电路分析-等效电源定理-实验报告

合集下载

电源等效变换_实验报告

电源等效变换_实验报告

1. 理解电源等效变换的基本原理和定义。

2. 掌握电压源与电流源之间的等效变换方法。

3. 通过实际操作,验证电源等效变换的正确性和实用性。

二、实验原理在电路分析中,电源的等效变换是指将电路中的电压源或电流源用一个等效的电源来代替,而不会改变电路的外部特性。

常见的电源等效变换包括:1. 电压源与内阻的等效电压源变换。

2. 电流源与内阻的等效电流源变换。

3. 电压源与电流源的等效变换。

根据基尔霍夫电压定律和基尔霍夫电流定律,可以推导出以下等效变换公式:1. 电压源与内阻的等效电压源变换:\( E = U + Ir \),其中 \( E \) 为等效电压源的电动势,\( U \) 为实际电压源的电压,\( I \) 为电路中的电流,\( r \) 为电压源的内阻。

2. 电流源与内阻的等效电流源变换:\( I = \frac{U}{R} \),其中 \( I \) 为等效电流源的电流,\( U \) 为电路中的电压,\( R \) 为电流源的内阻。

3. 电压源与电流源的等效变换:\( E = I \cdot r \),其中 \( E \) 为等效电压源的电动势,\( I \) 为等效电流源的电流,\( r \) 为等效内阻。

三、实验器材1. 直流稳压电源2. 电压表3. 电流表4. 电阻5. 连接线6. 电路实验板1. 将电路连接好,接通电源。

2. 测量电路中的电压和电流值。

3. 根据测得的值,计算电路的等效电压源或等效电流源。

4. 将实际电源替换为等效电源,重新测量电路中的电压和电流值。

5. 比较实际电源和等效电源的电压和电流值,验证等效变换的正确性。

五、实验数据及分析实验1:电压源与内阻的等效电压源变换1. 实际电压源:电动势 \( E = 10V \),内阻 \( r = 2\Omega \)。

2. 电路连接:将实际电压源与一个 \( 5\Omega \) 的电阻串联。

3. 测量数据:电压 \( U = 7.5V \),电流 \( I = 1.5A \)。

电路基本定理研究实验报告

电路基本定理研究实验报告

电路基本定理研究实验报告电路基本定理研究实验报告一、实验目的本实验旨在通过实际操作,深入理解和掌握电路基本定理,包括基尔霍夫定律、欧姆定律、戴维南定理和诺顿定理。

通过实验,期望学生能将理论知识应用于实际电路中,提高实践能力和理论水平。

二、实验原理1.基尔霍夫定律:基尔霍夫定律是电路理论中最基本的定律之一,它包括两个部分,即节点电流定律和回路电压定律。

节点电流定律指出,在任意一个节点上,流入的电流总和等于流出的电流总和;回路电压定律指出,在任意一个闭合回路中,电势升高的总和等于电势降低的总和。

2.欧姆定律:欧姆定律是电路中有关电阻、电流和电压的基本定律。

它指出,在一个线性电阻器件中,电压与电流成正比,电阻保持恒定。

3.戴维南定理:戴维南定理又称为等效电源定理,它可以将一个含源电路等效为一个电压源和一个电阻串联的形式。

该定理实质上是将有源二端网络等效为一个实际电源。

4.诺顿定理:诺顿定理是戴维南定理的反定理,它可以将一个含源电路等效为一个电流源和电阻并联的形式。

该定理也是将有源二端网络等效为一个实际电源。

三、实验步骤1.准备实验器材:电源、电阻器、电感器、电容器、开关、导线等。

2.搭建实验电路:根据实验要求,设计并搭建实际电路。

3.测量数据:使用万用表等测量仪器,测量电路中的电流、电压、电阻等参数。

4.分析数据:根据测量数据,分析电路的性能和特点,验证电路基本定理的正确性。

5.整理实验结果:整理实验数据,撰写实验报告。

四、实验结果及分析实验一:基尔霍夫定律验证在实验中,我们搭建了一个简单的电路,包含一个电源、一个电阻和一个电流表。

通过测量流入和流出的电流,验证了节点电流定律。

同时,我们还搭建了一个闭合回路,包含一个电源、一个电阻和一个电压表,验证了回路电压定律。

结果表明,实验数据与理论预测相符,证明基尔霍夫定律的正确性。

实验二:欧姆定律验证在实验中,我们选取了三个不同阻值的电阻器,分别测量了它们两端的电压和流过的电流。

电分实验报告-电路定理的验证

电分实验报告-电路定理的验证

深圳大学实验报告课程名称:电路分析实验报告
实验项目名称:电路定理的验证
学院:信息工程学院
专业:
指导教师:吴迪
报告人:学号:班级:
实验时间:
实验报告提交时间:
教务部制
任务二:测量有源二端网络的外特性
(1):在上图电路中,S2仍往右拨(仍保持断开此实验箱上原有的可调负载R L)。

将S1往上拨,在A、B端外接可调负载R L。

R L选用元件箱(一)EEL-51中的x100Ω的可调
任务四:验证叠加原理
(1):按下图连线,图中的电源U s1用恒压源I路可调电压输出端,选择20V档,并将输出电压先调到+12V;U s2用恒压源II路可调电压输出端,选择10V档,并将输出电压先调到+6V(以直流数字电压表读数为准);开关S3往上拨(投向R3侧)。

