柴油机曲柄连杆机构的设计方案

柴油机曲柄连杆机构的设计方案
柴油机曲柄连杆机构的设计方案

目录

前言2

第一章柴油机总体设计方案4§1.1 高速柴油机设计的要求4

§1.2 柴油机设计的内容4

§1.2.1高速柴油机用途的确定4

§1.2.2 柴油机类型的确定5

§1.2.3 柴油机主要设计参数的确定6

第二章主要零部件设计及计算11§2.1 连杆组的设计11

§2.1.1 连杆的工作情况11

§2.1.2在设计中应注意的地方11

§2.1.3 连杆的材料11

§2.1.4 连杆长度的确定12

§2.1.5连杆小头的设计12

§2.1.6 连杆杆身的设计13

§2.1.7 连杆大头的设计14

§2.2 活塞组的设计16

§2.2.1 活塞16

§2.2.2 活塞环22

§2.2.3 活塞销23

第三章连杆强度校核24

§3.1 连杆小头计算24

§3.2 连杆杆身的强度计算25

§3.3连杆大头盖的计算26

第四章结论27

参考文献28

致谢29

前言

375柴油机是我国三缸柴油机系列中的主要产品,是我国经济体制改革不断深入,农村生产飞速发展的产物。传统的375柴油机母型是六十年代后期开发的产品,笨重而且燃油高、经济动力性能差,为此作者在国内的现有生产条件下,借鉴国内外先进设计理念与生产技术,在原有机型的基础设计375柴油机,该375柴油机是三缸,自然吸气,直列四冲程,水冷直喷,高速柴油机,在提高发动机的经济、动力性能的同时降低有害物的排放,同时仍然保持原机可靠性、耐久性、经济实用、使用维修方便的优点,广泛应用于农用运输机、拖拉机、小型机械,这些优点使其更好的融入农村生产,备受购买力相对较弱的农民群体的欢迎,因此该产品的开发拥有很广阔的市场。

国家的排放法规日益严格,国家对柴油机的微粒排放的关注度也日益提高,原来375柴油机存在的微粒和烟度的排放较高,针对这方面的缺点开发水冷直喷的燃烧室,其良好的燃油经济性、结构简单、起动容易优点,不仅能够有效的降低微粒和烟度的排放,而且能够降低油耗,从而满足现代的节能减排的新观念,该优点亦符合农村购买标准之一。

375柴油机一般用于农用运输和动力,国内农用机械配套动力要求动力充足可靠性高、经济性好,柴油机以其低速扭矩大、经济性好、可靠性高等优点占据主流,在农业机械化的大背景下,原来柴油机笨重,油耗高,功率低等已不能够满足新时代的要求,为了适应国内农用机械功率增长的需要,在原来的基础上开发出来的375柴油机,该发动机在排量、功率、动力性能等都有一定的增加,并且节省材料。该柴油机可以配套拖拉机、农用运输机、排灌机械、收割机等农用机械,也可以和空压机、矿石机械翻斗机、小型发电机组等。

475柴油机是四缸机,活塞行程为90mm,标定功率为24KW;某些企业的涡流475柴油机普遍存在油耗高、排气温度高等问题,若能把475型柴油机的涡流燃烧系统造成直喷式燃烧系统,能够使油耗大幅度降低、烟度排放少,特别严格的排放法规的实施,迫使人们在保持原有研究成果的同时,换一个角度去探索各种燃烧室及其供油系统、进气系统匹配的问题,

475柴油机采用螺旋进气道的设计,促进空气和燃油的混合;采用哑铃型的燃烧室,增大转动惯量提高涡流强度,形成很好的进气涡流改善烟度排放,大幅度降低低速时的烟度排放;供油提前角的范围广,并且最佳供油提前角减少,因而降低噪音、振动和良好的低速转矩特性;为了适应475型柴油机直喷化的需要,选用BQ泵。475柴油机以其结构简单紧凑、重量轻、使用维修方便、可靠性能强,经济实用,广泛的应用于农用运输机、轻卡、拖拉机小型工程机械、发电机组等作为动力。

柴油机作为各种机械的动力装置,活塞是其主要的配件之一,由于它在气缸内以高速作匀速往复运动,且在高温、高压和液体润滑困难等条件下工作,所以是一种容易磨损的配件。发动机性能的优劣很大程度决定于生产工艺和加工水平,工艺设计水平越高,机械加工能力越强,发动机性能越好。所以活塞的工艺设计对发动机性能有至关重要的影响。目前,在中小型柴油机方面开展的研究工作大都放在减少废气排放,因此出现深盆顶活塞的应用,这是专为改善燃烧状况减少碳氢化合物而设计的。近十年来,开发能满足Pz高达25Mpa的活塞的要求越来越迫切。与球铁相比,锻钢具有更高的机械强度和延伸率,只有选材和工艺处理适当,即能保证活塞工作安全可靠,由此产生了可以承受更高Pz的锻钢整体活塞和钢顶钢裙组合活塞,整体锻钢活塞适用于较小缸径柴油机。

连杆是发动机中传动力的重要零件,它把活塞上的往复惯性力传递给曲轴以输出功率,连杆在工作过程中主要承受装配载荷和交变载荷的作用,工作较苛刻。环保节能是现代汽车的发展方向,因此对发动机连杆的要求是:不仅要有足够的强度和刚度,而且要尺寸小、重量轻,为实现这一要求,现代汽车发动机零部件设计开发必须采用现代设计方法及技术。针对柴油机连杆小头断裂的问题,在进行连杆设计中通过对不同的连杆小头壁厚和连杆小头的过渡圆角进行有限元分析,选择合适的过渡圆角和小头壁厚以达到设计要求,而连杆大头采用“工”字形结构时,其安全系数比连杆大头采用圆形结构提高40%以上,其重量也比圆形结构轻。“工”字形结构还能很好的控制大头孔的变形,而连杆大头与支撑面采用半圆弧的安全系数有很大的提高。

第一章柴油机总体设计方案

§1.1 高速柴油机设计的要求

高速柴油机设计应满足下列基本要求:

1、最佳的使用性能包括最佳的动力性能、最小的外形尺寸、最轻的总

质量,能满足各种特定用途对发动机性能的要求。

2、最佳的经济性能主要可以概括为下列三方面:

<1)最佳的使用经济性包括完善的工作过程,特别是组织良好的燃烧过程,以降低燃油消耗;精心设计润滑系统,在保证发动机获得

良好润滑的前提下降低润滑油消耗量;具有良好的装拆工艺性,

易于装拆、维修,减少维修费用的支出。

<2)最佳的制造经济性包括优化设计,使整机及零部件具有良好的加工工艺性;选用价廉适用的制造材料;选用优质、价廉的零配件;

降低不必要的加工精度。

<3)最好的可靠性和最长的使用寿命这是发动机成功的重要标志。首先在结构上要保证发动机具有良好的刚度,在各种工况下工作

时,各零部件不允许发生不正常的变形和振动。发动机的各易磨

损件要有必要的寿命,所有摩擦副在设计时应考虑减摩措施和材

料的配对等。

3、最佳的环保性能目的在于减少有害物质的排放。日益严格的环保法

规对柴油机的废气排放提出了更高的要求。因此在设计阶段,在燃

烧过程的组织、排放后处理等方面,应考虑采取相应的措施[1]。

§1.2 柴油机设计的内容

§1.2.1 高速柴油机用途的确定

发动机的具体用途是设计的重要依据,不针对具体用途无法设计一台优秀的发动机。对高速柴油机而言,产量最大的配套是各种车辆,其它依次为拖拉机和各种农业机械、工程机械等。各种用途对发动机的要求不同。若要

设计成功一台理想的发动机,针对其具体用途进行设计是至关重要的。本次设计的375柴油机是针对拖拉机和农用汽车进行配套设计的,同时它也可以用于其它领域[1]。

§1.2.2柴油机类型的确定

1、四冲程及两冲程目前我国使用的机型均为四冲程,国外绝大部分机

型也是四冲程。四冲程柴油机四个行程完成一个工作循环,在相同

的活塞排量和转速下,非增压时功率比二冲程柴油机低,但易于组

织增压,增压比比较高。在转速不变的情况下通过增压可较大幅度

的提高发动机的功率。活塞组热负荷低,工作过程易于组织,动力

性和燃油经济性好,燃油消耗率低,机油消耗率低,且低速性能

好,可以有较大的扭矩储备,可以在较宽广的转速范围内获得良好

经济性能。燃油喷射系统转速较低,便于设计制造,且寿命较长,

可靠性好。因此,我们选择的机型为四冲程柴油机。

2、冷却方式目前世界各国生产的机型仍以水冷为主。中、小型有风冷

品种,但品种不多。签于风冷机型在制造上要求较高、难度较大,

大批量生产和销售均有难度,此次设计为水冷方式。水冷冷却较均

匀,热负荷低,充气效率、平均有效压力及升功率高,气缸冷却效

率高,且较均匀,活塞与缸套间隙较小,这些都有利于柴油机的进

一步强化和降低废气排放。

3、气缸布置气缸布置形式有直列立式,卧式;斜置;V型。其所以有

各种气缸布置形式,是基于配套机型总体布置的要求,或有利于平

衡、散热等。V型布置则主要为了缩短6缸以上多缸机的长度,以

利于发动机与各种机型更完善的匹配。此次设计为三缸,小缸径柴

油机,故采用直列立式气缸布置。

4、进气系统是否增压采用增压可改善排放,增大功率,降低燃油消耗

等,特别在改善排放方面,增压及增压中冷具有决定性的作用。但

由于技术和成本的原因,此次设计暂且不用增压系统。

5、气门数常规高速柴油机多为二气门,而实践证明,多气门对高速柴

油机工作过程,特别是进气和燃烧的改善有很好的作用,但其铸造

要求高,成本高,在目前排放指标不是很高的情况下我们仍采用二

气门。

6、燃烧室类型燃烧室类型对于高速柴油机的燃烧过程和性能的影响很

大,直接体现在燃油消耗率上。由于直喷式燃烧系统动力性好,燃油、机油消耗率低、启动性能好,以及寿命长等特点,它比分开式燃烧室燃油消耗率低5%—10%左右。在节约能源上有巨大优势,所以此次设计采用直喷式,燃烧室形状为ω型。

