2013年高考理科数学安徽卷word解析版
2013年安徽省高考数学试卷(理科)及解析
2013年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,6.(5分)(2013•安徽)已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为(=8.(5分)(2013•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()9.(5分)(2013•安徽)在平面直角坐标系中,O是坐标原点,两定点A,B满足==2,则点集{P|,,λ、μ∈R}所表示的区域面积是()1211211.(5分)(2013•安徽)若的展开式中x4的系数为7,则实数a=_________.12.(5分)(2013•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=_________.13.(5分)(2013•安徽)已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为_________.14.(5分)(2013•安徽)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等,设OA n=a n,若a1=1,a2=2,则数列{a n}的通项公式是_________.15.(5分)(2013•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是_________(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.三、解答题:本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算骤16.(12分)(2013•安徽)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.17.(12分)(2013•安徽)设函数f(x)=ax﹣(1+a2)x2,其中a>0,区间I={x|f (x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.18.(12分)(2013•安徽)设椭圆E:的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.19.(13分)(2013•安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;(2)求cos∠COD.20.(13分)(2013•安徽)设函数f n(x)=﹣1+x+),证明:(1)对每个n∈N+,存在唯一的x n,满足f n(x n)=0;(2)对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p<.21.(13分)(2013•安徽)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m.2013年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求,代入),则,由则,解得S=+的值,并输出.S=+的值S=++.)=5.(5分)(2013•安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,[)﹣﹣6.(5分)(2013•安徽)已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为,由指数函数的单调性可得解集.}<可化为,即(故圆的两条切线方程分别为8.(5分)(2013•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()由解:∵表示(若本题考查的知识点是斜率公式,正确理解9.(5分)(2013•安徽)在平面直角坐标系中,O是坐标原点,两定点A,B满足==2,则点集{P|,,λ、μ∈R}所表示的区域面积是()=满足=).再设由.所以,解得等价于或或则区域面积为1211211.(5分)(2013•安徽)若的展开式中x4的系数为7,则实数a=.,的展开式中,∴,解得故答案为.角C=.cosC=﹣C=故答案为:A为直角,可得A B,=m14.(5分)(2013•安徽)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等,设OA n=a n,若a1=1,a2=2,则数列{a n}的通项公式是.,利用已知可得的中位线,得到,梯形相似比的平方可得:,,,已知,,可得}解:设,∵的中位线,∴,∴梯形)都相似,∴,,,∴,},故..故答案为.15.(5分)(2013•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是①②③⑤(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.CQ==,只需在CQ=N=,故正确;<为菱形,故其面积为AC PF=16.(12分)(2013•安徽)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.]2x+])sin cos(+x++=2x+),,所以2x+≤≤2x+时,即时,≤2x+时,即[,17.(12分)(2013•安徽)设函数f(x)=ax﹣(1+a)x,其中a>0,区间I={x|f (x)>0} (Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);,,),区间长度为=<上取得最小值长度的最小值为18.(12分)(2013•安徽)设椭圆E:的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,)利用椭圆的标准方程和几何性质即可得出),其中的斜率=的方程为Q.得到直线的斜率.利用.化为,∴,解得的方程为.),其中的斜率==.的方程为.,解得Q.的斜率==化为联立解得底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;,∴OC=COF=1220.(13分)(2013•安徽)设函数f n(x)=﹣1+x+),证明:(1)对每个n∈N+,存在唯一的x n,满足f n(x n)=0;(2)对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p<.)<,再进行放大,并裂项求和,可得它小于,综上可得要证的结论成立.1+x+++++(+[+•+×﹣<n++++++]≤≤=..和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;立事件,所以相互独立,由于=,故()﹣﹣所包含的基本事件总数为(包含的基本事件数为﹣﹣<﹣[]﹣k=≥<<﹣。
2013年普通高等学校招生全国统一考试数学理试题(安徽卷,含答案)
π
2
(ρ ∈ R)和ρ cos=2
θ =0(ρ ∈ R )和ρ cos=1
可找到 n(n ≥ 2)
8 函数 y =f (x ) 的 个
如 所示,在区间 [ a,b ]
的数 x1 ,x2 ...,xn , 使得 A C 9
f (x1 ) f (x2 ) f (xn ) = = , 则 n 的取值范围是 x1 x2 xn
86,94,88,92,90,五 女生的成绩
这种抽样方法是一种 层抽样 这种抽样方法是一种系统抽样 这五 男生成绩的方差大于这五 女生成绩的方差 该班级男生成绩的 均数小于该班女生成绩的 均数
6 已知一元 次 等式 f (x )<0 的解集 A C
{ x |x <-1或x >
1 2
} ,则 f (10 x )>0 的解集
π
(ϖ > 0) 的最小 周期 π 4
讨论 f ( x ) 在区间 [ 0, 2] 17 本小题满 12
的单调性
设函数 f ( x ) = ax − (1 + a 2 ) x 2 ,其中 a > 0 ,区间 I =| x f (x)>0 求的长度 注 区间 (α , β ) 的长度定
在点 C ,使得 ∠ABC
别在角 O 的两条边 ,所有
An Bn 相互 行,且所有梯形 An Bn Bn +1 An +1 的面积均相等 设 OAn = an . 若 a1 = 1, a2 = 2, 则数
列 {an } 的通项 式是____________ 15 如 , 方体 ABCD − A1 B1C1 D1 的棱长 过点 A,P,Q 的 面截该 方体所得的截面记 确命题的编号 当 0 < CQ < 当 CQ = 1,P 分 则 BC 的中点,Q 线段 CC1 的动点,
2013年高考真题——理科数学安徽卷(含答案解析)
2013年高考真题——理科数学安徽卷(含答案解析)高考真题高考模拟高中联考期中试卷期末考试月考试卷学业水平同步练习2013年高考真题——理科数学安徽卷(含答案解析)1 设是虚数单位,是复数的共轭复数,若,则=(A)(B)(C)(D)【答案解析】 A2 如图所示,程序框图(算法流程图)的输出结果是(A)(B)(C)(D)【答案解析】 D3 在下列命题中,不是公理的是(A)平行于同一个平面的两个平面相互平行(B)过不在同一条直线上的三点,有且只有一个平面(C)如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D)如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线【答案解析】 A4 “是函数在区间内单调递增”的(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案解析】 C5 某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是(A)这种抽样方法是一种分层抽样(B)这种抽样方法是一种系统抽样(C)这五名男生成绩的方差大于这五名女生成绩的方差(D)该班级男生成绩的平均数小于该班女生成绩的平均数【答案解析】 C6 已知一元二次不等式的解集为,则的解集为(A)(B)(C)(D)【答案解析】 D7 在极坐标系中,圆的垂直于极轴的两条切线方程分别为(A)(B)(C)(D)【答案解析】 B8 函数的图像如图所示,在区间上可找到个不同的数使得则的取值范围是(A)(B)(C)(D)【答案解析】 B9 在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是(A)(B)(C)(D)【答案解析】 D10 若函数有极值点,,且,则关于的方程的不同实根个数是(A)3 (B)4(C) 5 (D)6【答案解析】 A11 若的展开式中的系数为7,则实数_________。
2013年安徽省高考数学(理)试卷及答案
2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求 (1) 设i 是虚数单位,z 是复数z 的共轭复数,若z i z z 22=+⋅,则z=(A)1+i (B)1-i (C)-1+i (D)-1-i(2)如图所示,程序框图(算法流程图)的输出结果中 (A)61 (B)2425 (C)43 (D)1211(3)在下列命题中, 不是公理的是 (A)平行于同一个平面的两个平面平行(B)过不在同一直线上的三个点,有且只有一个平面(C)如果一条直线上的两点在同一个平面内,那么这条直线上所以点都在此平面内 (D)如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(4)”a ≤0”是”函数f(x)=|(ax-1)x|在区间(0,+∞)内单调递增”的(A)充分不必要条件(B)必要不充分条件(C)充分必要条(D)既不充分也不必要条件(5)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是 (A)这种抽样方法是一种分层抽样 (B)这种抽样方法是一种系统抽样 (C)这五名男生成绩的方差大于这五名女生成绩的方差 (D) 该班男生成绩的平均数小于该班女生成绩的平均数(6)已知一元二次不等式f(x)<0的解集为}211|{>-<x x x 或,则f(10x)>0的解集为 (A){x|x<-1或x>-lg2} (B) {x|<-1<x<-lg2} (C) {x| x>-lg2}(D) {x| x<-lg2}(7)在极坐标系中圆ρ=2cos θ的垂直于极轴的两条切线方程分别为 (A) θ=0(ρ∈R)和ρcos θ=2 (B) θ=2π(ρ∈R)和ρcos θ=2 (C) θ=2π(ρ∈R)和ρcos θ=1 (D) θ=0(ρ∈R)和ρcos θ=1(8)函数y=f(x)的图象如图所示, 在区间[a,b]上可找到n(n ≥2)个不同的数x 1,x 2,…, x n ,使得nn x x f x x f x x f )(...)()(2211===,则n 的取值范围是 (A){3,4}(B){2,3,4}(C){3,4,5}(D){2,3}(9)在平面直角坐标系中,O 是坐标原点,两定点A,B 满足2||||=⋅==,则点集},,1||||,|{R P ∈≤++=μλμλμλ所表示的区域面积是(A)22 (B)32 (C)24(D)34(10)若函数f(x)=x 3+ax 2+bx+c 有极值点x 1,x 2,且f(x 1)=x 1,则关于x 的方程3(f(x))2+2af(x)+b=0的不同实根个数是 (A)3 (B)4 (C)5 (D)6二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡上 (11)若83)(xa x +的展开式中x 4的系数为7,则实数a=____ (12)设⊿ABC 的内角A,B,C 所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=_____13)已知直线y=a 交抛物线y=x 2于A,B 两点,若该抛物线上存在点C,使得∠ACB 为直角,则a 的取值范围为_____(14)如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O 的两条边上,所有A n B n 相互平行,且所有梯形A n B n B n+1A n+1的面积均相等,设OA n =a n ,若a 1=1,a 2=2,则数列{a n }的通项公式是_______(15)如图,正方体ABCD-A 1B 1C 1D 1棱长为1,P 为BC 的中点,Q 为线段CC 1上的动点,过点A,P,Q 的平面截该正方体所得的截面记为S,则下列命题正确的是_____(写出所有正确的命题的编号)①当0<CQ<21时,S 为四边形 ②当CQ=21时,S 为等腰梯形 ③当CQ=43时,S 与C 1D 1的交点R 满足C 1R=31④当43<CQ<1时,S 为六边形 ⑤当CQ=1时,S 的面积为26 三、解答题:本大题共6小题,共75分。
