原子磁力仪
地球物理仪器
分类号密级中国地质大学(北京)课程结课报告地球物理仪器学生姓名马敏院(系)地球物理与信息技术专业电子与通信工程学号任课教师邓明职称教授二O一四年四月1 前言球物理仪器是认识地球、资源探测、工程勘察、地质灾害监测的重要手段,是地球科学研究的基础,也是前沿技术。
在地球物理学领域,地球物理场主体上分为重力场、地磁场、电场、地热场、放射性辐射场和地震波场。
日常工作中对矿产资源、油气能源和环境的勘察与监测,对地震灾害的预测与预防,对地球深部圈、层结构以及物质组成和空间状态的探测等都是通过物理场完成的。
随着地球物理学在理论、方法和应用方面的不断进步,科学与技术发展的需求日益增加,相应学科的仪器与设备得到了迅速发展,物理学、力学、信息学和计算机技术中的一些新成就得到了广泛应用,地球物理观测的精度和对信息的分辨率不断提高。
地球物理勘探仪器是集当代先进技术如传感器、电子、计算机、数据传输和通讯等技术为一体的综合系统。
它的革新与发展总是伴随着新技术的推广和完善。
地球物理仪器按照所测量的地球物理场,主要分为重力仪、磁力仪、电法仪、浅层地震仪、测井仪以及放射性仪器等。
地球物理仪器在许多部分存在相似的电路,例如模拟通道和数字通道,前置放大电路和滤波电路,A/D采样和数模转换等,除此之外还会连接通信接口、显示接口以及键盘接口等等。
但是地球物理仪器往往又有自己的一些特点:(1)频带较宽,大动态范围;(2)高速、高分辨率和高信噪比;(3)集成度高,功能多但是功耗较低;(4)操作简单,轻便灵活,现场实时显示结果,宽工作温度范围,高稳定度在以上各个重要参数中,高分辨率是地球物理仪器的最为关键参数,这是因为在地球物理勘探中,传感器接收的信号一般都很小,如直流电法仪中,测量大地的自然电位时,信号可能只有几uV;地震勘探中,检波器接收的信号也只有几pV;瞬变电磁仪接收到的二次场信号也只有几nv。
这就要求A/D转换器具有很高的分辨率,因此目前的地球物理仪器设计中大都采用了24位△∑A/D采样技术,以达到高分辨率的目的。
原子磁力仪系统高增益平衡光电探测器的设计
原子磁力仪系统高增益平衡光电探测器的设计张鹏;陈洪娟;桂永雷;孙立凯【摘要】In order to achieve precision detection of the weak,divergent and fast modulated optical signal in atomic magnetometer systems and overcome the disadvantages of traditional balanced detectors with small light-receiving areas,small gains,nonadjustable center distances between eachpair of photodiodes and incompatible with free space optical signal detection,anapproachbased on Kirchhoff's law of balanced differential amplification and a fine tuning methodbased on parallel tracks pads are adopted.Ahigh-gain balanced photodetectorisdesigned and produced,and the working principle and structure composition are introduced.First,for the features of large spot divergence and high modulation rate,a high-speed photodi ode with a 10 mm×10 mm large light-receiving area isdetermined;then a pair of parallel track padswhich enabledouble-diode center spaceto be continuously adjusted from 20 mm to 60 mm isdesigned,which enhancesthe compatibilitywith a variety of optical systems;Finally,a two-stage amplifier circuit is designed to achieve the high gain characteristic.Experimental results show that the detector achieves a-3 dB bandwidth of 800 kHz,a signal transimpedance gain of 0.91 MΩ,and a ***************************,thisbalancedphotodetectorfairly meets the needs of optical signal detection of atomic magnetometer systems.%为了实现对原子磁力仪系统中微弱、发散、快速调制的光信号的精密检测,克服传统平衡探测器接光面积小、增益小、光电管间距不可调及与自由空间光信号探测不兼容等缺点,采用基于基尔霍夫定律的平衡差分放大法和基于平行轨道焊盘的精调方法,设计并制作了高增益平衡光电探测器,并介绍了其工作原理和结构组成.首先,针对光斑发散大和调制速率快的特点确定了具有10mm×10mm大接光面积的高速光电管;然后设计了双管中心间距从20~60mm连续可调的平行轨道焊盘,增强其对各种光学系统的兼容性;最后,利用两级放大电路设计实现了高增益特性.实验结果表明,该探测器-3dB带宽达到800kHz,信号跨阻增益达0.91MΩ,在70kHz时的信噪比为38.5dB,能够满足原子磁力仪系统光信号检测的要求.【期刊名称】《激光与红外》【年(卷),期】2017(047)006【总页数】6页(P755-760)【关键词】平衡光电探测器;原子磁力仪;接光面积;高增益;信噪比【作者】张鹏;陈洪娟;桂永雷;孙立凯【作者单位】哈尔滨工程大学水声工程学院,黑龙江哈尔滨150001;哈尔滨工程大学水声技术重点实验室,黑龙江哈尔滨150001;中国电子科技集团公司第四十九研究所,黑龙江哈尔滨150001;哈尔滨工程大学水声工程学院,黑龙江哈尔滨150001;哈尔滨工程大学水声技术重点实验室,黑龙江哈尔滨150001;中国电子科技集团公司第四十九研究所,黑龙江哈尔滨150001;中国电子科技集团公司第四十九研究所,黑龙江哈尔滨150001【正文语种】中文【中图分类】TN247平衡光电探测器是一种基于平衡零差探测技术和光电探测技术的新型差分式光电探测器,因其具有高共模抑制比、高速和高灵敏度特性而成为平衡零拍探测技术的核心器件。
高稳定激光原子磁力仪恒流源电路设计
高稳定激光原子磁力仪恒流源电路设计陈立杰;黄光明;杨国卿【摘要】针对用于原子磁力仪的895 nm VCSEL激光器,提出了一种电路结构简单,高稳定性的压控恒流源电路.此电路使用了一种巧妙的精密恒流源电路与一种常见的压控微电流源电路相并联,在保证高稳定性和一定精度的基础上,实现了低成本、小体积和低功耗.通过实验检测表明,恒流源的稳定性优于10-6A(最大波动0.35μA),电流步进连续可调,电路面积为4.5 cm ×4.5 cm,最大功耗为468 mW,能够很好地满足小型激光泵浦的原子磁力仪对激光器的控制要求.【期刊名称】《激光与红外》【年(卷),期】2019(049)008【总页数】7页(P1007-1013)【关键词】高稳定性;VCSEL激光器;恒流源;磁力仪【作者】陈立杰;黄光明;杨国卿【作者单位】华中师范大学物理科学与技术学院,湖北武汉430079;华中师范大学物理科学与技术学院,湖北武汉430079;杭州电子科技大学电子信息学院,浙江杭州310018【正文语种】中文【中图分类】TN7071 引言高精度的激光泵浦原子磁力仪是分析和测量磁场的有效工具,学科交叉研究的开展使相关的弱磁测量技术发展迅速,高精度磁测技术在地球物理勘探、地质灾害预报、海陆矿藏勘测、环境监测和生物医药等领域展现出巨大的潜力。