7、凸轮轴侧置与顶置侧置凸轮轴是现代高速柴油机传统设计的标准模

式,被广泛采用。此次设计为侧置式,用齿轮传动[1]。

§1.2.3 柴油机主要设计参数的确定

高速柴油机的主要设计参数有如下众所周知的关系

<1-1)

式中,Pe为有效功率

对上述参数的正确选择是设计一台优秀发动机的前提。

1、有效功率的确定

在确定高速柴油机有效功率

对于车用高速柴油机而言,其功率视车辆的用途、车辆的总质量而定。

我国载货车与功率的匹配,一般遵循下列关系:

轻型载货车为12~15kw/t;

中型载货车为10~12kw/t;

重型载货车为6~10kw/t;

载货车的扭矩储备要求略低,但亦应达到10%以上。

拖拉机用发动机的功率由牵引力而定,一般每吨的牵引力配用18~20kw,扭矩储备率要求高于汽车,一般在15%及以上。工程机械的配套动力亦随其工作能力的大小而定,如叉车,3吨配备功率30~35kw;5吨则为40~45kw……扭矩储备要求很高,一般为20%~30%以上,有些机型要求高达40%~50%[1]。

2、转速的选定

发动机的转速随其配套对象而异。目前我国轻型车用柴油机的转速为3200r/min左右,少数机型达3600r/min;中型车用柴油机约为2500~2800r/min;低速农用车柴油机约为2400~2800r/min;重型车用柴油机约为2000~2300r/min[1]。

375柴油机设计目标为低速农用车柴油机,所以转速取3400r/min。

3、气缸数的确定

气缸数是柴油机的重要参数之一,按给定功率和转速来选择气缸数时,考虑以下因素:

<1)选用合适的气缸数目可获得较小的单缸功率,使柴油机输出的扭矩均匀,平衡性和启动性能较好。

<2)选用合适的气缸数目,其气缸直径和行程均较小,柴油机体积可以缩小,重量可减轻。

<3)选用较多的气缸数后,零件数量和制造工时增加,成本增高。

<4)选择气缸数目,还需考虑柴油机配套所提出的外形尺寸和重量要求,以及系列柴油机的功率范围等因素。

考虑以上综合因素,我们选取气缸数为:3。

4、活塞平均速度的确定

活塞平均速度是表征柴油机高速性和强化程度的一项主要指标,对柴油机总体设计和主要零件结构型式影响甚大。

活塞的平均速度计算公式:

C m=Sn/30<1-2)

其中,S为活塞行程;n为发动机转速[2]。

在功率给定以后,可以算出平均有效压力。活塞行程和缸数维持不变,提高活塞平均速度可使气缸直径减小。柴油机体积小、重量轻。但提高活塞平均速度受到下列因素限制:

<1)提高活塞平均速度后,使运动件的惯性力增大,柴油机的机械负荷增大。

<2)提高活塞平均速度使柴油机零件的磨损加快,缩短了柴油机大修期。

<3)活塞平均速度的提高,使摩擦功率损失迅速增加,机械效率降低,燃油消耗率升高。

<4)进、排气阻力随活塞平均速度的提高而增加,使充气效率降低。

<5)随着活塞平均速度的提高,柴油机的平衡。震动和噪声等问题突出出来,一般柴油机的噪声强度与转速的三次方成正比。

因此,选择活塞平均速度应综合各方面的因素,不能一味的提高。一般活塞平均速度为:6.5~12m/s。本机的活塞平均速度为:8.49m/s。

5、平均有效压力的确定

平均有效压力是表征柴油机强度的重要指标之一,可由下式求得:

(1-3>

(1-4>

提高冲气系数,改善工作过程,减少机械损失和热损失,是提高非增压柴油机Pe值的主要措施,但非增压柴油机的Pe值的提高是有限的。促使Pe值增长的原因,一方面是提高单机功率的迫切需要,另一方面是因为Pe 值的增加,对柴油机噪声和寿命的影响比提高活塞平均速度的影响要小的多。

提高Pe值可使功率增加,比重量下降。然而机械效率和热负荷也随之提高,影响柴油机的可靠性和寿命。同时,对排气的有害成分、噪声、振动等都有不利影响。车用柴油机的一般范围为 6.5~10.5Mpa本机平均有效压力为7.16 。

较大幅度的提高平均有效压力后,要注意零件的热应力和机械应力过高的问题,一般措施是:采用强制冷却活塞、组合式活塞来加强气缸盖和气缸套的冷却,降低压缩比以及增强零件的刚度和强度等[3]。

6、气缸直径的确定

柴油机功率与气缸直径的平方成正比。选用较大的缸径是提高功率的一个措施。但缸径增大后柴油机外形尺寸与比重量相应增大。而气缸直径与缸数和转速有着密切的关系。同样的功率下,缸数越多,缸径可缩小,转速可提高[1]。

考虑到此发动机为农用运输车,缸径为80~100,我们所选择的缸径为75。

7、行程及其与缸径的比值S/D

自然吸气柴油机的升功率:

(1-5>

它正比与Pe和n,由于提高活塞的平均速度需要较短的行程和较小的S/D。使用较小的活塞行程,有可能得到紧凑的外形和采用较短尺寸,获得较大的体积功率的较好的比重量。自然吸气条件下Pe的提高有限,升功率很难轻易突破,因此提高柴油机转速成为提高升功率的主要途径。采用不大的S/D,可以获得较大的进排气门面积与气缸容积之比,使进排气流速,既气门口马赫数处于较低水平,以改善充气效率。同时有利于增加曲柄销与主轴颈的重叠度,改善曲轴强度或缩小轴颈直径。因此S/D的选择应根据发动机的具体要求[3]。375柴油机选择S/D为:1.07,将有利于降低柴油机的振动和噪声。

8、气缸中心距

气缸中心距是柴油机设计中对整体结构强度、紧凑性、重量和配套适应性最具影响的几何尺寸。

决定气缸中心距合理性主要是下列三大因素,并在此基础上可能共同达到的最小值。

<1)足以保证燃气可靠密封的气缸盖总截面积和分布均匀性。

<2)足够的曲轴疲劳强度的轴承承载能力。

<3)有必要的水流空间,使缸套上部、缸盖底部和排气道获得充分的冷却。

此外还应注意机体的气缸体部分有必要的空间容纳足够截面积的壁和筋,以保证气缸套支承面挤压应力处于可靠限度内。

所以气缸中心距是决定结构强度的整机紧凑性的综合因素,而两者又是矛盾的。只要将所有各项尺寸参数与气缸中心距建立一系列经验公式,从中便可以获得合理的中心距尺寸和其它相关尺寸。

用气缸中心距来表征能实现的单缸功率,实质上是该气缸中心距在保证充分的结构强度可靠性的前提下所能包容的气缸直径。

<1-6)

其中:Pe为平均有效压力

对非增压柴油机:

C=(10.3~11.0>×10-4<1-7)

可以由以上式子估算气缸中心距,如果设计得当,能够在结构强度充分保证的前提下,形成所需的气缸排量和获得所算得的功率水平[2,3]。

此次设计气缸中心距为:L=100mm。

第二章主要零部件设计及计算

§2.1连杆组的设计

§2.1.1连杆的工作情况

连杆组的功用是将作用在活塞上的气体压力传给曲轴,并将活塞的往复运动变成曲轴的旋转运动,与连杆大头一起作旋转运动,连杆杆身作复杂的平面运动。

连杆主要承受以下载荷:

1、由连杆力Pcr引起的拉压疲劳载荷。

式中 Pg——气体作用力; P j——活塞连杆组的往复惯性力;

β——连杆摆角。

2、在连杆摆动平面内,由连杆力矩引起的横向弯曲载荷。

3、由于压入连杆衬套,拧紧连杆螺栓,压紧轴瓦等产生的装配静载荷。

此外,连杆还可能承受由于加工不准确,承压面对连杆轴线不对称等引起的附加弯曲载荷。

§2.1.2在设计中应注意的地方

根据以上分析可知,连杆主要承受气体压力和往复惯性力所产生的交变载荷。因此,在设计时应首先保证连杆具有足够的疲劳强度和结构刚度。如果强度不足,就会发生连杆螺栓、大头盖和杆身的断裂,造成严重事故。§2.1.3连杆的材料

375的连杆材料为40Cr中碳钢。在机械加工前经调质处理,可以得到较好的机械性能。碳钢的优点是成本低,对应力集中不敏感,所以模锻后配

合表面就不需再经过加工。但锻造毛刺要磨光,磨削方向应沿连杆杆身的纵向,因为横向磨痕可能引起连杆杆身断裂的危险,一般采用喷丸处理来消除连杆内部的内应力和提高连杆强度[4,8,9]。