2013年高考安徽理科数学试题及答案解析版
2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2013年安徽,理1,5分】设i 是虚数单位,z 是复数z 的共轭复数.若·i+2=2z z z ,则z =( )(A )1i + (B )1i - (C )1i -+ (D )1i -- 【答案】A【解析】设()i z a b a b =+∈R ,,则由·i+2=2z z z 得()()i i i 2i (2)a b a b a b +-+=+,即22i (2i )22a b a b ++=+, 所以22a =,222a b b +=,所以1a =,1b =,即i 1i z a b =+=+,故选A .(2)【2013年安徽,理2,5分】如图所示,程序框图(算法流程图)的输出结果是( )(A )16 (B )2524(C )34 (D )1112【答案】D【解析】开始28<,11022s =+=,224n =+=;返回,48<,113244s =+=,426n =+=;返回,68<,31114612s =+=,628n =+=;返回,88<不成立,输出1112s =,故选D .(3)【2013年安徽,理3,5分】在下列命题中,不是..公理的是( ) (A )平行于同一个平面的两个平面相互平行 (B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D )如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线 【答案】A 【解析】由立体几何基本知识知,B 选项为公理2,C 选项为公理1,D 选项为公理3,A 选项不是公理,故选A . (4)【2013年安徽,理4,5分】“0a ≤”是“函数()1|()|f x ax x =-在区间(0)+∞,内单调递增”的( ) (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】函数()f x 的图象有以下三种情形:0a = 0a > 0a < 由图象可知()f x 在区间(0)+∞,内单调递增时,0a ≤,故选C .(5)【2013年安徽,理5,5分】某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是( )(A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样 (C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班男生成绩的平均数小于该班女生成绩的平均数 【答案】C【解析】解法一:对A 选项,分层抽样要求男女生总人数之比=男女生抽样人数之比,所以A 选项错; 对B 选项,系统抽样要求先对个体进行编号再抽样,所以B 选项错; 对C 选项,男生方差为40,女生方差为30.所以C 选项正确;对D 选项,男生平均成绩为90,女生平均成绩为91.所以D 选项错,故选C . 解法二:五名男生成绩的平均数为869488920150(9)9++++=,五名女生成绩的平均数为()18893938893915++++=,五名男生成绩的方差为22222218690949088909290909085s (-)+(-)+(-)+(-)+(-)==,五名女生成绩的方差为2222288913939165s (-)+(-)==,所以2212s s >,故选C .(6)【2013年安徽,理6,5分】已知一元二次不等式()0f x <的解集为112x x x ⎧⎫<->⎨⎬⎩⎭或,则()100x f >的解集为( )(A ){|}1lg2x x x <->-或 (B )lg |}12{x x -<<- (C )l 2|g {}x x >- (D )l 2|g {}x x <- 【答案】D【解析】由题意知11012x -<<,所以1lg lg 22x =-<,故选D .(7)【2013年安徽,理7,5分】在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( )(A )()0cos 2θρρθ=∈=R 和 (B ))s (co 2θρρθ=∈=R 和(C ))s (co 1θρρθ=∈=R 和 (D )()0cos 1θρρθ=∈=R 和 【答案】B【解析】由题意可知,圆2cos ρθ=可化为普通方程为2211()x y -+=.所以圆的垂直于x 轴的两条切线方程分别为0x =和2x =,再将两条切线方程化为极坐标方程分别为()θρ=∈R 和cos 2ρθ=,故选B . (8)【2013年安徽,理8,5分】函数()y f x =的图象如图所示,在区间[]a b ,上可找到()2n n ≥个不同的数12n x x x ⋯,,,,使得1212===n nf x f x f x x x x ()()(),则n 的取值范围是( ) (A ){}3,4 (B ){}2,3,4 (C ){}3,4,5 (D ){}2,3 【答案】B【解析】1212===n n f x f x f x x x x ()()()可化为1212000===00n n f x f x f x x x x ()-()-()----,故上式可理解为()y f x =图象上一点与坐标原点连线的斜率相等,即n 可看成过原点的直线与()y f x =的交点个数. 如图所示,由数形结合知识可得,①为2n =,②为3n =,③为4n =,故选B .(9)【2013年安徽,理9,5分】在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足=2OA OB OA OB =⋅=,则点集{}=+,1,P OP OA OB λμλμμ+≤∈R 所表示的区域的面积是()(A )(B )(C ) (D ) 【答案】D【解析】以OA ,OB 为邻边作一个平行四边形,将其放置在如图平面直角坐标系中,使A ,B两点关于x 轴对称,由已知=2OA OB OA OB =⋅=,可得出60AOB ∠=︒,点)A ,点)1B -,点()D ,现设()P x y ,,则由=+OP OA OB λμ得())),1x y λμ=+-,即x y λμλμ+)=-=⎪⎩,由于1λμ+≤,λμ∈R ,,可得11x y ⎧≤⎪⎨-≤≤⎪⎩画出动点()P x y ,满足的可行域为如图阴影部分,故所求区域的面积为,故选D .(10)【2013年安徽,理10,5分】若函数()32f x x ax bx c =+++有极值点1x ,2x ,且()11f x x =,则关于x 的方程()()()2320f x af x b ++=的不同实根个数是( )(A )3 (B )4 (C )5 (D )6 【答案】A【解析】由()2320f x x ax b '=++=得,1x x =或2x x =,即()()()2320f x af x b ++=的根为()1f x x =或()2f x x =的解.如图所示12x x < 21x x <由图象可知()1f x x =有2个解,()2f x x =有1个解,因此()()()2320f x af x b ++=的不同实根个数为3, 故选A .第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2013年安徽,理11,5分】若将函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭的图像向右平移ϕ个单位,所得图像关于y 轴对称,则ϕ的最小正值是 . 【答案】12【解析】∵8x ⎛+ ⎝的通项为1838C ()r r r r x a x --883388=C C r rr r r r r r a x x a x ----=,∴843r r --=,解得3r =.∴338C 7a =, 得12a =.(12)【2013年安徽,理12,5分】设ABC ∆的内角A ,B ,C 所对边的长分别为a ,b ,c .若2b c a +=,3sin 5sin A B =,则角C = .【答案】2π3【解析】∵3sin 5sin A B =,∴35a b =.① 又∵2b c a +=,②∴由①②可得,53a b =,73c b =,∴22222257133cos 52223b b b b ac C ab b b ⎛⎫⎛⎫+- ⎪ ⎪+-⎝⎭⎝⎭===-⨯⨯,∴2π3C =.(13)【2013年安徽,理13,5分】已知直线y a =交抛物线2y x =于A ,B 两点.若该抛物线上存在点C ,使得ACB ∠为直角,则a 的取值范围为 .【答案】[1)+∞,【解析】如图,设20200()()C x x x a ≠,,()A a ,(),B a a ,则()200,CA x a x =--,()200,CB a x a x =-.∵CA CB ⊥,∴0CA CB ⋅=,即()()222000a x a x --+-=,()()2210a x a x --+-=,∴210xa =-≥,∴1a ≥.(14)【2013年安徽,理14,5分】如图,互不相同的点A 1,A 2,…,A n ,…和B 1,B 2,…,B n ,…分别在角O的两条边上,所有n n A B 相互平行,且所有梯形11nnn n A B B A ++的面积均相等.设n n OA a =.若11a =,22a =,则数列{}n a 的通项公式是 .【答案】n a =【解析】设11OA B S S ∆=,∵11a =,22a =,n n OA a =,∴11OA =,22OA =.又易知1122OA B OA B ∆∆∽,∴1122221221124OA B OA B S OA S OA ∆∆()⎛⎫=== ⎪()⎝⎭.∴11112233OA B A B B A S S S ∆==梯形.∵所有梯形11n n n n A B B A ++的面积 均相等,且11n n OA B OA B ∆∆∽,∴1n OA OA .∴1n a a =∴n a(15)【2013年安徽,理15,5分】如图,正方体1111ABCD A B C D -的棱长为1,P 为BC 的中点,Q为线段1CC 上的动点,过点A P Q ,,的平面截该正方体所得的截面记为S .则下列命题正确的是__________(写出所有正确命题的编号).①当012CQ <<时,S 为四边形;②当12CQ =时,S 为等腰梯形;③当34CQ =时,S 与11C D 的交点R 满足113C R =;④当341CQ <<时,S 为六边形;⑤当1CQ =时,S【答案】①②③⑤【解析】当12CQ =时,222111154D Q D C C Q =+=,22254AP AB BP =+=,所以1D Q AP =,又因为1//2AD PQ ,所以②正确;当012CQ <<时,截面为APQM ,且为四边形,故①也正确,如图(1)所示;如(2)图,当34CQ =时,由1QCN QC R ∆∆∽得11C Q C RCQ CN =,即114314C R =,113C R =,故③正确;如图(3)所示,当341CQ <<时,截面为五边形APQMF ,所以④错误;当1CQ =时,截面为1APC E ,可知1AC =EP =1APC E 为菱形,S四边形1APC E =,故⑤正确.