同时不同的应用领域对原子光泵磁力仪控制系统的功耗和体积提出了不同的要求[1-2]。
原子磁力仪系统的光源部分主要由半导体激光器及相关控制器、光路元件组成。
激光器在磁力仪中非常重要,是光源部分的核心组件[3]。
在激光器的应用过程中,需要激光器有较高的功率稳定性以及激光的波长稳定性,驱动电流的稳定和温度都会引起激光器的功率和波长变化。
因此设计能够稳定激光器工作温度与输出功率的驱动电路非常必要[4-6]。
虽然很多的高精度商用电流源(比如Anglent的B2902A)都可以满足对激光器电流的控制精度和稳定性要求,但是商用电流源通常价格昂贵,体积和功耗都比较大,不适合集成到自主研发的磁力仪当中。
抽运-检测型非线性磁光旋转铷原子磁力仪的研究
抽运-检测型非线性磁光旋转铷原子磁力仪的研究缪培贤;杨世宇;王剑祥;廉吉庆;涂建辉;杨炜;崔敬忠【摘要】报道了一种抽运-检测型的非线性磁光旋转铷原子磁力仪.其原理是线偏振光通过处于外磁场环境中被极化的原子介质后,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致光的偏振方向会产生与磁场相关的转动.分析了该磁力仪的工作原理,并测试了它对不同磁场大小的响应.测试结果表明,磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT.进一步研究了不同磁场下原子系综极化态的横向弛豫时间,讨论了原子磁力仪高磁场采样率的获得方法.本文的原子磁力仪在5000—100000 nT的磁场测量范围内磁场采样率可实现1—1000 Hz范围内可调,能够测量低频的微弱交变磁场.本文的研究内容为大磁场测量范围、高灵敏度、高磁场采样率的原子磁力仪研制提供了重要参考.%We report a rubidium atomic magnetometer based on pump-probe nonlinear magneto-optical rotation. The rubid-ium vapor cell is placed in a five-layer magnetic shield with inner coils that can generate uniform magnetic fields along the direction of pump beam, and the cell is also placed in the center of a Helmholtz coil that can generate an oscillating magnetic field perpendicular to the direction of pump beam. The atoms are optically pumped by circularly polarized pump beam along a constant magnetic field in a period of time, then the pump beam is turned off and a π/2 pulse of oscillating magnetic fiel d for 87Rb atoms is applied. After the above process, the individual atomic magnetic moments become phase coherent, resulting in a transverse magnetization vector precessing at the Larmor frequency in the mag-netic field. The linearly polarized probingbeam is perpendicular to the direction of magnetic field, and can be seen as a superposition of the left and right circularly polarized light. Because of the different absorptions and dispersions of the left and right circularly polarized light by rubidium atoms, the polarization direction of probing beam rotates when probing beam passes through rubidium vapor cell. The rotation of the polarization is subsequently converted into an electric signal through a polarizing beam splitter. Finally, the decay signal related to the transverse magnetization vector is measured. The Larmor frequency proportional to magnetic field is obtained by the Fourier transform of the decay signal. The value of magnetic field is calculated from the formula: B =(2π/γ)f , where γ and f are the gyromagnetic ratio and Larmor frequency, respectively. In order to measure the magnetic field in a wide range, the tracking lock mode is proposed and tested. The atomic magnetometer can track the magnetic field jump of 1000 nT or 10000 nT, indicating that the atomic magnetometer has strong locking ability and can be easily locked after start-up. The main performances in different magnetic fields are tested. The results show that the measurement range of the atomic magnetometer is from 100 nT to 100000 nT, the extreme sensitivity is 0.2 pT/Hz1/2, and the magnetic field resolution is 0.1 pT. The transverse relaxation times of the transverse magnetization vector in different magnetic fields are obtained, and the relaxation time decreases with the increase of the magnetic field. When the measurement range is from 5000 nT to 100000 nT, the magnetic field sampling rate of the atomic magnetometer can be adjusted in a range from 1 Hz to 1000 Hz. Theatomic magnetometer in high sampling rate can measure weak alternating magnetic field at low frequency. This paper provides an important reference for developing the atomic magnetometer with large measurement range, high sensitivity and high sampling rate.