人教版高二数学选修2-3综合测试题

合集下载

高中数学选修2-3全册综合能力测试题含解析人教版

高中数学选修2-3全册综合能力测试题含解析人教版

⾼中数学选修2-3全册综合能⼒测试题含解析⼈教版⾼中数学选修2-3全册综合能⼒测试题(含解析⼈教版)⾼中数学选修2-3全册综合能⼒测试题(含解析⼈教版)时间120分钟,满分150分。

⼀、选择题(本⼤题共12个⼩题,每⼩题5分,共60分,在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.)1.将标号为1,2,3,4,5,6的6张卡⽚放⼊3个不同的信封中,若每个信封放2张,其中标号为1,2的卡⽚放⼊同⼀信封,则不同的放法共有()A.12种B.18种C.36种D.54种[答案]B[解析]由题意,不同的放法共有C13C24=18种.2.(2014四川理,2)在x(1+x)6的展开式中,含x3项的系数为()A.30B.20C.15D.10[答案]C[解析]x3的系数就是(1+x)6中的第三项的系数,即C26=15.3.某展览会⼀周(七天)内要接待三所学校学⽣参观,每天只安排⼀所学校,其中甲学校要连续参观两天,其余学校均参观⼀天,则不同的安排⽅法的种数是() A.210B.50C.60D.120[答案]D[解析]⾸先安排甲学校,有6种参观⽅案,其余两所学校有A25种参观⽅案,根据分步计数原理,安排⽅法共6A25=120(种).故选D.4.若随机变量ξ~N(-2,4),则ξ在区间(-4,-2]上取值的概率等于ξ在下列哪个区间上取值的概率() A.(2,4]B.(0,2] C.[-2,0)D.(-4,4][答案]C[解析]此正态曲线关于直线x=-2对称,∴ξ在区间(-4,-2]上取值的概率等于ξ在[-2,0)上取值的概率.5.变量X与Y相对应的⼀组数据为(10,1)、(11.3,2)、(11.8,3)、(12.5,4)、(13,5);变量U与V相对应的⼀组数据为(10,5)、(11.3,4)、(11.8,3)、(12.5,2)、(13,1).r1表⽰变量Y与X之间的线性相关系数,r2表⽰变量V与U之间的线性相关系数,则()A.r2r10B.0r2r1C.r20r1D.r2=r1[答案]C[解析]画散点图,由散点图可知X与Y是正相关,则相关系数r10,U与V是负相关,相关系数r20,故选C. 6.现安排甲、⼄、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每⼈从事翻译、导游、礼仪、司机四项⼯作之⼀,每项⼯作⾄少有⼀⼈参加.甲、⼄不会开车但能从事其他三项⼯作,丙、丁、戊都能胜任四项⼯作,则不同安排⽅案的种数是()A.152B.126C.90D.54[答案]B[解析]先安排司机:若有⼀⼈为司机,则共有C13C24A33=108种⽅法,若司机有两⼈,此时共有C23A33=18种⽅法,故共有126种不同的安排⽅案.7.设a=0π(sinx+cosx)dx,则⼆项式(ax-1x)6展开式中含x2项的系数是()A.192B.-192C.96D.-96[答案]B[解析]由题意知a=2∴Tr+1=Cr6(2x)6-r(-1x)r=Cr626-r(-1)rx3-r ∴展开式中含x2项的系数是C1625(-1)=-192.故选B. 8.给出下列实际问题:①⼀种药物对某种病的治愈率;②两种药物冶疗同⼀种病是否有区别;③吸烟者得肺病的概率;④吸烟⼈群是否与性别有关系;⑤⽹吧与青少年的犯罪是否有关系.其中,⽤独⽴性检验可以解决的问题有()A.①②③B.②④⑤C.②③④⑤D.①②③④⑤[答案]B[解析]独⽴性检验主要是对事件A、B是否有关系进⾏检验,主要涉及两种变量对同⼀种事物的影响,或者是两种变量在同⼀问题上体现的区别等.9.在⼀次独⽴性检验中,得出列联表如下:AA合计B2008001000B180a180+a合计380800+a1180+a且最后发现,两个分类变量A和B没有任何关系,则a 的可能值是()A.200B.720C.100D.180[答案]B[解析]A和B没有任何关系,也就是说,对应的⽐例aa +b和cc+d基本相等,根据列联表可得2001000和180180+a基本相等,检验可知,B满⾜条件.故选B. 10.从装有3个⿊球和3个⽩球(⼤⼩、形状相同)的盒⼦中随机摸出3个球,⽤ξ表⽰摸出的⿊球个数,则P(ξ≥2)的值为()A.110B.15C.12D.25[答案]C[解析]根据条件,摸出2个⿊球的概率为C23C13C36,摸出3个⿊球的概率为C33C36,故P(ξ≥2)=C23C13C36+C33C36=12.故选C.11.甲、⼄、丙三位学⽣⽤计算机联⽹学习数学,每天上课后独⽴完成6道⾃我检测题,甲及格的概率为45,⼄及格的概率为35,丙极格的概率为710,三⼈各答⼀次,则三⼈中只有⼀⼈及格的概率为()A.320B.42135C.47250D.以上都不对[答案]C[解析]利⽤相互独⽴事件同时发⽣及互斥事件有⼀个发⽣的概率公式可得所求概率为:45×1-35×1-710+1-45×35×1-710+1-45×1-35×710=47250.故选 C. 12.(1-x)6(1+x)4的展开式中x的系数是()A.-4B.-3C.3D.4[答案]B[解析]解法1:(1-x)6(1+x)4的展开式中x的⼀次项为:C06C24(x)2+C26(-x)2C04+C16(-x)C14(x)=6x+15x -24x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.解法2:由于(1-x)6(1+x)4=(1-x)4(1-x)2的展开式中x的⼀次项为:C14(-x)C02+C04C22(-x)2=-4x+x=-3x,所以(1-x)6(1+x)4的展开式中x的系数是-3.⼆、填空题(本⼤题共4个⼩题,每⼩题4分,共16分,将正确答案填在题中横线上)13.设(x-1)21=a0+a1x+a2x2+…+a21x21,则a10+a11=________.[答案]0[解析]本题主要考查⼆项展开式.a10=C1021(-1)11=-C1021,a11=C1121(-1)10=C1021,所以a10+a11=C1121-C1021=C1021-C1021=0.14.已知ξ的分布列为:ξ1234P14131614则D(ξ)等于____________.[答案]179144[解析]由已知可得E(ξ)=1×14+2×13+3×16+4×14=2912,代⼊⽅差公式可得D(ξ)=179144. 15.对于回归⽅程y=4.75x+2.57,当x=28时,y的估计值是____________.[答案]135.57[解析]只需把x=28代⼊⽅程即可,y=4.75×28+2.57=135.57.16.