图(1) 图(2) 图(3)三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内.(16)【2013年安徽,理16,12分】已知函数()4cos πsin ()4·0x f x x ωωω⎛⎫ ⎪⎝⎭=>+的最小正周期为π. (1)求ω的值;(2)讨论f (x )在区间π0,2⎡⎤⎢⎥⎣⎦上的单调性.解:(1)())2π4cos sin cos sin2c os24f x x x x x x x x ωωωωωωω=⋅⋅⎛⎫+=+ =⎝⎭+⎪+π2sin 24x ω⎛⎫=+ ⎪⎝⎭.因为()f x 的最小正周期为π,且0ω>,从而有2π=π2ω,故1ω=.(2)由(1)知,()π2sin 24f x x ⎛⎫++ ⎪⎝⎭=0π2x ≤≤,则ππ5π2444x ≤+≤.当πππ2442x ≤+≤即π08x ≤≤时,()f x 单调递增;当ππ5π2244x ≤+≤即ππ82x ≤≤时,()f x 单调递减. 综上可知,()f x 在区间π0,8⎡⎤⎢⎥⎣⎦上单调递增,在区间ππ,82⎡⎤⎢⎥⎣⎦上单调递减.(17)【2013年安徽,理17,12分】设函数()()221f x ax a x =-+,其中0a >,区间(){}|0I x f x =>.(1)求I 的长度(注:区间()αβ,的长度定义为βα-;(2)给定常数()0,1k ∈,当11k a k -≤≤+时,求I 长度的最小值. 解:(1)因为方程()()22100ax a x a -+=>有两个实根10x =,221ax a =+,故()0f x >的解集为{}12|x x x x <<. 因此区间20,1a I a ⎛⎫= ⎪+⎝⎭,I 的长度为21a a +. (2)设()21d a aa=+,则()22211a a a d -(+')=.令()0d a '=,得1a =.01k <<,故当11k a -≤<时,()0d a '>, ()d a 单调递增;当11a k <≤+时,()0d a '<,()d a 单调递减.所以当11k a k -≤≤+时,()d a 的最小 值必定在1a k =-或1a k =+处取得.而23223211211111211kd k k k k k d k k k k -(-)--+(-)==<+(+)-++(+),故()()11d k d k -<+. 因此当1a k =-时,()d a 在区间[]1,1k k -+上取得最小值2122kk k --+.(18)【2013年安徽,理18,12分】设椭圆E :2222=11x y a a +-的焦点在x 轴上.(1)若椭圆E 的焦距为1,求椭圆E 的方程;(2)设12F F ,分别是椭圆E 的左、右焦点,P 为椭圆E 上第一象限内的点,直线2F P 交y 轴于点Q ,并且11F P FQ ⊥.证明:当a 变化时,点P 在某定直线上. 解:(1)因为焦距为1,所以22141a -=,解得258a =.故椭圆E 的方程为2288=153x y +.(2)设00()P x y ,,()1,0F c -,()2,0F c ,其中c =.由题设知0x c ≠,则直线1F P 的斜率100F P y k x c=+, 直线2F P 的斜率200F P y k x c =-,故直线2F P 的方程为00()y y x c x c =--.当0x =时,0cy y c x =-, 即点Q 坐标为00(0,)cy c x -.因此,直线1F Q 的斜率为100F Q yk c x =-. 由于11F P FQ ⊥,所以1100001F P F Q y yk k x c c x ⋅=⋅=-+-.化简得22200(21)y x a =--.① 将①代入E 方程,由于点00()P x y ,在第一象限,解得20x a =,201y a =-,即点P 在定直线1x y +=上.(19)【2013年安徽,理19,13分】如图,圆锥顶点为P ,底面圆心为O ,其母线与底面所成的角为22.5︒,AB和CD 是底面圆O 上的两条平行的弦,轴OP 与平面PCD 所成的角为60︒. (1)证明:平面PAB 与平面PCD 的交线平行于底面; (2)求cos COD ∠. 解:(1)设面PAB 与面PCD 的交线为l .//AB CD ,AB 不在面PCD 内,所以//AB 面PCD .又因为AB 面PAB ,面PAB 与面PCD 的交线为l ,所以//AB l . 由直线AB 在底面上而l 在底面外可知,l 与底面平行.(2)设CD 的中点为F .连接OF ,PF .由圆的性质,2COD COF ∠=∠,OF CD ⊥.因为OP ⊥底面,CD ⊂底面,所以OP CD ⊥.又OP OF O =,故CD ⊥面OPF .又CD ⊂面PCD ,因此面OPF ⊥面PCD .从而直线OP 在面PCD 上的射影为直线PF , 故OPF ∠为OP 与面PCD 所成的角.60OPF ∠=︒.设OP h =,则tan tan60OF OP OPF h h =⋅∠=⋅︒=.根据题设有22.5OCP ∠=︒,得tan tan 22.5OP h OC OCP ==∠︒.由22tan 22.51tan 22.51tan45︒-=︒=︒和tan22.50︒>,得tan22.51︒,因此1)OC h ==.在Rt OCF ∆中,os c OF OC OF C ===∠,故22cos cos 22co ()2s 1=171COD COF COF ∠=∠=∠---=(20)【2013年安徽,理20,13分】设函数()2322*21()23n nf x x n x x x x n-++++∈∈+=R N ,.证明:(1)对每个*n ∈N ,存在唯一的2,13n x ⎡⎤⎢⎥⎣⎦∈,满足()0n n f x =;(2)对任意*p ∈N ,由(1)中n x 构成的数列{}n x 满足10n n p x x n+<-<.解:(1)对每个*n ∈N ,当0x >时,()11+02n n x f x x n -++'=>,故()n f x 在(0)+∞,内单调递增. 由于()110f =,当2n ≥时,()2221110231n f n=+++>,故()10n f ≥.又21122222213322112111231 ()0233343343313n k n k n n n k k f k --==⎡⎤⎛⎫⎛⎫⎛⎫-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎛⎫⎛⎫⎝⎭⎣⎦=-++≤-+=-+⋅=-⋅< ⎪ ⎪⎝⎭⎝⎭-∑∑,所以存在唯一的2,13n x ⎡⎤⎢⎥⎣⎦∈,满足()0n n f x =.(2)当0x >时,()()()1121n n n n f x f x x f x n ++(+)=+>,故()()()1110n n n n n n f x f x f x +++>==. 由()1n f x +在(0)+∞,内单调递增知,1n n x x +<,故{}n x 为单调递减数列,从而对任意*n p ∈N ,,n p n x x +<. 对任意*p ∈N ,由于()222102n nn n n n f x x x x n-++++==,①()2122221+021n n n pn p n p n p n p p n p n n p x x x x x n n n f x p ++++++++-++++++=(+)(+=)+.②①式减去②式并移项,利用01n p n x x +<<≤,得222211k kk k n pn pnn p n n p n n n p p k k n k n x x x x k x x k k +++++==+=++=-+≤-∑∑∑21111(1)n pn pk n k n k k k ++=+=+≤<-∑∑111n n p n =-<+.因此,对任意*p ∈N ,都有01n n p n x x +<-<.(21)【2013年安徽,理21,13分】某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责.已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数).假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k 位学生,且所发信息都能收到.记该系收到李老师或张老师所发活动通知信息的学生人数为X . (1)求该系学生甲收到李老师或张老师所发活动通知信息的概率; (2)求使()P X m =取得最大值的整数m .解:(1)因为事件A :“学生甲收到李老师所发信息”与事件B :“学生甲收到张老师所发信息”是相互独立的事件,所以A 与B 相互独立.由于()()11C C k n k n P A B k n P --===,故()()=1k P A P B n=-,因此学生甲收到活动通知信息的概率222211k kn k P n n -⎛⎫=--= ⎪⎝⎭. (2)当k n =时,m 只能取n ,有()()1P X m P X n ====.当k n <时,整数m 满足k m t ≤≤,其中t 是2k和n 中的较小者.由于“李老师和张老师各自独立、随机地发活动通知信息给k 位同学”所包含的基本事件总数为2(C )k n .当X m =时,同时收到李老师和张老师转发信息的学生人数恰为2k m -.仅收到李老师或 仅收到张老师转发信息的学生人数均为m k -.由乘法计数原理知:事件{}X m =所含基本事件数为 2C CCC CCk k m m k k m k m k nkn kn kn k------=.此时()22C C C C C (C )C k k m m k m k m k n k n k kn k k kn nP X m ------===. 当k m t ≤<时,()()1P X m P X m =≤=+⇔C C m k m k k n k ---≤11C C m k m kkn k +-+--⇔()()()212m k n m k m -+≤-- ⇔ 2(1)22k m k n +≤-+.假如2(1)22k k k t n +≤-<+成立,则当()21k +能被2n +整除时, 22(1)(1)22122k k k k k t n n ++-<≤+-≤++.故()P X m =在2(1)22k k n m +-+=和2(1)212k m k n ++-+=处达最大值; 当()21k +不能被2n +整除时,()P X m =在2(1)22m k k n ⎡⎤+-⎢⎥+⎣⎦=处达最大值.(注:[]x 表示不超过x 的最大整数),下面证明2(1)22k t n k k ≤+-<+.因为1k n ≤<,所以22(1)1222k kn k k k n n +----=++2111022k k k k n n (+)---≥=≥++.而22(1)12<022k n k k n n n +(-+)--=-++,故()2122k k n n +-<+. 显然2(1)222k k k n +-<+.因此2(1)22k t n k k ≤+-<+.。
2013年高考全国Ⅰ理科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国Ⅰ)数学(理科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2013年全国Ⅰ,理1,5分】已知集合{}{2|20,|A x x x B x x =->=<,则( ) (A )A B =∅ (B )A B =R (C )B A ⊆ (D )A B ⊆ 【答案】B【解析】∵2()0x x ->,∴0x <或2x >.由图象可以看出A B =R ,故选B . (2)【2013年全国Ⅰ,理2,5分】若复数z 满足(34i)|43i |z -=+,则z 的虚部为( )(A )4- (B )45- (C )4 (D )45【答案】D【解析】∵(34i)|43i |z -=+,∴55(34i)34i 34i (34i)(34i)55z +===+--+.故z 的虚部为45,故选D . (3)【2013年全国Ⅰ,理3,5分】为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )(A )简单随机抽样 (B )按性别分层抽样 (C )按学段分层抽样 (D )系统抽样 【答案】C【解析】因为学段层次差异较大,所以在不同学段中抽取宜用分层抽样,故选C .(4)【2013年全国Ⅰ,理4,5分】已知双曲线C :()2222=10,0x y a b a b->>C 的渐近线方程为( )(A )14y x =± (B )13y x =± (C )12y x =± (D )y x =±【答案】C【解析】∵c e a ==,∴22222254c a b e a a +===.∴224a b =,1=2b a ±. ∴渐近线方程为12b y x x a =±±,故选C .(5)【2013年全国Ⅰ,理5,5分】执行下面的程序框图,如果输入的[]1,3t ∈-,则输出的s 属于( ) (A )[3,4]- (B )[5,2]- (C )[4,3]- (D )[2,5]- 【答案】D【解析】若[)1,1t ∈-,则执行3s t =,故[)3,3s ∈-.