ux y x y∂∂∂∂==-∂∂∂∂ 因此d d d d 0.CCu x v y v x u y -=-=⎰⎰从而()d 0.Cf z z =⎰下面的定理告诉我们去掉条件“f '(z )在D 内连续”条件,这个结论也成立.这是复变函数中最基本的定理之一.定理3.2(柯西-古萨定理) 若函数f (z )是单连通域D 内的解析函数,则f (z )沿D 内任一条闭曲线C 的积分为零,即()d 0.Cf z z =⎰注:其中曲线C 不一定要求是简单曲线.事实上,对于任意一条闭曲线,它都可以看成是由有限多条简单闭曲线衔接而成的,如图3.4.图3.4这个定理是由柯西提出来的,后来由古萨给出证明.由于证明过程较复杂,我们略去其证明.由柯西-古萨定理可以得到如下两个推论:推论3.1 设C 为z 平面上的一条闭曲线,它围成单连通域D ,若函数f (z )在D D C=上解析,则()d 0.Cf z z =⎰推论3.2 设函数f (z )在单连通域D 解析,则f (z )在D 内积分与路径无关.即积分()d Cf z z⎰不依赖于连接起点z 0与终点z 1的曲线C ,而只与z 0、z 1的位置有关.证明:图3.5设C 1和C 2为D 内连接z 0 与z 1的任意两条曲线.显然C 1和2C -连接成D 内一条闭曲线C .于是由柯西-古萨定理,有12()d ()d ()d 0.CC C f z z f z z f z z -=+=⎰⎰⎰即12()d ()d .C C f z z f z z =⎰⎰2.原函数由推论\re f {cor2可知,解析函数在单连通域D 内的积分只与起点z 0 和终点z 1有关,而与积分路径无关.因此,函数f (z )沿曲线C 1和C 2的积分又可以表示为1212()d ()d ()d .z z C C f z z f z z f z z ==⎰⎰⎰固定下限z 0,让上限z 1在区域D 内变动,并令z 1=z ,则确定了一个关于上限z 的单值函数()()d .zz F z f ξξ=⎰ (3.8)并称F (z )为定义在区域D 内的积分上限函数或变上限函数.定理3.3 若函数f (z )在单连通域D 内解析,则函数F (z )必在D 内解析,且有F '(z )=f (z ). 证明:若D 内任取一点z ,以z 为中心作一个含于D 内的小圆B ,在B 内取点(0)z z z +∆∆≠,则由(3.8)式有()()()d ()d .z zzz z F z z F z f f ξξξξ+∆+∆-=-⎰⎰因为积分与路径无关,所以()d z zz f ξξ+∆⎰的积分路径可取从z 0到z 再从z 到z z +∆,其中从z 0到z 取与()d zz f ξξ⎰的积分路径相同.于是有()()()d .z zzF z z F z f ξξ+∆+∆-=⎰由于f (z )是与积分变量ξ无关的值,故()d ()d ().z zz zzzf z f z f z z ξξ+∆+∆==∆⎰⎰从而()()1()()d()1(()())d .z zz z zzF z z F z f z f f z z zf f z zξξξξ+∆+∆+∆--=-∆∆=-∆⎰⎰又f (z )在D 内解析,显然f (z )在D 内连续.所以对于任给的0ε>,必存在0δ>,使得当z ξδ-<(且ξ落在圆B 内),即当z δ∆<时,总有()()<f f z ξε-.图3.6由复积分的性质\re f {ji f e n xi n g z hi4,有()()1()(()())d 1()()d 1.z zzz zzF z z F z f z f f z z zf f z z z zξξξξεε+∆+∆+∆--=-∆∆≤-∆≤∆=∆⎰⎰即0()()lim()z F z z F z f z z ∆→+∆-=∆,也就是()()F z f z '=.与实函数相似,复变函数也有原函数的概念及类似于牛顿-莱布尼兹(Newton-Leibniz)公式的积分计算公式.定义3.2 若在区域D 内,()z ϕ的导数等于f (z ),则称()z ϕ为f (z )在D 内的原函数. 由定理定理3.3可知,变上限函数0()()d zz F z f ξξ=⎰为f (z )的一个原函数.那么函数f (z )的全体原函数可以表示为()()z F z C ϕ=+,其中C 为任意常数.事实上,因为(()())()()()()0z F z z F z f z f z ϕϕ'''-=-=-=,所以()()z F z C ϕ-=,即()()z F z C ϕ=+.这说明了f (z )的任何两个原函数仅相差一个常数.利用这一性质我们可以得到解析函数的积分计算公式.定理3.4 若函数f (z )在单连通域D 内处处解析,()z ϕ为f (z )的一个原函数, 则11010()d ()()()z zz z f z z z z z ϕϕϕ=-=⎰, (3.9)其中z 0、z 1为D 内的点.证明:由于0()()d zz F z f ξξ=⎰为f (z )的一个原函数.所以()()d ().zz F z f z C ξξϕ==+⎰当z =z 0时,根据柯西-古萨定理可知0()C z ϕ=-,于是()d ()()zz f z z ξξϕϕ=-⎰.需要特别注意的是这个公式仅适用于定义在单连通域内的解析函数.例3.4 求积分π2sin 2d i z z ⎰的值.解:因为sin2z 在复平面上解析,所以积分与路径无关.可利用(3.9)式来计算.