某艺校在⼀天的6节课中随机安排语⽂、数学、外语三门⽂化课和其它三门艺术课各1节,则在课表上的相邻两节⽂化课之间最多间隔1节艺术课的概率为________(⽤数字作答).[答案]35[解析]本题考查了排列组合知识与概率的求解.6节课共有A66种排法,按要求共有三类排法,⼀类是⽂化课与艺术课相间排列,有A33A34种排法;第⼆类,艺术课、⽂化课三节连排,有2A33A33种排法;第三类,2节艺术课排在第⼀、⼆节或最后两节,有C23C12A22C13A33种排法,则满⾜条件的概率为A33A34+2A33A33+C23C12A22C13A33A66=35.三、解答题(本⼤题共6个⼩题,共74分,解答应写出⽂字说明、证明过程或演算步骤)17.(本题满分12分)已知x+2xn的展开式中第五项的系数与第三项的系数⽐是101,求展开式中含x的项.[解析]T5=C4n(x)n -42x4=C4n24xn-122,T3=C2n(x)n-22x2=C2n22xn-62,所以C4n24C2n22=101,即C4n22=10C2n,化简得n2-5n-24=0,所以n=8或n=-3(舍去),所以Tr+1=Cr8(x)8-r2xr=Cr82rx8-3r2,由题意:令8-3r2=1,得r=2.所以展开式中含x的项为第3项,T3=C2822x=112x.18.(本题满分12分)某电脑公司有6名产品推销员,其中5名的⼯作年限与年推销⾦额数据如下表:推销员编号12345⼯作年限x/年35679推销⾦额Y/万元23345(1)求年推销⾦额Y关于⼯作年限x的线性回归⽅程;(2)若第6名推销员的⼯作年限为11年,试估计他的年推销⾦额.[解析](1)设所求的线性回归⽅程为y^=b^x+a^,则b^=i=15 xi-x yi-y i=15 xi-x 2=1020=0.5,a^=y-b^x=0.4.所以年推销⾦额Y关于⼯作年限x的线性回归⽅程为y^=0.5x+0.4.(2)当x=11时,y^=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销⾦额为5.9万元.19.(本题满分12分)在对⼈们的休闲⽅式的⼀次调查中,共调查了124⼈,其中⼥性70⼈,男性54⼈.⼥性中有43⼈主要的休闲⽅式是看电视,另外27⼈主要的休闲⽅式是运动;男性中有21⼈主要的休闲⽅式是看电视,另外33⼈主要的休闲⽅式是运动.(1)根据以上数据建⽴⼀个2×2的列联表;(2)试问休闲⽅式是否与性别有关?[解析](1)2×2列联表为性别看电视运动合计⼥432770男213354总计6460124(2)由χ2计算公式得其观测值χ2=124× 43×33-27×21 270×54×64×60≈6.201.因为6.201>3.841,所以有95%的把握认为休闲⽅式与性别有关.20.(本题满分12分)某研究机构举⾏⼀次数学新课程研讨会,共邀请50名⼀线教师参加,使⽤不同版本教材的教师⼈数如表所⽰:版本⼈教A版⼈教B版苏教版北师⼤版⼈数2015510(1)从这50名教师中随机选出2名,求2⼈所使⽤版本相同的概率;(2)若随机选出2名使⽤⼈教版的教师发⾔,设使⽤⼈教A版的教师⼈数为ξ,求随机变量ξ的分布列.[解析](1)从50名教师中随机选出2名的⽅法数为C250=1225.选出2⼈使⽤版本相同的⽅法数为C220+C215+C25+C210=350.故2⼈使⽤版本相同的概率为:P=3501225=27. (2)∵P(ξ=0)=C215C235=317,P(ξ=1)=C120C115C235=60119,P(ξ=2)=C220C235=38119,∴ξ的分布列为ξ012P317601193811921.(本题满分12分)(2014陕西理,19)在⼀块耕地上种植⼀种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:作物产量(kg)300500概率0.50.5作物市场价格(元/kg)610概率0.40.6(1)设X表⽰在这块地上种植1季此作物的利润,求X的分布列;(2)若在这块地上连续3季种植此作物,求这3季中⾄少有2季的利润不少于2000元的概率.[解析](1)设A表⽰事件“作物产量为300kg”,B表⽰事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4,∵利润=产量×市场价格-成本,∴X所有可能的取值为500×10-1000=4000,500×6-1000=2000,300×10-1000=2000,300×6-1000=800,P(X=4000)=P(A-)P(B-)=(1-0.5)×(1-0.4)=0.3,P(X=2000)=P(A-)P(B)+P(A)P(B-)=(1-0.5)×0.4+0.5×(1-0.4)=0.5,P(X=800)=P(A)P(B)=0.5×0.4=0.2,所以X的分布列为X40002000800P0.30.50.2(2)设Ci表⽰事件“第i季利润不少于2000元”(i=1,2,3),由题意知C1,C2,C3相互独⽴,由(1)知,P(Ci)=P(X=4000)+P(X=2000)=0.3+0.5=0.8(i=1,2,3),3季的利润均不少于2000元的概率为P(C1C2C3)=P(C1)P(C2)P(C3)=0.83=0.512;3季中有2季利润不少于2000元的概率为P(C-1C2C3)+P(C1C-2C3)+P(C1C2C-3)=3×0.82×0.2=0.384,所以,这3季中⾄少有2季的利润不少于2000元的概率为0.512+0.384=0.896.22.(本题满分14分)学校校园活动有这样⼀个游戏项⽬:甲箱⼦⾥装有3个⽩球、2个⿊球,⼄箱⼦⾥装有1个⽩球、2个⿊球,这些球除颜⾊外完全相同,每次游戏从这两个箱⼦⾥各随机摸出2个球,若摸出的⽩球不少于2个,则获奖.(每次游戏结束后将球放回原箱)(1)求在1次游戏中,①摸出3个⽩球的概率;②获奖的概率.(2)求在2次游戏中获奖次数X的分布列及数学期望E(X).[解析](1)①设“在1次游戏中摸出i个⽩球”为事件Ai(i=0,1,2,3),则P(A3)=C23C25C12C23=15.②设“在1次游戏中获奖”为事件B,则B=A2∪A3.⼜P(A2)=C23C25C22C23+C13C12C25C12C23=12,且A2,A3互斥,所以P(B)=P(A2)+P(A3)=12+15=710.(2)由题意可知X的所有可能取值为0,1,2.P(X=0)=1-7102=9100,P(X=1)=C127101-710=2150,P(X=2)=7102=49100.所以X的分布列是X012P9100215049100X的数学期望E(X)=0×9100+1×2150+2×49100=75.。