(测量数据需记录正负号)、
(2)U s1电源单独作用时,将开关S1往上拨(投向U s1侧),开关S2往下拨(投向短路侧),测量各电压和电流记录于表4中。

(3)U s2电源单独作用时,将开关S1往下拨(投向短路侧),开关S2往上拨(投向U s2侧),测量各电压和电流记录于表4中。

(4)U s1和U s2共同作用时,开关S1往上拨(投向U s1侧),S2也往上拨(投向U s2侧),测量各电压和电流记录于表4中
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。

2、教师批改学生实验报告时间应在学生提交实验报告时间后10日内。

电路分析实验报告

电路分析实验报告

电压源与电流源的等效变换一、实验目的1、 加深理解电压源、电流源的概念。

加深理解电压源、电流源的概念。

2、 掌握电源外特性的测试方法。

掌握电源外特性的测试方法。

二、原理及说明1、 电压源是有源元件,电压源是有源元件,可分为理想电压源与实际电压源。

可分为理想电压源与实际电压源。

可分为理想电压源与实际电压源。

理想电压源在一定的电流理想电压源在一定的电流范围内,具有很小的电阻,它的输出电压不因负载而改变。

而实际电压源的端电压随着电流变化而变化,压随着电流变化而变化,即它具有一定的内阻值。

即它具有一定的内阻值。

即它具有一定的内阻值。

理想电压源与实际电压源以及理想电压源与实际电压源以及它们的伏安特性如图4-1所示所示((参阅实验一内容参阅实验一内容))。

2、电流源也分为理想电流源和实际电流源。

理想电流源的电流是恒定的,理想电流源的电流是恒定的,不因外电路不同而改变。

不因外电路不同而改变。

不因外电路不同而改变。

实际电流源的电流与所联接实际电流源的电流与所联接的电路有关。

当其端电压增高时,通过外电路的电流要降低,端压越低通过外电路的电流越大。

实际电流源可以用一个理想电流源和一个内阻R S 并联来表示。

图4-2为两种电流源的伏安特性。

流源的伏安特性。

3、电源的等效变换一个实际电源,尤其外部特性来讲,可以看成为一个电压源,也可看成为一个电流源。

两者是等效的,其中I S =U S /R S 或或 U S =I S R S图4-3为等效变换电路,由式中可以看出它可以很方便地把一个参数为U s 和R s 的电压源变换为一个参数为I s 和R S 的等效电流源。

同时可知理想电压源与理想电流源两者之间不存在等效变换的条件。

之间不存在等效变换的条件。

三、仪器设备电工实验装置电工实验装置 : DG011 DG011、、 DG053 DG053 、、 DY04 DY04 、、 DYO31四、实验内容1、理想电流源的伏安特性1)1) 按图4-4(a)4-4(a)接线,毫安表接线使用电流插孔,接线,毫安表接线使用电流插孔,接线,毫安表接线使用电流插孔,R R L 使用1K Ω电位器。

电路分析实验总结

电路分析实验总结

电路分析实验总结篇一:电路分析实验报告湖南大学实验1:基尔霍夫电流、电压定理的验证实验2:叠加定理实验3:等效电源定理实验4:一阶实验5:交流电路实验6:交流电路中电路分析实验报告学院:信息科学与工程学院专业:软件工程班级:软件班姓名:学号:实验目录………………. …………………………………………. ……………………………………. RC电路特性的EWB仿真……………….. …………………………………………. KVL、KCL定律的验证…………..实验一:实验目的:学习使用workbench软件,学习组建简单直流电路并使用仿真测量仪表测量电压、电流。

1、基尔霍夫电流、电压定理的验证。

解决方案:自己设计一个电路,要求至少包括两个回路和两个节点,测量节点的电流代数和与回路电压代数和,验证基尔霍夫电流和电压定理并与理论计算值相比拟。

实验原理图:与理论计算数据比拟:i1=10Ai2=6/((3+3)*6)*10=5A=I2i3=(3+3)/((3+3)*6)10=5A=I3U(310)=3*i2=U(320)=15V=U2 =U1U(60)=6*i3=30V节点电流代数和:i2+i3=i1=电流源回路电压代数和:U(310)+U(320)=U(60)=30V2、电阻串并联分压和分流关系验证。

解决方案:自己设计一个电路,要求包括三个以上的电阻,有串联电阻和并联电阻,测量电阻上的电压和电流,验证电阻串并联分压和分流关系,并与理论计算值相比拟。

实验原理图:与理论计算数据比拟:分流关系:i1=100/((10+10)*10)/(10+10+10)=15A=I1i2=(10+10)/(10+10+10)*i1=10A=I2i3=10/(10+10+10)*i1=5A=I3分压关系:u(1010)=u(1020)=10*i3=50V=U2=U3u(1000)=10*i2=100VU2+U3=100V=u(1000)=电压源实验心得:1.有耐心连电路验实验二叠加定理实验目的:通过实验加深对叠加定理的理解;学习使用受控源;进一步学习使用仿真测量仪表测量电压、电流等变量。