若[]1,3t ∈,则执行24s t t =-,其对称轴为2t =.故当2t =时,s 取得最大值4.当1t =或3时,s 取得最小值3,则[]3,4s ∈. 综上可知,输出的[]3,4s ∈-,故选D .(6)【2013年全国Ⅰ,理6,5分】如图,有一个水平放置的透明无盖的正方体容器,容器高8cm , 将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚 度,则球的体积为( )(A )35003cm π (B )38663cm π (C )313723cm π(D )320483cm π【答案】B【解析】设球半径为R ,由题可知R ,2R -,正方体棱长一半可构成直角三角形,即OBA ∆为直角三角形,如图,2BC =,4BA =,2OB R =-,OA R =,由()22224R R =-+,得5R =,所以球的体积为34500533ππ=(cm 3),故选B .(7)【2013年全国Ⅰ,理7,5分】设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m =( )(A )3(B )4 (C )5 (D )6【答案】C 【解析】∵12m S -=-,0m S =,13m S +=,∴()1022m m m a S S -=-=--=,11303m m m a S S ++=-=-=.∴1321m m d a a +=-=-=.∵()11102m m m S ma -=+⨯=,∴112m a -=-. 又∵1113m a a m +=+⨯=,∴132m m --+=.∴5m =,故选C . (8)【2013年全国Ⅰ,理8,5分】某几何体的三视图如图所示,则该几何体的体积为( ) (A )168π+ (B )88π+ (C )1616π+ (D )816π+ 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径2r =,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为24422816r ππ⨯⨯+⨯⨯=+,故选A .(9)【2013年全国Ⅰ,理9,5分】设m 为正整数,()2m x y +展开式的二项式系数的最大值为a , ()21m x y ++展开式的二项式系数的最大值为b ,若137a b =,则m =( )(A )5 (B )6 (C )7 (D )8 【答案】B【解析】由题意可知,2m m a C =,21mm b C +=,又∵137a b =,∴2!21!13=7!!!1!m m m m m m ()(+)⋅⋅(+),即132171m m +=+.解得6m =,故选B .(10)【2013年全国Ⅰ,理10,5分】已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为( ) (A )2214536x y +=(B )2213627x y += (C )2212718x y += (D )221189x y +=【答案】D【解析】设11()A x y ,,22()B x y ,,∵A ,B 在椭圆上,∴2211222222221,1,x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩①②,①-②,得 1212121222=0x x x x y y y y a b (+)(-)(+)(-)+,即2121221212=y y y y b a x x x x (+)(-)-(+)(-), ∵AB 的中点为()1,1-,∴122y y +=-,122x x +=,而1212011=312AB y y k x x --(-)==--, ∴221=2b a .又∵229a b -=,∴218a =,29b =.∴椭圆E 的方程为22=1189x y +,故选D . (11)【2013年全国Ⅰ,理11,5分】已知函数()()220ln 10x x x f x x x ⎧-+≤⎪=⎨+>⎪⎩,若()f x a x ≥|,则a 的取值范围是( ) (A )(],0-∞ (B )(],1-∞ (C )[2,1]- (D )[2,0]-【答案】D【解析】由()y f x =的图象知:①当0x >时,y ax =只有0a ≤时,才能满足()f x ax ≥,可排除B ,C .②当0x ≤时,()2222y f x x x x x ==-+=-.故由()f x ax ≥得 22x x ax -≥.当0x =时,不等式为00≥成立.当0x <时,不等式等价于2x a -≤.∵22x -<-,∴2a ≥-.综上可知:[]2,0a ∈-,故选D .(12)【2013年全国Ⅰ,理12,5分】设n n n A B C ∆的三边长分别为n a ,n b ,n c ,n n n A B C ∆的面积为n S ,1,2,3.n =⋯,若11b c >,1112b c a +=,1n n a a +=,12n n n c a b ++=,12n nn b a c ++=,则( )(A ){}n S 为递减数列 (B ){}n S 为递增数列(C ){}21n S -为递增数列,{}2n S 为递减数列 (D ){}21n S -为递减数列,{}2n S 为递增数列 【答案】B第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分(13)【2013年全国Ⅰ,理13,5分】已知两个单位向量a ,b 的夹角为60°,()1t t =+-c a b .若·0=b c ,则t = . 【答案】2【解析】∵()1t t =+-c a b ,∴()2··1t t =+-bc ab b .又∵1==a b ,且a 与b 夹角为60°,⊥b c , ∴()0 601t cos t =︒+-a b ,1012t t =+-.∴2t =.(14)【2013年全国Ⅰ,理14,5分】若数列{}n a 的前n 项和2133n n S a =+,则{}n a 的通项公式是n a = .【答案】()12n --【解析】∵2133n n S a =+,① ∴当2n ≥时,112133n n S a --=+.② ①-②,得12233n n n a a a -=-,即12n n aa -=-.∵1112133a S a ==+,∴11a =.∴{}n a 是以1为首项,-2为公比的等比数列,()12n n a -=-.(15)【2013年全国Ⅰ,理15,5分】设当x θ=时,函数()2f x sinx cosx =-取得最大值,则cos θ= .【答案】 【解析】()s 2x f x sinx cosx x ⎫⎪==⎭-,令cos α=,sin α=,则()()f x x α=+,当22()x k k ππα=+-∈Z 时,()sin x α+有最大值1,()f x,即22()k k πθπα=+-∈Z ,所以cos θ=πcos =cos 2π+cos sin 22k πθααα⎛⎫⎛⎫-=-=== ⎪ ⎪⎝⎭⎝⎭(16)【2013年全国Ⅰ,理16,5分】若函数()()()221f x x x ax b =-++的图像关于直线2x =-对称,则()f x 的最大值为 .【答案】16【解析】∵函数()f x 的图像关于直线2x =-对称,∴()f x 满足()()04f f =-,()()13f f -=-,即151640893b a b a b =-(-+)⎧⎨=-(-+)⎩,得815a b =⎧⎨=⎩∴()432814815f x x x x x =---++.由()324242880f x x x x '=---+=,得12x =-22x =-,32x =-.易知,()f x在(,2-∞-上为增函数,在()22--上为减函数,在(2,2--上为增函数,在()2-+-∞上为减函数.∴(((((222122821588806416f ⎡⎤⎡⎤-=---+-+=---=-=⎢⎥⎢⎥⎣⎦⎣⎦.()()()()()22212282153416915f ⎡⎤⎡-=---+⨯⎤==-⎣⎦⎣⎦-+--+(((((222122821588806416f ⎡⎤⎡⎤-=---++-++=-++=-=⎢⎥⎢⎥⎣⎦⎣⎦.故f (x )的最大值为16.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅰ,理17,12分】如图,在ABC ∆中,90ABC ∠=︒,AB =,1BC =,P为ABC ∆内一点,90BPC ∠=︒.(1)若12PB =,求PA ;(2)若150APB ∠=︒,求tan PBA ∠.解:(1)由已知得60PBC ∠=︒,30PBA ∴∠=︒.在PBA ∆中,由余弦定理得211732cos 30424PA =+-︒=.故PA =(2)设PBA α∠=,由已知得sin PB α=.在PBA ∆sin sin(30)αα=︒-,4sin αα=.所以tan α,即tan PBA ∠= (18)【2013年全国Ⅰ,理18,12分】如图,三棱柱111ABC A B C -中,CA CB =,1AB AA =,160BAA ∠=︒. (1)证明:1AB A C ⊥;(2)若平面ABC ⊥平面11AA B B ,AB CB =,求直线1A C 与平面11BB C C 所成角的正弦值.解:(1)取AB 的中点O ,连结OC ,1OA ,1A B .因为CA CB =,所以OC AB ⊥.由于1AB AA =,160BAA ∠=︒,故1AA B ∆为等边三角形,所以1OA AB ⊥.因为1OC OA O = ,所以AB ⊥平面1OA C . 又1A C 平面1OA C ,故1AB A C ⊥.(2)由(1)知OC AB ⊥,1OA AB ⊥.又平面ABC ⊥平面11AA B B ,交线为AB ,所以OC ⊥平面11AA B B ,故OA ,1OA ,OC 两两相互垂直.以O 为坐标原点,OA 的方向为x 轴的正方向,OA为单位长,建立如图所示的空间直角坐标系O xyz -.由题设知()1,0,0A,1()0A ,(0,0C ,()1,0,0B -.则(1,03BC =,11()BB AA =-=,(10,A C = .设()n x y z =,,是平面11BB C C 的法向量,则100BC BB ⎧⋅=⎪⎨⋅=⎪⎩n n即0x x ⎧=⎪⎨-=⎪⎩可取1)n =-.故111cos ,n AC n AC n AC ⋅==⋅ .所以1A C 与平面11BB C C. (19)【2013年全国Ⅰ,理19,12分】一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n .如果n =3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n =4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X (单位:元),求X 的分布列及数学期望.解:(1)设第一次取出的4件产品中恰有3件优质品为事件1A ,第一次取出的4件产品全是优质品为事件2A ,第二次取出的4件产品都是优质品为事件1B ,第二次取出的1件产品是优质品为事件2B ,这批产品通过检验为事件A ,依题意有()()1122A A B A B = ,且11A B 与22A B 互斥,所以 ()()()()()()()112211122241113||161616264P A P A B P A B P A P B A P A P B A ==⨯++⨯==+.(2)X 可能的取值为400,500,800,并且()41114001161616P X ==--=,()500116P X ==,()80140P X ==. 所以X 的分布列为()111400+500+800506.2516164E X =⨯⨯⨯=. (20)【2013年全国Ⅰ,理20,12分】已知圆()2211M x y ++=:,圆()2219N x y -+=:,动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求C 的方程;(2)l 是与圆P ,圆M 都相切的一条直线,l 与曲线C 交于A ,B 两点,当圆P 的半径最长时,求AB . 解:由已知得圆M 的圆心为()1,0M -,半径11r =;圆N 的圆心为()1,0N ,半径23r =.设圆P 的圆心为(),P xy ,半径为R .(1)因为圆P 与圆M 外切并且与圆N 内切,所以()()12124PM PN R r r R r r +=++-=+=.由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点,长半轴长为2(左顶点除外),其方程为()22=1243x y x +≠-.(2)对于曲线C 上任意一点()P x y ,,由于222PM PN R -=-≤,所以2R ≤,当且仅当圆P 的圆心为()2,0时,2R =.所以当圆P 的半径最长时,其方程为()2224x y -+=.