(完整版)高二数学选修2-3排列组合测试题.docx

(完整版)高二数学选修2-3排列组合测试题.docx

高二数学选修2-3 排列组合测试题姓名班别学号成绩一、选择题(本大题共10 个小题,每小题 5 分,共 50 分.)1、A n!(n3) ,则A是()3!A 、 C33B、C n n 3C、A n3D、 A n n 32、C33C43C53C153等于:()A 、C154B、 C164 C 、C173D、C1743、 a, b是异面直线; a 上有 6 个点, b 上有 7 个点,这 13 个点可确定平面的个数是:()A 、C61C71B、 C61C71C、 C63C73D、 C1334、将 5 个不同的小球放入二个不同的抽屉里,不同的放法种数()A 、A52B 、C52C、25D、525.假设 200 件产品中有 3 件次品,现在从中任取 5 件,其中至少有 2 件次品的抽法有()A.C32C1983种B.( C32C1973 C 33C1972)种C.(C5200- C1974)种D.(C2005C13C1974 ) 种6.从黄瓜、白菜、油菜、扁豆 4 种蔬菜品种中选出 3 种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法共()A.24 种 B. 18 种C. 12 种D. 6 种7、某食堂每天中午准备 4 种不同的荤菜, 7 种不同的蔬菜,用餐者可以按下述方法之一搭配午餐:(1)任选两种荤菜、两种蔬菜和白米饭;(2)任选一种荤菜、两种蔬菜和蛋炒饭。

则每天不同午餐的搭配方法总数是()A.22B.56C.210D. 4208.下面是高考第一批录取的一份志愿表:志愿学校专业第一志愿1第 1 专业第 2 专业第二志愿2第 1 专业第 2 专业第三志愿3第 1 专业第 2 专业现有 4 所重点院校,每所院校有 3 个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有不同的填写方法的种数是()A. 43 ( A32 ) 3B . 43 (C32 ) 3 C . A43 (C32 ) 3 D . A43 (A32 ) 39、体育彩票规定:从 01 至 36 共 36 个号中抽出 7 个号为一注,每注 2 元. 某人想从01 至 10 中选 3 个连续的号,从 11 至 20 中选 2 个连续的号,从 21 至 30 中选1 个号,从 31 至 36 中选 1 个号组成一注,则这人把这种特殊要求的号买全,至少要花()A.3360 元B. 6720 元C. 4320 元D. 8640 元10、设有编号为 1,2,3,4,5 的五个茶杯和编号为1,2, 3,4, 5 的五个杯盖,将五个杯盖盖在五个茶杯上,至少有两个杯盖和茶杯的编号相同的盖法有( ) A.30 种B.31种C.32种D.36种二、填空题(本大题满分 20 分,每小题 5 分 . )11.由数字 1、 2、 3、 4、5 组成没有重复数字,且数字1 与 2 不相邻的五位数有_____ 个.12.一电路图如图所示,从 A 到 B共有条不同的线路可通电 .13、已知 C18k C182k 3,则k=。