§2.1.4连杆长度的确定

连杆长度是设计时应慎重选择的一个结构参数,它一般用连杆比来表示,即

。连杆长度越短,即越大,可降低发动机的高度,减轻活塞件重

量和整机重量,能很好的适应发动机的高转速。但的增大使二级往复惯性力及气缸侧压力增大,并增加曲轴平衡块与活塞、气缸套相碰的可能性。

所以为使发动机的结构紧凑,最合适的连杆长度应该是,在保证连杆及相关机件在运动时不与其他机件相碰的情况下,选取最小的连杆长度。

对于缸径S≤120mm的高速柴油机来说,值一般在0.25~0.30之

间,又考虑到柴油机其他零件的设计,所以取连杆长度为156mm,即值为0.256,在此范围内,是可取的。

图2—1 连杆小头的尺寸

§2.1.5连杆小头的设计

一、小头结构形式

小头采用薄壁圆环型结构,它的形状简单,制造方便,材料能充分利用,受力时应力分布较均匀。小头到杆身的过渡采用单圆弧过渡。其结构如图2-1所示。

二、小头尺寸

小头的主要尺寸为小头内径d1,小头外径d2 ,小头宽度b1,衬套内径的d。

由于衬套内径d要和活塞销相配合,所以其公称直径是27mm。

衬套的厚度一般是=<0.04~0.08)d。选=0.09d=2.5,即为 2.5mm,所以小头的内径d1为32mm。

小头外径d2的选取范围一般是d2=<1.2~1.4)d1 ,取d2=1.31d1=42mm。小头宽度b1取决于活塞销间隔B和销座与连杆小头的端面间隙。在确定小头的宽度时候,应使小头与活塞销座之间每侧都留约1~2mm的间隙,用来弥补机体、曲轴、活塞和连杆等零件在轴向尺寸上可能出现的制造误差和由于热膨胀所引起的轴向相对位置的变化。应该尽量使小头具有足够的承压面积,以便使小头孔与活塞销之间相互压紧的单位面积压力不超过许用值。一般小头宽度b1的范围是b1=<0.9~1.2)d,取b1=1.11d=30mm,这样小头宽度和销座之间每侧的间隙为2mm。

三、连杆衬套

为了减小活塞销对连杆小头的磨损,应在小头内装入衬套。

1、衬套的材料

衬套大多用耐磨锡青铜铸造,本设计采用铅青铜,其优点是强度较高,耐磨性好,使用于热负荷比较大的柴油机。

2、衬套与小头孔的配合

衬套与连杆小头孔为过盈配合,常用的配合为jd、je、jb3、jc3等。过盈太大会使材料屈服而松动,太小会造成压配松动,使衬套与小头孔可能会相对

转动。小头孔的直径设计为mm,确定衬套与小头孔的过盈量为

0.033~0.06mm,则衬套外径尺寸为mm。

衬套与活塞销的配合间隙应尽量小,以不发生咬合为原则。青铜衬套与活塞销的配合间隙△大致在<0.0004~0.0015)d的范围内,即0.014~0.053mm,由于此设计选用全浮式活塞销,故可使销和衬套的间隙梢大,

选用0.030~0.060mm,即衬套的内径为mm。

3、衬套的润滑

在小头上方开机油孔,靠机体上的喷油嘴喷出的油冷却活塞的同时,一部分油通过孔流入衬套,达到冷却的效果。在小头和衬套上都开有集油孔和集油槽,用来收集和积存飞溅的润滑油[12]

§2.1.6连杆杆身的设计

连杆杆身在膨胀行程中承受作用在活塞上的气体压力的压缩作用,在吸气行

程中承受往复惯性力的拉伸作用,当连杆受压时,有可能发生不稳定弯曲,此外当连杆作高速摆动运动时还要承受本身的横向惯性力的弯曲作用。实验证明,弯曲应力实际上不大。可忽略。

连杆杆身采用工字型截面,工字型截面的长轴位于连杆的摆动平面内。因为工字型截面对材料利用的最为合理,所以应用的也很广。

从锻造工艺方面看,工字型截面两臂过薄和圆角半径过小都是不利的。因为这种连杆锻造时变形比较大,就有可能产生锻造裂纹的危险,特别时在工字型截面两臂边缘上更易出现裂纹。此外,锻造这种连杆时模具磨损也较大。具有边缘厚并倒圆的工字型截面是比较有利的。

工字型截面的长轴y-y处于连杆的摆动平面内,使杆身截面对垂直与连杆摆动平面的x轴的惯性矩Jx大与对位于摆动平面的y轴的惯性矩Jy,一般Jx=(2~3>Jy,这样符合杆身实际受力情况,并有利于杆身向大、小头过渡。

连杆杆身的最大应力一般发生在杆身与大、小头圆角过渡处,最大压应力发生在杆身中部。

考虑上面所述,综合考虑,确定出下列尺寸:

连杆杆身横截面的形状如图2-2所示。

其中截面宽B=20mm t=5mm

截面的高H=<1.5~1.8)B ,取H=1.4B=28mm

图2—2 连杆杆身横截面形状

§2.1.7连杆大头的设计

连杆大头联结连杆和曲轴,要求有足够的强度和刚度,否则将影响薄壁轴瓦和连杆螺栓,甚至整机工作可靠性。为了便于维修,对于像本设计的

高速柴油机,连杆必须能从气缸中取出,故要求大头在摆动平面内的总宽必须小于气缸直径,大头的外型尺寸又决定了凸轮轴位置和曲轴箱形状,大头的重量产生的离心力会使连杆轴径、主轴承负荷增大,摩擦加剧,有时还为此还不得不增大平衡重,给曲轴设计带来困难,因此在设计连杆大头时,应在保证强度、刚度的条件下,尺寸尽量小,重量尽量轻。合理确定大头的结构尺寸和形状,就是大头设计的任务。

大头的结构与尺寸基本上决定与曲柄销直径、长度和连杆轴瓦厚度和连杆螺栓直径。所谓的大头设计,实际上是确定连杆大头在摆动平面内某些主要尺寸,连杆大头的剖分形式和定位方式以及大头盖的结构设计。

在设计大头构形的时候针对一些薄弱环节,应注意以下问题:

1、连杆盖上要设置合适的加强筋,加强筋到螺栓孔支承面处要圆滑过渡。

2、螺栓头支承面和螺母支承面要圆弧过度,避免加工尖角,可采用锻

造圆角或圆弧沉割来减少应力集中,但必须尽量提高圆弧沉割处的光洁度。

3、斜切口连杆长叉口一侧变形较大,除了采用大圆弧过渡外,还可以

用单筋和杆身连接,以提高大头刚度。

一、连杆大头的剖分形式

采用斜切口的剖分方式,切口角为45度。这样的剖分形式的优点是满足连杆组能从气缸装拆的条件下,可增大曲柄销直径,有利于提高曲轴的刚度和连杆轴承的工作能力。,也就是说它在解决曲柄销直径和从气缸中抽出连杆之间的矛盾。

二、连杆大头的定位方式

斜切口连杆当承受惯性力拉伸时,沿连杆体与连杆盖的结合面方向作用着很大的横向力,使连杆螺栓承受剪切力。为此必须采用能承受较大剪切力的定位方式,才能保证工作可靠。

本设计采用的是舌槽定位。连杆体和盖上均有一舌和一槽,他们是有同一把拉刀<带一舌一槽)加工成的,所以体与盖上舌槽间的距离精度较高,定位可靠,尺寸紧凑。

当然它有不好的地方,就是其拆装不便,且只有在采用拉刀加工时才能保证较高的定位精度,还有舌槽要注意减少应力集中。这样的定位方式常用

在车用柴油机的斜切口的连杆上。其优点是提高了结合处的刚度,缩小了连杆螺栓之间的距离,减小了螺栓尺寸。

三、连杆大头的主要尺寸

1、大头孔直径

根据曲轴曲柄销的设计尺寸为48mm,再考虑到轴瓦的尺寸,取D1=53mm

2、连杆螺栓孔中心线

中心线应尽量靠近轴瓦,连杆螺栓孔中心距一般为=<1.2~1.3),

取=1.34,即=71mm,螺纹外侧边后不小于2~4 mm。

图2-3 连杆大头的主要尺寸

§2.2 活塞组的设计

活塞组主要用来与气缸、气缸盖相配合形成一个容积变化的密闭空间,在这里完成内燃机的工作过程;同时活塞组也承受燃气压力,并把它传给连杆、曲轴,将活塞的往复运动转变为曲轴的旋转运动,从而对外输出扭矩,以驱动汽车车轮转动.它由活塞、活塞环、活塞销等机件组成。§2.2.1活塞

活塞的主要作用是承受气缸中的气体压力,并将此力通过活塞销传给连杆,以推动曲轴旋转。活塞顶部还有气缸盖、气缸壁共同组成燃烧室。

由于活塞顶部直接与高温燃气周期性接触,燃气的最高温度可达2500K以上,因此活塞的温度也很高,例如活塞顶部的温度可高达600~700K[7]。高温一方面使活塞的机械强度显著下降,另一方面使活塞材料的热膨胀量增大,容易破坏活塞与其相关零件的配合。

活塞顶部在做功行程时,承受着燃气的带冲击性的高压力。对于汽油机

活塞,瞬时的压力最大值可达3~6MPa。对于柴油机活塞,其最大值可达6~9MPa,采用增压时最大值可达13~15MPa。高压导致活塞的侧压力大,加速活塞外表面的磨损,也容易引起活塞的变形[7]。