容易验证1cos 22z -是sin2z 的一个原函数, ππ2200ππππ11sin 2d (cos πcos 0)cos 22211e e .12242i iz z i z e e --=-=--+⎛⎫+=-=-- ⎪⎝⎭⎰例3.5 求积分0(1)e d iz z z --⎰的值.解:因为(z -1)e -z 在复平面上解析,所以积分与路径无关.可利用(3.9)式来计算.(1)e d e d e d iiizzzz z z z z ----=-⎰⎰⎰, 上式右边第一个积分的计算可采用分部积分法,第二个积分可用凑微分法,得(1)e d e d e d esin1cos1.iiiizzz z i z z z zz ie i ------=+--=-=--⎰⎰⎰例3.6 设D 为直线3,2z t t ⎛=+-∞<<∞+ ⎝ 和直线4,55z t t i ⎛=+-∞<<∞-+ ⎝⎭所围成的区域. 求积分23d 2izz z +-⎰的值. 解: 尽管212z z +-在复平面上存在两个奇点1和-2,但是单连通域D 包含点3和i ,又不含奇点1和-2,因此212z z+-在区域D内解析,这样就可以用(3.9)式来计算.233311d dd2312i i iz zzz z z z⎛⎫=-⎪+--+⎝⎭⎰⎰⎰函数ln(z-1)和ln(z+2)在单连通域D内可以分解为单值的解析分支,ln(z-1)的各分支导数都为11z-,ln(z+2)的各个分支的导数都为12z+.我们可以应用任何一个分支来计算积分值,在这里我们都取主支. 所以()23311d ln(1)ln(2)231153π1ln arctan3224215π1ln arctan.62432iiz z zz zii i=--++-⎛⎫⎛⎫=++⎪⎪⎝⎭⎝⎭=++⎰3.复合闭路定理柯西-古萨定理定理可推广到多连通域.设有n+1条简单闭曲线C0、C1、C2、…、C n,其中C1、C2、…、C n互不相交也互不包含,并且都含于C0的内部.这n+1条曲线围成了一个多连通区域D, D的边界C称作复闭路,它的正向为C0取逆时针方向,其它曲线都取顺时针方向.因此复闭路记作012nC C C C C---=++++.沿复闭路的积分通常取的是沿它的正向.定理 3.5若f(z)在复闭路012nC C C C C---=++++及其所围成的多连通区域内解析,则012()d()d()d()dnC C C Cf z z f z z f z z f z z=+++⎰⎰⎰⎰, (3.10) 也就是()d0Cf z z=⎰.为了叙述的简便,我们仅对n=2的情形进行说明.图3.7在图3.7中,做辅助线l1、l2和l3将C0、C1及C2连接起来,从而把多连通区域D划分为两个单连通区域D1及D2,并分别用1Γ及2Γ表示这两个区域的边界,由柯西-古萨定理有12()d 0, ()d 0.f z z f z z ΓΓ==⎰⎰于是12()d ()d 0.f z z f z z ΓΓ+=⎰⎰上式左端,沿辅助线l 1、l 2和l 3的积分,恰好沿相反方向各取了一次,从而相互抵消.因此上式左端为沿曲线C 0、1C -及2C -上的积分,即有:12()d ()d ()d 0.C C C f z z f z z f z z --=⎰⎰⎰也就是12()d ()d ()d .C C C f z z f z z f z z =+⎰⎰⎰例3.7 计算2d2Czz +⎰的值,C 为包含圆周|z |=1在内的 任何正向简单闭曲线. 解:显然z =0和z =-1是函数21z z+的两个奇点,由于C 为包含圆周|z |=1在内的任何正向简单闭曲线,因此也包含了这两个奇点.在C 的内部作两个互不包含互不相交的正向圆周C 1和C 2,其中C 1的内部只包含奇点z =-1,C 2的内部只包含奇点z =0.图3.8因为21z z+在由C 、C 2、C 2所围成的复连通域内解析,所以由定理3.5、定理3.2及(3.7)式,得1211222222d d d d d d d 1102π2π00.CCC C C C C z z zz z z z z z z z z zz z z z i i =++++=-+-++=-+-=⎰⎰⎰⎰⎰⎰⎰ §3.3 柯西(C auchy)积分公式及其推论1.柯西积分公式利用复合闭路定理我们可以导出解析函数的积分表达式,即柯西积分公式.定理3.6 若f (z )是区域D 内的解析函数,C 为D 内的简单闭曲线,C 所围内部全含于D 内,z 为C 内部任一点,则1()()d 2πCf f z iz ξξξ=-⎰, (3.11) 其中积分沿曲线C 的正向.证明:取定C 内部一点z .因为f (z )在D 内解析,所以f (z )在点z 连续.即对任给的0ε∀>,必存在0δ>,当|z δξ<-时,有()()f f z εξ<-.令()()f F zξξξ=-,则()F ξ在D 内除去点z 外处处解析.现以z 为中心,r 为半径作圆周:B r z ξ=-(见图3.9),使圆B 的内部及边界全含于C 的内部.图3.9根据复合闭路定理有()()d d .C Bf f z z ξξξξξξ=--⎰⎰ 上式右端积分与圆B 的半径r 无关.令0r →,只需证明()d 2π()Bf if z z ξξξ→-⎰ 即可.由例3.3可知,1d 2πBi z ξξ=-⎰,而f (z )与ξ无关.于是 ()()()()()d 2π()d d d ()()d 2πd BB BBBBf f f z f f z if z z z z zf f z si rzξξξξξξξξξξξξξξ---==-----≤≤=-⎰⎰⎰⎰⎰⎰从而定理得证.