人教版高二数学选修23测试卷

人教版高二数学选修23测试卷

人教版高二数学选修2-3第二、三章测试卷参考公式1.已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( )A .0.16B .0.32C .0.68D ,0.841.从6名选手中,选取4个人参加奥林匹克竞赛,其中某甲被选中的概率是( )A 、13B 、12C 、23D 、352.某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是( )A 32B 16C 8D 20 3.实验测得四组(x,y)的值是(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线的方程是( ) A.y ∧=x +1 B. y ∧=x+2 C. y ∧=2x+1 D. y ∧=x-14.设随机变量X 等可能的取值1,2,3,…,n ,如果3.0)4(=<X P ,那么( ) A n=3 B n=4 C n=9 D n=105.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这种型号的自动机床各自独立工作,则在一小时内至多有2台机床需要工人照看的概率是( )1536.0.A 1808.0.B 5632.0.C 9728.0.D6.在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是8165,则事件A 在一次试验中出现的概率是( ) A31 B 52C65D 32 8.右图中有一个信号源和五个接收器。

接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。

若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是( )(A )454 (B )361(C )154 (D )158二、填空题 (每小题5分,共30分)9.某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:为了检验主修统计专业是否与性别有关系,根据表中的数据,得到84.430202723)7102013(502≈⨯⨯⨯⨯-⨯=k因为K 2≥3.841,所以断定主修统计专业与性别有关系,这种判断出错的可能性为 。