电路分析基础实验报告

电路分析基础实验报告

电路分析基础实验报告引言:电路分析是电子工程领域的基础课程之一,对于理解和掌握电路原理和电子设备的运作机制至关重要。

本实验旨在通过实际操作和测量数据,验证电路分析相关理论,并通过分析实验结果加深对电路分析基础知识的理解。

一、实验目的:本次实验的主要目的是研究并分析欧姆定律、基尔霍夫定律和奥姆定律应用于电路分析中的实际问题。

具体目标包括:1. 熟悉实验仪器的使用方法和测量电路元件的基本原理;2. 验证欧姆定律在恒阻电路中的适用性和准确性;3. 通过实验验证基尔霍夫定律在串联电路和并联电路中的准确性;4. 通过实验探究奥姆定律在复杂电路中的应用和分析方法。

二、实验步骤和数据分析:1. 实验一:验证欧姆定律在恒阻电路中的适用性和准确性。

选取一个电阻为常量的电路,接入电源,通过改变电源电压和测量电流值,验证欧姆定律的准确性。

记录实验数据并制作电流-电压曲线图。

通过实验发现,无论电源电压如何变化,所测得的电流值始终符合欧姆定律的关系:电流等于电压除以电阻。

这验证了欧姆定律在恒阻电路中的适用性。

2. 实验二:验证基尔霍夫定律在串联电路中的准确性。

构建一个简单的串联电路,通过测量电路中各个电阻上的电压值,并结合电源电压和电源电流,验证基尔霍夫定律在串联电路中的准确性。

记录实验数据并计算验证所得的电路中各个电阻的电流值。

实验结果显示,根据基尔霍夫定律计算得到的电流值与测量得到的电流值相符,验证了基尔霍夫定律在串联电路中的准确性。

3. 实验三:验证基尔霍夫定律在并联电路中的准确性。

构建一个并联电路,通过测量电路中各个电阻上的电流值,并结合电源电压和电源电流,验证基尔霍夫定律在并联电路中的准确性。

记录实验数据并计算验证所得的电路中各个电阻的电流值。

实验结果表明,基尔霍夫定律所计算得到的电流值与测量得到的电流值吻合,进一步验证了基尔霍夫定律在并联电路中的准确性。

4. 实验四:探究奥姆定律在复杂电路中的应用和分析方法。

等效电源定理实验报告

等效电源定理实验报告

等效电源定理实验报告实验目的:本次实验的目的是通过等效电源定理实验,掌握等效电源的概念及其计算方法,并能熟练运用等效电源定理进行电路分析和计算。

实验原理:等效电源定理指的是,将一个电路中的复杂元件和电源转换为简单的等效电路,从而计算电路的各种参数,如电流、电压等。

等效电源分为两类,分别是理想电压源和理想电流源。

根据等效电源定理,我们可以将初始电路中的电源、电流、阻抗等抽象为一个等效电源,可以采用不同的电路模型进行计算。

在进行计算等效电源时,需要根据电路内部的电流、电压等数据按照公式进行计算,以获取等效电源参数。

实验装置:1. 电源(6V)2. 三个不同的电阻(100Ω,220Ω,330Ω)3. 万用表4. 连接电线实验步骤:1. 将电源连接到电路中,同时连接好不同电阻。

2. 打开万用表,选择电流档,将两个电极分别连接到电阻两端。

3. 此时电路中的电流数值即为所求的I值。

4. 根据等效电源理论,我们可以将电路内部元件和电源转换为等效电源,电流的数值保持不变。

5. 假设此时等效电源为理想电压源U,计算电压数值,即U = IR。

6. 假设此时等效电源为理想电流源I,计算电流数值,即I = I。

实验结果:1. 在100Ω电阻的情况下,电路中的电流为0.06A。

2. 根据 U=IR,可计算出等效电源中的理想电压源U为0.06*100 = 6V。

3. 根据 I=I,可计算出等效电源中的理想电流源I为0.06A。

实验分析:通过等效电源定理实验,我们成功地计算出了电路内部的理想电压源和理想电流源的数值。

在实际应用中,等效电源定理常被用于电路分析和设计,无论是计算电路的电流、电压、功率等参数,还是设计电路内部的电子元件,都可以基于等效电源定理来推导和计算。

总结:等效电源定理是电路分析和设计中的重要工具之一,可以用来简化复杂的电路结构和电子元件,从而更加轻松地理解和计算电路中的各种参数。

通过本次实验,我们已经掌握了等效电源定理的计算方法和应用技巧,可进一步扩展这项理论的应用范围。

等效变换实验报告

等效变换实验报告

一、实验目的1. 理解并掌握等效变换的基本概念和原理。

2. 通过实际操作,验证电压源与电流源等效变换的条件。

3. 学会使用实验仪器进行电源外特性的测试。

4. 增强对电路分析方法的理解和应用能力。

二、实验原理等效变换是指在电路分析中,将复杂的电路简化为等效的简单电路,使得简化后的电路与原电路在某些方面具有相同的电性能。

常见的等效变换包括电压源与内阻的等效电压源、电流源与内阻的等效电流源等。

电压源与电流源的等效变换条件如下:- 电压源(Us)与内阻(Rs)串联可以等效为一个电流源(Is)与内阻(Rs)并联。

- 电流源(Is)与内阻(Rs)并联可以等效为一个电压源(Us)与内阻(Rs)串联。

等效变换的公式为:- 对于电压源与内阻的等效变换:Is = Us / Rs- 对于电流源与内阻的等效变换:Us = Is Rs三、实验器材1. 直流稳压电源1台2. 直流恒流源1台3. 直流数字电压表1块4. 直流数字电流表1块5. 可调电阻箱1个6. 电阻器若干7. 电线若干四、实验步骤1. 按照实验电路图连接电路,将直流稳压电源或直流恒流源作为电源接入电路。