活塞在气缸中作变速运动,其平均速度9.07m/s。这样的高速可产生很大的惯性力,它将使曲柄连杆机构的各零件和轴承承受附加的载荷。

活塞承受的气压力和惯性力是周期性变化的,因此活塞的不同部分会受到交变的拉伸、压缩和弯曲载荷;并且由于活塞各部分的温度极不均匀,活塞内部将产生一定的热应力。

从活塞的工作条件可看出,为保证发动机的良好运行特性,对活塞合金材料性能有如下要求:密度小、热膨胀系数小、好的耐磨性、好的力学性能、好的热传导性及好的加工性能。为此,汽车发动机目前采用的活塞材料是铝合金,在个别汽车柴油机上的活塞采用高级铸铁或耐热钢铸造。

根据以上要求,我们选择共晶铝硅合金66-1作为375的活塞的材料。

它除了具有铝合金的共同优点<密度小、导热性好、与铸铁气缸的匹配性好)之外,由于硅的存在,使材料的耐磨、耐蚀性,硬度、刚度和疲劳强度提高;铸造流动性改善。

铝的密度约为铸铁的1/3,这样采用铝作为活塞用合金的基本材料,在活塞往复运动时可使惯性力尽可能小。同时活塞用铝合金的导热性约为铸铁的3倍,这样高的导热能立刻将高热负荷区的热量很快传给冷却油及气缸和曲柄连杆等,因此使得熔点600℃的铝合金能在与峰值温度高达2000~2500K高温燃气接触的情况下仍能正常工作。但是铝合金在温度升高时,强度和硬度下降较快。为了克服这一缺点,一般要在结构设计、机械加工或热处理上采用各种措施加以弥补[7,14]。

铝活塞的成形方法有锻造、铸造和液态模锻等几种。铸造铝活塞在高温时强度下降较小,制造成本低,但容易出现各种气孔、缩松等铸造缺陷。锻造铝活塞的强度比铸造活塞高,导热性也较好,适用于强化的发动机上,但制造成本高。液态模锻即是将定量的液体金属浇入金属模具里,用冲头加压,使液体金属以比压铸中低得多的速度充填型腔,并在压力的作用下结晶凝固,从而获得组织致密的无缩孔、缩松等缺陷的活塞。这种工艺兼有锻造和铸造的特点,能达到少切削甚至无切削、提高金属利用率、扩大合金使用范围、消除铸造缺陷和提高毛坯质量等目的[7]。

活塞的基本构造可分为顶部、头部和裙部三部分。

一、活塞顶部活塞顶部的形状主要取决于燃烧室的选择与设计,而燃烧室的选择取决于活塞直径、发动机的转速、经济性、动力性、功率、可靠性及排放等。汽油机活塞顶部多采用平顶,其优点是吸热面积小,制造工艺简单。有些汽油机为了改善混合气形成和燃烧而采用凹顶活塞,凹坑大小可以调节发动机的压缩比。柴油机的活塞常常设有各种各样的凹坑,其具体形状、位置和大小都必须于柴油机混合气的形成或燃烧要求相适应。

1.本设计采用ω型的燃烧室。

燃烧室的形状和尺寸:

根据喉口侧面角β,可将ω型的燃烧室分成开口型(β>90°>,直口型

(β=90°>及收口型(β<90°>三种,收口型较小<一般/D=0.5~0.65)

本设计采用β=90°的直口型,因为喉口的热负荷很高,这样做是为了防止喉口开裂,便于制造。

一般/D=0.5~0.65,取/D=0.533,即=40mm

2、在ω型的燃烧室的底部设计一隆起的凸尖,这样是为了帮助形成涡流及使燃烧室与油束相配合。

这里应特别注意的是油束和燃烧室的正确配合,油束射程不足或过大都会使混合不均匀,影响排烟极限。

3、燃烧室、喷油器和气缸最好是同心布置,但由于本次设计的特殊情况,将燃烧室中心线向喷油器的一侧偏离。

一般偏移量<0.1,即<10,取e=5mm。

燃烧室的尺寸如图2-4所示。

图2-4 燃烧室的主要尺

按燃烧室深浅来分这种燃烧室为深坑形,

它比较适用于小型高速柴油机,因为小型高速柴油机转速高,混合气形成和燃烧的时间极短,每循环供油量又很小,单靠雾化混合,则喷孔直径必须做的很小,喷油压力很高,使燃油系统制造困难。于是,出现了有涡流的深坑形燃烧室,即将活塞顶上的凹坑加深,凹坑口径缩小。它能够在较小的过量

空气系数时有较好的燃烧过程,从而获得较好的性能指标。与浅盆形燃烧室相比,深坑形燃烧室对燃油系统要求降低,由于利用进气涡流加强混合

气形成,使空气利用率大大提高,一般=1.3~1.5,并保持燃油消耗率低和启动容易的优点,所以在小型高速柴油机上获得广泛应用[3]。

四冲程柴油机的深坑形燃烧室总是布置在活塞上,这样燃烧室表面不与冷却水直接接触,可以减少散热损失。对于2气门发动机,由于要尽可能加大进、排气门尺寸,不得不将燃烧室、喷油器及气缸三者的中心线相互错开。

二、活塞头部

1.活塞高度H

1)活塞高度取决于下列因素。

<1)对柴油机高度尺寸的要求<与柴油机用途有关)

<2)转速n;

<3)燃烧室形状及尺寸;

<4)活塞裙部承压面积。

应在保证结构布置合理和所需的承压面积条件下,尽量选择较小的活塞高度。

2)目前发展趋势:不断缩短活塞高度,特别是高速柴油机。近十年来,由于成功地减活塞环数目,使活塞高度H缩短约10%。

2.压缩高度H1压缩高度H1,决定活塞销的位置。H1取决于第一道活塞环至顶面的距离h、环带高度H5及上裙高度H4。在保证气环良好工作的条件下,宜缩短H1,以力求降低整机的高度尺寸。H1/D

3.顶岸高度h<即第一道活塞环槽到活塞顶的距离)

<1)h越小第一道环本身的热负荷也越高。应根据热负荷及活塞冷却状况确定h,使第一道活塞环约工作温度不超过允许极限<约180℃~

2200℃)。

<2>在保证第一道环工作可靠的条件下,尽量缩小h,以力求降低活塞

高度和重量。

<3>h/D的一般范围如下:

高速桨油机铝活塞

0.14~0.20

组合活塞

0 .07~0.20

4.活塞环的数目及排列

<1>活塞环数目一般为:

高速机气环2~3道,油环1~2道。

中速机气环3~4道,油环2道(少数用一道>

<2>发展趋势:减少环数。目前中小型高速柴油机采用三环结构(二道

气环、一道油环>的日益增多,并已开始应用双环活塞。近代中速

柴油机采用四道环。环数减少后,须从活塞及活塞环的结构上采取

措施,以确保良好的密封性能和防窜油性能。

<3>油环布置:采用一道油环时,油环装在销孔上方。

本次设计选用两道气环,一道油环。

5.环槽尺寸环槽的轴向高度(名义尺寸>等于活寒环的轴向高度b。十环槽底径D'取决于活塞环的背面间隙(即活塞环内圆面与环槽底之间的间隙>,背盈大小与活塞的热膨胀有关,并对环的背压有一定影响。D'可按下式估算

气环槽 D' = 〔D-(2t﹢KD> +0.5〕(mm>

油环槽 D' = 〔D-(2t﹢KD> +1.5〕(mm>

式中 D—活塞名义直径;

t—活塞环的径向厚度;

K—系数,铝活塞K=0.006,铸铝活塞K=0.004。

环槽底部的过渡圆角一般为0.2~0.5mm。

6.环岸高度

<1)第一环岸(第一道气环下面的环岸>温度较高,承受的气体压力最大,又容易受环的冲击而断裂。所以第一环岸高度h1一般比其余

环岸高度要大一些。

<2)必须保证环岸有足够的机械强度,并进行验算。

<3)环岸高度的范围

铝活塞高速机 h1/D=0.04~0.06

高速大功率 h1/D=0.04~0.06

钢顶组合活塞h1/D=0.025~0.03

7.活塞顶厚度是根据活塞顶部应力、刚度及散热要求来决定的,小型高速柴油机的铝活塞,如满足顶部有足够的传热截面,则顶部的机械强度一般也是足够的。热应力随活塞顶厚度增加而增大,活塞顶厚度(特别是钢顶>只要厚到能承受燃气压力即可。s的一般范围

小型高速h1/D=0.04~0.06

高速大功率h1/D=0.04~0.06

钥顶组合活塞h1/D=0.04~0.06

铸铁活塞h1/D=0.04~0.06

图2-6活塞的部分主要尺寸

三、活塞裙部活塞裙部是指自油环槽下端而起至活塞底部的部分。其作用是为活塞在气缸内作往复运动导向和承受侧压力。因此,既要保证裙部的形状能够是活塞在气缸内得到良好的导向,并具有足够的承压面积,又要保证在任何情况下活塞与气缸壁之间具有最佳间隙。

目前,为了是活塞具有最佳性能,多采用如下措施。

1.将活塞直径制成上小下大的锥形、阶梯形或桶形。就整个活塞而言,

在内燃机工作时活塞的温度沿轴线方向自上而下降低,其顶部温度高,壁厚,热膨胀量大;裙部相反。因此,将活塞顶部的直径设计得小一些,而由顶部向下直径逐渐增大,以保证活塞在气缸中工作时热膨胀后上下配合间隙均匀一致。