人教版高中数学选修2-3 模块综合检测卷及答案

人教版高中数学选修2-3 模块综合检测卷及答案

数学·选修2-3(人教A版)模块综合检测卷(测试时间:120分钟评价分值:150分)一、选择题(本大题共8小题,每小题5分,共40分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.变量x,y的散点图如图所示,那么x,y之间的样本相关系数最接近的值是()A.1B.-0.5C.0D.0.5解析:因为r的绝对值越接近于1,表明两个变量的线性相关性越大;r的绝对值越接近于0,表明两个变量的线性相关性越小.由图知x、y之间没有相关关系,所以r的绝对值最接近于0.故选C.答案:C2.从10种不同的作物种子中选出6种放入6个不同的瓶子中展出,如果甲、乙两种种子不能放入第1号瓶内,那么不同的放法种数为()49 8 9 8 5191 5 E (ξ)=15,D (ξ)= 45,则 n 与 p 的值为(A .60,B .60,C .50,D .50, 解析:由 ξ~B (n ,p ),有E (ξ)=np =15,D (ξ)=np (1-p )= ,所以 p = ,n =60.故选 B.⎧⎛x -1⎫⎪6,x <0,⎩- x ,x ≥0,则当 x >0 时,解析:当 x >0 时,f [f (x )]= - x + - x ⎪6的展开式中,x ⎭ ⎝ xA .C 210A 8B .C 1A5 9C .C 1A 5D .C 1A 8解析:先排第 1 号瓶,从甲、乙以外的 8 种不同作物种子中选出1 种有 C 8种方法,再排其余各瓶,有 A 5种方法,故不同的放法共 C 8A 9有种.故选 C.答案:C3.(2013· 大庆模拟)设 ξ 是服从二项分布 B (n ,p )的随机变量,又4)3 13 14 44 445414答案:B4.(2013· 陕西卷)设函数f (x )=⎨⎝ x ⎭f [f (x )]表达式的展开式中常数项为()A .-20B .20C .-15D .15⎛ 1 ⎫ ⎛ 1 ⎫ ⎪6= ⎝ ⎭C 63 ⎝ x ⎭率都是 ,那么,4 个题中答对 2 个题的概率是 ()625 625 625 625常数项为 ⎛ 1 ⎫ ⎪3(- x )3=-20.故选 A.答案:A5.关于 x 的二项式(ax -2)n 的展开式中,二项式系数的和为 128,所有项系数的和为 1,则 a =()A .1B .-1C .3D .1 或 3解析:展开式的二项式系数为 2n =128,所以 n =7,设(ax -2)7=a 0+a 1x +a 2x 2+…+a 7x 7,令 x =1,得展开式的所有项系数为 a 0+a 1+a 2+…+a 7=(a -2)7=1,所以 a =3.故选 C.答案:C6.一份数学单元试卷中有 4 个填空题,某同学答对每个题的概45A. 16 96 192 256B.C.D.答案:B7.某科研机构为了研究中年人秃发与心脏病是否有关,随机调查了一些中年人的情况,具体数据见下表:秃发不秃心脏病205无心脏病30045077- 根据表中数据得到 k =≈15.968,因为平考试中,取得 A 等级的概率分别为 、 、 ,且三门课程的成绩是A. B. C. D .1发[来源:]225×750×320×455K 2≥10.828,则断定秃发与心脏病有关系,那么这种判断出错的可能性为()A .0.1B .0.05C .0.01D .0.001答案:D8.(2013· 佛山一模 )某学生在参加政、史、地三门课程的学业水4 3 25 5 5否取得 A 等级相互独立.记 ξ 为该生取得 A 等级的课程数,其分布列如下表所示,则数学期望 E (ξ)的值为()ξP6 1251a 2b324 12539 5 9125 9 5答案:C二、填空题(本大题共 6 小题,每小题 5 分,共 30 分;把答案填在题中横线上)9.已知随机变量 ξ 的分布列如下:ξ 1 2 3 4 5P0.1 0.2 0.4 0.2 0.1⎪⎩r =3, 所以⎪ r 5 3 则至少取一白球的概率为 1- × = .5 3则 P (2≤ξ<4)____________.解析:P (2≤ξ<4)=P (ξ=2)+P (ξ=3)=0.2+0.4=0.6.答案:0.610. (2013· 四川卷)二项式(x +y )3 的展开式中,含 x 2y 3 的项的系数是________(用数字作答).[来源:]⎧5-r =2, 解析:T r +1=C 5x 5-r y r (r =0,1,2,3,4,5),由题意知⎨5×4×3含 x 2y3的系数为C 5=3×2×1=10.答案:1011.一袋中有 3 个红球,2 个白球,另一袋中有 2 个红球,1 个白球,从每袋中任取一球,则至少取一白球的概率为________________.解析:至少取一白球的对立事件为从每袋中都取得红球,从第一3 2袋中取一球为红球的概率为 ,从另一袋中取一球为红球的概率为 ,3 2 35 3 53答案:12. 