2. 使用电压表和电流表测量电路中各个元件的电压和电流值。

3. 根据测得的电压和电流值,计算电路的等效电压源或等效电流源。

4. 将计算得到的等效电压源或等效电流源接入电路,再次测量电路中各个元件的电压和电流值。

5. 比较两次测量结果,验证等效变换的正确性。

五、实验数据及结果分析1. 实验一:电压源与内阻的等效变换- 实验电路:将直流稳压电源接入电路,测量电路中各个元件的电压和电流值。

- 等效变换:根据测得的电压和电流值,计算等效电流源。

- 实验结果:将计算得到的等效电流源接入电路,测量电路中各个元件的电压和电流值,与原电路结果基本一致。

2. 实验二:电流源与内阻的等效变换- 实验电路:将直流恒流源接入电路,测量电路中各个元件的电压和电流值。

- 等效变换:根据测得的电压和电流值,计算等效电压源。

等效电源定理实验报告

等效电源定理实验报告

等效电源定理实验报告等效电源定理实验报告引言:等效电源定理是电路分析中重要的基本原理之一,它能够简化复杂的电路分析问题,使得分析更加便捷。

本实验旨在通过实际操作,验证等效电源定理的有效性,并进一步探究其在电路分析中的应用。

一、实验目的:1. 验证等效电源定理的有效性;2. 探究等效电源在电路分析中的应用。

二、实验原理:等效电源定理是基于电路中的线性元件的特性而得出的。

根据等效电源定理,任何线性电路都可以用一个等效电源替代,该等效电源具有相同的电流-电压特性。

三、实验步骤:1. 搭建一个简单的电路,包括电源、电阻和电流表,如图1所示。

2. 测量电路中的电流和电压值,并记录下来。

3. 将电流表移动到电路中的不同位置,重新测量电流和电压值,并记录下来。

4. 分析实验数据,验证等效电源定理的有效性。

四、实验结果:根据实验数据,我们可以得出以下结论:1. 在电路中的任意位置,电流和电压的比值保持不变。

2. 不同位置的电流和电压值可能有所不同,但是它们之间的比值始终保持一致。

五、实验分析:根据实验结果,我们可以得出以下分析:1. 根据等效电源定理,我们可以用一个等效电源来替代整个电路,而不影响电路中的电流和电压特性。

2. 等效电源的电流和电压值可以根据实际测量得到,从而简化了电路的分析过程。

六、实验应用:等效电源定理在电路分析中有着广泛的应用。

通过将复杂的电路替代为一个等效电源,我们可以更加方便地进行电路分析和计算。

在实际工程中,等效电源定理可以用于设计和优化电路,提高电路性能。

七、实验总结:通过本次实验,我们验证了等效电源定理的有效性,并进一步了解了它在电路分析中的应用。

等效电源定理为电路分析提供了一种简化的方法,使得我们能够更加高效地解决复杂的电路问题。

通过实践应用,我们进一步加深了对等效电源定理的理解和掌握。

八、参考文献:[1] 《电路分析基础》. 陈红等著. 清华大学出版社, 2010.九、致谢:感谢实验中给予我们指导和帮助的老师和同学们。

实验2.2叠加原理与等效电源定理的研究的实验报告

实验2.2叠加原理与等效电源定理的研究的实验报告

实验2.2叠加原理与等效电源定理的研究的实验报告一、实验背景在电路理论中,叠加原理和等效电源定理是非常重要的基本理论之一。

叠加原理指出,在电路中,各个电源独立工作时,电路中的电流、电压等参数可以分别计算。

等效电源定理是指,在一个线性电路中,在某一特定的负载电阻下,可以将电路中的所有电源和电阻转化为一个等效电源和一个等效电阻,这个等效电源和等效电阻能够代替原来的电路,实现电路分析和计算。

通过本实验的学习,可以掌握叠加原理和等效电源定理的基本原理和应用方法,加深对电路中参数计算的理解和应用知识。

二、实验目的1.了解叠加原理和等效电源定理的基本原理和应用方法;2.熟悉基本的多用电表的操作和测量方法;3.熟悉电路的参数计算及测量方法。

三、实验器材1.交流电源;2.数字万用表;3.多用电表;4.实验电路箱。

四、实验原理1.叠加原理在电路中,如果有多个电源作用,根据叠加原理,在某一点上的电压或电流是诸多电源分别作用等于它们分别独立作用时所产生电压或电流的代数和。

这个原理可以简化电路分析和参数计算。

2.等效电源定理等效电源定理也称为教条定理或塞司定理,是指在任何电路中,可以用一个电压源和一个阻性负载来代替任何附加电源和内部电路,只要这个电压源的电压等于负载终端的开路电压,电阻等于负载终端的内阻。