公式(3.11)称为 柯西积分公式.在柯西积分公式中,等式左端表示函数f (z )在C 内部任一点处的函数值,而等式右端积分号内的()f ξ表示f (z )在C 上的函数值.所以,柯西积分公式反映了解析函数在其解析区域边界上的值与区域内部各点处值之间的关系:函数f (z )在曲线C 内部任一点的值可用它在边界上的值来表示,或者说f (z )在边界曲线C 上的值一旦确定,则它在C 内部任一点处的值也随之确定.这是解析函数的重要特征.例如,若函数f (z )在曲线C 上恒为常数K ,z 0为C 内部任一点,则根据柯西积分公式有0001()1()d d 2π.2π2π2πC Cf KKf z i K iz i z i ξξξξξ===⋅=--⎰⎰ 即f (z )在曲线C 的内部也恒为常数K .又如,若C 为圆周:0z R ξ-=,即0Re i z θξ=+(02π)θ≤≤,则d Re d i i θξθ=,从而2π00002π00(Re )Re 1()1()d d 2π2πRe 1(Re )d .2πi i i Ci f z i f f z iz i f z θθθθξξθξθ+⋅==-=+⎰⎰⎰即解析函数在圆心z 0处的值等于它在圆周上的平均值,这就是解析函数的平均值定理.若f (z )在简单闭曲线C 所围成的区域内解析,且在C 上连续,则柯西积分公式仍然成立. 柯西积分公式可以改写成()d 2π()Cf if z z ξξξ=-⎰. (3.12) 此公式可以用来计算某些复变函数沿闭路积分.例3.8 计算积分221d z z z z =+⎰的值. 解:因为{z ^2+1在|z |=2内解析,由柯西积分公式(3.12)有22021d 2π2π.(1)z zz z i i z z ==+=⋅=+⎰ 例3.9 计算积分2πsin6d 1Czz z -⎰的值,其中C 为: 33(1)1;(2)1;(3) 3.22z z z ===-+ 解: (1) 被积函数πsin61zz +在312z =-的内部解析,由(3.12)式有, 21ππsinsinπ11πsin 66d d 2π2π.6111421CCz zzz i z z i i z z z z =⎛⎫ ⎪=⋅==⋅=-+- ⎪⎝+⎭⎰⎰(2) 被积函数πsin61zz -在312z =+的内部解析,由(3.12)式有 21ππsinsinπ11πsin 66d d 2π2π.6111421CCz zzz i z z i i z z z z =-⎛⎫ ⎪=⋅==⋅=--+ ⎪⎝-⎭⎰⎰(3) 被积函数2πsin61zz -在|z |=3的内部有两个奇点1z =±.在C 的内部作两个互不包含互不相交的正向圆周C 1和C 2,其中C 1的内部只包含奇点z =1,C 2的内部只包含奇点z =-1.由定理3.5的(3.10)式及(3.12)式,有12222πππsinsin sinππ666d d d π.11122CC C z z zi i z z z i z z z =+=+=---⎰⎰⎰例3.10 求积分42d 1z zz =-⎰的值, 其中C 为:|z |=2为正向. 解:因为z 4-1=0之解为z 1=1, z 2=i, z 3=-1, z 4=-i,分别作简单正向闭路C j 包围z j ,使C j (j =1, 2, 3, 4)互不包含,互不相交,均位于|z |=2内,则由复合闭路定理有4441d d 11jj CCz zz z ==--∑⎰⎰ 又由Cauchy 积分公式得()()()()()()()()()1141213121121312d 1d 112121i 111i πi πiπi2C Cz zz z z z z z z z z z z z z z z =⋅-----=---==-++⎰⎰同理可得234444d d d ,,1212π2π1πi C CC z z z z z z =-=-=---⎰⎰⎰. 所以 44412d d 011j j z C z zz z ====--∑⎰⎰.2.高阶导数公式 我们知道,一个实函数在某一区间上可导,并不能保证该函数在这个区间上二阶导数存在.但在复变函数中,如果一个函数在某一区域内解析,那么根据3.3节中的柯西积分公式推知,该解析函数是无穷次可微的.定理3.7 定义在区域D 的解析函数f (z )有各阶导数,且有()1!()()d (1,2,),2π()n n Cn f f z n iz ξξξ+==-⎰(3.13)其中C 为区域D 内围绕z 的任何一条简单闭曲线,积分沿曲线C 的正向.证明:用数学归纳法证明. 当n =1时,即证明21()()d .2π()Cf f z iz ξξξ'=-⎰也就是要证明2()1()limd .2π()z Cf z z f z iz ξξξ∆→+∆=∆-⎰由柯西积分公式(3.11)有1()()d ,2π1()()d .2πCCf f z i z f f z z iz z ξξξξξξ=-+∆=--∆⎰⎰于是22222()()1()d 2π()()()11()d d d 2π2π()1()1()d d 2π()()2π()()()()1d d ()()()()2πCC C CCCCC f z z f z f z iz f f f z z z i z i z f f i z z z z iz zf f f z z z z z ξξξξξξξξξξξξξξξξξξξξξξξξξξξξ+∆--∆-⎛⎫--= ⎪--∆-∆-⎝⎭-=∆--∆--∆+-=--∆---⎰⎰⎰⎰⎰⎰⎰⎰2d .Cξ⎰令上式为Q,显然2()1d .