【期刊名称】《物理学报》【年(卷),期】2017(066)016【总页数】11页(P47-57)【关键词】原子磁力仪;非线性磁光旋转;灵敏度;磁场采样率【作者】缪培贤;杨世宇;王剑祥;廉吉庆;涂建辉;杨炜;崔敬忠【作者单位】兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州 730000;兰州空间技术物理研究所, 真空技术与物理重点实验室, 兰州730000【正文语种】中文报道了一种抽运-检测型的非线性磁光旋转铷原子磁力仪.其原理是线偏振光通过处于外磁场环境中被极化的原子介质后,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致光的偏振方向会产生与磁场相关的转动.分析了该磁力仪的工作原理,并测试了它对不同磁场大小的响应.测试结果表明,磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT.进一步研究了不同磁场下原子系综极化态的横向弛豫时间,讨论了原子磁力仪高磁场采样率的获得方法.本文的原子磁力仪在5000—100000 nT的磁场测量范围内磁场采样率可实现1—1000 Hz范围内可调,能够测量低频的微弱交变磁场.本文的研究内容为大磁场测量范围、高灵敏度、高磁场采样率的原子磁力仪研制提供了重要参考.高灵敏度的原子磁力仪在生物医学[1,2]、惯性导航[3,4]、军事磁异反潜[5]、基础物理研究等[6−9]领域具有重要的应用.目前国际上出现了Mz和Mx模式的光泵磁力仪、相干布居囚禁磁力仪、非线性磁光旋转(nonlinear magneto-optical rotation,NMOR)磁力仪、无自旋交换弛豫(spin-exchange relaxation free,SERF)磁力仪等多种原子磁力仪[10],其中SERF磁力仪灵敏度已达到fT/Hz1/2量级[11−13].近年来,国内有多家单位开展了原子磁力仪的研究.例如浙江大学研制了铷光泵磁力仪,零磁场附近灵敏度达到0.5 pT/Hz1/2[14];北京大学详细讨论了铯光泵磁力仪的参数优化问题,得到最优的灵敏度为2.5 pT/Hz1/2[15];国防科学技术大学研制了NMOR铷原子磁力仪,测量范围为±60 nT,灵敏度达到1 pT/Hz1/2[16],后来经过进一步优化实验条件,灵敏度达到0.2 pT/Hz1/2[17].总体而言,国内原子磁力仪的研制还处于起步阶段,在灵敏度、测量范围、磁场采样率等指标上还有很大的提升空间[18].本文系统地研究了抽运-检测型的NMOR铷原子磁力仪,测试结果表明,磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT,磁场采样率最高可达1000 Hz.研究的NMOR铷原子磁力仪用两束激光完成外磁场中原子系综极化态的制备与探测,圆偏振抽运光与外磁场平行,线偏振探测光与外磁场垂直.铷原子磁力仪采用87Rb原子D1线跃迁制备极化态原子介质,即基态52S1/2到第一激发态的52P1/2的跃迁,对应波长为795 nm.基态52S1/2的两个精细能级分别是52S1/2(Mj=−1/2)和52S1/2(Mj=+1/2),795 nm的左旋圆偏振光(σ+光子)可被处于52S1/2(Mj= −1/2)基态的87Rb原子吸收,使得87Rb原子跃迁到52P1/2(Mj=+1/2)激发态上,激发态87Rb原子通过辐射光子后跃迁到52S1/2(Mj=−1/2)或52S1/2(Mj=+1/2)基态上,左旋圆偏振光持续作用将使铷泡内绝大部分87Rb原子最终处于52S1/2(Mj=+1/2)基态上.同理,右旋圆偏振光(σ−光子)持续作用将使铷泡内绝大部分87Rb原子最终处于52S1/2(Mj=−1/2)态上.这样,圆偏振的抽运光完成了原子系综极化态的制备.这里引入二能级磁共振的经典物理图像来解释NMOR铷原子磁力仪的工作原理[19].经过抽运光作用后,极化态的87Rb原子磁矩与外磁场B近似平行或反平行.在与外磁场垂直的平面内施加角频率ω约等于拉莫尔进动频率ω0的激励磁场B′[19],原子磁矩将在实验室坐标系中做复杂的运动,而在以角频率ω旋转的转动坐标系中,原子磁矩绕B′做进动.由于铷泡内原子间频繁的碰撞,在激励磁场的作用下使大部分铷原子磁矩绕外磁场进动的相位角趋于一致,原子系综呈现出绕外磁场进动的宏观磁化强度[20].原子磁矩在旋转坐标系中进动π角度时,相当于在外磁场B量子化轴方向上原子发生了磁共振跃迁.如果激励磁场持续作用,87Rb原子将在两个基态能级间来回跃迁.本文NMOR铷原子磁力仪要求原子磁矩在旋转坐标系中进动π/2角度,即原子系综宏观磁化强度进动到与外磁场B垂直的平面内,然后关闭激励磁场.线偏振光可以看作是左、右圆偏振光的矢量叠加,当线偏振的探测光穿过铷泡时,由于原子对线偏振光中左、右圆偏成分不同的吸收和色散,导致线偏振光的偏振方向会随着原子磁矩绕外磁场的拉莫尔进动而相对原来偏振方向做摆动,用差分探测方式探测偏振光偏振方向的摆动即可获得原子磁矩拉莫尔进动自由弛豫信号,并由此信号傅里叶变换出拉莫尔进动频率.由外磁场B与拉莫尔进动频率f的依赖关系可获得外磁场大小[18]:其中γ是旋磁比.对于87Rb原子,γ/2π的值为6.99583 Hz/nT[18].NMOR铷原子磁力仪要求探测光不能过于破坏原子系综的极化态,显然探测光的频率不能等于87Rb原子的D1线跃迁频率.我们在实验中设定探测光频率相对于87Rb原子的D1线跃迁频率红失谐4 GHz.研制的NMOR铷原子磁力仪如图1所示.铷泡为Φ25 mm×50 mm的圆柱型气室,气室中充有100 Torr的氮气缓冲气体,采用交流无磁加热使铷泡工作在100◦C.待测外磁场B方向与抽运光方向平行,与探测光方向垂直.实验时抽运激光被扩束为10 mm×30 mm的长方形光斑,光强为20µW/mm2;探测光为直径2mm的圆斑,进入铷泡前光功率为100µW.原子磁力仪具体工作过程是:795 nm抽运激光经过声光调制器AOM和1/4玻片形成圆偏振光,扩束后作用在铷泡上,将87Rb原子磁矩抽运在与外磁场平行的方向上;抽运激光作用一段时间后关闭,用信号源给亥姆霍兹线圈输入特定时长的正弦交变信号以产生原理部分描述的激励磁场,驱动87Rb原子磁矩在与外磁场垂直的平面内绕外磁场B做拉莫尔进动;红失谐的探测激光经过偏振片,成为线偏振光穿过铷泡,用偏振分光棱镜(PBS)、光电探测器、差分放大电路、美国NI公司的PCI-5922数据采集卡和计算机中编写的Labview程序实现铷原子拉莫尔进动信号的提取及处理,得到外磁场大小.计算机可设定数字信号处理(DSP)模块的时序组合,实现磁场采样率的设定.DSP给声光调制器AOM、信号源和PCI-5922数据采集卡输入电平触发信号,分别控制作用于铷泡的抽运激光开或关、正弦交变磁场开或关以及PCI-5922数据采集卡的采集触发.图1中铷泡、铷泡加热模块、亥姆霍兹线圈被置于五层坡莫合金的磁屏蔽筒内,磁屏蔽筒内含有可产生精密待测磁场的线圈.本文系统地研究了NMOR铷原子磁力仪的测量范围、灵敏度、分辨率、磁场采样率这些性能指标.在具体介绍这些内容之前,有必要先描述原子磁力仪的时序控制过程及跟踪式锁频过程.首先介绍原子磁力仪时序控制过程.图2显示了NMOR铷原子磁力仪在关闭抽运光后不同时长激励磁场的作用效果,外磁场环境为10000 nT.在原理部分描述到,如果抽运光作用结束后激励磁场持续作用,87Rb原子将在两个基态能级间来回跃迁.图2(a)激励磁场作用10 ms,反映了该物理过程.图2(a)中插图显示了0.5 Ms时间内的测试结果,一个包络终止代表着87Rb原子在外磁场量子化轴方向上两个基态能级间的一次跃迁.将激励磁场作用时间设定为0.1 Ms,即原子系综的宏观磁化强度进动到与外磁场垂直的平面内,测试结果如图2(b)所示,由自由弛豫过程中的正弦信号可傅里叶变换出拉莫尔进动频率.图3(a)显示了NMOR铷原子磁力仪工作时的时序示意图;图3(b)显示在10000 nT磁场环境下获得的实测数据,原子磁力仪的工作周期T=10ms,抽运激光作用时长t1=3 ms,激励磁场作用时长t2=0.1Ms,该时序磁场采样率为100 Hz;图3(c)是图3(b)中的部分曲线的放大.