五、实验过程1.构建叠加原理的实验电路:构建一个由两个电源和一个电阻组成的电路,如图1所示。

其中电源1的电压为12V,电源2的电压为8V,电阻为6Ω。

2.在没有接入多用电表的情况下,先连通电源1,利用数码万用表测量出电路中电阻两端的电压和电流。

再断开电源1,连通电源2,利用数码万用表测量出电路中电阻两端的电压和电流。

3.接入多用电表:将多用电表的电流档位选为20mA,电压档位选为20V,将黑色表笔接在电阻的负极上,将红色表笔分别接在电路中的不同位置测量电压值。

4.求解电路的等效电源和等效电阻:(1)求出电路中的等效电源:将电源1断开,在电源2的作用下测量出电路中负载电阻的电压和电流,计算出等效电源的电压。

电路实验报告-电压源和电流源的等效变换-20170221

电路实验报告-电压源和电流源的等效变换-20170221

《电路与模电》实验报告实验题目:电压源与电流源的等效变换姓名: 学号: 实验时间: 实验地点: 指导老师: 班级:一、实验目的1. 掌握电源外特性的测试方法。

2. 验证电压源与电流源等效变换的条件。

二、实验原理1. 一个直流稳压电源在一定的电流范围内,其内阻很小。

故在实用中,常将它视为一个理想的电压源,即认为输出电压不随负载电流而变,其伏安特性V =f(I)是一条平行于I 轴的直线。

同样,一个实际的恒流源在实用中,在一定的电压范围内,可视为一个理想的电流源。

2. 一个实际的电压源(或电流源),其端电压(或输出电流)不可能不随负载而变,因它具有一定的内阻值。

故在实验中,用一个小阻值的电阻与稳压源相串联来摸拟一个实际的电压源,用一个大电阻与恒流源并联来模拟实际的电流源。

3. 一个实际的电源,就其外部特性而言,即可以看成是一个电压源,又可以看成是一个电流源。

若视为电压源,则可用一个理想的电压源E S 与一个电阻R 0相串联的组合来表示;若视为电流源,则可用一个理想电流源I S 与一电导g 0相并联的组合来表示。

若它们能向同样的负载提供出同样大小的电流和端电压,则称这两个电源是等效的,它们具有相同的外特性。

一个电压源与一个电流源等效变换的条件为:图3-1 电压源与电流源的等效变换000001,,1,g R R I U R g R U I S S SS ====或IR LLI S =U S /R 0,g 0=1/R 0U S =I S R 0,R 0=1/g 0装订线三、实验内容1. 测定直流稳压电源与电压源的外特性(1) 按图3-2接线,U S 为+6V 直流稳压电源,R 1=200Ω,R 2=470Ω。

调节R 2,令其阻值由大至小变化,记录两表的读数于表3-1。

图3-2 直流稳压电源的外特性测量表3-1 直流稳压电源的外特性测量数据电流单位: 电压单位: 电阻单位:Ω(2) 按图3-3接线,虚线框可模拟为一个实际的电压源,调节电位器R 2,令其阻值由大至小变化,记录两表的数据于3-2。

实验2 叠加原理与等效电源定理的研究-实验报告

实验2 叠加原理与等效电源定理的研究-实验报告

实验2 叠加原理与等效电源定理的研究一、实验名称叠加原理与等效电源定理的研究二、实验任务及目的1.基本实验任务验证叠加原理和戴维宁定理。

2.扩展实验任务验证最大功率传输定理。

3.实验目的掌握应用叠加原理和戴维宁定理分析电路的方法和使用条件;掌握有源二端网络等效参数的测量方法;掌握等效电路的应用;理解电路有载、开路和短路的状态以及测试方法;理解阻抗匹配的概念。

三、实验原理及电路1.实验原理叠加原理,在线性电路中,有多个电源同时作用时,任一支路的电流或电压都是电路中每个独立电源单独作用时在该支路中所产生的电流或电压的代数和。

戴维宁定理,任何一个线性有源二端网络,总可以用一个理想电压源和一个等效电阻串联来代替。

最大功率传输定理,当外阻等于内阻时,负载获得最大功率。

2.实验电路图2.1 叠加原理实验电路S2=8V2DU S11B四、实验仪器及器件1.实验仪器双路直流稳压电源1台,直流电流表1台,万用表1台。

2.实验器件双刀双掷开关2个,电阻箱1个,电流插孔3个,200Ω/2W 电阻1个,300Ω/2W 电阻1个,470Ω/2W 电阻1个,1k Ω/2W 电阻1个。

五、实验方案与步骤1.用万用表直流电压档监测,调节直流稳压电源两路输出分别为16V 和8V 。

2.按图2.1接线,根据计算值,选择电流表、万用表合适量程,测量并记录实验数据。

3.按图2.2接线,根据计算值,选择电流表、万用表合适量程,测量并记录实验数据;按图2.3接线,重新用万用表直流档监测,调节直流稳压电源电压为开路电压U OC ,用电阻箱调出等效内阻R 0,选择电流表、万用表合适量程,测量并记录实验数据。