()()2πCzf Q z z z ξξξξ∆=--∆-⎰根据积分不等式(3. 4)有2()1d .2πCf z Q z z zξξξξ∆≤--∆-⎰因为f (z )在区域D 内解析,所以在闭曲线C 上解析并连续,从而在C 上是有界的. 即对于z C ∀∈,一定存在一个正数M ,使得|f (z )|≤M .设d 为从z 到C 上各点的最短距离,取z ∆充分小,满足2dz <∆.那么 ,.2d d z z z z z ξξξ≥≥->---∆-∆因此33212d ,d 2π2πd πd d 2CM M ML z z Q s L z ∆∆<=⋅=∆⋅⎰这里L 为C 的长度. 令0z ∆→,则0Q →,于是有()()1()()lim.2π()z Cf z z f z f f z d z iz ξξξ∆→+∆-'==∆-⎰假设n =k 时的情形成立,证明n =k +1时的情形成立.证明方法与n =1时的情形相似,但证明过程稍微复杂,这里就不证明了.这个定理实际上说明了解析函数具有无穷可微性.即 定理3.8 若f (z )为定义在区域D 内的解析函数,则在D 内其各阶导数都存在并且解析.换句话说,解析函数的导数也是解析函数.由解析函数的无穷可微性,我们可以得到判断函数在区域内解析的又一个充要条件.定理3.9 函数f (z )=u (x ,y )+iv (x ,y )在区域D 内解析的充要条件是(1),,,x y x y u u v v 在D 内连续;(2)(,),(,)u x y v x y 在D 内满足柯西-黎曼方程.证明:充分性即是定理2.8.下面证明必要性. 条件(2)的必要性由定理2.7给出.再来看条件(1),由于解析函数的导数仍然是解析函数,所以f '(z )在D 内解析,从而在D 内连续.而()x x y y f z u iv v iu '=+=-,所以,,,x y x y u u v v 在D 内连续.下面我们来看高阶导数公式的应用.高阶导数公式(3.13)可改写为()1()2πd ().()!n n Cf i f z z n ξξξ+=-⎰(3.14)可通过此式计算某些复变函数的积分.例3.11 求积分的1e d ()zn Cz ξξ+-⎰值, 其中C 为: 226x y y +=. 解:226x y y +=可化为22(3)9x y +-=,即|z -3i|=3. 被积函数2e π2z i z ⎛⎫- ⎪⎝⎭在C 的内部有一个奇点π2iz =,由(3.14)式有 π/22π/2e 2πe 2π2π.2π(e )π2zi z z i Ci i i i i z ====⋅=-'⎛⎫- ⎪⎝⎭⎰例3.12 求积分32cos πd (1)Czz z z -⎰的值,其中C 为: |z |=2.解 被积函数32cos π(1)zz z -在C 的内部有两个奇点z =0和z =1,作两条闭曲线C 1和C 2互不相交且互不包含,分别包围奇点z =0和z =1,且两曲线所围区域全含于C 的内部,则根据复合闭路定理3.5和高阶导数公式(3.14),有1212323232233223022cos πcos πcos πd d d (1)(1)(1)cos π1cos π1d d (1)(1)2πcos πcos π2π2π32!(1)(6π)π6π(12π)π.CC C C C z z z z zz z z z z z z z z z z z z z z z z i z z i i z z i i i ===+---=⋅+⋅--'''⎛⎫⎛⎫=++⋅ ⎪⎪-⎝⎭⎝⎭=-+=-⎰⎰⎰⎰⎰§3.4 解析函数与调和函数的关系根据解析函数的导数仍是解析函数这个结论,我们来讨论解析函数与调和函数的关系. 定义3.3 在区域D 内具有二阶连续偏导数并且满足拉普拉斯方程22220x yϕϕ∂∂+=∂∂ 的二元实函数(,)x y ϕ称为在D 内的调和函数.调和函数是流体力学、电磁学和传热学中经常遇到的一类重要函数.定理3.10 任何在区域D 内解析的函数f (z )=u (x ,y )+iv (x ,y ),它的实部u (x ,y )和虚部v (x ,y )都是D 内的调和函数.证明 由柯西-黎曼方程有,.v u v x y y xϕ∂∂∂∂==-∂∂∂∂ 于是222222,.u v u v x y x y x y∂∂∂∂==-∂∂∂∂∂∂ 由定理3.8可知,u (x ,y )与v (x ,y )具有任意阶连续偏导,所以22.v vy x x y∂∂=∂∂∂∂ 从而22220.u vx y ∂∂+=∂∂ 同理可证22220.v vx y∂∂+=∂∂ 即u (x ,y )与v (x ,y )都是调和函数.使u (x ,y )+iv (x ,y )在区域D 内构成解析函数的调和函数v (x ,y )称为u (x ,y )的共轭调和函数.或者说,在区域D 内满足柯西-黎曼方程u x =v y ,v x =-u y 的两个调和函数u 和v 中,v 称为u 的共轭调和函数.注意:u 与v 的关系不能颠倒,任意两个调和函数u 与v 所构成的函数u +iv 不一定就是解析函数.例如,f (z )=z 2=x 2-y 2+2xyi ,其中实部u =x 2-y 2,虚部v =2xy .由于f (z )=z 2解析,显然v =2xy 是u =x 2-y 2的共轭调和函数.但是v x =2y ,u y =-2y .因此以v 作为实部、u 作为虚部的函数g (z )=v +iu 不解析.下面介绍已知单连通域D 内的解析函数f (z )=u +iv 的实部或虚部,求f (z )的方法. 