已知随机变量 X 服从正态分布 N (0,σ2)且 P (-2≤X ≤0)=0.4,则 P (X >2)=____________.r r 32 =2×n -3 2答案:0.113. (2013· 江门二模 )(1+2x )n 的展开式中 x 3 的系数等于 x 2 的系数的 4 倍,则 n =____________.解析:设(1+2x )n 的展开式的通项公式为 T r +1,则 T r +1=C n (2x )r=2r ·C n · x r ,令 r =3,得展开式中 x 3 的系数为:8C n ,令 r =2 得展开 式中 x 2 的系数为 4C n .依题意, 8C n =4×4C n ,即n n - n -3×2×1n 2,解得 n =8.答案:814.将红、黄、蓝、白、黑 5 个小球分别放入红、黄、蓝、白、黑 5 个盒子里,每个盒子里放且只放 1 个小球,则红球不在红盒内且黄球不在黄盒内的概率是________.三、解答题(本大题共 6 小题,共 80 分;解答应写出文字说明、证明过程或演算步骤)答案:0.6515. (本小题满分 12 分)5 名男生、2 名女生站成一排照相:(1)两名女生都不站在两端,有多少不同的站法?(2)两名女生要相邻,有多少种不同的站法?(3)两名女生不相邻,有多少种不同的站法?(4)女生甲不在左端,女生乙不在右端,有多少种不同的站法?(1)若 y 与 x 之间具有线性相关关系,求线性回归方程.n^ ni解析:(1)中间的五个位置任选两个排女生,其余五个位置任意排男生:A25·A55=2 400(种);(2)把两名女生当作一个元素,于是对六个元素任意排,然后解决两个女生的任意排列:A66·A22=1 400(种);(3)把男生任意全排列,然后在六个空中 (包括两端)有顺序地插入两名女生:A55·A26=3 600(种);(4)采用排除法,在七个人的全排列中,去掉女生甲在左端的 A66个,再去掉女生乙在右端的 A66 个,但女生甲在左端同时女生乙在右 端的 A55 种排除了两次,要找回来一次.A77-2A66+A55=3 720(种).16.(本小题满分 12 分)为了对新产品进行合理定价,对该产品进行了试销试验,以观察需求量 y (单位:千件)对于价格 x (单位:千元)的反应,得数据如下:x 50 70 8040 30 90 95 97y100 80 60120 135 555048[来源:](2)若成本 x =y +500,试求:①在盈亏平衡条件下(利润为零)的价格;②在利润为最大的条件下的定价.∑x i y i -n x y解析:(1)b=i =1∑x2-n x 2i =1≈-1.286 6,解析:(1)记甲、乙两人同时到 A 社区为事件 E A ,那么 P (E A )= 2 3184^a = y -^b x ≈169.772,∴线性回归方程为^y =-1.286 6x +169.772 4.(2)①在盈亏平衡条件下,^y x =^y +500,即-1.286 6x 2+169.772 4x =-1.286 6x +169.772 4+500,1.286 6x 2-171.059x +669.772 4=0,解得 x 1=128.916 2,x 2=4.038 1(舍去) , ∴此时新产品的价格为 128.916 2 千元.②在利润最大的条件下,Q =^y x -x=-1.286 6x 2+169.772 4x +1.286 6x -169.772 4-500=-1.286 6x 2+171.059x -669.772 4.要使 Q 取得最大值,x =66.477 1,即此时新产品应定价为 66.4771 千元.17.(本小题满分 14 分)甲、乙、丙、丁 4 名同学被随机地分到 A ,B ,C 三个社区参加社会实践,要求每个社区至少有一名同学.(1)求甲、乙两人都被分到 A 社区的概率;(2)求甲、乙两人不在同一个社区的概率;(3)设随机变量 ξ 为四名同学中到 A 社区的人数,求 ξ 的分布列和E (ξ)的值.A 22 C 4A 31= ,即甲、乙两人同时到 A 社区的概率是 .A 33 C 4A 3 6所以,甲、乙两人不在同一社区的概率是 P ( E )=1-P (E )= .C 24A 22 1 2C 4A 3 3 3E (ξ)=1× +2× = . x x1181(2) 记甲、乙两人在同一社区为事件 E ,那么 P (E )= 2 3= .56(3)随机变量 ξ 可能取的值为 1,2.事件“ξ=i (i =1,2)”是指有 i 个同学到 A 社区,则 P (ξ=2)= 2 3= ,所以 P (ξ=1)=1-P (ξ=2)= .ξ 的分布列是:ξP[来源:]12 3 21 32 1 43 3 318.(本小题满分 14 分)为备战 2016 年奥运会,甲、乙两位射击选手进行了强化训练.现分别从他们的强化训练期间的若干次平均成绩中随机抽取 8 次,记录如下:甲:.3,9.0,7.9,7.8,9.4,8.9,8.4,8.3乙:.2,9.5,8.0,7.5,8.2,8.1,9.0,8.5(1)现要从中选派一人参加奥运会封闭集训,从统计学角度,你认为派哪位选手参加合理?简单说明理由;(2)若将频率视为概率,对选手乙在今后的三次比赛成绩进行预测,记这三次成绩中不低于 8.5 分的次数为 ξ,求 ξ 的分布列及均值E (ξ).