4.按图2.4接线,用万用表直流档监测,调节直流稳压电源电压为10V ,根据计算值,选择电流表、万用表合适量程,测量并记录实验数据。

六、实验数据1.基本实验内容 (1)验证叠加原理R LR 0图2.3 戴维宁等效电路D1U S1R L =100ΩB D图2.2 戴维宁定理实验电路LR o =200E =10V图2.4 最大功率传输条件的验证实验电路J1Key = 1图2.5 U S1单独作用仿真图 表2.1 U 单独作用数据J1Key = 1图2.6 U S2单独作用仿真图表2.2 U单独作用数据J1Key = 1图2.7 U S1和U S2共同作用仿真图 表2.3 U 和U 共同作用数据(2)验证戴维宁定理ACJ1Key = 1图2.8 戴维宁定理U OC 仿真图J1Key = 1图2.9 戴维宁定理I S 仿真图图2.10 戴维宁定理R O 仿真图AC J1Key = 1图2.11 戴维宁定理U L 、I L 仿真图表2.4 戴维宁定理数据C J1Key = 1图2.12 戴维宁定理等效电路仿真图表2.5 戴维宁等效电路数据2.扩展实验内容图2.13 负载100Ω时输出功率仿真图表2.6 负载100Ω时输出功率数据表2.7 负载200Ω时输出功率数据表2.8 负载300Ω时输出功率数据表2.9 负载400Ω时输出功率数据表2.10 负载500Ω时输出功率数据七、测量数据的分析1.依据实验结果,验证叠加原理的正确性。

电路分析基础实验报告-电压源、电流源及其电源等效变换

电路分析基础实验报告-电压源、电流源及其电源等效变换

XXX 实验室学生实验报告课程名称电路分析基础实验学院XXX专业XXX班级XXX学号XXX姓名XXX辅导教师XXX实验时间:X 年X 月X 日预 习 实 验 报 告1、 实验名称电压源、电流源及其电源等效变换2、实验目的1.掌握建立电源模型的方法。

2.掌握电源外特性的测试方法。

3.加深对电压源和电流源特性的理解。

4.研究电源模型等效变换的条件。

3、实验内容1.电压源和电流源电压源具有端电压保持恒定不变,而输出电流的大小由负载决定的特性。

其外特性,即端电压U 与输出电流I 的关系U = f (I ) 是一条平行于I轴的直线。

实验中使用的恒压源在规定的电流范围内,具有很小的内阻,可以将它视为一个电压源。

电流源具有输出电流保持恒定不变,而端电压的大小由负载决定的特性。

其外特性,即输出电流I 与端电压U 的关系I = f (U ) 是一条平行于U 轴的直线。

实验中使用的恒流源在规定的电流范围内,具有极大的内阻,可以将它视为一个电流源。

2.实际电压源和实际电流源实际上任何电源内部都存在电阻,通常称为内阻。

因而,实际电压源可以用一个内阻R S 和电压源U S 串联表示,其端电压U 随输出电流I 增大而降低。

在实验中,可以用一个小阻值的电阻与恒压源相串联来模拟一个实际电压源。

实际电流源是用一个内阻R S 和电流源I S 并联表示,其输出电流I 随端电压U 增大而减小。

在实验中,可以用一个大阻值的电阻与恒流源相并联来模拟一个实际电流源。

3.实际电压源和实际电流源的等效互换一个实际的电源,就其外部特性而言,既可以看成是一个电压源,又可以看成是一个电流源。

若视为电压源,则可用一个电压源U s 与一个电阻R S 相串联表示;若视为电流源,则可用一个电流源I S 与一个电阻R S 相并联来表示。

若它们向同样大小的负载供出同样大小的电流和端电压,则称这两个电源是等效的,即具有相同的外特性。

实际电压源与实际电流源等效变换的条件为: (1)取实际电压源与实际电流源的内阻均为R S ;(2)已知实际电压源的参数为U s 和R S ,则实际电流源的参数为SS S R UI =和R S ,若已知实际电流源的参数为I s 和R S ,则实际电压源的参数为S S S R I U =和R S 。