这里仅对已知实部的情形进行说明,关于已知虚部求f (z )的方法可以类似得到. (1) 偏积分法利用柯西-黎曼方程(2.5)先求得v 对y 的偏导v y =u x ,此式关于y 积分得d ()uv y g x x ∂=+∂⎰,然后两边对x 求偏导,由v x =-u y ,于是有d ().y uu y g x x x∂∂'-=+∂∂⎰ 从而()d .-d u u g x x C y x x x ∂∂∂⎛⎫=+- ⎪∂∂∂⎝⎭⎰⎰故d d .-d u u u v y x C y x x x x ∂∂∂∂⎛⎫=++- ⎪∂∂∂∂⎝⎭⎰⎰⎰ 例3.13 已知u (x ,y )=2(x -1)y , f (2)=-i ,求其共轭调和函数,并写出f (z )的形式.解 由柯西-黎曼方程(2.5),有v y =u x =2y ,此式两边关于y 积分:2d ()().uv y g x y g x x∂=+=+∂⎰而(),x v g x '=又2(1),x y v u x =-=-所以2()2(1)d 2,g x x x x x C =-=-+⎰其中C 为实常数. 于是222.v y x x C =-++从而22()2(1)(2).f z x y i y x x C =-+-++由条件 f (2)=-i ,得C =-1,故22222()2(1)(21)(22()1)(1).f z x y i y x x i x y ixy x iy i z =-+-+-=--+-++=-- (2) 线积分法利用柯西-黎曼方程(2.5)有d d d d d x y y x v v x v y u x u y =+=-+,故00(,)(,)d d .x y y x x y v u x u y C =-++⎰由于该积分与积分路径无关,因此可选取简单路径(如折线)进行计算.其中(x 0,y 0)为区域D 中的点.以例3.13进行说明,u x =2y , u y =2x -2 .取(x 0,y 0)=(0,0),路径为从(0,0)到(x ,0)的直线段再从(x ,0)到(x ,y )的直线段.于是(,)(0,0)22(22)d 2d (22)d 2d 2.x y yxv x x y y Cx x y x C x x y C =-++=-++=-++⎰⎰⎰以下同前.(3) 不定积分法根据柯西-黎曼方程(2.5)及解析函数的导数公式(2.9)有().x x x y f z u iv u iu '=+=-.将x y u iu -表示成z 的函数h (z ),于是()()d .f z h z z C =+⎰还是以例3.13进行说明,2,2 2.x y u y u x ==-()2(22)2(1)2(1).f z y i x i x iy i z '=--=-+-=--从而2()2(1)d 2.f z i z z C iz iz C =--+=-++⎰由条件 f (2)=-i ,得C =-i ,故2()(1).f z i z =--小 结复变函数的积分定义与微积分中定积分的定义在形式上十分相似,只是被积函数由后者的一元实函数换成了前者的复变函数,积分区间[a ,b ]换成了平面区域内的一条光滑有向曲线.复变函数的积分值不仅与积分曲线的起点和终点有关,而且一般也与积分路径有关.这些特点与微积分中第二类曲线积分相似,因而具有与第二类曲线积分类似的性质.计算复变函数的积分有两个基本方法:(1) 若被积函数为f (z )=u (x ,y )+iv (x ,y ),积分曲线为C ,则()d d d d d .C C Cf z z u x v y i v x v y =-++⎰⎰⎰ (2) 参数方程法. 设积分曲线C 的参数方程为()()z z t a t b =≤≤,则()d (())()d .bC af z z f z t z t t '=⎰⎰ 解析函数积分的基本定理主要包括柯西-古萨定理、柯西积分公式、高阶导数公式及它们的一些推论.柯西-古萨定理指在单连通域D 内解析的函数f (z )沿该区域内任一条闭曲线C 的积分为零,即()d 0C f z z =⎰.由此定理可以得到一个重要推论:在单连通域D 内解析的函数f (z )沿该区域内任一条曲线积分与路径无关.复变函数与实函数一样也有原函数的概念,并且任何两个原函数之间仅相差一个常数.基于此,对于单连通域内的解析函数有类似于实函数的牛顿-莱布尼兹公式.即1010()d ()()z z f z z z z ϕϕ=-⎰,其中f (z )为单连通域D 内的解析函数,()z ϕ为f (z )的一个原函数,01,z z D ∈分别为积分曲线的起点和终点.复合闭路定理是柯西-古萨定理的推广,即若函数f (z )在复闭路C =C 0+C 1-+C 2-+…+C n-及其所围成的多连通区域内解析,则 01()d ()d ,k nk C C f z z f z z ==∑⎰⎰ 也就是0()d 0C f z z =⎰.柯西积分公式1()()d 2πf f z i z ξξξ=-⎰ 与高阶导数公式1!()()d , 1,2,2π()n n n f z f z n i z ξξ+==-⎰是复变函数两个十分重要的公式,它们都是计算积分的重要工具.柯西积分公式反映了解析函数在其解析区域边界上的值与区域内部各点处之间的密切关系,而高阶导数公式表明解析函数的导数仍是解析函数,即解析函数具有无穷可微性.这是解析函数与实函数的本质区别.下面归纳复变函数积分的计算方法.(1)如果被积函数不是解析函数,那么不论积分路径是否封闭,只能运用上面提到的两种基本计算方法,即化为二元实函数的线积分和参数方程法.