解析:(1)因为- =- =8.5,又 s 2 =0.27,s 2 =0.405,得 s 2 <s 2 ,甲乙甲乙甲乙(2)依题意得,乙不低于 8.5 分的频率为 ,ξ 的可能取值为 0,1,2,3, 则 ξ~B 3,2⎪. 所以,P (ξ=k )=C k 32⎪3-k 1-2⎪k =C k 3 2⎪3,k =0,1,2,3. 所以 E (ξ)=0× +1× +2× +3× = .相对来讲,甲的成绩更加稳定,所以选派甲合适.12⎛ 1⎫⎝⎭⎛1⎫ ⎛ 1⎫ ⎛1⎫ ⎝ ⎭⎝ ⎭ ⎝ ⎭所以 ξ 的分布列为ξP1 8 13 8 23 8 31 81 3 3 1 38 8 8 8 219.(本小题满分 14 分)某项选拔共有四轮考核,每轮设有一个问题,能正确回答者进入下一轮考核,否则即被淘汰.已知某选手能正确回答第一、二、三、四轮的问题的概率分别为 0.6,0.4,0.5,0.2 . 已知各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;[来源:](2)求该选手在选拔中至少回答了 2 个问题被淘汰的概率.解析: (1) 记 “该选手能正确回答第i 轮的问题 ”为事件 A i (i =1,2,3,4),则 P (A 1)=0.6,P (A 2)=0.4,P (A 3)=0.5,P (A 4)=0.2.法一 该选手被淘汰的概率:P =P ( A 1 +A 1 A 2 +A 1 A 2A 3 +A 1 A 2 A 3A 4 )= P ( A 1 ) + P (A 1)P ( A 2 ) + P (A 1)P (A 2)P (A 3) +P (A 1)P (A 2)P (A 3)P (A 4 )=0.4+0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.976.法二 P =1-P (A 1 A 2 A 3A 4 ) =1-P (A 1)P (A 2) P (A 3)P (A 4 )=1-0.6×0.4×0.5×0.2=1-0.024=0.976.(2)法一 P =P (A 1 A 2 +A 1 A 2A 3 +A 1 A 2 A 3A 4 )=P (A 1)P ( A 2 )+P (A 1)P (A 2)P (A 3 ) +P (A 1)· P (A 2)P (A 3)P (A 4 )=0.6×0.6+0.6×0.4×0.5+0.6×0.4×0.5×0.8=0.576.法二P = 1 - P ( A 1 ) - P (A 1 A 2 A 3A 4 ) = 1 - (1 - 0.6) -0.6×0.4×0.5×0.2=0.576.20.(2013· 陕西卷)(本小题满分 14 分)在一场娱乐晚会上, 有 5位民间歌手(1 至 5 号)登台演唱, 由现场数百名观众投票选出最受欢迎歌手. 各位观众须彼此独立地在选票上选 3 名歌手,其中观众甲是1 号歌手的歌迷, 他必选 1 号, 不选2 号, 另在3 至 5 号中随机选2 名. 观众乙和丙对 5 位歌手的演唱没有偏爱, 因此在 1 至 5 号中随机选 3 名歌手.(1)求观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率;(2)X 表示 3 号歌手得到观众甲、乙、丙的票数之和, 求 X 的分布列和数学期望.号歌手. 观众甲选中 3 号歌手的概率为 ,观众乙未选中 3 号歌手的概率为 1- .所以 P (A )= × 1-5⎪= 因此,观众甲选中 3 号歌手且观众乙未选中 3 号歌手的概率为 .观众甲选中 3 号歌手的概率为 ,观众乙选中 3 号歌手的概率为 .⎛ 2⎫ ⎛ 3⎫ 43⎭ ⎝ 5⎭ 75 2 ⎛ 3⎫ ⎛ 2⎫ 3 ⎛ 3⎫ ⎛ 2⎫ ⎛ 3⎫ 3 8+6+6 205⎭ ⎝ 3⎭ 5 ⎝ 5⎭ ⎝ 3⎭ ⎝ 5⎭ 5 3 ⎝ 75 75=2)= × × 1-5⎪+ 1-3⎪× × + × 1-5⎪× =2 3 ⎛ 3⎫ ⎛ 2⎫ 3 3 2 ⎛ 3⎫ 3 12+9+12 33 3 5 ⎝ ⎭ ⎝ ⎭ 5 5 3 ⎝ ⎭ 5= . 当观众甲、乙、丙均选中 3 号歌手时,这时 X =3,P (X =3)= ×5⎪2= .解析:(1)设事件 A 表示:观众甲选中 3 号歌手且观众乙未选中 3233 2 ⎛ 3⎫45 3 ⎝ ⎭ 15.415(2)X 表示 3 号歌手得到观众甲、乙、丙的票数之和,则 X 可取0,1,2,3.2 33 5当观众甲、乙、丙均未选中 3 号歌手时,这时 X =0,P (X =0)=1- ⎪× 1- ⎪2= ⎝.当观众甲、乙、丙中只有 1 人选中 3 号歌手时,这时 X =1,P (X=1)= × 1- ⎪2+ 1- ⎪× × 1- ⎪+ 1- ⎪× 1- ⎪× = = .当观众甲、乙、丙中只有 2 人选中 3 号歌手时,这时 X =2,P (X75 752 ⎛3⎫3 ⎝ ⎭18 75X 的分布列如下表:XP4 75120 75233 75318 75所以数学期望 E (X )=0× +1× +2× +3× = =4 20 33 18 20+66+5475 75 75 75 752815.。