等效电源定理

等效电源定理

等效电源定理
等效电源定理,也称作替代电源定理,是一个基本的电路定理,该定理可以用来简化复杂的电路。

它的定义是:“任意电路都可以被等同的(即对象、功率、相位和频率相同)源或组合的源来表示”。

等效电源定理的原理很简单,它把一个复杂的电路用一个等效的电源来表示。

这样,复杂的电路可以用更简单的方式来考虑,而不用一个一个元件分析。

等效电源定理的物理意义是,在一个复杂的电路中,电流和电压的变化是由电源的影响所决定的,因此可以用一个等效的电源来表示原电路。

该定理可以用两种方式来实现:一种是将源放进电路中,另一种是将电路的元件放进源中。

首先,将源放进电路,也就是等效电源定理的一般形式,即用一个等效源来代替原电路中的元件。

当将源放进电路中时,可以假设电路中的元件(如电阻、电容、电感)可以被忽略,只保留源。

此时,等效源可以模拟电路中的元件形成新的电路网络,因此可以简化原电路的分析。

然后,将电路的元件放进源中,也就是等效电源定理的特例,即将电路中的元件表示成一个电源的形式,这种
电源称为等效电源。

当将电路的元件放进源中时,可以假设电路中的源(如电压源、电流源)可以被忽略,只保留元件。

此时,等效电源可以模拟电路中的源形成新的电路网络,因此可以简化原电路的分析。

等效电源定理有助于简化电路的分析,使电路的计算更加简单、快速。

它可以用来求解复杂的电路,包括电路中的源和元件,以及电路中的各种参数,如电压、电流、功率等。

总的来说,等效电源定理是一个重要的电路定理,它可以用来简化复杂的电路,减少电路的计算时间,使电路的分析更加简单易行。

等效变换的实验报告

等效变换的实验报告

一、实验目的1. 理解并掌握电路等效变换的基本概念和原理。

2. 通过实验验证电压源与电流源等效变换的条件。

3. 学会使用实验仪器进行电路测量,并分析实验数据。

4. 培养实际操作能力和数据分析能力。

二、实验原理等效变换是指将一个复杂的电路简化为一个与之等效的简单电路,使得这个简化后的电路与原电路在某些方面具有相同的电性能。

常见的等效变换包括电压源与内阻的等效电压源、电流源与内阻的等效电流源等。

电压源与电流源的等效变换条件如下:- 当电压源内阻 \( r_s \) 与电流源内阻 \( r_o \) 相等时,电压源与电流源可以等效变换。

- 当电压源电动势 \( E \) 与电流源电流 \( I_s \) 相等时,电压源与电流源可以等效变换。

三、实验器材1. 直流稳压电源2. 直流电压表3. 直流电流表4. 可调电阻箱5. 连接线6. 电阻器7. 电流插头、插座四、实验步骤1. 搭建实验电路:根据实验要求搭建相应的电路,包括电压源与电流源等效变换的实验电路。

2. 测量数据:使用直流电压表和直流电流表测量电路中的电压和电流值。

3. 计算等效参数:根据实验数据,计算电路的等效参数,如等效电压源电动势、等效电流源电流等。

4. 分析实验数据:分析实验数据,验证电压源与电流源等效变换的条件。

五、实验结果与分析1. 电压源与电流源等效变换实验:- 搭建实验电路,将电压源与电流源分别接入电路。

- 测量电路中的电压和电流值,记录实验数据。

- 根据实验数据,计算等效参数,如等效电压源电动势、等效电流源电流等。

- 分析实验数据,验证电压源与电流源等效变换的条件。

2. 电压源与内阻的等效变换实验:- 搭建实验电路,将电压源与内阻串联。

- 测量电路中的电压和电流值,记录实验数据。

- 根据实验数据,计算等效参数,如等效电压源电动势、等效电流源电流等。

- 分析实验数据,验证电压源与内阻的等效变换条件。

3. 电流源与内阻的等效变换实验:- 搭建实验电路,将电流源与内阻并联。

实验二 等效电源定理实验

实验二   等效电源定理实验

实验二等效电源定理实验一、实验目的进一步学习MULTISIM的使用方法,学习测量有源二端线性网络的开路电压和短路电流及其除源网络的电阻的方法,验证戴维宁定理和诺顿定理的正确性,并加深对他们的理解和灵活运用。

二、实验原理等效电源(戴维南定理)内容:任何一个有源二端线性网络都可用一个理想电压源和内阻为R0串联的电压源来等效代替,理想电压源的电压等于二端网络的开路电压U0,即将负载断开后两端的电压,内阻R0为将电源去除后的无源网络负载两端的等效电阻。

等效电源(诺顿定理)内容:任何一个有源二端线性网络都可用一个理想电流源和内阻为R0并联的电流源来等效代替,理想电流源的电流值等于二端网络的短路电流ISC,即将负载短路后的电流,内阻R0为将电源去除后的无源网络负载两端的等效电阻。

当电路中含有受控源时,电路的等效电阻可以用两种方法计算:(1)实验法:(2)外加电源法:先除去电路中的独立电源,外加电源,三、实验内容1.如图连接电路,E1=10V,E2=1.5V,R1=100Ω,R2=30Ω,将RL支路当作有源二端网络的负载电阻Array(1)按下表调节RL的电阻值,分别测记A、B两点间的电压和通过RL支路的电流,注意:测电压时应将万用表并联在AB两端,测电流时应将万用表串联在RL支路中;表2-1(2)计算有源二端网络的内阻R0=U OC /I SC ,(其中U OC 为开路电压,I SC 为短路电流) (3)按上表测得的U OC 及计算得出的R 0连接电路如图示,按表2-2测记相应的电压与电流值,并与表2-1相比对;(4)比较结果,得出验证结论:2. 计算下图的戴维南等效电路,分析AB 端口接不同负载电阻时的电阻电流,填表表3.上题中的等效电阻用外接电源法如何得到?用电路测量计算四、思考题1. 在求线性只含独立电源的单口网络的等效电阻时,如何理解“将网络中的所有独立电源除去(置零)”?实验中怎样做到独立电源置零?2.对于含有受控源的线性有源二端网络,其等效电路的电阻有几种就是那方法?分别是什么?五、实验报告1.仿真电路2.填写实验数据表格,进行分析、比较,归纳、总结实验结论,回答思考题。

电路分析实验报告

电路分析实验报告

电路分析实验报告电路分析实验报告一、实验目的和要求本次实验的主要目的是通过实际搭建电路和使用电路分析方法,学习和理解电路中的各种元器件的特性和相互之间的关系,掌握基本的电路分析方法。

实验要求:1. 按照给定的电路图,正确连接实验电路。

2. 通过测量和计算,得出电路中各个元器件的电压和电流数值。

3. 比较实验结果与理论计算结果的差异,分析原因。

4. 书写实验报告,清楚、准确地描述实验过程和结果。

二、实验仪器和材料1. 数字万用表2. 直流电源3. 电阻、电容、电感元件若干4. 连线及其他辅助材料三、实验原理本次实验中,我们主要学习了直流电路中的戴维南定理和欧姆定律的应用。