其次介绍原子磁力仪跟踪式锁频过程,该过程在Labview程序中完成.Labview程序在每一个原子磁力仪工作周期内能够获得拉莫尔进动频率和外磁场数值,将前一个工作周期中获得的拉莫尔进动频率设定为下一个工作周期中信号源的输出频率,即实现了跟踪式锁频.本文描述的原子磁力仪跟踪式锁频方法与Mz光泵磁力仪不同,即使激励磁场振荡频率偏离拉莫尔进动频率很远,只要特定时长激励磁场的作用能够使原子系综横向磁化强度矢量不为零,本文描述的原子磁力仪就能够实现跟踪式锁频.为了验证跟踪式锁频能力,设计这样的实验:设定原子磁力仪工作时序为T=100Ms,t1=30ms,t2=0.1Ms.设定激励磁场振荡频率为70 kHz,对应约10000 nT的测量磁场.保持激励磁场振荡频率不改变,改变线圈电流,使测量磁场从5000nT增加至15000 nT.图4(a)显示激励磁场关闭后磁力仪获得的自由弛豫正弦信号最大振幅随着扫描磁场的变化,可以看出在10000 nT附近自由弛豫正弦信号振幅最大.从原理上讲,只要横向磁化矢量不为零,铷泡中的铷原子就能够对线偏振光中左、右圆偏成分实现吸收和色散,通过差分探测获得与磁场相关的自由弛豫正弦振荡信号.横向磁化矢量越大,会使自由弛豫正弦振荡信号的振幅越大.在工作原理部分我们重点描述了激励磁场振荡角频率ω约等于拉莫尔进动角频率ω0的情况,实际上当ω与ω0相差较大时,在转动坐标系中原子磁矩会感受一有效磁场(有效磁场的描述详见参考文献[19])的作用,且在转动坐标系中磁矩进动角频率ω1为[19]可以分析,设定ω0=ω时特定时长的激励磁场作用满足π/2的脉冲效果,使横向磁化矢量最大;而后因外界磁场改变导致ω0与ω相差较大时,在特定时长内激励磁场的作用效果ω1t2可能会出现3π/2+δ,5π/2+δ′等脉冲效果,其中δ或δ′的绝对值小于等于π/2,在转动坐标系中该脉冲效果使原子磁矩在与外磁场垂直平面内的投影矢量的模达到最大值,即横向磁化矢量达到极大值,因此图4(a)中在10000 nT两侧出现若干峰值也不难理解.图4(b)显示在上述扫描磁场过程中磁力仪输出的磁场值,在自由弛豫正弦信号振幅最小时易出现与外磁场无关的数据,图4(b)中若干跳点输出磁场值用(1)式换算成频率,发现该频率正好等于铷泡交流无磁加热的输出频率.图4(b)的实验结果表明,如果该原子磁力仪在跟踪式锁频模式下工作,在很宽的磁场范围内磁力仪能够实现瞬时锁定.设定磁场线圈电流使磁屏蔽筒内磁场在10000 nT 和9000 nT,或者50000 nT和40000 nT之间来回跃变,采用跟踪式锁频模式,实验结果如图4(c)和图4(d)所示,表明该原子磁力仪对1000 nT或10000 nT的跃变磁场能够实现瞬时锁定,分别对应着7 kHz或70 kHz的频率跃变.上述实验结果表明本文描述的原子磁力仪跟踪式闭环锁定可行,而且具有很强的闭环锁定能力.接下来详细介绍NMOR铷原子磁力仪的各项性能指标.1)磁场测量范围本文的NMOR铷原子磁力仪用精密电流源给磁屏蔽筒中的磁场线圈通入逐渐增加的电流I来检验磁场测量范围,采用跟踪式锁频模式测量外磁场B的大小,测试结果如图5所示.原子磁力仪可响应100—100000 nT范围内的磁场.图5中数据线性拟合结果为从表达式(3)可知,当线圈电流I为零时,磁屏蔽筒内有约27 nT的剩余磁场.2)灵敏度和分辨率本文采用磁场噪声功率谱密度(@1 Hz)来表征原子磁力仪的灵敏度.值得注意的是,目前一些文献采用功率谱或者均方根幅度谱来表征原子磁力仪的灵敏度,从物理意义上来说是不准确的.功率谱密度使测量独立于信号持续时间和采样数量,通过功率谱密度测量可检测信号的本底噪声.若采用功率谱或均方根幅度谱,我们在实验中发现随着采样时间的延长会得到更优的灵敏度指标,显然用于表征原子磁力仪的灵敏度指标不合理.首先分析500 nT外磁场环境下如何获得磁力仪的灵敏度指标.图6(a)显示了截取的自由弛豫正弦信号,代表经过铷泡的线偏振探测光偏振方向的摆动.图6(b)是图6(a)中数据的快速傅里叶变换(FFT),分析出的拉莫尔进动频率为3.5 kHz,对应着约500 nT的外磁场.图6(c)表示300 s时间内采集的磁场数据,磁场采样频率为10 Hz,磁场波动小于10 pT.图6(c)中插图部分显示了4 s时间内的磁场数据,原子磁力仪的磁场分辨率为0.1 pT.图6(d)是由图6(c)中磁场数据处理得到的噪声功率谱密度,用1 Hz频点附近11个数据的平均值代表原子磁力仪的灵敏度,得到灵敏度指标为0.2 pT/Hz1/2.本研究采用美国安捷伦科技公司的B2912 A型精密电流源产生待测磁场,电流源精度为10−6,当电流源输出的量程值分别为1MA,10MA,100MA,1 A时,分别对应着1 nA,10 nA,100 nA,1µA的电流分辨率.原子磁力仪测量的磁场由电流源产生,因此电流源的噪声将反映在磁力仪灵敏度指标测试中.图7显示了磁力仪灵敏度指标和线圈电流与外磁场大小的依赖关系.当I>100 MA时,磁力仪灵敏度约为12pT/Hz1/2,对应电流分辨率为1µA;当10 MA<I<100 MA时(图中阴影部分),磁力仪灵敏度约为1 pT/Hz1/2,对应电流分辨率为100 nA;当1MA<I<10 MA时,磁力仪灵敏度约为0.2 pT/Hz1/2,对应电流分辨率为10 nA;特殊地,当I<1 MA时,在50 nT磁场环境中磁力仪的灵敏度依旧为0.2 pT/Hz1/2,此时对应电流分辨率为1 nA.综上所述,本文的NMOR铷原子磁力仪的极限灵敏度为0.2 pT/Hz1/2.图7中线圈电流I与外磁场B在1 MA附近呈现非严格的线性关系,这是由磁屏蔽筒内的剩余磁场导致的,可参考表达式(3).3)横向弛豫时间对磁场大小的依赖关系原子系综宏观磁化强度被激励磁场作用至与外磁场垂直的平面内,该横向磁化强度将呈指数形式衰减,衰减函数的时间常数为横向弛豫时间T2,即信号幅度衰减至e−1倍所需的时间[20].本文中用y=A exp(−t/T2)函数来拟合出T2.图8(a)显示了500 nT磁场下的弛豫信号,此时原子磁力仪的工作周期T=100ms,抽运激光作用时长t1=30 Ms,激励磁场作用时长t2=5 Ms.以激励磁场关闭时为时间零点,将弛豫信号中的波峰随时间的变化曲线绘制在图8(b)中,通过指数拟合得到横向弛豫时间T2为5.946 Ms.图8(c)显示了横向弛豫时间随磁场的变化,可以看出随着磁场的增加,横向弛豫时间逐渐减小,这是由于铷泡所在区域磁场梯度的增加导致了原子系综宏观磁化强度的弛豫加快.图8(c)的实验结果对Labview程序编写时自由弛豫信号截取时长的设定具有重要参考意义.4)磁场采样率磁场采样率S是原子磁力仪的一项重要指标.目前国内光泵磁力仪磁场采样率大都小于20 Hz,而国外已出现磁场采样率为100 Hz、甚至1000 Hz的原子磁力仪[18].例如美国Geometrics公司推出的G-824 A型航空铯磁力仪的采样率达到了1000 Hz,而美国限制出口该磁力仪[18].本文的NMOR铷原子磁力仪通过设定工作周期T、抽运激光作用时长t1、激励磁场作用时长t2,可实现磁场采样率S在1—1000 Hz范围内可调.实验中当以1000 Hz磁场采样率测量10000 nT附近的恒磁场时,90%的数据落在(10000±0.1)nT以内.高磁场采样率的磁力仪可用于测量环境中低频的交变磁场,图9显示了原子磁力仪测量(10000±100)nT范围内频率为100 Hz交变磁场的实验结果,测量时激励磁场振荡频率固定为70 kHz.图9(a)是原子磁力仪采集的原始数据,随着磁场的波动原始信号的最大振幅也跟着波动;图9(b)是原子磁力仪时序示意图,设定工作周期T=1 Ms,抽运激光作用时长t1=0.3 ms,激励磁场作用时长t2=0.1 ms;图9(c)显示了测量的磁场数据.NMOR铷原子磁力仪的拉莫尔进动频率是由自由弛豫正弦信号的快速傅里叶变换曲线拟合得到,因此磁场采样率S的设定需要考虑与拉莫尔进动频率相适应,必须保证有足够多的数据能够精确拟合出拉莫尔进动频率.本文原子磁力仪在5000—100000 nT待测磁场范围内实现磁场采样率S在1—1000 Hz范围内可调,在100—5000 nT待测磁场范围内可设定S≤20 Hz.另外,本文描述的原子磁力仪在高磁场采样率条件下无法使用跟踪式锁频,这是因为跟踪式锁频步骤是在Labview程序中实现,而在程序流程中计算机与信号源通讯需要时间,采用跟踪式锁频测量时S≤20 Hz.