(2)如果被积函数是解析函数(包括含有有限个奇点的情形),并且积分路径封闭,那么可以考虑柯西积分公式、高阶导数公式,并常常需要联合运用柯西-古萨定理、复合闭路定理,有时还需将被积函数作变形化为公式中的相应形式.若积分路径不封闭,那么只要被积函数在单连通域内解析,就可用定理3.4进行计算.(3)若被积函数是解析函数(含有有限个或无限个奇点),积分路径封闭,而被积函数不能表示为柯西积分公式和高阶导数公式中所要求的形式,那么就只能用到第五章中的留数方法.解析函数f (z )=u +iv 的虚部v 为实部u 的共轭调和函数,u 与v 的关系不能颠倒,任意两个调和函数u 与v 所构成的函数u+iv 不一定是解析函数.已知单连通域D 内的解析函数f (z )的实部或虚部求f (z )的方法要求掌握,前面已经详细介绍了三种方法,这里不再赘述.重要术语及主题复积分 柯西-古萨定理 复合闭路定理 原函数柯西积分公式 高阶导数公式 调和函数习题三1. 计算积分2()d C x y ix z -+⎰,其中C 为从原点到点1+i 的直线段.2. 计算积分(1)d C z z -⎰,其中积分路径C 为(1) 从点0到点1+i 的直线段;(2) 沿抛物线y =x 2,从点0到点1+i 的弧段.3. 计算积分d C z z ⎰,其中积分路径C 为(1) 从点-i 到点i 的直线段;(2) 沿单位圆周|z |=1的左半圆周,从点-i 到点i ;(3) 沿单位圆周|z |=1的右半圆周,从点-i 到点i .4. 计算积分23d Cz z z -⎰,其中积分路径C 为 (1) 从z =-2到z =2沿圆周|z |=2的上半圆周;(2) 从z =-2到z =2沿圆周|z |=2的下半圆周;(3) 沿圆周|z |=2的正向.5. 计算积分1d (31)C z z z +⎰,其中C 为16z =. 6. 计算积分(e sin )d z C z z z -⎰,其中C 为0a z =>. 7. 计算积分,其中积分路径C 为:12341(1):;23(2):;21(3):;23(4):.2C z C z C z i C z i ===+=-8.利用1d 0,:12C z C z z ==+⎰,证明: π12cos d 0.54cos θθθ+=+⎰ 9. 计算积分1d (1)2C z i z z ⎛⎫+- ⎪⎝⎭⎰,其中C 为|z |=2. 10. 利用牛顿-莱布尼兹公式计算下列积分. π200π211(1)cos d ;(2)e d ;2ln(1)(3)(2)d ;(4)d ;1iz i ii z z z z iz z z z +--+++⎰⎰⎰⎰ 12011tan (5)sin d ;(6)d cos i z z z z z z +⎰⎰ (沿1到i 的直线段) . 11. 求积分2e d 1z C z z +⎰,其中C 为: 12. 计算积分221d 1C z z z z -+-⎰,其中C 为|z |=2. 13. 计算积分41d 1Cz z +⎰,其中C 为222x y x +=.14. 求积分2sin d 9r zz z z =+⎰,其中C 为|z -2i |=2. 15. 求积分()33d d (1)1C z z z z +-⎰,其中r ≠1. 16. 求下列积分的值,其中积分路径C 均为|z |=1. 53020e cos (1)d ;(2)d ;tan /21(3)d ,.()2z C CC z z z z z z z z z z <-⎰⎰⎰17. 计算积分33d d (1)(1)C z z z z -+⎰,其中C 为: (1) 中心位于点z =1,半径为R <2的正向圆周;(2) 中心位于点z =-1,半径为R <2的正向圆周;(3) 中心位于点z =1,半径为R >2的正向圆周;(4) 中心位于点z =-1,半径为R >2的正向圆周.18. 设函数3223()d f z ax bx y cxy y =+++是调和函数,其中a,b,c 为常数.问a,b,c 之间应满足什么关系?19. 验证下列函数为调和函数.3223(1)632;(2)e cos 1(e sin 1).x x x x y xy y y i y ωω=--+=+++ 20. 证明:函数2222,x u x y v x y =-=+都是调和函数,但f (z )=u +iv 不是解析函数. 21. 设u 是调和函数,且不恒为常数,问:(1) u 2是否是调和函数?(2) 对怎样的f ,函数f (u )为调和函数?22. 由下列各已知调和函数,求解析函数f (z )=u +iv :2222(1);(2),(1)0;(3)e (cos sin ),(0)2;(4)arctan ,0.x u x y xy y u f x y v y y x y x y f y v x x=-+==+=+++==> 23.设12()()()()n p z z a z a z a =---,其中(1,2,,)i a i n =各不相同,闭路C 不通过12,,,n a a a ,证明积分1()d 2π()C p z z i p z '⎰ 等于位于C 内的p(z )的零点的个数.24.试证明下述定理(无界区域的柯西积分公式):设f (z )在闭路C 及其外部区域D 内解析,且lim ()z f z A →∞=≠∞,则 (),,1()d ,.2πC f z A z D f A z G i zξξξ-+∈⎧=⎨∈-⎩⎰ 其中G 为C 所围内部区域.。