若l 的倾斜角为90︒,则l 与y 轴重 合,可得AB =l 的倾斜角不为90︒,由1r R ≠知l 不平行于x 轴,设l 与x 轴的交点为Q ,则1||||QP R QM r =,可求得()4,0Q -,所以可设()4l y k x =+:.由l 与圆M ,解得k =. 当k =时,将y =+22=13x y +,并整理得27880x x +-=,解得1,2x =. 2118|7AB x x =-=.当k =时,由图形对称性可知187AB =.综上,AB =187AB =. (21)【2013年全国Ⅰ,理21,12分】设函数()2f x x ax b =++,()()x g x e cx d =+.若曲线()y f x =和曲线()y g x =都过点()0,2P ,且在点P 处有相同的切线42y x =+.(1)求a ,b ,c ,d 的值;(2)若2x ≥-时,()()f x kg x ≤,求k 的取值范围.解:(1)由已知得()02f =,()02g =,()04f '=,()04g '=.而()2f x x a '=+,()()x g x e cx d c '=++, 故2b =,2d =,4a =,4d c +=.从而4a =,2b =,2c =,2d =. (2)由(1)知,()242f x x x =++,()()21x g x e x =+.设函数()()()()22142x F x kg x f x ke x x x =-=+---,()()()()2224221x x F x ke x x x ke '=+--=+-.()00F ≥ ,即1k ≥.令()0F x '=得1ln x k =-,22x =-. ①若21k e ≤<,则120x -<≤.从而当12()x x ∈-,时,()0F x '<;当1()x x ∈+∞,时,()0F x '>. 即()F x 在1(2)x -,单调递减,在1()x +∞,单调递增.故()F x 在[)2-+∞,的最小值为()1F x . 而()()11111224220F x x x x x =+---=-+≥.故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ②若2k e =,则()()()2222x F x e x e e -'=+-.∴当2x >-时,()0F x '>,即()F x 在()2-+∞,单调递增. 而()20F -=,故当2x ≥-时,()0F x ≥,即()()f x kg x ≤恒成立. ③若2k e >,则()()22222220F k eek e ---=-+=--<.从而当2x ≥-时,()()f x kg x ≤不可能恒成立.综上,k 的取值范围是2[1]e ,. 请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.(22)【2013年全国Ⅰ,理22,10分】(选修4-1:几何证明选讲)如图,直线AB为圆的切线,切点为B ,点C 在圆上,ABC ∠的角平分线BE 交圆于点E ,DB 垂直BE 交圆 于点D . (1)证明:DB DC =;(2)设圆的半径为1,BC =CE 交AB 于点F ,求BCF ∆外接圆的半径. 解:(1)连结DE ,交BC 于点G .由弦切角定理得,ABE BCE ∠=∠.而ABE CBE ∠=∠,故CBE BCE ∠=∠,BE CE =.又因为DB BE ⊥,所以DE 为直径,90DCE ∠=︒,DB DC =.(2)由(1)知,CDE BDE ∠=∠,DB DC =,故DG 是BC的中垂线,所以BG =设DE 的中点为O ,连结BO ,则60BOG ∠=︒.从而30ABE BCE CBE ∠=∠=∠=︒,所以CF BF ⊥,故Rt BCF ∆.(23)【2013年全国Ⅰ,理23,10分】(选修4-4:坐标系与参数方程)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=. (1)把1C 的参数方程化为极坐标方程;(2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<).解:(1)将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程()()224525x y -+-=,即221810160C x y x y +--+=:.将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得28cos 10sin 160ρρθρθ--+=. 所以1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(2)2C 的普通方程为2220x y y +-=.由222281016020x y x y x y y ⎧+--+=⎨+-=⎩,解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩, 所以1C 与2C交点的极坐标分别为π4⎫⎪⎭,π2,2⎛⎫ ⎪⎝⎭.(24)【2013年全国Ⅰ,理24,10分】(选修4-5:不等式选讲)已知函数()212f x x x a =-++,()3g x x =+.(1)当2a =-时,求不等式()()f x g x <的解集;(2)设1a >-,且当1,22a x ⎡⎫∈-⎪⎢⎣⎭时,()()f x g x ≤,求a 的取值范围.解:(1)当2a =-时,()()f x g x <化为212230x x x -+---<.设函数21223y x x x =-+---,则y =15,212,1236,1x x y x x x x ⎧-<⎪⎪⎪=--≤≤⎨⎪->⎪⎪⎩,其图像如图所示.从图像可知,当且仅当()0,2x ∈时,0y <.所以原不等式的解集是{}2|0x x <<.(2)当1,22x a ⎡⎫-⎪⎢⎣⎭∈时,()1f x a =+.不等式()()f x g x ≤化为13a x +≤+.所以2x a ≥-,对1,22x a ⎡⎫-⎪⎢⎣⎭∈都成立.故22a a -≥-,即43a ≤.从而a 的取值范围是41,3⎛⎤- ⎥⎝⎦.。
2013年高考理科数学试卷--安徽卷(含答案)
2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z = (A )1+i (B )1i - (C )1+i - (D )1-i -2.如图所示,程序框图(算法流程图)的输出结果是(A )16 (B )2524(C )34 (D )11123.在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内 (D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线 4."0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的(A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件5.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是(A )这种抽样方法是一种分层抽样 (B )这种抽样方法是一种系统抽样(C )这五名男生成绩的方差大于这五名女生成绩的方差 (D )该班级男生成绩的平均数小于该班女生成绩的平均数 6.已知一元二次不等式()<0f x 的解集为{}1|<-1>2x x x 或,则(10)>0x f 的解集为(A ){}|<-1>lg2x x x 或 (B ){}|-1<<lg2x x(C ) {}|>-lg2x x (D ){}|<-lg2x x7.在极坐标系中,圆=2cos p θ的垂直于极轴的两条切线方程分别为 (A )=0()cos=2R θρρ∈和 (B )=()cos=22R πθρρ∈和(C ) =()cos=12R πθρρ∈和 (D )=0()cos=1R θρρ∈和8.函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A ){}3,4 (B ){}2,3,4 (C ) {}3,4,5 (D ){}2,39.在平面直角坐标系中,O 是坐标原点,两定点,A B 满足2,OA OB OA OB ===则点集{}|,1,,P OP OA OB R λμλμλμ=++≤∈所表示的区域的面积是(A )22 (B )23 (C ) 42 (D )4310.若函数3()=+b +f x x x c 有极值点1x ,2x ,且11()=f x x ,则关于x 的方程213(())+2()+=0f x f x b 的不同实根个数是(A )3 (B )4 (C ) 5 (D )6二.填空题:本大题共5小题,每小题5分,共25分。
2013年安徽高考理科数学试题及答案
2013年安徽省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求1.(5分)(2013•安徽)设i是虚数单位,是复数z的共轭复数,若,则z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i2.(5分)(2013•安徽)如图所示,程序框图(算法流程图)的输出结果中()A.B.C.D.3.(5分)(2013•安徽)在下列命题中,不是公理的是()A.平行于同一个平面的两个平面平行B.过不在同一直线上的三个点,有且只有一个平面C.如果一条直线上的两点在同一个平面内,那么这条直线上所以点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线4.(5分)(2013•安徽)“a≤0”是”函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条D.既不充分也不必要条件5.(5分)(2013•安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数6.(5分)(2013•安徽)已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2} B.{x|<﹣1<x<﹣lg2} C.{x|x>﹣lg2} D.{x|x<﹣lg2}7.(5分)(2013•安徽)在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2C.D.θ=0(ρ∈R)和ρcosθ=1θ=(ρ∈R)和ρcosθ=18.(5分)(2013•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()A.{3,4} B.{2,3,4} C.{3,4,5} D.{2,3}9.(5分)(2013•安徽)在平面直角坐标系中,O是坐标原点,两定点A,B满足==2,则点集{P|,,λ、μ∈R}所表示的区域面积是()A.B.C.D.10.(5分)(2013•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x 的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.6二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡上11.(5分)(2013•安徽)若的展开式中x4的系数为7,则实数a=_________.12.(5分)(2013•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=_________.13.(5分)(2013•安徽)已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为_________.14.(5分)(2013•安徽)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等,设OA n=a n,若a1=1,a2=2,则数列{a n}的通项公式是_________.15.(5分)(2013•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是_________(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.三、解答题:本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算骤16.(12分)(2013•安徽)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.17.(12分)(2013•安徽)设函数f(x)=ax﹣(1+a2)x2,其中a>0,区间I={x|f (x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.18.(12分)(2013•安徽)设椭圆E:的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.19.