信号源输出频率为定值时磁场采样率S可在1—1000 Hz范围内可调,参考图4(a)的实验结果,适用于测量稳定磁场附近小于1000 nT的磁场波动.本文详细地描述了NMOR铷原子磁力仪的工作原理和测量方法,系统地研究了测量范围、灵敏度、分辨率、横向弛豫时间、磁场采样率等性能指标.实验结果表明原子磁力仪测量范围为100—100000 nT,极限灵敏度为0.2 pT/Hz1/2,磁场分辨率为0.1 pT,制备的铷原子极化态横向弛豫时间在毫秒量级,磁场采样率最高可达1000 Hz.本文用噪声功率谱密度讨论原子磁力仪的灵敏度指标时考虑了精密电流源的电流噪声,该做法对磁力仪的灵敏度指标标定具有借鉴意义.本文原子磁力仪的若干性能指标在国内以及国际上都具有先进性.除了上述列出的性能指标外,磁力仪的空间分辨率也是磁力仪的一项重要指标,而本研究采用Φ25 mm×50 mm的圆柱型气室,体积较大,下一步可研究微型原子气室的原子磁力仪.本研究的原子磁力仪在生物医学、基础物理研究方面具有潜在的应用前景.本文所描述的原子磁力仪实验装置是在浙江工业大学林强教授及其团队老师吴彬、郑文强、程冰,以及浙江科技学院李曙光副教授的帮助下搭建完成的,上述研究人员在作者搭建原子磁力仪过程中给予了诸多技术资料、技术协助和有益讨论.作者本人现场参观了浙江工业大学的原子磁力仪装置,从中获得启发,完成了本文的研究内容.作者对林强教授团队表示由衷的感谢.We report a rubidiuMatoMicMagnetoMeter based on puMp-probe nonlinearMagneto-op tical rotation.The rubidiuMvapor cell is p laced in a five-layer Magnetic shield With inner coils that can generate uniforMMagnetic fields along the direction of puMp beam,and the cell is also p laced in the center of a Helmholtz coil that can generate an oscillating Magnetic field perpendicular to the direction of puMp beam.The atoMs are op tically puMped by circularly polarized puMp beaMalong a constant magnetic field in a period of time,then the puMp beaMis turned off and aπ/2 pulse of oscillating magnetic field for87Rb atoMs is app lied.A fter the above p rocess,the individual atoMic magnetic moments becoMe phase coherent,resu lting in AtransverseMagnetization vector precessing at the LarMor frequency in theMagnetic field.The linearly polarized probing beaMis perpendicular to the direction ofmagnetic field,and can be seen as a superposition of the left and right circularly polarized light.Because of the diff erent absorptions and dispersions of the left and right circularly polarized light by rubidiuMatoMs,the polarization direction of p robing beaMrotateswhen probing beaMpasses through rubidiuMvapor cell.The rotation of the polarization is subsequently converted into an electric signal through a polarizing beaMsplitter.Finally,the decay signal related to the transverseMagnetization vector isMeasured.The LarMor frequency p roportional to Magnetic field isobtained by the Fourier transforMof the decay signal.The value ofmagnetic field is calculated froMthe formula:B=(2π/γ)f,where γ and f are the gyromagnetic ratio and LarMor frequency,respectively.In order toMeasure theMagnetic field in a Wide range,the tracking lock Mode is p roposed and tested.The atoMicMagnetoMeter can track themagnetic field juMp of 1000 nT or 10000 nT,indicating that the atoMicmagnetometer has strong locking ability and can be easily locked after start-up.The Main perforMances in diff erent Magnetic fields are tested.The results shoWthat the MeasureMent range of the atoMic magnetometer isfroM100 nT to 100000 nT,the extreme sensitivity is 0.2 pT/Hz1/2,and the magnetic field resolution is 0.1 pT.The transverse relaxation tiMes of the transverse Magnetization vector in diff erent Magnetic fields are obtained,and the relaxation tiMe decreases With the increase of the Magnetic field.When the MeasureMent range is froM5000 nT to 100000 nT,themagnetic field saMp ling rate of the atoMicmagnetometer can be ad justed in a range froM1 Hz to 1000 Hz.The atoMic MagnetoMeter in high saMp ling rate can Measure weak alternating Magnetic field at loWfrequency.This paper provides an iMportant reference for developing the atoMic MagnetoMeter With large measurement range,high sensitivity and high saMp ling rate.