平面四杆机构教学设计

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 平面四杆机构教学设计 平面四杆机构 1/ 29

目录 CONTENTS教学分析2教学过程4Teaching AnalysisTeaching Process1教学设计Teaching Design3教学反思Teaching Refletion

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 目录 CONTENTS教学分析2教学过程4Teaching AnalysisTeaching Process1教学设计Teaching Design3教学反思Teaching Refletion 3/ 29

教学分析Teaching Analysis教材分析内容分析目标分析学情分析重难点分析7.1平面机构自由度与运动副材料力学工程力学机械设计液压传动第七章平面运动机构第八章齿轮传动机构第九章其他常用机构第十章滚动轴承第十一章轴和轴毂连接7.2平面机构运动简图 7.3机构具有确定运动的条件7.4平面四杆机构机电一体化专业基础课

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 教学分析Teaching Analysis教材分析内容分析目标分析学情分析重难点分析应用广泛日常的生产生活中很多装置及设备都应有平面四杆机构或者其变形形式类型多样拥有多种类型及其变形形式,需注意辨别0102平面四杆机构基础机构最简单的连杆机构,为以后学习多杆机构打下基础。 032学时04实用性强为以后从事机械设计工作打下理论基础 5/ 29

7.实验七 机构创新组合设计实验

实验七机构创新组合设计实验 一、实验目的 1、加深学生对平面机构的组成原理认识,进一步了解机构组成及运动特性。 2、训练学生的工程实践动手能力。培养学生创新意识及综合设计的能力。 二、实验设备及工具 1、JKZB-Ⅱ机构创新组合设计实验台。附件:齿轮、齿条、槽轮、凸轮、转动轴、连杆、各种连接组合零部件等。 2、装拆工具:十字起子、活动扳手、内六角扳手、钢板尺、卷尺等。 3、学生自备草稿纸、笔、绘图工具等。 三、实验要求 1、每2~3人一组,每一组实验前拟一份机构运动设计方案,实验后提交新设计方案. 2、完成实验后各组将机械零部件“物还原位”,老师验收后方可离去. 3、每人完成一份实验报告。 四、实验原理和方法 根据平面机构的组成原理:任何平面机构都可以由若干个基本杆组依次联接到原动件和机架上而构成,故可通过选定的机构类型,拼装该机构并进行分析。 1

五、实验内容 1、自行到实验室熟悉本实验中的实验装置,各种零部件、装拆工具的功能;了解机构的拼接方法,拟订自已的机构运动方案的拼接步骤。 2、自拟或课本提供的机构运动方案做为拼接对象。 3.拼接机构,将各基本杆组按运动传递规律顺序拼接到原动件和机架上。 4.绘制运动简图,分析所拼接的平面机构。 5.根据平面机构的组成原理,利用常用的零部件拼接调整,设计一种具有新型的带发明创造性的组合机构。每一组提交一份机构创新设计方案。 6.最后把组合机构安装在实验平台上,进行测试分析、运动分析、实验结果分析、拟定这次实验的步骤,并写出实验报告。 六、实验方法与步骤 1.学生使用“机构创新组合设计实验台”提供的各种零件。按照自己的运动方案简图,先在桌面上进行机构的初步试验组装,这一步的目的是杆件分层。一方面为了使各个杆件在互相平行的平面内运动,一一方面为了避免各个杆件,各个运动副之间发生运动干涉。 2.按照上一步骤试验好的分层方案,从最里层开始,依次将各个杆件组装连接到机架上。选取构件杆,连接转动副或移动副。凸轮。齿轮。齿条与杆件用转动副连接,凸轮。齿轮。齿条与杆件用移动副连接,杆件以转动副的形式与机架相连,杆件以移动副的形式与机架相连,最后组装连接输入转动的原动件或输入移动的原动件。 3.根据输入运动的形式选择原动件。若输入运动为转动(工程实际中以柴油机,电动机等为动力的情况),则选用双轴承式主动定铰链轴或蜗杆为原动件,并使用电机通过软轴联轴器进行驱动。若输入运动为移动(工程实际中以油缸,气缸等为动力的情况),可选用适当行程的气缸驱动,用软管连接好气缸,气控组件和空气压缩机并进行空载形成实验。 4.试用手动的方式摇动或推动原动件,观察整个机构各个杆,副的运动,确定运动没有干涉后,安装电动机,用柔性联轴节将电机与机构相连,或安装气缸,用附件将气缸与机构相连。 5.检查无误后,接通电源试机 6.观察机构系统的运动,对机构系统的工作到位情况,运动学及动力学特性作出定性的分析和评价。一般包括如下几个方面: ①各个杆、副是否发生干涉 ②有无形成运动副的两构件的运动不在一个平面,因而出现摩擦力过大的现象 ③输入转动的原动件是否为曲柄。 2

汽车曲柄连杆机构毕业设计

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

本科毕业设计(论文)通过答辩 优秀论文设计,答辩无忧,值得下载!ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force;Modeling of Simulation;Movement Analysis;Pro/E

曲柄连杆机构课程设计

工程软件训练 目录 目录 (1) 第1章绪论 (3) 第2章活塞组的设计 (4) 2.1 活塞的设计 (4) 2.1.1 活塞的材料 (4) 2.1.2 活塞头部的设计 (4) 2.1.3 活塞裙部的设计 (5) 2.2 活塞销的设计 (5) 2.2.1 活塞销的结构 (5) 第3章连杆组的设计 (6) 3.1 连杆的设计 (6) 3.1.1 连杆材料的选用 (6) 3.1.2 连杆长度的确定 (6) 3.1.3 连杆小头的结构设计 (6) 3.1.4 连杆杆身的结构设计 (6) 3.1.5 连杆大头的结构设计 (6) 3.2 连杆螺栓的设计 (7) 第4章曲轴的设计 (8) 4.1 曲轴的结构型式和材料的选择 (8) 4.1.1 曲轴的结构型式 (8) 4.1.2 曲轴的材料 (8) 4.2 曲轴的主要尺寸的确定和结构细节设计 (8) 4.2.1 曲柄销的直径和长度 (8) 4.2.2 主轴颈的直径和长度 (9) 4.2.3 曲柄 (9) 4.2.4 平衡重 (9) 4.2.5 油孔的位置和尺寸 (10) 4.2.6 曲轴两端的结构 (10) 1

工程软件训练 第5章曲柄连杆机构的创建 (11) 5.1 活塞的创建 (11) 5.2 连杆的创建 (11) 5.3 曲轴的创建 (11) 第六章曲柄连杆机构静力学分析 (13) 6.1 活塞的静力分析 (13) 6.2 连杆的静力分析 (13) 2

工程软件训练 第1章绪论 曲柄连杆机构是发动机的传递运动和动力的机构,通过它把活塞的往复直线运动转变为曲轴的旋转运动而输出动力。因此,曲柄连杆机构是发动机中主要的受力部件,其工作可靠性就决定了发动机工作的可靠性。随着发动机强化指标的不断提高,机构的工作条件更加复杂。在多种周期性变化载荷的作用下,如何在设计过程中保证机构具有足够的疲劳强度和刚度及良好的动静态力学特性成为曲柄连杆机构设计的关键性问题[1]。 通过设计,确定发动机曲柄连杆机构的总体结构和零部件结构,包括必要的结构尺寸确定、运动学和动力学分析、材料的选取等,以满足实际生产的需要。 在传统的设计模式中,为了满足设计的需要须进行大量的数值计算,同时为了满足产品的使用性能,须进行强度、刚度、稳定性及可靠性等方面的设计和校核计算,同时要满足校核计算,还需要对曲柄连杆机构进行动力学分析。 为了真实全面地了解机构在实际运行工况下的力学特性,本文采用了多体动力学仿真技术,针对机构进行了实时的,高精度的动力学响应分析与计算,因此本研究所采用的高效、实时分析技术对提高分析精度,提高设计水平具有重要意义,而且可以更直观清晰地了解曲柄连杆机构在运行过程中的受力状态,便于进行精确计算,对进一步研究发动机的平衡与振动、发动机增压的改造等均有较为实用的应用价值。 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 3

机构运动创新设计..

课程设计报告 学生姓名:________________ 学号:_________________ 学院: ______________________________________________ 班级: ______________________________________________ 题目: _______________ 机构运动创新设计______________

2015年1月5日 目录 、概述................................. 1 .....................................................