(13分)(2013•安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;(2)求cos∠COD.20.(13分)(2013•安徽)设函数f n(x)=﹣1+x+),证明:(1)对每个n∈N+,存在唯一的x n,满足f n(x n)=0;(2)对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p<.21.(13分)(2013•安徽)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m.2013年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,每小题给出的四个选项中,只有一个符合题目要求1.(5分)(2013•安徽)设i是虚数单位,是复数z的共轭复数,若,则z=()A.1+i B.1﹣i C.﹣1+i D.﹣1﹣i考点:复数代数形式的混合运算;复数相等的充要条件.专题:计算题.分析:设出复数z=a+bi(a,b∈R),代入后整理,利用复数相等的条件列关于a,b的方程组求解a,b,则复数z可求.解答:解:设z=a+bi(a,b∈R),则,由,得(a+bi)(a﹣bi)i=2(a+bi),整理得2+(a2+b2)i=2a+2bi.则,解得.所以z=1+i.故选A.点评:本题考查了复数代数形式的混合运算,考查了复数相等的条件,两个复数相等,当且仅当是不等于实部,虚部等于虚部,是基础题.2.(5分)(2013•安徽)如图所示,程序框图(算法流程图)的输出结果中()A.B.C.D.考点:程序框图.专题:图表型.分析:分析程序中各变量、各语句的作用,分析可知:该程序的作用是计算并输出S=++的值,并输出.解答:解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是计算并输出S=++的值∵S=++=.故选D.点评:根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.3.(5分)(2013•安徽)在下列命题中,不是公理的是()A.平行于同一个平面的两个平面平行B.过不在同一直线上的三个点,有且只有一个平面C.如果一条直线上的两点在同一个平面内,那么这条直线上所以点都在此平面内D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线考点:平面的基本性质及推论.专题:规律型.分析:根据公理的定义解答即可.经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理就是公理.解答:解:B,C,D经过人类长期反复的实践检验是真实的,不需要由其他判断加以证明的命题和原理故是公理;而A平行于同一个平面的两个平面平行是定理不是公理.故选A.点评:本题考查了公理的意义,比较简单.4.(5分)(2013•安徽)“a≤0”是”函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的()A.充分不必要条件B.必要不充分条件C.充分必要条D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用.分析:先看当“a≤0”时,去掉绝对值,结合二次函数的图象求出函数f(x)=|(ax﹣1)x|是否在在区间(0,+∞)内单调递增;再反过来当函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增时,a≤0是否成立即可.解答:解:当“a≤0”时,x∈(0,+∞)f(x)=|(ax﹣1)x|=﹣a(x﹣)x,结合二次函数图象可知函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增.若a>0,如取a=1,则函数f(x)=|(ax﹣1)x|=|(x﹣1)x|,当x∈(0,+∞)时f(x)=,如图所示,它在区间(0,+∞)内有增有减,从而得到函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增得出a≤0.”a≤0”是”函数f(x)=|(ax﹣1)x|在区间(0,+∞)内单调递增”的充要条件.故选C.点评:本题主要考查了必要条件、充分条件与充要条件的判断,函数的单调性及单调区间,单调性是函数的重要性质,属于基础题.5.(5分)(2013•安徽)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是()A.这种抽样方法是一种分层抽样B.这种抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的平均数大于该班女生成绩的平均数考点:极差、方差与标准差.专题:概率与统计.分析:根据抽样方法可知,这种抽样方法是一种简单随机抽样.根据平均数的定义:平均数是指在一组数据中所有数据之和再除以数据的个数;方差公式:s2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2]求解即可.解答:解:根据抽样方法可知,这种抽样方法是一种简单随机抽样.五名男生这组数据的平均数=(86+94+88+92+90)÷5=90,方差=[(86﹣90)2+(94﹣90)2+(88﹣90)2+(92﹣90)2+(90﹣90)2]=8.五名女生这组数据的平均数=(88+93+93+88+93)÷5=91,方差=[(88﹣91)2+(93﹣91)2+(93﹣91)2+(88﹣91)2+(93﹣91)2]=6.故这五名男生成绩的方差大于这五名女生成绩的方差.故选C.点评:本题考查了抽样方法、平均数以及方差的求法,要想求方差,必须先求出这组数据的平均数,然后再根据方差公式求解.6.(5分)(2013•安徽)已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2} B.{x|<﹣1<x<﹣lg2} C.{x|x>﹣lg2} D.{x|x<﹣lg2}考点:其他不等式的解法;一元二次不等式的解法.专题:不等式的解法及应用.分析:由题意可得f(10x)>0等价于﹣1<10x<,由指数函数的单调性可得解集.解答:解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选D点评:本题考查一元二次不等式的解集,涉及对数函数的单调性及对数的运算,属中档题.7.(5分)(2013•安徽)在极坐标系中圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2 B.θ=(ρ∈R)和ρcosθ=2D.θ=0(ρ∈R)和ρcosθ=1C.θ=(ρ∈R)和ρcosθ=1考点:简单曲线的极坐标方程;圆的切线方程.专题:直线与圆.分析:利用圆的极坐标方程和直线的极坐标方程即可得出.解答:解:如图所示,在极坐标系中圆ρ=2cosθ是以(1,0)为圆心,1为半径的圆.故圆的两条切线方程分别为(ρ∈R),ρcosθ=2.故选B.点评:正确理解圆的极坐标方程和直线的极坐标方程是解题的关键》8.(5分)(2013•安徽)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,…,x n,使得=…=,则n的取值范围是()A.{3,4} B.{2,3,4} C.{3,4,5} D.{2,3}考点:变化的快慢与变化率.专题:函数的性质及应用.分析:由表示(x,f(x))点与原点连线的斜率,结合函数y=f(x)的图象,数形结合分析可得答案.解答:解:∵表示(x,f(x))点与原点连线的斜率若=…=,则n可以是2,如图所示:n可以是3,如图所示:n可以是4,如图所示:但n不可能大于4故选B点评:本题考查的知识点是斜率公式,正确理解表示(x,f(x))点与原点连线的斜率是解答的关键.9.(5分)(2013•安徽)在平面直角坐标系中,O是坐标原点,两定点A,B满足==2,则点集{P|,,λ、μ∈R}所表示的区域面积是()A.B.C.D.考点:平面向量的基本定理及其意义;二元一次不等式(组)与平面区域;向量的模.专题:平面向量及应用.分析:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形,设出两个定点的坐标,再设出P点坐标,由平面向量基本定理,把P的坐标用A,B的坐标及λ,μ表示,把不等式|λ|+|μ|≤1去绝对值后可得线性约束条件,画出可行域可求点集P所表示区域的面积.解答:解:由两定点A,B满足==2,说明O,A,B三点构成边长为2的等边三角形.不妨设A(),B().再设P(x,y).由,得:.所以,解得①.由|λ|+|μ|≤1.所以①等价于或或或.可行域如图中矩形ABCD及其内部区域,则区域面积为.故选D.点评:本题考查了平面向量的基本定理及其意义,考查了二元一次不等式(组)所表示的平面区域,考查了数学转化思想方法,解答此题的关键在于读懂题意,属中档题.10.(5分)(2013•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x 的方程3(f(x))2+2af(x)+b=0的不同实根个数是()A.3B.4C.5D.6考点:函数在某点取得极值的条件;根的存在性及根的个数判断.专题:综合题;导数的综合应用.分析:求导数f′(x),由题意知x1,x2是方程3x2+2ax+b=0的两根,从而关于f(x)的方程3(f(x))2+2af(x)+b=0有两个根,作出草图,由图象可得答案.解答:解:f′(x)=3x2+2ax+b,x1,x2是方程3x2+2ax+b=0的两根,由3(f(x))2+2af(x)+b=0,则有两个f(x)使等式成立,x1=f(x1),x2>x1=f(x1),如下示意图象:如图有三个交点,故选A.点评:考查函数零点的概念、以及对嵌套型函数的理解,考查数形结合思想.二、填空题:本大题共5小题,每小题5分,共25分,把答案填写在答题卡上11.(5分)(2013•安徽)若的展开式中x4的系数为7,则实数a=.考点:二项式系数的性质.专题:计算题.分析:利用二项式定理的通项公式即可得出.解答:解:由通项公式T r+1==,∵的展开式中x4的系数为7,∴,解得.故答案为.点评:熟练掌握二项式定理的通项公式是解题的关键.12.(5分)(2013•安徽)设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=.考点:余弦定理;正弦定理.专题:解三角形.分析:由3sinA=5sinB,根据正弦定理,可得3a=5b,再利用余弦定理,即可求得C.解答:解:∵3sinA=5sinB,∴由正弦定理,可得3a=5b,∴a=∵b+c=2a,∴c=∴cosC==﹣∵C∈(0,π)∴C=故答案为:点评:本题考查正弦、余弦定理的运用,考查学生的计算能力,属于基础题.13.(5分)(2013•安徽)已知直线y=a交抛物线y=x2于A,B两点,若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为[1,+∞).考点:直线与圆锥曲线的关系.专题:圆锥曲线的定义、性质与方程.分析:如图所示,可知A,B,设C(m,m2),由该抛物线上存在点C,使得∠ACB 为直角,可得=0.即可得到a的取值范围.解答:解:如图所示,可知A,B,设C(m,m2),,.∵该抛物线上存在点C,使得∠ACB为直角,∴=.化为m2﹣a+(m2﹣a)2=0.∵m,∴m2=a﹣1≥0,解得a≥1.∴a 的取值范围为[1,+∞).故答案为[1,+∞).点评:本题考查了如何表示抛物线上点的坐标、垂直于数量积得关系等基础知识,考查了推理能力和计算能力.14.(5分)(2013•安徽)如图,互不相同的点A1,A2,…,A n,…和B1,B2,…,B n,…分别在角O的两条边上,所有A n B n相互平行,且所有梯形A n B n B n+1A n+1的面积均相等,设OA n=a n,若a1=1,a2=2,则数列{a n}的通项公式是.考点:数列的应用;数列的函数特性.专题:等差数列与等比数列.分析:设,利用已知可得A1B1是三角形OA2B2的中位线,得到==,梯形A1B1B2A2的面积=3S.由已知可得梯形A n B n B n+1A n+1的面积=3S.利用相似三角形的性质面积的比等于相似比的平方可得:,,,…,已知,,可得,….因此数列{}是一个首项为1,公差为3等差数列,即可得到a n.解答:解:设,∵OA1=a1=1,OA2=a2=2,A1B1∥A2B2,∴A1B1是三角形OA2B2的中位线,∴==,∴梯形A1B1B2A2的面积=3S.故梯形A n B n B n+1A n+1的面积=3S.∵所有A n B n相互平行,∴所有△OA n B n(n∈N*)都相似,∴,,,…,∵,∴,,….∴数列{}是一个等差数列,其公差d=3,故=1+(n﹣1)×3=3n﹣2.∴.因此数列{a n}的通项公式是.故答案为.点评:本题综合考查了三角形的中位线定理、相似三角形的性质、等差数列的通项公式等基础知识和基本技能,考查了推理能力和计算能力.15.