1. 戴维南定理:对于任意一个电路,如果有n个电流源、m个电压源和k个多端口元件,那么可以将这个电路化为一个等效电流源和一个等效内部电阻的串联,其中等效内部电阻的值等于元件的输入电阻之和。

2. 欧姆定律:在恒流条件下,电压与电流之间成线性关系,电阻的电压与电流满足欧姆定律:U=IR。

四、实验步骤1. 根据实验要求,搭建给定的电路,并将电路连接到电源上。

2. 使用数字万用表测量电路中各个元器件的电压和电流数值,并记录下来。

3. 对于电阻元件,使用欧姆定律计算其电压和电流数值。

4. 比较实验测量值与理论计算值的差异,分析原因。

五、实验结果和分析在实验中,我们搭建了一个简单的电路,通过实际测量和计算,得到了以下结果:1. 电源电压为5V,电阻R1的电流为0.5A,电阻R2的电流为0.3A。

2. 电阻R1的电压为2.5V,电阻R2的电压为1.5V。

3. 实验结果与理论计算结果基本一致,差异较小。

分析原因可能是由于实验中存在一些测量误差,并且元器件的实际参数与理论值存在一定的差异。

六、实验心得通过本次实验,我深刻理解了电路分析的基本方法和原理,掌握了欧姆定律和戴维南定理的应用。

同时,我也体会到了实验中的一些注意事项,例如测量误差的影响,元器件参数的实际差异等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电路分析等效电源定理实验报告
一、实验名称
等效电源定理
二、实验目的
1. 验证戴维宁定理和定理的正确性,加深对该定理的理解。

2. 掌握测量有源二端网络等效参数的一般方法。

三、原理说明
1. 任何一个线性含源网络,如果仅研究其中一条支路的电压和电流,则可将电路的其余部分看作是一个有源二端网络(或称为含源一端口网络)。

戴维宁定理指出:任何一个线性有源网络,总可以用一个电压源与一个电阻的串联来等效代替,此电压源的电动势Us等于这个有源二端网络的开路电压Uoc,其等效阻R0等于该网络中所有独立源均置零(理想电压源视为短接,理想电流源视为开路)时的等效电阻。

定理指出:任何一个线性有源网络,总可以用一个电流源与一个电阻的并联组合来等效代替,此电流源的电流Is等于这个有源二端网络的短路电流I SC,其等效阻R0定义同戴维宁定理。

Uoc(Us)和R0或者I SC(I S)和R0称为有源二端网络的等效参数。

2. 有源二端网络等效参数的测量方法
(1) 开路电压的测量
在有源二端网络输出端开路时,用电压表直接测其输出端的开路电压Uoc。

(2)短路电流的测量
在有源二端网络输出端短路,用电流表测其短路电流Isc。

(3)等效阻R0的测量
Uoc
R0=──
Isc
如果二端网络的阻很小,若将其输出端口短路,则易损坏其部元件,因此不宜用此法。

四、实验设备
五、实验容
被测有源二端网络如图5-1(a)所示,即HE-12挂箱中“戴维宁定理/定理”线路。

(a) (b)
图 5-1
1. 用开路电压、短路电流法测定戴维宁等效电路的Uoc、R0。

按图5-1(a)接入稳压电源Us=12V和恒流源Is=10mA,不接入R L。

测出U O c和Isc,并计算出R0(测U OC时,不接入mA表。

),并记录于表1。

表1 实验数据表一
2. 负载实验
按图5-1(a)接入可调电阻箱R L。

按表2所示阻值改变R L阻值,测量有源二端网络的外特性曲线,并记录于表2。

表2 实验数据表二
3. 验证戴维宁定理
把恒压源移去,代之用导线连接原接恒压源处;把恒流源移去,这时,A、B两点间的电阻即为R0,然后令其与直流稳压电源(调到步骤“1”时所测得的开路电压Uoc之值)相串联,如图5-1(b)所示,仿照步骤“2”测其外特性,对戴氏定理进行验证,数据记录于表3。

表3 实验数据表三
4. 验证定理
在图5-1(a)中把理想电流源及理想电压源移开,并在电路接理想电压源处用导线短接(即相当于使两电源置零了),这时,A、B两点的等效电阻值即为定理中R0,然后令其
与直流恒流源(调到步骤“1”时所测得的短路电流Isc 之值)相并联,如图5-2所示,仿照步骤“2”测其外特性,对定理进行验证,数据记入表4。

图5-2
表4 实验数据表之四
六、实验结果分析
图2—
1
图2—2
1.步骤2和3,分别绘出曲线如图2—1.2—2
由这两个图可以明显看出图1中a等效于b,也即戴维南定理得证。

2.思考题
(1)在求戴维宁等效电路时,作短路试验,测I sc的条件是不接入负载。

本实验中可直接作负载短路实验。

因为电路本身带有电阻。

(2)图5-1(a)中所测的开路电压不是负载RL两端的电压,因为负载两端的电压是会随着RL大小而改变的,而开路电压Uoc是一个固定值。

(3)一个二端网络在部含有负载的情况下可以做短路实验。

相关文档
最新文档