复变积分知识点总结

复变积分知识点总结

复变积分知识点总结一、复变函数的积分1. 复变函数的积分复变函数的积分是指对复平面上的函数进行积分,其中积分路径可以是一条曲线或者一条闭合曲线。

复变函数的积分包括对于实部和虚部的积分两部分,也可以看作是对于复变函数的实部和虚部的积分的和。

复变函数的积分可以用复积分的方式来表示,即对于积分路径上的每一个点,都可以对应一个复数,这样对于整个路径上的所有点的积分就可以用复数来表示。

2. 复变函数的积分性质复变函数的积分具有一些独特的性质,比如线性性、可微性、路径无关性等。

其中线性性是指对于复变函数的积分满足线性组合的性质,即对于两个复变函数的积分和它们的线性组合的积分是相同的。

而可微性是指对于复变函数的积分可以通过对积分路径上的点进行微分来得到,这与实部和虚部的积分分别成立。

路径无关性是指对于一个复变函数在不同的积分路径上积分得到的结果是相同的。

3. 古代积分定理古代积分定理是复变积分的重要定理之一,它是复平面上函数积分的一个基本定理,也是复变函数在复平面上的积分与在实数轴上的积分之间的联系的一个重要桥梁。

古代积分定理表明,对于一个复变函数在一个简单闭合曲线内的积分等于该函数在这个闭合曲线上的积分。

古代积分定理同时也说明了对于一个复变函数在整个复平面上的积分等于该函数在所有简单闭合曲线上的积分之和。

4. 柯西-黎曼积分定理柯西-黎曼积分定理是复变积分的另一个重要定理,它是复变函数积分在实数轴上的积分的推广和深化,也是复变积分的一个基本定理。

柯西-黎曼积分定理表明了对于一个复变函数来说,如果它在一个闭合曲线内保持解析,那么对于这个曲线内的复变函数的积分一定等于零。

柯西-黎曼积分定理是复变积分中一个非常重要且基础的定理,它为复变函数积分的计算和应用提供了一个非常重要的方法和途径。

5. 积分的应用复变积分在工程、物理、数学等领域都有广泛的应用,比如它可以用来求解一些特殊的积分问题,解决一些特殊的微分方程问题,描述一些特殊的物理现象等。

复变函数积分的概念

复变函数积分的概念

C 无关性.
附:
格林公式
盐城工学院基础部应用数学课程组
dz 例如 2 i , z 1 z
例如

z 1
dz dz 2 Q dz zd d z 1 z
练习
dz 2 i ie z 1 z 0 d 0

dz
z 1
z
e i d 0
C


即为一元实函数的定积分 . 一般不能把起点为 , 终点为 的函数 f ( z ) 的积分
记作 f ( z )dz , 因为这是一个线积分 , 要受积分路

线的限制, 必须记作 f ( z )dz .
C
盐城工学院基础部应用数学课程组
性质(4)的证明
因为 zk 是 zk 与 zk 1 两点之间的距离 ,
0
1
C1 1
(1 i ) (1 i ) t d t
0
1
1 21 1. 2 t 2 0
说明:此积分与路径有关
盐城工学院基础部应用数学课程组
课堂练习
例3 计算 z dz , 其中 C 为 : 圆周 z 2.
C
解 积分路径的参数方程为
z 2e
i
(0 2π ),
第一节
复变函数积分的概念
一、积分的定义 二、积分存在的条件及其计算法 三、积分的性质
第三章
盐城工学院基础部应用数学课程组
y
B
一、复变函数积分的定义 1.有向曲线 以A与B为端点的光滑(或按段)曲线C 规定:从A到B为曲线C的正向,
o
y
A
x
o
从B到A就是曲线C的负向,记作 C y