【相关文献】[1]Xu S,C raWford C W,Rochester S,Yashchuk V,Budker D,Pines A 2008 Phys.Rev.A 78 013404[2]Maser D,Pandey S,Ring H,Ledbetter MP,Knappe S,K itching J,Budker D 2011Rev.Sci.Instrum.82 086112[3]Kornack T W,Ghosh R K,RoMalis MV 2005 Phys.Rev.Lett.95 230801[4]Meyer D,Larsen M2014 Gyroscopy and Navigation 5 75[5]C leMT R 1998 Nav.Eng.J.110 139[6]Savukov IM,Seltzer S J,RoMalis MV 2005 Phys.Rev.Lett.95 063004[7]Budker D,RoMalis MV 2007 Nat.Phys.3 227[8]Savukov I M,RoMalis MV 2005 Phys.Rev.Lett.94 123001[9]Yashchuk V V,G ranwehr J,K iMball D F,Rochester S M,Trabesinger A H,U rban JT,Budker D,Pines A 2004 Phys.Rev.Lett.93 160801[10]Liu G B,Sun X P,Gu S H,Feng JW,Zhou X 2012 Physics 41 803(in Chinese)[刘国宾,孙献平,顾思洪,冯继文,周欣2012物理41 803][11]A llred J C,LyMan R N,Kornack T W,RoMalis MV 2002 Phys.Rev.Lett.89 130801[12]KoMinis I K,Kornack T W,A llred J C,RoMalis MV 2003 Nature 422 596[13]Dang H B,Maloof A C,RoMalis MV 2010 Appl.Phys.Lett.97 151110[14]Li S G,Zhou X,Cao X C,Sheng J T,Xu Y F,Wang Z Y,Lin Q 2010 Acta Phys.Sin.59 877(in Chinese)[李曙光,周翔,曹晓超,盛继腾,徐云飞,王兆英,林强2010物理学报59 877][15]Gu Y,Shi R Y,Wang Y H 2014 Acta Phys.Sin.63 110701(in Chinese)[顾源,石荣晔,王延辉2014物理学报63 110701][16]D ing Z C,Li Y Y,Wang Z G,Yang K Y,Yuan J 2015 sers 42 0408003(in Chinese)[丁志超,李莹颖,汪之国,杨开勇,袁杰2015中国激光42 0408003][17]Wang Z G,Luo H,Fan Z F,Xie Y P 2016 Acta Phys.Sin.65 210702(in Chinese)[汪之国,罗晖,樊振方,谢元平2016物理学报65 210702][18]Dong H B,Zhang C D 2010 Chin.J.Eng.Geophys.7 460(in Chinese)[董浩斌,张昌达2010工程地球物理学报7 460][19]Wang Y Q,Wang Q J,Fu J S,Dong T Q 1986 The Theory of FrequencyStandards(Beijing:Science Press)pp168–173(in Chinese)[王义遒,王庆吉,傅济时,董太乾1986量子频标原理 (北京:科学出版社)第168—173页][20]Ek lund E J 2008 Ph.D.D issertation(USA:University of California Irvine)PACS:07.55.Ge,32.60.+i,32.80.Xx,42.50.Gy DOI:10.7498/aps.66.160701†Corresponding author.E-Mail:*******************。
磁法勘探-磁力仪、磁法勘探的工作方法
第七章 磁力仪、磁法勘探的工作方法§7.1 磁测仪器一、概述磁力仪仅是观测磁场变化的仪器,种类很多。
但总的说来,可分为机械式磁力仪和电子式磁力仪两大类。
磁异常 0T T T a-=通常测量: 垂直磁异常:0Z Z Z a-= 水平磁异常:0H H H a-=总强度磁异常 0T T T -=∆我校:G-856质子旋进式磁力仪———— 测量T ∆、垂直水平梯度精度 0.1nT二、机械式磁力仪机械式磁力仪又称为磁秤,按照构造特征的差异,仪器可分为悬丝式和刃口式两类,而每一类又可分为测量磁场水平分量变化值的水平磁秤和测量磁场垂直分量变化值的垂直磁秤。
悬丝式垂直磁力仪的内部结构:平衡方程:(1)式中Z ——地磁场垂直分量m ——磁棒的磁矩P ——磁系受的重力θ——磁棒的偏转角τ——悬丝的扭力系数)(12S S Z -=∆ε三电子式磁力仪电子式磁力仪包括磁通门磁力仪、质子磁力仪、光泵磁力仪和超导磁力仪四种。
既可用于地磁场的相对测量,又可用于地磁场的绝对测量。
质子磁力仪的工作原理:物质的原子是由带正电的原于核和绕核旋转的带负电的电子组成,而原子核内又有不带电的中子和带正电的质子,氢的原子核中只有一个质子。
煤油、酒精、水等富含氢的物质,其分子中的电子的自旋磁距成对抵消。
其轨道磁矩也因分子间的相互牵制而被“封固”,除氢核以外的原子核的自旋磁矩也都互相抵消,唯有氢核即质子还存在自旋磁矩。
无外磁场存在时,这些质子的磁矩方向是杂乱的。
质子旋进的角频率ω与地磁场总强度成正比。
T p ⋅=γω 式中11810)0000075.06751987.2(--⋅⨯±=s T p γ——质子磁旋比(质子磁旋距与自旋角动量之比)nT九十年代以来,加拿大、美国和澳大利亚等国相继研制出了一些新产品。
1993年,加拿大Scintrex 公司推出了新型ENVI —MAG 质子磁力仪。
这是一种轻便型仪器(野外作业总重量5.5kg),主要用于环境工程等问题的勘查。
磁力仪简介
磁力仪简介北京地质仪器厂吴天彪磁学测量仪器,从测量的参数、测量的范围和用途来看,均极为广泛和复杂,本文仅限于介绍用于地磁学研究、磁法矿产资源勘探、环境地球物理学等方面的弱磁场(≤1×10-4 特斯拉)磁感应强度的测量仪器,通称为“磁力仪”。
1 磁力仪的分类及应用目前,常用于弱磁场、特别是地球磁场测量的磁力仪,无论是地磁台站的观测或野外地面磁测、航空、航天、海洋和井中磁测,从磁传感器的工作原理上看,大致可分为三大类[1],即:(1)基于电磁感应原理的磁通门磁力仪。
(2)基于核磁共振(NMR)原理的质子磁力仪、基于电子自旋共振(ESR)的光泵磁力仪和基于NMR与ESR的欧佛豪森(Overhauser)质子磁力仪(OVM)的共振磁力仪。
(3)基于超导量子干涉原理的超导磁力仪。
根据传感器的特点,所有共振磁力仪只能测定地磁场的总场的磁感应强度,称为标量磁力仪,而磁通门磁力仪和超导磁力仪的读数,既反映磁场的强度也反映磁场的方向,称为矢量磁力仪。
从使用广泛性来看,工作量最大的地面磁测,主力仪器是传统的直流激发的质子磁力仪、其次是光泵磁力仪和欧佛豪森质子磁力仪,在一些强磁区,也使用测量垂直分量的磁通门磁力仪。
航空磁测的主力是光泵磁力仪,目前多用4台仪器组成三维梯度系统,用三分量磁通门仪器作姿态改正。
光泵磁力仪也用于装在飞机上探测潜艇。
高温超导磁力仪用于时域电磁法的磁分量观测,低端灵敏度大大优于传统的感应式磁传感器。
在岩石和矿物的磁性测量及古地磁研究中超导磁力仪也得到广发的应用。
磁通门磁梯度仪和光泵梯度仪多用于探测地下未爆物(UXO)、地下管线、考古等。
在航天领域,地面地磁台站中,三分量的磁通门磁力仪和质子磁力仪得到广泛应用。
磁力仪测定的物理量是磁感应强度,其SI制计量单位是“特斯拉”(Tesla)。
1 Tesla = 103 mT =106 µT = 109 nT = 1012 pT= 1015 f T最常用的单位是nT (纳特)CGSM制的计量单位是“高斯”(Gs),1 T= 10,000 Gs从全球地磁图[2](图1)可以看出:赤道附近地磁场的磁感应强度约为20,000~30,000nT两极附近地磁场的磁感应强度约为600,000~80,000nT图1 全球地磁图2 磁力仪的主要技术指标以观测地磁场为主要目的的磁力仪,各种不同原理的仪器的主要技术指标,不尽相同,但大多数应有测量范围、灵敏度、分辨力、采样率、绝对精度、梯度容限、工作温度范围等。