一、概述: 机构运动方案创新设计是各类复杂机械设计中决定性的一步,机构的设计选型一般先通过作图和计算来进行,一般比较复杂的机构都有多个方案,需要制作模型来试验和验证,多次改进后才能得到最佳的方案和参数。本实验所用搭接试验台能够任意选择平面机构类型,组装调整机构尺寸等功能,能够比较直观、方便的搭接、验证、调试、改进、确定设计方案,较好地改善了在校学生对平面机构的学习和设计一般只停留在理论设计“纸上谈兵”的状况二、课程设计目的: 1、培养学生对连杆机构的理解掌握与创新设计能力,加强学生的工程实践背景的训练,拓宽学生的知识面,培养学生的创新意识、综合设计及工程实践动手能力。 2 、通过机构的拼接,在培养工程实践动手能力的同时,要求学生在拼装一个已有模型之外,自己通过对现实生产和生活中的连杆机构机械产品的观察和理解,通过试验台设备进行拼装和仿真。通过解决实际问题,促进学生理论联系实际,学以致用;锻炼学生独立思考能力和动手能力。 3 、加深学生对连杆机构组成原理的认识,进一步掌握连杆机构的创新设计方法。 4、学习机构运动简图的测绘与自由度的计算。 三、课程设计要求和内容: 实验设备和工具 CQJP-D 机构运动创新设计方案拼装及仿真实验台,包括组成机构的各种运动副、构件、动力源及一套实验工具(扳手、螺丝刀)。其中构件包括机架、连杆、圆柱齿轮、齿条、凸轮及从动件、槽轮及拨盘和皮带轮等;运动副包括转动副、移动副、齿轮副、槽轮副等。 实验原理 平面机构是由各个杆组依次联结到机架和原动件上形成的。机构具有确定运动的条件是机构的自由度大于零,且原动件数和机构的自由度相等。所拼接的机构必须满足以上两个条件。将主要由连杆构成的连杆机构(可加入一个其他类型构件如齿轮、凸轮、槽轮等)进行拼装,计算分析其自由度后,输入动力源进行 机构运行。实验内容与步骤

发动机曲柄连杆机构的设计

. 摘要 以桑塔纳2000AJR型发动机为例,基于相关参数对发动机曲柄滑块机构主要零部件进行结构设计计算,同时进行强度、刚度等方面的校核,并进行相关力学分析和机构运动仿真分析,以达到良好的生产经济效益。 目前国外对发动机曲柄连杆机构的动力学分析的方法很多,而且已经完善和成熟,但仍缺乏一种基于良好生产效益、经济效益上的综合性分析,本次设计在清晰、全面剖析的基础上,有机地将各研究模块联系起来,达到既简便又清晰的设计目的,力求为发动机曲柄滑块机构的设计提供一种综合全面的思路。 分析研究的主要模块分为以下三个部分:第一,对发动机曲柄滑块机构进行力学分析,着重分析活塞的位移、速度、加速度以及工质的作用力和机构的惯性力;第二,进行曲柄滑块机构活塞组、连杆组以及曲轴的结构设计,并对其强度和刚度进行校核;第三,应用Pro∕Engineer 建立曲柄滑块机构主要零部件的几何模型,并利用Pro/Mechanism进行机构仿真。 关键词:发动机;曲柄滑块机构;力学分析;机构仿真

目录 第一章绪论 (1) 1.1国外发展现状 (1) 1.2研究的主要容 (1) 第二章总体方案的设计 (2) 2.1原始参数的选定 (2) 2.2原理性方案设计 (2) 2.3 结构的设计 (3) 2.4 确定设计方案 (3) 第三章中心曲柄连杆机构的设计 (5) 3.1 气缸的作用力分析 (5) 3.2 惯性力的计算 (5) 第四章活塞以及连杆组件的设计 (8) 4.1 设计活塞组件 (8) 4.2 设计活塞销 (9) 4.3 活塞销座 (9) 4.4 连杆的设计 (9) 第五章曲轴的设计 (11) 5.1 曲轴的材料的选择 (11) 5.2 确定曲轴的主要尺寸和结构细节 (11) 第六章曲柄连杆机构的创建 (13)

平面四杆机构教学设计

教学设计 设计思路: 本次课程的主要内容:首先通过PPT图片引出本次课程的学习内容平面四杆,然后通过介绍平面四杆机构的概念,并进行详细的讲解让学生理解并记住,引出新名词曲柄摇杆概念让学生分组进行讨论研究。教师介绍平面四杆机构的基本类型,并对每个类型讲解,列举生活中的应用实例,最后介绍四杆机构的判别方法,最后教师进行总结。教学内容:平面四杆机构。 教学目标: 知识与能力目标:1、引领学生对平面四杆机构进行学习。2.提升学 生理论知识与实际应用结合的能力。 过程与方法目标:培养学生提出问题、解决问题的能力。 情感态度与价值观目标:1.引导学生学习,调动学生学习积极性。 2.培养学生的自信心。 教学重点:平面四杆机构的组成。 教学难点:平面四杆机构的分类。 教学方法:案例教学法、分组讨论法 教材准备:《机械基础》 学情分析:学生在之前课时中已经学习过高副低副以及构件的概念。教材分析:《机械基础》是中等职业教育规划新教材,本次课《键连接和销连接》选自课本第四章第一节,介绍了键和销连接功能、类型、结构形式及应用是本书重点内容之一。为后面学习第五章构件、机械

的基础知识、工作原理和基本技能等知识打好理论知识基础,在机械专业中具有不容忽视的重要的地位。 教学过程: 1.首先教师通过复习之前课程学习过的高副低副以及构件的基本概 念并介绍平面四杆机构的概念,提问学生生活中有哪些类型的四杆机构?让学生进行思考。 2.教师通过展示平面四杆机构的图片,让学生对于平面四杆机构有 一个大致的了解,然后详细介绍每一构件。 3.教师讲解平面四杆机构的各种类型,并列举生活中的应用实例, 让同学们有进一步的了解。 4.教师通过讲授法给学生讲解平面四杆机构的判别方法。 5.教师最后进行评价总结,知识建构。 教学评价:根据学生在课堂上的表现,课堂学习的氛围,师生之间的互动情况反思教学设计思路是否合理,教学内容的选择和教学过程的安排是否合理,学生是否能跟上教师的节奏,内容的转换是否突兀,讲解的内容是否符合由浅入深的教学原则,并作出相应的修改和调整。案例教学是互动式的教学,学生可以变被动听讲为主动参与,有利于调动其学习积极性和主动性,激励学员独立思考,提高学生理解、运用和驾驭知识的能力,改善教学效果。

汽车曲柄连杆机构设计

摘要 本文以捷达EA113汽油机的相关参数作为参考,对四缸汽油机的曲柄连杆机构的主要零部件进行了结构设计计算,并对曲柄连杆机构进行了有关运动学和动力学的理论分析与计算机仿真分析。 首先,以运动学和动力学的理论知识为依据,对曲柄连杆机构的运动规律以及在运动中的受力等问题进行详尽的分析,并得到了精确的分析结果。其次分别对活塞组、连杆组以及曲轴进行详细的结构设计,并进行了结构强度和刚度的校核。再次,应用三维CAD软件:Pro/Engineer建立了曲柄连杆机构各零部件的几何模型,在此工作的基础上,利用Pro/E软件的装配功能,将曲柄连杆机构的各组成零件装配成活塞组件、连杆组件和曲轴组件,然后利用Pro/E软件的机构分析模块(Pro/Mechanism),建立曲柄连杆机构的多刚体动力学模型,进行运动学分析和动力学分析模拟,研究了在不考虑外力作用并使曲轴保持匀速转动的情况下,活塞和连杆的运动规律以及曲柄连杆机构的运动包络。仿真结果的分析表明,仿真结果与发动机的实际工作状况基本一致,文章介绍的仿真方法为曲柄连杆机构的选型、优化设计提供了一种新思路。 关键词:发动机;曲柄连杆机构;受力分析;仿真建模;运动分析;Pro/E

ABSTRACT This article refers to by the Jeeta EA113 gasoline engine’s related parameter achievement, it has carried on the structural design compution for main parts of the crank link mechanism in the gasoline engine with four cylinders, and has carried on theoretical analysis and simulation analysis in computer in kinematics and dynamics for the crank link mechanism. First, motion laws and stress in movement about the crank link mechanism are analyzed in detail and the precise analysis results are obtained. Next separately to the piston group, the linkage as well as the crank carries on the detailed structural design, and has carried on the structural strength and the rigidity examination. Once more, applys three-dimensional CAD software Pro/Engineer establishing the geometry models of all kinds of parts in the crank link mechanism, then useing the Pro/E software assembling function assembles the components of crank link into the piston module, the connecting rod module and the crank module, then using Pro/E software mechanism analysis module (Pro/Mechanism), establishes the multi-rigid dynamics model of the crank link, and carries on the kinematics analysis and the dynamics analysis simulation, and it studies the piston and the connecting rod movement rule as well as crank link motion gear movement envelopment. The analysis of simulation results shows that those simulation results are meet to true working state of engine. It also shows that the simulation method introduced here can offer a new efficient and convenient way for the mechanism choosing and optimized design of crank-connecting rod mechanism in engine. Key words: Engine;Crankshaft-Connecting Rod Mechanism;Analysis of Force; Modeling of Simulation;Movement Analysis;Pro/E