复变函数的积分

复变函数的积分

第二章 复变函数的积分在微积分学中,微分法、积分法是研究函数性质的重要方法。

在复变函数中,微分法、积分法是研究复变函数性质的重要方法和解决实际问题的有力工具。

§2.1 复变函数的积分—复平面上的线积分一、复变函数积分的定义例:计算2421iiz dz++∫1.沿抛物线2y x =2.沿连接点124i i ++到的直线段3.1224i i i +++沿到然后再到的折线 解:1.抛物线参数方程为22,()(12)x t y t d z d t it i t d t==≤≤=+=+2其中1t 2则z =x +i y =t +i t242222222443241111()(12)[()4][22()]iiz dz t it i t dt t t t dt i t t t t dt++=++=−−++−∫∫∫∫三、解析函数的定积分公式在单通区域内,解析函数的积分值只与端点有关而与路径无关,可定义一个以终点z 为自变量的单值函数:()()zz F z f d ξξ=∫定理:设f (z )是单通区域D 内的解析函数, 是D的内点,则 是D 内的解析函数,且 F’(z )=f (z )F (z )是f (z )的原函数:F’(z )=f (z )定理证明略。

0z ξξd f z F zz ∫=0)()(由于()F z 是()f z 的一个原函数,所以()F z C +构成原函数族,则有:()()zz f d F z C ξξ=+∫上式中令 ,则有 从而0()()()zz f d F z F z ξξ=−∫——形式上与牛顿——莱布尼兹公式相似0z z =0)(0=+c z F )(0z F c −=⇒。

第三章 复变函数的积分

第三章 复变函数的积分

0 ≤ θ ≤ 2π
y
z − z0 = reiθ
θ
2π dz ireiθ ∴∫ = ∫ n+1 i (n+1)θ dθ C ( z − z )n+1 0 r e 0
z
o
z0
r C x
=∫

0
i r ne inθ
i 2π dθ = 2π i , n = 0, ∫0 dθ = i 2π n ∫0 (cos nθ − i sin nθ )dθ = 0, n ≠ 0. r 15
20
§2 柯西-古萨积分定理 柯西1、 引言
复变函数的积分的实际上等同于对坐标的曲线积分, 复变函数的积分的实际上等同于对坐标的曲线积分,这 就很自然地引出积分与路径无关的问题. 就很自然地引出积分与路径无关的问题
事实上,从上一节中, 我们知道:有的积分与 积分路径 事实上,从上一节中, 我们知道: 无关; 另外, 无关;有的积分与积分 路径有关 . 另外,我们还知道
18
|dz | (3) ∫ ; |z |= 1 z
练习
计算 I =

C
| z | dz的值 , 其中
(1) C 是单位圆 z = 1的上半圆周 , 顺时针方向 ; ( 2 ) C 是单位圆 z = 1的下半圆周,逆时针方 向; 的下半圆周, ( 3 ) C 是从 − 1到 1 的直线段 .
思考题:下列式子成立吗? 思考题:下列式子成立吗?
容易验证,上式中积分与路径无关 容易验证,上式中积分与路径无关.
12
例 2 计算 I =
∫ z dz ,其中积分路径
c
C为
( i ) C 为从 O ( 0 ,0 )到 A ( 3,)的直线段; 4 的直线段;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数积分
复变函数积分是高等数学中的一门重要的课程,它是微积分中不
可或缺的一部分。

复变函数的积分在工程学、物理学、数学和其他科
学领域都有广泛的应用。

复变函数积分是一个涉及到复数的复杂问题。

在实际应用中,计
算实数函数的积分时,我们只需要使用微积分知识来求其积分。

但是,当函数中涉及到复数时,我们需要使用一些特殊的方法来求解它的积分。

复变函数的积分可以分为两类,一类是沿着一条曲线对函数进行
积分,这被称为曲线积分;另一类是在一个区域内对函数进行积分,
这被称为区域积分。

在曲线积分中,我们需要根据曲线的特征来将曲线分成若干个小段,然后再对每一个小段分别计算在该段上函数的积分。

每一个小段
的长度越短,我们计算的结果就越准确。

在区域积分中,我们需要将整个区域分解成若干个小块,然后再
对每一个小块分别计算在该块上函数的积分。

每一个小块的面积越小,我们计算的结果就越准确。

对于复变函数积分而言,最重要的概念是共形映射。

共形映射是
指能够保持较小的弧长比例的映射。

共形映射有很多应用,比如计算
区域积分时,我们可以利用共形映射把我们要计算的复变函数积分转化为一个已知的积分。

在计算复变函数积分时,我们还需要注意极点。

一个复变函数的极点是指在某个点上该函数不连续并且不存在极限。

对于一个带有极点的函数,我们需要将它分解成若干个小段,然后再对每一个小段分别进行积分。

最后,我们需要注意一些技巧。

比如,我们可以使用洛朗级数来展开一个带有极点的函数,并将其转化为计算可能更加容易的项。

此外,我们还可以使用Cauchy积分定理来计算复变函数积分,这是计算复变函数积分最重要的工具之一。

综上所述,复变函数积分是一门重要的课程,它与实际应用密切相关。

在学习复变函数积分时,我们需要掌握曲线积分和区域积分,了解共形映射的概念,并掌握一些技巧,比如展开函数或使用Cauchy 积分定理。

掌握这些知识和技巧,可以帮助我们更好地计算复变函数积分,解决实际问题。

相关文档
最新文档