光泵原子磁力仪原理
光泵原子磁力仪原理答案:光泵原子磁力仪的原理基于铯原子的超精细结构能级在外部磁场的作用下出现的塞曼分裂现象。
当外部磁场B存在时,铯原子能级会分裂,分裂的大小与磁感应强度成比例。
通过精确测定塞曼子能级间的频率,可以计算出外部磁场的大小。
具体实现过程中,无极铯光谱灯发出的光经过圆极化后,通过充有合适缓冲气体的铯气室,实现铯原子的光抽运,即原子全部聚集在某一个塞曼子能级上。
平衡后,铯原子不再吸收光子,光电二极管接收到的是稳定的光强值。
之后,调节铯气室周围的射频线圈中的射频场频率,当射频场RF频率为fL恰好等于塞曼子能级之间的跃迁频率时,引起铯原子在塞曼子能级间的跃迁,铯原子将继续吸收光子,导致光电二极管接收到的光强变小,即获得了塞曼跃迁谱线。
利用锁频装置(包括扫频式和自激式),可以实现系统的闭环锁定,利用频率计测量拉莫尔频率fL,再通过关系式γB=fL 即可求出磁场值。
光泵原子磁力仪是一种高灵敏度的磁场探测量子技术,利用光与原子相互作用实现对磁场的高灵敏度测量。
它利用特定的光束照射某些元素(如铷或氦的样品),在加热或放电激发的条件下,相当大一部分原子磁矩将相对于外磁场作一定方向的有序排列,即原子吸收光的能量由低能级提到高能级。
这种技术的基础是光泵作用和磁共振技术,由于采用磁共振的元素不同,光泵磁力仪分为氦磁力仪和碱金属磁力仪;按采用的电路不同可分为自激式磁力仪和跟踪式磁力仪。
延伸:一、光泵磁力仪的原理及应用光泵磁力仪是一种精确测量磁场的仪器,其原理是利用光泵浦技术将样品中的原子或分子激发到高能级,再通过探测技术来测量磁场的强度和方向。
它广泛应用于物理学、化学、材料科学等领域中的磁场研究和应用中。
二、为什么不能进行单分量的测量光泵磁力仪测量的磁场是由多个分量组成的,因此不能进行单分量的测量。
这是因为,磁场分量中的自由度并不是独立的,如果只测量其中一个分量,就无法得出整个磁场的准确信息。
三、多分量磁场测量方法针对光泵磁力仪不能进行单分量测量的问题,科学家们提出了多分量磁场测量方法。
一种用于CPT磁力仪的激光调制信号设计
p r o c e s s o f c u r r e n t mo d u l a t i o n o f v e r t i c a l c a v i t y s u r f a c e e mi t t i n g l a s e r s ( V C S E L ) o f t h e m a g n e t o me t e r , a s c h e me b a s e d
X I O N G T i a n — l i n , K O N G X i a o - j i a n , L E I X u a n — h u a ’ , Z H A O G u o — h u a
f / . N a v a l E n g i n e e r i n g U n i v e r s i t y , Wu h a n 4 3 0 0 3 3 , C h i n a ; 2 . No r t h C h i n a S e a F l e e t , Q i n g d a o 2 6 6 0 0 0 , C h i n a J
第2 8 卷第 3 期 2 0 1 3 年6 月
光 电技 术应 用
E LE CTRO一 0P TI C TE CHNOL0GY AP P LI CAT 1 0N
V 01 . 28. NO. 3
J u n e . 2 0l 3
・
激光技 术・
一
种用于 C P T 磁 力仪 的激 光调 制 信 号 设 计
调制需要 产生 低相位噪声凋制信号 , 提 出了一种基于锁相环频率合成 器的方 案。该方案从 C P T磁力仪的基本原理 出发 , 分析 了
C P T 磁 力仪对调制信号 的频率要求 , 根据锁相环频率合成基本原理 , 采用锁相环仿真软件 A D I s i mP L L 完成了频率合成器中关键
原子磁力仪
原子磁力仪1.研究背景磁场测量技术的发展和应用有着悠久的历史。
在我国东汉时期学者王充的著作《论衡》中就有司南的记载。
司南是磁罗盘的雏形,也是最原始的磁场测量仪器。
12世纪初,我国已把磁罗盘用于航海。
之后的几百年,特别是近年来,随着电磁感应、磁调制、电磁效应和超导效应等物理现象、物理原理的相继发现和有效利用,磁场测量技术有了很大发展。
目前比较成熟的磁场测量方法有:宏观领域的磁力法、电磁感应法、磁饱和法、电磁效应法、磁光效应法和微观领域的量子磁力仪测量方法等。
依据这些方法,相继出现了不同原理的各种磁场测量仪器。
目前,在考古工作,环境和工程调查,探测未爆炸的炸弹、地雷、水雷,在反潜战的磁异常探测,安全检查,探测水下沉船、铁质管道、钻井井位,以及在传统的应用领域—地质调查、油气和矿产勘查等各方面,都要求进行磁测工作,不仅仅是发现目标,而且要求绘制出高精度的磁异常图。
现代的第一种磁力仪—磁通门磁力仪,是二次世界大战中为了从空中侦察探测潜艇而研究、开发出来的,随后从上个世纪五十年代起,又发明了各种量子磁力仪,磁力仪的研究和开发工作仍在积极进行。
空间探测的需要,军事技术的需要,工程、环境和考古调查的需要,地质调查和矿产资源勘查的需要,医学诊断和生物磁学研究的需要,以及基础科学研究等各方面的需要是推动磁力仪研究开发的强劲动力。
正在使用的有质子磁力仪、欧弗豪泽效应磁力仪、氦3核子旋进磁力仪、光泵磁力仪、超导磁力仪(SQUID)和磁通门磁力仪(FGM);正在研究开发中的有固体电子自旋共振磁力仪、原子磁力仪。
上述磁力仪,除了磁通门磁力仪,都是根据量子理论设计、制造的。
我们通常可以把量子磁力仪分为核子自旋共振磁力仪和电子自旋共振磁力仪。
核子自旋共振磁力仪主要利用原子核在磁场中的自旋运动来测量磁场,包括质子磁力仪,欧弗豪泽效应磁力仪和氦3磁力仪。
电子自旋共振磁力仪利用原子核外电子在磁场中的自旋运动,主要包括光泵磁力仪和原子磁力仪。
Bell—Bloom型SERF原子磁力仪综述
猛。近些年 , 无 自旋交换 弛豫 原子磁力仪超越 了超导量子 干涉 磁力仪成 为 目前世 界上最 灵敏的磁强 计。首先介绍 了无 自旋 交
换弛豫原子磁力仪超高灵敏度 的根本 原因一 无 自旋交换弛豫 现象 , 以及 B e l l — B l o o m 型无 自旋 交换 弛豫原 子磁 力仪 机理 ; 接 着给 出了国 内外最常用 的 B e l l — B l o o m型无 自旋交换 弛豫 原子磁力仪 的装置结构 , 并对其各组成部分加 以详 细描述分析 ; 根据 原子磁
B e l l — B l o o m型 S E R F原 子 磁 力 仪 综 述
王言章 , 张
( 1 . 吉林大 学仪器科 学与电气工程学院
摘
雪 , 秦佳 男 , 陈
晨
1 3 0 0 6 1 )
长春
1 3 0 0 6 1 ; 2 . 吉林大学 地球 信息探测仪器教育部重点实验室 长春
mi l i t a r y a f f a i r s a n d e t c. As t he we a k ma g n e t i c ie f l d d e t e c t i o n t e c hn i qu e i s e nh a nc i n g,t he ma g ne t o me t e r d e v e l o ps r a pi d l y . Re c e nt y e a r s,
Re v i e w o f Be l l - Bl o o m s pi n- e x c ha ng e - r e l a x a t i o n- f r e e a t o mi c ma g n e t o me t e r
04磁力仪原理与结构
磁力仪的原理与结构4.1磁力仪概述通常把进行磁异常数据采集及测定岩石磁参数的仪器,统称为磁力仪。
为利用磁力勘探研究和勘查矿产资源,必须准确测量磁异常的量值,这就需要有高精度的仪器。
从20世纪至今,磁力勘探仪器经历了由简单到复杂,由利用机械原理到现代电子技术的发展过程。
按照磁力仪的发展历史,以及它应用的物理原理,可划分为:第一代磁力仪。
它是应用永久磁铁与地磁场之间相互力矩作用原理,或利用感应线圈以及辅助机械装置。
如机械式磁力仪、感应式航空磁力仪等。
第二代磁力仪。