(完整word版)铰链四杆机构教学设计

《铰链四杆机构的类型及判定》教学设计 一、教学设计思路 本着以学生能力培养为本位,尊重学生的认知规律和职业成长规律,结合所教学生的实际情况(中职学生好动),在本次课堂教学中以铰链四杆机构的真实工作情境导入教学内容,提出本次课的工作任务,并以教学载体为主线组织教学,完成工作任务。学生课前做模型,老师评,课后按所学新知改进模型,体现“做中学,学中做”的教学思路。通过解析教学载体,使学生掌握知识点,培养学生的动手能力、协作能力。 二、教材分析: 本课内容选自中等职业教育国家规划教材《机械基础》第六章第二节。本教材前面五章的内容都是机械零件的静止运动,常用机构的教学内容需构建运动的思维,是一个由静向动的变化过程,学生应动起来(思维动起来、手动起来)。在教学中,课程第一章中机构的知识得到了运用与提升,同时本学习单元内容也为后续常用机构的学习垫定了基础。 三、教学目标 1、知识目标: (1)、熟悉高、低副接触的运动特点和四杆机构的组成条件。 (2)、掌握铰链四杆机构类型及其判定条件,了解其应用。 2、能力目标: (1)、课前预习并分小组制作铰链四杆机构模型,课后运用所学知识分析存在的问题,改进模型。 (2)、能够判断四杆机构是否存在曲柄,并能够根据已知条件确定四杆机构的形式。 3、情感目标: (1)、培养学生细心观察、分析问题及灵活运用所学知识解决问题的能力。 (2)、通过小组做模型,使学生养成学以致用,大胆实践的精神,同时增强同学间的团队协作意识。 四、教学重难点 教学重点:铰链四杆机构曲柄存在条件的判别及四杆机构类型的确定。 教学难点:铰链四杆机构类型判定条件的应用。 教学关键:杆件的长度、位置与铰链四杆机构类型的关系 突破:做模型、动画、课件 五、教学准备 1、学生准备 (1)、知识储备:掌握运动副、构件、铰链四杆机构的组成等知识;具备初步分析机构运动特点能力。 (2)、预习新课,并在课前试做铰链四杆机构。 2、教师准备 (1)、准备制作铰链四杆机构的材料、课件、动画、教案、教学载体。 (2)、教学方法:讲授法、任务设计法、案例教学法(以教学载体为主线)、小组协作法。 (3)、教学资源:多媒体课件、投影仪、黑板、动画、机构模型

连杆机构创新设计在机械工程实际中的应用

连杆机构创新设计在机械工程实际中的应用 发表时间:2017-07-05T11:21:33.760Z 来源:《防护工程》2017年第4期作者:陶海涛 [导读] 本文作者裁判能够连杆机构的定义出发,分析了连杆机构创新设计在机械工程实际中的应用。 浙江红旗机械有限公司浙江 313200 摘要:连杆机构的常用方法连杆机构的运动学分析包括位置分析、速度分析和加速度分析三个方面,其基础是力学中的运动学,现在己形成了较为成熟的连杆机构分析方法。机械产品通过创新设计,利用换代从根本解决产品更新问题。本文作者裁判能够连杆机构的定义出发,分析了连杆机构创新设计在机械工程实际中的应用。 关键词:连杆机构;创新设计;机械工程;应用 1 连杆机构及平面连杆机构 1.1 连杆机构概述 连杆机构又称低副机构,是机械的组成部分中的一类,指由若干有确定相对运动的构件用低副联接组成的机构。 平面连杆机构中最基本也是应用最广泛的一种型式是由四个构件组成的平面四杆机构。由于机构中的多数构件呈杆状,所以常称杆状构件为杆。低副是面接触,耐磨损;加上转动副和移动副的接触表面是圆柱面和平面,制造简便,易于获得较高的制造精度。连杆机构广泛应用于各种机械和仪表中。根据构件之间的相对运动为平面运动或空间运动,连杆机构可分为平面连杆机构和空间连杆机构。根据机构中构件数目的多少分为四杆机构、五杆机构、六杆机构等,一般将五杆及五杆以上的连杆机构称为多杆机构。当连杆机构的自由度为1时,称为单自由度连杆机构;当自由度大于1时,称为多自由度连杆机构。 根据形成连杆机构的运动链是开链还是闭链,亦可将相应的连杆机构分为开链连杆机构(机械手通常是运动副为转动副或移动副的空间开链连杆机构)和闭链连杆机构。单闭环的平面连杆机构的构件数至少为4,因而最简单的平面闭链连杆机构是四杆机构,其他多杆闭链机构无非是在其基础上扩充杆组而成;单闭环的空间连杆机构的构件数至少为3,因而可由三个构件组成空间三杆机构。 1.2 平面连杆机构 最简单的平面连杆机构是由四个构件组成的,称为平面四杆机构。它的应用非常广泛,而且是组成多杆机构的基础。 由若干个刚性构件通过低副(转动副、移动副))联接,且各构件上各点的运动平面均相互平行的机构,又称平面低副机构。低副具有压强小、磨损轻、易于加工和几何形状能保证本身封闭等优点,故平面连杆机构广泛用于各种机械和仪器中。与高副机构相比,它难以准确实现预期运动,设计计算复杂。 平面连杆机构中最常用的是四杆机构,它的构件数目最少,且能转换运动。多于四杆的平面连杆机构称多杆机构,它能实现一些复杂的运动,但杆多且稳定性差。 2 连杆机构运动学分析的常用方法 连杆机构的平面机构的机构,是将平面机构的位置分析问题归纳为求解三角形问题,并利用矢量方法来描述平面连杆机构的运动及动力分析,以机构中的“阿苏尔杆组”为基本单元,根据基本单元编制运动分析子程序,对每一基本杆组进行运动分析,解决了机械杆组的机构分析问题。同时把平面机构看成由一些相互约束的基点构成的系统,建立起数学模型,通过及诶额的运动分析,建立约束非线性方程组,需要引用数值解法各有特点,。针对连杆机构创新设计虚拟仿真的需要,选择基本杆组,调用相应的杆组程序对整个机构进行分析,在分析机构运动时,通过逐次求解各基本杆组来完成。建立不同机械运动分析的数学模型,随后编制成通用子程序,对速度及加速度等运动参数进行求解。快速求解出各点的运动参数。机构运动分析中构件之间应该满足装配条件,否则将不能进行正常的运动,为此建立构件库,形成机构运动简图符号库,由机构三维参数化实体模型库组成,如连杆的厚度。构件之间的拼接通过机构运动简图中构件之间的拼接关系直接生成,显示机械构件的编辑窗口进行参数的编辑。取两个构件上需要拼接的运动副来进行,把构件节点与提供的树映射 TreeMap 类,对所涉及的机构进行干涉检测。 3 连杆机构在机械工程实际工作中的具体应用 3.1 ANSYS软件对于机械工程结构的设计 合理的设计应该确保在各种环境下,使机械精确地保持形状和姿态。采用经验类比设计与简化计算相结合的方法,防止出现机械加工的产品成本高的问题,在当前客户要求越来越多样化的情况下,采用功能强大的ANSYS软件进行设计分析已成为可能,对建立的实体模型自动进行有限元网格的划分,提供了有限元计算的优异分析功能,可获得良好的计算精度。建立设计模型。进行有限元机械划分。建立边界条件,计算节点载荷,组成整体刚阵,求解有限元方程。建立实体模型,并输入需要产品材料特性,减少数量级的偏差。确定坐标系,可以完成计算中所有的前处理过程。 3.2 基于功能分析的创新设计机构系统设计 分析执行构件的运动形式,机械的连续旋转运动,往复摆动,往复移动和特殊功能运动,记录每分钟转位次数,运动系间歇转动数每分钟转角大小,满足机械运动规律的要求,适当设置调整环节。利用基本杆组法以机构中不可再分的运动链作为机构的基本单元,按单元编制通用的运动分析子程序,在分析进行机构运动后,将机构划分成基本杆组后对每一基本杆组进行运动分析,对整个根据工艺受力大小,制造加工难易进行比较,然后择优而取。曲柄摇杆机构的齿条齿轮机构及输出运动能够实现往复摆动,间歇往复摆动的组合机构可以实现间歇往复摆动,通过控制驱动液压缸,实现间歇往复摆动。利用连杆曲线的平面连杆机构,从动件凸轮机构,实现机械间歇往复移动。 3.3 在产品设计系统方面的创新 随着计算机辅助概念设计的研究,一些大型的CAD商品化软件中,生成高精度的曲面几何模型,并直接传送到机械设计和原型制造中,实现从符号描述到几何表示的映射,并对产品的相似实例进行评价与修改,进而获得产品概念设计的优化解。识别机构中的构件是否等于机构的原动件的数目,判定机构的运动确定性,构件中要对局部自由度、虚约束适当处理以便正确计算出机构的自由度。机械主动件做有规律运动,位置确定的运动时,每一个位置机构所有构件都是可行的。程序在计算位置并绘制机构运动过程中,评估机构运动分析中构件之间装配条件,杆

曲柄连杆机构的拆装

曲柄连杆机构得拆装 实训步骤及操作方法: 1、曲柄连杆机构得拆卸 拆卸曲柄连杆机构机件时,应先将发动机外部机件拆卸,如分电器,发电机及V带、水泵、化油器、汽油泵、起动机与机油滤清器等。对于AFE电控汽油喷射发动机应拆卸节气门体、怠速稳定阀及燃油分配器等。 然后分解正时齿形带机构.先拆下齿形带护罩,转动曲轴使第一缸活塞处于压缩行程上止点,检查正时记号,凸轮轴正时齿形皮带轮上标记须与气门罩盖平面对齐,最后拆下张紧装置,拆下齿形带。 (1)拆下气缸盖 ①旋出气门罩盖得螺栓取下气门罩盖与档油罩; ②松下张紧轮螺母,取下张紧轮; ③拆下进、排气歧管; ④按要求顺序旋松气缸盖螺栓,并取下气缸盖与气缸盖衬垫;