(5分)(2013•安徽)如图,正方体ABCD﹣A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是①②③⑤(写出所有正确命题的编号).①当0<CQ<时,S为四边形②当CQ=时,S为等腰梯形③当CQ=时,S与C1D1的交点R满足C1R=④当<CQ<1时,S为六边形⑤当CQ=1时,S的面积为.考点:命题的真假判断与应用.专题:计算题.分析:由题意作出满足条件的图形,由线面位置关系找出截面可判断选项的正误.解答:解:如图当CQ=时,即Q为CC1中点,此时可得PQ∥AD1,AP=QD1==,故可得截面APQD1为等腰梯形,故②正确;由上图当点Q向C移动时,满足0<CQ<,只需在DD1上取点M满足AM∥PQ,即可得截面为四边形APQM,故①正确;③当CQ=时,如图,延长DD1至N,使D1N=,连接AN交A1D1于S,连接NQ交C1D1于R,连接SR,可证AN∥PQ,由△NRD1∽△QRC1,可得C1R:D1R=C1Q:D1N=1:2,故可得C1R=,故正确;④由③可知当<CQ<1时,只需点Q上移即可,此时的截面形状仍然上图所示的APQRS,显然为五边形,故错误;⑤当CQ=1时,Q与C1重合,取A1D1的中点F,连接AF,可证PC1∥AF,且PC1=AF,可知截面为APC1F为菱形,故其面积为AC1•PF==,故正确.故答案为:①②③⑤点评:本题考查命题真假的判断与应用,涉及正方体的截面问题,属中档题.三、解答题:本大题共6小题,共75分.解答时应写出文字说明、证明过程或演算骤16.(12分)(2013•安徽)已知函数f(x)=4cosωx•sin(ωx+)(ω>0)的最小正周期为π.(1)求ω的值;(2)讨论f(x)在区间[0,]上的单调性.考点:两角和与差的正弦函数;三角函数的周期性及其求法;正弦函数的单调性.专题:三角函数的图像与性质.分析:(1)先利用和角公式再通过二倍角公式,将次升角,化为一个角的一个三角函数的形式,通过函数的周期,求实数ω的值;(2)由于x是[0,]范围内的角,得到2x+的范围,然后通过正弦函数的单调性求出f(x)在区间[0,]上的单调性.解答:解:(1)f(x)=4cosωxsin(ωx+)=2sinωx•cosωx+2cos2ωx=(sin2ωx+cos2ωx)+=2sin(2ωx+)+,所以T==π,∴ω=1.(2)由(1)知,f(x)=2sin(2x+)+,因为0≤x≤,所以≤2x+≤,当≤2x+≤时,即0≤x≤时,f(x)是增函数,当≤2x+≤时,即≤x≤时,f(x)是减函数,所以f(x)在区间[0,]上单调增,在区间[,]上单调减.点评:本题考查三角函数的化简求值,恒等关系的应用,注意三角函数值的变换,考查计算能力,常考题型.17.(12分)(2013•安徽)设函数f(x)=ax﹣(1+a2)x2,其中a>0,区间I={x|f (x)>0}(Ⅰ)求I的长度(注:区间(a,β)的长度定义为β﹣α);(Ⅱ)给定常数k∈(0,1),当1﹣k≤a≤1+k时,求I长度的最小值.考点:导数的运算;一元二次不等式的解法.专题:函数的性质及应用.分析:(Ⅰ)解不等式f(x)>0可得区间I,由区间长度定义可得I的长度;(Ⅱ)由(Ⅰ)构造函数d(a)=,利用导数可判断d(a)的单调性,由单调性可判断d(a)的最小值必定在a=1﹣k或a=1+k处取得,通过作商比较可得答案.解答:解:(Ⅰ)因为方程ax﹣(1+a2)x2=0(a>0)有两个实根x1=0,>0,故f(x)>0的解集为{x|x1<x<x2},因此区间I=(0,),区间长度为;(Ⅱ)设d(a)=,则d′(a)=,令d′(a)=0,得a=1,由于0<k<1,故当1﹣k≤a<1时,d′(a)>0,d(a)单调递增;当1<a≤1+k时,d′(a)<0,d(a)单调递减,因此当1﹣k≤a≤1+k时,d(a)的最小值必定在a=1﹣k或a=1+k处取得,而=<1,故d(1﹣k)<d(1+k),因此当a=1﹣k时,d(a)在区间[1﹣k,1+k]上取得最小值,即I长度的最小值为.点评:本题考查二次不等式的求解,以及导数的计算和应用等基础知识和基本技能,考查分类讨论思想和综合运用数学知识解决问题的能力.18.(12分)(2013•安徽)设椭圆E:的焦点在x轴上(1)若椭圆E的焦距为1,求椭圆E的方程;(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P⊥F1Q,证明:当a变化时,点P在某定直线上.考点:直线与圆锥曲线的关系;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)利用椭圆的标准方程和几何性质即可得出,解出即可;(2)设P(x0,y0),F1(﹣c,0),F2(c,0),其中.利用斜率的计算公式和点斜式即可得出直线F1P的斜率=,直线F2P的方程为.即可得出Q.得到直线F1Q的斜率=.利用F1Q⊥F1P,可得=.化为.与椭圆的方程联立即可解出点P的坐标.解答:解:(1)∵椭圆E的焦距为1,∴,解得.故椭圆E的方程为.(2)设P(x0,y0),F1(﹣c,0),F2(c,0),其中.由题设可知:x0≠c.则直线F1P的斜率=,直线F2P的斜率=.故直线F2P的方程为.令x=0,解得.即点Q.因此直线F1Q的斜率=.∵F1Q⊥F1P,∴=.化为.联立,及x0>0,y0>0,解得..即点P在定直线x+y=1上.点评:本题主要考查了椭圆的标准方程及其几何性质,直线和直线、直线和椭圆的位置关系等基础知识和基本技能,看出数形结合的思想、推理能力和计算能力.19.(13分)(2013•安徽)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角为22.5°,AB和CD是底面圆O上的两条平行的弦,轴OP与平面PCD所成的角为60°,(1)证明:平面PAB与平面PCD的交线平行于底面;(2)求cos∠COD.考点:直线与平面所成的角;空间中直线与直线之间的位置关系;空间中直线与平面之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离;空间角.分析:(1)利用线面平行的判定与性质,可证平面PAB与平面PCD的交线平行于底面;(2)先作出OP与平面PCD所成的角,再求出OC,OF,求出cos∠COF,利用二倍角公式,即可求得cos∠COD.解答:(1)证明:设平面PAB与平面PCD的交线为l,则∵AB∥CD,AB⊄平面PCD,∴AB∥平面PCD∵AB⊂面PAB,平面PAB与平面PCD的交线为l,∴AB∥l∵AB在底面上,l在底面外∴l与底面平行;(2)解:设CD的中点为F,连接OF,PF由圆的性质,∠COD=2∠COF,OF⊥CD∵OP⊥底面,CD⊂底面,∴OP⊥CD∵OP∩OF=O∴CD⊥平面OPF∵CD⊂平面PCD∴平面OPF⊥平面PCD∴直线OP在平面PCD上的射影为直线PF∴∠OPF为OP与平面PCD所成的角由题设,∠OPF=60°设OP=h,则OF=OPtan∠OPF=∵∠OCP=22.5°,∴∵tan45°==1∴tan22.5°=∴OC==在Rt△OCF中,cos∠COF===∴cos∠COD=cos(2∠COF)=2cos2∠COF﹣1=17﹣12点评:本题考查线面平行的判定与性质,考查空间角,考查学生的计算能力,正确找出线面角是关键.20.(13分)(2013•安徽)设函数f n(x)=﹣1+x+),证明:(1)对每个n∈N+,存在唯一的x n,满足f n(x n)=0;(2)对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p<.考点:反证法与放缩法;函数的零点;导数的运算;数列的求和;数列与不等式的综合.专题:等差数列与等比数列;不等式的解法及应用.分析:题干错误:n∈N+,应该是对每个n∈N+,(1)由题意可得f′(x)>0,函数f(x)在(0,+∞)上是增函数.求得f n(1)>0,f n()<0,再根据函数的零点的判定定理,可得要证的结论成立.(2)由题意可得f n+1(x n)>f n(x n)=f n+1(x n+1)=0,由f n+1(x)在(0,+∞)上单调递增,可得x n+1<x n,故x n﹣x n+p>0.用f n(x)的解析式减去f n+p(x n+p)的解析式,变形可得x n﹣x n+p=+,再进行放大,并裂项求和,可得它小于,综上可得要证的结论成立.解答:证明:(1)对每个n∈N+,当x>0时,由函数f n(x)=﹣1+x+),可得f′(x)=1+++…>0,故函数f(x)在(0,+∞)上是增函数.由于f1(0)=0,当n≥2时,f n(1)=++…+>0,即f n(1)>0.又f n()=﹣1++[+++…+]≤﹣+•=﹣+×=﹣•<0,根据函数的零点的判定定理,可得存在唯一的x n,满足f n(x n)=0.(2)对于任意p∈N+,由(1)中x n构成数列{x n},当x>0时,∵f n+1(x)=f n(x)+>f n(x),∴f n+1(x n)>f n(x n)=f n+1(x n+1)=0.由f n+1(x)在(0,+∞)上单调递增,可得x n+1<x n,即x n﹣x n+1>0,故数列{x n}为减数列,即对任意的n、p∈N+,x n﹣x n+p>0.由于f n(x)=﹣1+x n+++…+=0 ①,f n+p(x n+p)=﹣1+x n+p+++…++[++…+]②,用①减去②并移项,利用0<x n+p≤1,可得x n﹣x n+p=+≤≤<=<.综上可得,对于任意p∈N+,由(1)中x n构成数列{x n}满足0<x n﹣x n+p<.点评:本题主要考查函数的导数及应用,函数的零点的判定,等比数列求和以及用放缩法证明不等式,还考查推理以及运算求解能力,属于难题.21.(13分)(2013•安徽)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I)求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II)求使P(X=m)取得最大值的整数m.考点:概率的应用;古典概型及其概率计算公式;计数原理的应用.专题:综合题;分类讨论;转化思想;概率与统计.分析:(I)由题设,两位老师发送信息是独立的,要计算该系学生甲收到李老师或张老师所发活动通知信息的概率可先计算其对立事件,该生没有接到任一位老师发送的信息的概率,利用概率的性质求解;(II)由题意,要先研究随机变量X的取值范围,由于k≤n故要分两类k=n与k<n进行研究,k=n时易求,k<n时,要研究出同时接受到两位老师信息的人数,然后再研究事件所包含的基本事件数,表示出P(X=m),再根据其形式研究它取得最大值的整数m即可.解答:解:(I)因为事件A:“学生甲收到李老师所发信息”与事件B:“学生甲收到张老师所发信息”是相互独立事件,所以与相互独立,由于P(A)=P(B)==,故P()=P()=1﹣,因此学生甲收到活动信息的概率是1﹣(1﹣)2=(II)当k=n时,m只能取n,此时有P(X=m)=P(X=n)=1当k<n时,整数m满足k≤m≤t,其中t是2k和m中的较小者,由于“李老师与张老师各自独立、随机地发送活动信息给k位”所包含的基本事件总数为()2,当X=m时,同时收到两位老师所发信息的学生人数为2k﹣m,仅收到李老师或张老师转发信息的学生人数为m﹣k,由乘法原理知:事件{X=m}所包含的基本事件数为P(X=M)==当k≤m<t时,P(X=M)<P(X=M+1)⇔(m﹣k+1)2≤(n﹣m)(2k﹣m)⇔m≤2k﹣假如k≤2k﹣<t成立,则当(k+1)2能被n+2整除时,k≤2k﹣<2k+1﹣<t,故P(X=M)在m=2k﹣和m=2k+1﹣处达到最大值;当(k+1)2不能被n+2整除时,P(X=M)在m=2k﹣[]处达到最大值(注:[x]表示不超过x的最大整数),下面证明k≤2k﹣<t因为1≤k<n,所以2k﹣﹣k=≥=≥0而2k﹣﹣n=<0,故2k﹣<n,显然2k﹣<2k因此k≤2k﹣<t点评:本题主要考查古典概率模型,计数原理,分类讨论思想等基础知识和基本技能,考查抽象的思想,逻辑推理能力,运算求解能力,以及运用数学知识分析解决实际问题的能力,本题易因为审题时不明白事件的情形而导致无法下手,或者因为分类不清未能正确分类导致失分。
2013年安徽高考数学真题及解析
2013年安徽高考数学真题及解析数学(理科)本试卷分第【卷和第∏卷(非选择题)两部分,第【卷第1至第2页,第II 卷第3至第4页。
全卷满分 150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么P(A + B) = P(A) +P(B)如果事件A 与B 相互独立,那么P(AB) = P(A)P(B)第I 卷(选择题共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给岀的四个选项中,只有一项是符合题 目要求的。