它是应用核磁共振特性,利用高磁导率软磁合金,以及专门的电子线路。
如质子磁力仪,光泵磁力仪,及磁通门磁力仪等。
第三代磁力仪。
它是利用低温量子效应,如超导磁力仪磁力仪按其测量的地磁场参数及其量值,可分为:①相对测量仪器,如悬丝式垂直磁力仪等,它是测量地磁场垂直分量的相对差值;②②绝对测量仪器,如质子磁力仪等,它是测量地磁场总强度的绝对值;不过亦可测量梯度值。
若从磁力仪使用的领域来看,它们可分为:地面磁力仪、航空磁力仪、海洋磁力仪以及井中磁力仪。
下面为几种型号磁力仪照片CS2-61型悬丝式垂直磁力仪Scintrex公司ENVI质子磁力仪G858便携式铯光泵磁力仪G856F高精度的智能便携式磁力仪PMG-1质子磁力仪SM-5高精度铯光泵磁力仪4.2机械式磁力仪原理机械式是磁法勘探中最早使用的一类仪器。
1915年阿道夫·施密特刃口式磁称问世,20世纪30年代末,相继出现凡斯洛悬丝式磁称,其后它们成为广泛使用的二种地面磁测仪器。
它们都是相对测量的仪器。
因其测量地磁场要素的不同,又分为垂直磁力仪及水平磁力仪。
前者测量Z的相对差值,后者测量平面矢量H在二个方位上的相对值。
CS2-61型悬丝式垂直磁力仪基本结构——内部结构可分为四个部分:1.磁系;2.光系;3. 扭鼓和弹簧;4.夹固开关磁系受到地磁场垂直强度磁力(Z)、重力(g)及悬丝扭力(τ)三个力矩的作用,当力矩相互平衡时,磁棒会停止摆动。
基于Cs原子磁力仪的高灵敏度磁场方向测量方法
基于Cs原子磁力仪的高灵敏度磁场方向测量方法陈林;黄海超;董海峰【摘要】介绍了自旋调制标量原子磁强计矢量化测试方法,从主磁场幅值和横向磁场的测试灵敏度得到该方法的磁场方向测量灵敏度为0.75μrad/Hz1/2.从磁场方向测量的角度与其他标量原子磁强计矢量化测量方法进行了对比,表明:该方法更简洁,并且能直接给出主磁场方向与磁力线的偏离信号,在地震地磁监测和磁力线寻的制导等领域中具有独特的应用价值.%A measurement method of vectorization for spin modulated scalar magnetometer is introduced. Measurement sensitivity of the magnetic field direction in this way is 0.75μrad/Hz1/2 ,with the results of the experiment in main magnetic field amplitude and the sensitivity of the transverse magnetic field. Compared with other measurement methods of vectorization for scalar magnetometer in the direction of magnetic field,this method is more concise. In addition,it can show the main magnetic field direction and the deviation signal of magnetic lines of force directly,which has an unique application value in geomagnetic monitoring of earthquake and homing guidance of magnetic lines of force and other field.【期刊名称】《传感器与微系统》【年(卷),期】2017(036)008【总页数】4页(P11-13,17)【关键词】磁场方向;原子磁强计;自旋调制;高灵敏度【作者】陈林;黄海超;董海峰【作者单位】北京航空航天大学仪器科学与光电工程学院,北京100191;北京航空航天大学仪器科学与光电工程学院,北京100191;北京航空航天大学仪器科学与光电工程学院,北京100191【正文语种】中文【中图分类】TP212磁场方向是地磁测量中的重要参数之一[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
从人体到地雷中的金属,磁场可谓是无处不在。
连蛋白质等分子都可以产生独特的磁场。
能生成详细得出奇的人体图像的磁共振成像(MRI)和用来研究蛋白质和汽油等其他成分的核磁共振光谱(NMR)依靠的都是磁场信息。
但是目前用于探测这些微弱却很重要的磁场传感器都有不少缺陷。
有些较为轻便、廉价,但敏感性不足;有的敏感度高,但却不能移动、且昂贵、耗电。
原子磁力仪
如今,美国科罗拉多州博尔德市的美国国家标准与技术研究所物理学家基钦正在开发小型磁传感器,其敏感度完全可以与大且昂贵的传感器媲美。
这些大小相当于一粒米的传感器被叫做原子磁力仪。
基钦希望,有朝一日原子磁力仪能把轻便的MRI仪器和更快捷、更廉价的探测器等都合并在一起。
这种小型传感器有三个关键的元件,都垂直地叠加在一个硅芯片上。
用一个红外线激光器和一个红外线光电探测器把一个充满了汽化铯原子的玻璃和硅方晶体夹在中间。
如果没有磁场,激光就会直接穿过铯原子。
但一旦有了磁场,即便是非常微弱,这些原子的阵列也会发生变化,使它们吸收与磁场强度成比例的光。
而光电探测器会注意到这一变化。
基钦说:“它的配置非常简单,但敏感性相当强。
”
原子磁力仪已有约50年的历史了;大多都有大而敏感的蒸汽室,它们是采用玻璃吹制技术制成的,大小相当于汽水瓶。
最敏感的磁力仪可以探测出近似一个Femtotesla(磁场强度单位)级别的磁场,即地球磁场强度的500亿分之一。
基钦的创新在于将蒸汽室缩小到只有几个立方毫米的体积,从而既节约了电,又保留了可比的性能。
基钦和5名物理学家共同合作,利用微机械加工技术制做出了蒸汽室。
首先,他们把平版印刷术与化学蚀刻术结合在一起,在一块硅晶片上冲压出3毫米跨度的方孔,然后,再将硅片与一片玻璃紧紧夹住,施以高温和电压,生成一个焊接点,再把方孔变成一个带有玻璃底的无顶盒。
在真空室中,他们用一个微型玻璃注射器将盒子充满蒸汽铯原子,接着使用另一片玻璃施以高温后将盒子封装起来(这个操作步骤一定要在真空条件下进行,因为铯会与水和氧发生剧烈反应)。
然后,物理学家们再将做成的蒸汽室、红外激光器及光电探测器一起装在硅片上,给蒸汽室顶部和底部的导电薄膜通上电流,发出热量,让铯原子蒸发。
目前,基钦在实验室中能一次性制造出几个磁力仪,但他已设想出了可批量生产的方法。
从一个单硅片上同时刻出不同元件的多个副本。
几个硅晶片(每个都包含有不同元件的多个副本)可以相互层叠起来,然后,这些堆栈就可以切分出多个磁力仪了。
用这种廉价的方式,低功耗的传感器就可以被设置成由电池供电的便携式成像阵列。
这些阵列可轻易映射出磁场的强度和范围,一个阵列中的传感器越多,所提供的物体位置及形状的信息就越多。
例如,士兵使用这样的阵列就可以更快、更方便地发现未爆炸的炸弹和爆炸装置。
这种微型传感器还能彻底改变磁共振成像和核磁共振技术。
两种技术都要依靠笨重而又昂贵的强磁体,而携带的冷却系统也同样昂贵。
因为基钦的传感器能探测非常微弱的磁场,而纳入其中的磁共振成像仪和核磁共振仪采用非常弱的磁体就能得到很好的图像,因此它们的体积更小、造价也少。
因此,相信磁共振成像最终能得到更广泛的应用。
从此,医生可以用它来检查病人体内不能暴露在强磁场下的心脏起搏器或其他金属植入物。
一经开发,这种便携系统就能用于救护车或战场上。
而且,核磁共振仪也能走出实验室进入野外,帮助石油和矿业公司寻找和评估地下的矿藏。
最近,基钦和他的同事表示,这种传感器可以测量由水产生的核磁共振信号。
他说,还有大量的工作要做,该装置才能分辨出多种化学物质发出的微弱信号,区分水样中的各种可能污染物。
同样,还需要大量研究才可制造出便携式磁共振成像仪。
但有了基钦的微型磁力仪,我们面临的挑战将从收集磁信息转移到这些信息的解释上。
人物:基钦,美国国家标准与技术研究所
定义:大小只有一颗米粒的微型原子磁力仪耗电少,对非常微弱的磁场也都非常敏感。
影响:造价低廉的小型磁力仪可能用于便携式磁共振成像仪,成为人们探测地下爆炸装置的工具并能远程评估矿藏。
背景:未来10年,基钦的微型传感器有着广泛的应用前景。
(保尔扎克(Katherine Bourzac))。