⑤拆下火花塞 (2)拆下并分解曲轴连杆机构 ①拆下油底壳、机油滤网、浮子与机油泵; ②拆下曲轴带轮; ③拧下曲轴正时齿带轮固定螺栓,取下曲轴正时齿带轮; ④拧下中间轴齿带轮得固定螺栓,取下中间齿带轮;拆卸密封凸缘,取出中间轴; ⑤拆卸前油封与前油封凸缘; ⑥拆卸离合器压盘总成及飞轮总成,为保证其动平衡,应在飞轮与离合器壳上作装配记号; ⑦拆下活塞连杆组件: 拆下活塞连杆组件前,应检查连杆大端得轴向间隙,该车极限间隙值为0、37mm,大于此值应更换连杆。拆下连杆轴承盖,将活塞连杆组从气缸中抽出. 拆下活塞连杆组后,注意连杆与连杆大头盖与活塞上得记号应与气缸得序号一致,如无记号,则应重新打印. ⑧检查曲轴轴向间隙,极限轴向间隙为0、25mm,超过此值,应更换止推垫圈; ⑨按规定顺序松开主轴承盖螺栓,拆下主轴承盖,取下曲轴; ⑩分解活塞连杆组件。 2、曲柄连杆机构得装配 曲柄连杆机构得装配质量直接关系到发动机得工作性能,因此,装合时须注意下列事项。 ①各零部件应彻底清洗,压缩空气吹干,油道孔保持畅通; ②对于一些配合工作面(如气缸壁、活塞、活塞环、轴颈与轴承、挺杆等),装合前要涂以润滑油; ③对于有位置、方向与平衡要求得机件,必须注意装配记号与平衡记号,确保安装关系正确与动平衡要求,如正时链条、链轮、活塞、飞轮与离合器总成等。 ④螺栓、螺母必须按规定得力矩分次按序拧紧。螺栓、螺母、垫片等应齐全,以满足其完整性与完好性; ⑤使用专用工具。 安装顺序一般与拆卸顺序相反. (1)活塞连杆组得装合 ①将同一缸号得活塞与连杆放在一起,如连杆无缸号标记,应在连杆杆身上打所属缸号标记; ②将活塞顶部得朝前“箭头”标记与连杆杆身上得朝前“浇铸”标记对准; ③将涂有机油得活塞销,用大拇指压入活塞销孔与连杆铜套中,如压不进去,可用热装合法装配; ④活塞销装上后,要保证其与铜套得配合间隙为0、003~0、008mm ,经验检验法就是用手晃动活塞销与销孔铜套无间隙感,活塞销垂直向下时又不会从销孔或铜套中滑出。(注意铜套与连杆油孔对正); ⑤安装活塞销卡环; ⑥用活塞环专用工具安装活塞环,先装油环,再装第二道环,最后装第一道环,环得上下面不能装错,标记“TOP”朝活塞顶; ⑦检查活塞环得侧隙、端隙。

基于matlab的连杆机构设计

目录 1平面连杆机构的运动分析 (1) 1.2 机构的工作原理 (1) 1.3 机构的数学模型的建立 (1) 1.3.1建立机构的闭环矢量位置方程 (1) 1.3.2求解方法................................................................... ..2 2 基于MATLAB程序设计 (4) 2.1 程序流程图 (4) 2.2 M文件编写 (6) 2.3 程序运行结果输出 (7) 3 基于MATLAB图形界面设计 (11) 3.1界面设计 (11) 3.2代码设计 (12)

4 小结 (17) 参考文献 (18) 1平面连杆机构的运动分析 1.1 机构运动分析的任务、目的和方法 曲柄摇杆机构是平面连杆机构中最基本的由转动副组成的四杆机构,它可以用来实现转动和摆动之间运动形式的转换或传递动力。 对四杆机构进行运动分析的意义是:在机构尺寸参数已知的情况下,假定主动件(曲柄)做匀速转动,撇开力的作用,仅从运动几何关系上分析从动件(连杆、摇杆)的角位移、角速度、角加速度等运动参数的变化情况。还可以根据机构闭环矢量方程计算从动件的位移偏差。上述这些内容,无论是设计新的机械,还是为了了解现有机械的运动性能,都是十分必要的,而且它还是研究机械运动性能和动力性能提供必要的依据。 机构运动分析的方法很多,主要有图解法和解析法。当需要简捷直观地了解机构的某个或某几个位置的运动特性时,采用图解法比较方便,而且精度也能满足实际问题的要求。而当需要精确地知道或要了解机构在整个运动循环过程中的运动特性时,采用解析法并借助计算机,不仅可获得很高的计算精度及一系列位置的分析结果,并能绘制机构相应的运动线图,同时还可以把机构分析和机构综合问题联系起来,以便于机构的优化设计。 1.2 机构的工作原理 在平面四杆机构中,其具有曲柄的条件为: a.各杆的长度应满足杆长条件,即: 最短杆长度+最长杆长度≤其余两杆长度之和。 b.组成该周转副的两杆中必有一杆为最短杆,且其最短杆为连架杆或机架(当最短杆为连架杆时,四杆机构为曲柄摇杆机构;当最短杆为机架时,则为双曲柄机构)。 在如下图1所示的曲柄摇杆机构中,构件AB为曲柄,则B点应能通过曲柄与连杆两次共线的位置。

实验五 平面连杆机构创新设计实验

实验五平面连杆机构创新设计实验 一、实验目的 设计平面机构,并对所设计的机构进行拼接,完成机构特有的运动特性。二、实验仪器 8个创新组合实验台 三、实验要求 (1)每组设计两种不同的机构,其中一种机构从选题部分设计题目中进行选择,另一种机构自行命题,可以来源于参考书、网络或者现实生活中的机构,要求至少有两种基本连杆机构。要求在设计过程中利用一种创新设计方法对方案进行分析。 (2)每种机构都能实现其特定的运动特性。例如,牛头刨床要实现急回运动。通过查阅资料确定机构的运动特性。 (3)在报告上绘制初始方案的机构运动简图。 (4)实验报告请自行打印,将设计方案在课前准备好,填写到报告上。 (5)每班分成7-8组,每组3-4人。 (6)实验时自备三角板、圆规和草稿纸等文具。 四、选题部分设计题目:(每组任选一个) 蒸汽机机构、精压机机构、牛头刨床机构、插床机构、筛料机构、行程放大机构。 机构具体要求: (一)蒸汽机机构: 要求:1.实现活塞的往复运动; 2.运动传递由电机→曲柄→……→滑块。 (二)精压机机构 要求:构件平稳下压,物料受载均衡 (三)牛头刨床主切削运动机构 要求:具有急回特性,运动传递由电机→齿轮减速→导杆→……→滑块 (四)插床机构

要求:1.具有急回特性。 2.插刀实现大行程往复运动。 3. 运动传递由电机→齿轮减速→原动件曲柄→……→输出件插刀 (五)筛料机构 要求:1.具有急回特性。 2.加速度变化较大。 (六)行程放大机构: 要求:实现行程放大 五、报告要求 选题报告要求: (一)选题机构名称; (二)选题机构运动要求及特点; (三)利用功能分析法及设计目录对设计方案进行简单分析; (四)设计的机构简图; (五)实验中机构运动状况分析; (六)改进后的机构简图。 自命题报告要求: (一)命题机构名称; (二)命题机构运动要求及特点; (三)对设计方案进行简单分析; (四)所设计的结构简图; (五)实验中机构运动状况分析; (六)改进后的结构简图。

平面连杆机构及其设计(参考答案)

一、填空题: 1.平面连杆机构是由一些刚性构件用低副连接组成的。 2.由四个构件通过低副联接而成的机构成为四杆机构。 3.在铰链四杆机构中,运动副全部是转动副。 4.在铰链四杆机构中,能作整周连续回转的连架杆称为曲柄。 5.在铰链四杆机构中,只能摆动的连架杆称为摇杆。 6.在铰链四杆机构中,与连架杆相连的构件称为连杆。 7.某些平面连杆机构具有急回特性。从动件的急回性质一般用行程速度变化系数表示。 8.对心曲柄滑快机构无急回特性。9.偏置曲柄滑快机构有急回特性。 10.对于原动件作匀速定轴转动,从动件相对机架作往复运动的连杆机构,是否有急回特性,取决于机构的极位夹角是否大于零。 11.机构处于死点时,其传动角等于0。12.机构的压力角越小对传动越有利。 13.曲柄滑快机构,当取滑块为原动件时,可能有死点。 14.机构处在死点时,其压力角等于90o。 15.平面连杆机构,至少需要4个构件。 二、判断题: 1.平面连杆机构中,至少有一个连杆。(√) 2.平面连杆机构中,最少需要三个构件。(×) 3.平面连杆机构可利用急回特性,缩短非生产时间,提高生产率。(√) 4.平面连杆机构中,极位夹角θ越大,K值越大,急回运动的性质也越显著。(√) 5.有死点的机构不能产生运动。(×) 6.机构的压力角越大,传力越费劲,传动效率越低。(√) 7.曲柄摇杆机构中,曲柄为最短杆。(√) 8.双曲柄机构中,曲柄一定是最短杆。(×) 9.平面连杆机构中,可利用飞轮的惯性,使机构通过死点位置。(√) 10.平面连杆机构中,压力角的余角称为传动角。(√) 11.机构运转时,压力角是变化的。(√) 三、选择题: 1.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和 A 其他两杆之和。 A <=; B >=; C > 。 2.铰链四杆机构存在曲柄的必要条件是最短杆与最长杆长度之和小于或等于其他两杆之和,而充分条件是取 A 为机架。 A 最短杆或最短杆相邻边; B 最长杆; C 最短杆的对边。3.铰链四杆机构中,若最短杆与最长杆长度之和小于其余两杆长度之和,当以 B 为机架时,有两

相关文档
最新文档