(1)设是虚数单位,Z 是复数Z 的共辄复数,若∕=I Λ-∣∕(X )>0∣.^+2=2Z ,则Z =(A) I+/ (B) I-Z (C) -1+/(D) -1√【答案】A【解析】设 z = a + bi,贝IJZ = a - bi.z ・ zz + 2 = 2z => (a + bi)・(a - bi)i + 2 = (a 2+b 2)i + 2 = 2a + 2bi【解析】・.・$ = 0 +丄+丄+丄=6 + 3 + 2=q.. S = Ii 所以选 2 46 12 12 12(3) 在下列命题中,不是公理的是• •(A) 平行于同一个平而的两个平而相互平行(B) 过不在同一条直线上的三点,有且只有一个平而(C) 如果一条直线上的两点在一个平而内,那么这条直线上所有的点都在此平而内 (D) 如果两个不重合的平而有一个公共点,那么他们有且只有一条过该点的公共直线a~ + b~ = 2ba = 1=> Z = 1 + /2 = 2ab = ∖ ■所以选A(2) 如图所示,程序框图(算法流程图)的输岀结果是1 25 (A)-(B)—6 24(C) 2(D)Il412【答案】D9(2)ASD【解析】B.CQ说法均不需证明,也无法址明,是公理:C选项可以推导证明,故是泄理。
(A) θ=O(p∈ /?)和PCOS=2 (B) θ=-{pe /?)和PCOS=2(4)''a < O" “是函数/(x)=∣(drl)x∣在区间(0,+S)内单调递增”的(A)充分不必要条件(B)必要不充分条件(C)充分必要条件(D)既不充分也不必要条件【答案】C【解析】当沪O时,f(x)=∣Λ∣=>y = f(x)¢(0,+ 00)上单调递增;当GVo且x>0时,/(x) = (-OX+1)Λ,y = /(Λ∙)在(O, + =)上单调递增所以a ≤ 0⅛y =八力在(0, +CO)上单调递增的充分条件相反,÷⅛y = ∕(x)在(0, + s)上单调递增=>a≤0,=> a 5 O是y = /(;V)在(0, + CO)上单调递增的必要条件故前者是后者的充分必要条件。
2013年安徽高考数学(理科)卷及答案
2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)设是虚数单位,是复数的共轭复数,若i _z z z ,则=+2=2z zi A z (A ) (B )1+i 1i -(C ) (D )1+i -1-i-(2) 如图所示,程序框图(算法流程图)的输出结果是(A )(B )162524(C )(D )341112(3)在下列命题中,不是公理的是(A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线(4)“是函数在区间内单调递增”的"0"a ≤()=(-1)f x ax x (0,+)∞(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件(D )既不充分也不必要条件(5)某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93.下列说法一定正确的是(A )这种抽样方法是一种分层抽样(B )这种抽样方法是一种系统抽样(C )这五名男生成绩的方差大于这五名女生成绩的方差(D )该班级男生成绩的平均数小于该班女生成绩的平均数(6)已知一元二次不等式的解集为,则的解集为()<0f x {}1|<-1>2x x x 或(10)>0x f (A ) (B ){}|<-1>lg2x x x 或{}|-1<<lg2x x (C )(D ){}|>-lg2x x {}|<-lg2x x (7)在极坐标系中,圆的垂直于极轴的两条切线方程分别为=2cos p θ(A ) (B )=0()cos=2R θρρ∈和=()cos=22R πθρρ∈和(C )(D )=()cos=12R πθρρ∈和=0()cos=1R θρρ∈和(8)函数的图像如图所示,在区间上可找到=()y f x [],a b (2)n n ≥个不同的数使得则的取值范围是12,...,,n x x x 1212()()()==,n nf x f x f x x x x n (A ) (B ){}3,4{}2,3,4(C )(D ){}3,4,5{}2,3(9)在平面直角坐标系中,是坐标原点,两定点满足则点集o ,A B 2,OA OB OA OB ===A 所表示的区域的面积是,1,,|P OP OA OB R λμλμλμ==++≤∈(A ) (B )(C )(D )(10)若函数有极值点,,且,则关于的方程3()=+ax+b +f x x x c 1x 2x 11()=f x x x 的不同实根个数是213(())+2a ()+=0f x f x b (A )3(B )4(C ) 5(D )62013普通高等学校招生全国统一考试(安徽卷)数 学(理科)第Ⅱ卷(非选择题 共100分)考生注意事项:请用0.5毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D.如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的
公共直线
4.(2013安徽,理4)“a≤0”是“函数f(x)=|(ax-1)x|在区间(0,+∞)内
单调递增”的().
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
5.(2013安徽,理5)某班级有50名学生,其中有30名男生和20名女生.随机询问了该班五名男生和五
10.(2013安徽,理10)若函数f(x)=x1,x2,且f(x1)=x1,则关于x的方程3(f(x))
3+ax2+bx+c有极值点x
A.3B.4C.5D.6
第Ⅱ卷(非选择题共100分)
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.
8
a
4
的系数为7a__________.,则实数=
6
2
三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡
上的指定区域内.
2013安徽理科数学第2页
16.(2013安徽,理16)(本小题满分12分)已知函数f(x)=4cosωx·
期为π.
(1)求ω的值;
sin
π
x(ω>0)的最小正周
4
(2)讨论f(x)在区间0,
2.(2013安徽,理2)如图所示,程序框图(算法流程图)的输出结果是().
125311
6B.24C.4D.12
A.
3.(2013安徽,理3)在下列命题中,不是..公理的是().
A.平行于同一个平面的两个平面相互平行
B.过不在同一条直线上的三点,有且只有一个平面
C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此
22
+y=1.
所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=
π
(ρ∈R)和ρcosθ=2,故选B.2
8.答案:B
fxfxfx
解析:12
n
===
xxx
12n
可化为
fx0fx0fx
12n
===
x0x0x0
12n
0
,故上式可理解为y=
f(x)图象上一点与坐标原点连线的斜率相等,即n可看成过原点的直线与y=f(x)的交点个数.
x1<x2x2<x1
2
由图象可知f(x)=x1有2个解,f(x)=x2有1个解,因此3(f(x))+2af(x)+b=0的不同实根个数为3.
第Ⅱ卷(非选择题共100分)
考生注意事项:
请用0.5毫米黑色墨水签字笔在答.题.卡.上..作答,在.试.题.卷.上.答.题.无.效...
二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.
π
2
上的单调性.
17.(2013安徽,理17)(本小题满分12分)设函数f(x)=ax-(1+a2)x2,其中a>0,区间I={x|f(x)>
0}.
(1)求I的长度(注:区间(α,β)的长度定义为β-α);
(2)给定常数k∈(0,1),当1-k≤a≤1+k时,求I长度的最小值.
2013安徽理科数学第3页
11.答案:1
2
解析:∵x
3
a
x
8
的通项为
1
rxrarxr
83
C()
8
rr
8r
=CC
88
∴8-r-
r
3
=4,解得r=3.
∴
33
Ca7,得
8
1
a.
2
2
12.答案:π
3
解析:∵3sinA=5sinB,∴3a=5b.①
又∵b+c=2a,②
∴由①②可得,
5
ab,
3
7
cb,
3
∴
cosC
22
57
2
bbb
33
222
11.(2013安徽,理11)若x
的展开式中x
3
x
2
12.(2013安徽,理12)设△ABC的内角A,B,C所对边的长分别为a,b,c.若b+c=2a,3sinA=5sin
B,则角C=__________.
13.(2013安徽,理13)已知直线y=a交抛物线y=x
2于A,B两点.若该抛物线上存在点C,使得∠ACB为直角,则a的取值范围为__________.
A.θ=0(ρ∈R)和ρcosθ=2
π
B.θ=
2(ρ∈R)和ρcosθ=2
π
C.θ=
2(ρ∈R)和ρcosθ=1
D.θ=0(ρ∈R)和ρcosθ=1
2013安徽理科数学第1页
8.(2013安徽,理8)函数y=f(x)的图象如图所示,在区间[a,b]上可找到n(n≥2)个不同的数x1,x2,,,
fxfxfx
1
6.(2013安徽,理6)已知一元二次不等式f(x)<0的解集为xx1或x,则f(10
2
().
A.{x|x<-1或x>-lg 2}
B.{x|-1<x<-lg 2}
C.{x|x>-lg 2}
D.{x|x<-lg 2}
x
)>0的解集为
7.(2013安徽,理7)在极坐标系中,圆ρ=2cosθ的垂直于极轴的两条切线方程分别为().
18.(2013安徽,理18)(本小题满分12分)设椭圆E:
(1)若椭圆E的焦距为1,求椭圆E的方程;
22
xy
22=1
a1a
的焦点在x轴上.
(2)设F1,F2分别是椭圆E的左、右焦点,P为椭圆E上第一象限内的点,直线F2P交y轴于点Q,并且F1P
⊥F1Q.证明:当a变化时,点P在某定直线上.
19.(2013安徽,理19)(本小题满分13分)如图,圆锥顶点为P,底面圆心为O,其母线与底面所成的角
(1)对每个n∈N*,存在唯一的xn∈
*,存在唯一的x
n∈
2
3
,1
,满足fn(xn)=0;
1
(2)对任意p∈Nn构成的数列{xn}满足0<xn-xn.
*,由(1)中x
+p<
n
21.(2013安徽,理21)(本小题满分13分)某高校数学系计划在周六和周日各举行一次主题不同的心理测
试活动,分别由李老师和张老师负责.已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都
bac
1
5
2ab2
2bb
3
,∴
2
C.
3
π
13.答案:[1,+∞)
解析:如图,设C(x0,2
x)(
0
2
x≠a),A(a,a),B(a,a),
0
则CA=(
ax,
0
2
ax),CB=(ax0,
0
2
ax).
0
∵CA⊥CB,∴CA·CB=0,
2013安徽理科数学第8页
即-(a-
14.
2
x)+(a-
0
2
x)
0
2=0,(a-2
14.(2013安徽,理14)如图,互不相同的点A1,A2,,,An,,和B1,B2,,,
Bn,,分别在角O的两条边上,所有AnBn相互平行,且所有梯形AnBnBn+1An
+1的面
积均相等.设OAn=an.若a1=1,a2=2,则数列{an}的通项公式是__________.
15.(2013安徽,理15)如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的
2013年普通高等学校夏季招生全国统一考试数学理工农医类
(安徽卷)
第Ⅰ卷(选择题共50分)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题
目要求的.
1.(2013安徽,理1)设i是虚数单位,z是复数z的共轭复数.若z·zi+2=2z,则z=().
A.1+iB.1-iC.-1+iD.-1-i
,所以D1Q=AP,又因为AD1∥2PQ,所以
②正确;当0<CQ<
1
2
时,截面为APQM,且为四边形,故①也正确,如图(1)所示;
图(1)
1
如图(2),当CQ=
3
4
时,由△QCN∽△QC1R得C1QC1R
CQCN
,即
C R
4
1
31
4
,C1R=
1
3
,故③正确;
图(2)
3
如图(3)所示,当<CQ<1时,截面为五边形APQM,F所以④错误;
2
s=
1
22222
86909490889092909090
5
=8,
2
五名女生成绩的方差为
s
2
22
2889139391
=
5
22
ss,故选C.
所以
12
6
,
2013安徽理科数学第6页
6.答案:D
解析:由题意知-1<10x<1
x<1
2
,
所以x<
lg
1
2
=-lg 2,故选D.
7.答案:B
解析:由题意可知,圆ρ=2cosθ可化为普通方程为(x-1)
名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为
88,93,93,88,93.下列说法一定正确的是().
A.这种抽样方法是一种分层抽样
B.这种抽样方法是一种系统抽样
C.这五名男生成绩的方差大于这五名女生成绩的方差
D.该班男生成绩的平均数小于该班女生成绩的平均数