最新人教A版高中数学选修2-3综合测试题(含答案解析)

最新人教A版高中数学选修2-3综合测试题(含答案解析)

高中新课标数学选修(2-3)综合测试题(1)一、选择题1.已知{}{}{},,,,,,,,,则方程222∈-∈∈123013412a b Rx a y b R-++=所表示()()地不同地圆地个数有()A.3×4×2=24 B.3×4+2=14C.(3+4)×2=14 D.3+4+2=9答案:A2.神六航天员由翟志刚、聂海胜等六人组成,每两人为一组,若指定翟志刚、聂海胜两人一定同在一个小组,则这六人地不同分组方法有()A.48种B.36种C.6种D.3种答案:D3.41nx ⎛⎫ ⎪⎝⎭地展开式中,第3项地二项式系数比第2项地二项式系数大44,则展开式中地常数项是( )A.第3项 B.第4项 C.第7项 D.第8项 答案:B4.从标有1,2,3,…,9地9张纸片中任取2张,数字之积为偶数地概率为( )A.12 B.718 C.1318 D.1118 答案:C5.在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球地条件下,第2次也摸到红球地概率为( )A.35 B.25 C.110 D.59 答案:D6.正态总体地概率密度函数为2()8()x x f x -∈=R ,则总体地平均数和标准差分别为( )A.0,8 B .0,4 C.0,2 D.0,2 答案:D7.在一次试验中,测得()x y ,地四组值分别是(12)(23)(34)(45)A B C D ,,,,,,,,则y 与x 之间地回归直线方程为( )A.$1y x =+ B.$2y x =+ C.$21y x =+ D.$1y x =- 答案:A8.用0,1,2,3,4这五个数字组成无重复数字地五位数,其中恰有一个偶数数字夹在两个奇数数字之间地五位数地个数是()A.48 B.36 C.28 D.20答案:C9.若随机变量η地分布列如下:则当()0.8η<=时,实数地取值范围是()P xA.x≤2 B.1≤x≤2 C.1<x≤2 D.1<x<2答案:C10.春节期间,国人发短信拜年已成为一种时尚,若小李地40名同事中,给其发短信拜年地概率为1,0.8,0.5,0地人数分别为8,15,14,3(人),则通常情况下,小李应收到同事地拜年短信数为( )A.27 B.37 C.38 D.8 答案:A11.在4次独立重复试验中事件A 出现地概率相同,若事件A 至少发生1次地概率为6581,则事件A 在1次试验中出现地概率为( )A.13B.25 C.56 D.23 答案:A12.已知随机变量1~95B ξ⎛⎫ ⎪⎝⎭,则使()P k ξ=取得最大值地k 值为( )A.2 B.3 C.4 D.5答案:A二、填空题13.某仪表显示屏上一排有7个小孔,每个小孔可显示出0或1,若每次显示其中三个孔,但相邻地两孔不能同时显示,则这显示屏可以显示地不同信号地种数有种.答案:8014.已知平面上有20个不同地点,除去七个点在一条直线上以外,没有三个点共线,过这20个点中地每两个点可以连条直线.答案:17015.某射手射击1次,击中目标地概率是0.9,他连续射击4次,且各次射击是否击中目标相互之间没有影响,有下列结论:①他第3次击中目标地概率是0.9;②他恰好击中目标3次地概率是0.93×0.1;③他至少击中目标1次地概率是4.1(0.1)其中正确结论地序号是(写出所有正确结论地序号).答案:①③16.口袋内装有10个相同地球,其中5个球标有数字0,5个球标有数字1,若从袋中摸出5个球,那么摸出地5个球所标数字之和小于2或大于3地概率是(以数值作答).答案:1363三、解答题17.有4个不同地球,四个不同地盒子,把球全部放入盒内.(1)共有多少种放法?(2)恰有一个盒子不放球,有多少种放法?(3)恰有一个盒内放2个球,有多少种放法?(4)恰有两个盒不放球,有多少种放法?解:(1)一个球一个球地放到盒子里去,每只球都可有4种独立地放法,由分步乘法计数原理,放法共有:44256种.(2)为保证“恰有一个盒子不放球”,先从四个盒子中任意拿出去1个,即将4个球分成2,1,1地三组,有2C种分法;然后再从三个盒子中选一个放两4个球,其余两个球,两个盒子,全排列即可.由分步乘法计数原理,共有放法:12124432144C C C A=···种.(3)“恰有一个盒内放2个球”,即另外三个盒子中恰有一个空盒.因此,“恰有一个盒内放2球”与“恰有一个盒子不放球”是一回事.故也有144种放法. (4)先从四个盒子中任意拿走两个有24C 种,问题转化为:“4个球,两个盒子,每盒必放球,有几种放法?”从放球数目看,可分为(3,1),(2,2)两类.第一类:可从4个球中先选3个,然后放入指定地一个盒子中即可,有3142C C ·种放法;第二类:有24C 种放法.因此共有31342414C C C+=·种.由分步乘法计数原理得“恰有两个盒子不放球”地放法有:241484C =·种. 18.求25(1)(1)x x +-地展开式中3x 地系数.解:解法一:先变形,再部分展开,确定系数.252232423(1)(1)(1)(1)(12)(133)x x x x x x x x x +-=--=-+-+-.所以3x 是由第一个括号内地1与第二括号内地3x -地相乘和第一个括号内地22x -与第二个括号内地3x -相乘后再相加而得到,故3x 地系数为1(1)(2)(3)5⨯-+-⨯-=.解法二:利用通项公式,因2(1)x +地通项公式为12r rr TC x +=·,5(1)x -地通项公式为15(1)k k kk TC x +=-·,其中{}{}012012345r k ∈∈,,,,,,,,,令3k r +=, 则12k r =⎧⎨=⎩,,或21k r =⎧⎨=⎩,,或30k r =⎧⎨=⎩,. 故3x 地系数为112352555C C CC -+-=·.19.为了调查胃病是否与生活规律有关,某地540名40岁以上地人地调查结果如下:根据以上数据比较这两种情况,40岁以上地人患胃病与生活规律有关吗? 解:由公式得2540(6020026020)32022080460k ⨯⨯-⨯=⨯⨯⨯2540(120005200)24969609.6382590720000259072⨯-==≈.9.6387.879>∵,∴我们有99.5%地把握认为40岁以上地人患胃病与生活是否有规律有关,即生活不规律地人易患胃病. 20.一个医生已知某种病患者地痊愈率为25%,为实验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4个被治好,则认为这种药有效;反之,则认为无效,试求:(1)虽新药有效,且把痊愈率提高到35%,但通过实验被否认地概率;(2)新药完全无效,但通过实验被认为有效地概率. 解:记一个病人服用该药痊愈率为事件A ,且其概率为p ,那么10个病人服用该药相当于10次独立重复实验.(1) 因新药有效且p =0.35,故由n 次独立重复试验中事件A 发生k 次地概率公式知,实验被否定(即新药无效)地概率为:0010119223371010101010101010(0)(1)(2)(3)(1)(1)(1)(1)0.514x P P P P C p p C p p C p p C p p +++=-+-+-+-≈.(2)因新药无效,故p =0.25,实验被认为有效地概率为:10101010101010(4)(5)(10)1((0)(1)(2)(3))0.224P P P P P P P +++=-+++≈L .即新药有效,但被否定地概率约为0.514; 新药无效,但被认为有效地概率约为0.224. 21.A B ,两个代表队进行乒乓球对抗赛,每队三名队员,A 队队员是123A A A ,,,B 队队员是123B B B ,,,按以往多次比赛地统计,对阵队员之间地胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设A队,B队最后所得总分分别为ξη,.(1)求ξη,地概率分布列;(2)求Eξ,Eη.解:(1)ξη,地可能取值分别为3,2,1,0.2228(3)35575P ξ==⨯⨯=;22312223228(2)35535535575P ξ==⨯⨯+⨯⨯+⨯⨯=; 2331231322(1)3553553555P ξ==⨯⨯+⨯⨯+⨯⨯=;1333(0)35525P ξ==⨯⨯=.由题意知3ξη+=,所以8(0)(3)75P P ηξ====;28(1)(2)75P P ηξ====;2(2)(1)5P P ηξ====; 3(3)(0)25P P ηξ====.ξ地分布列为η地分布列为(2)82823223210757552515E ξ=⨯+⨯+⨯+⨯=, 因为3ξη+=,所以23315E E ηξ=-=.22.某工业部门进行一项研究,分析该部门地产量与生产费用之间地关系,从这个工业部门内随机抽选了10个企业作样本,有如下资料:产量(千件) x生产费用 (千元)y 79162 88 185 100 165 120 190 140 185完成下列要求:(1)计算x 与y 地相关系数;(2)对这两个变量之间是否线性相关进行相关性检验;千元)y40150 42140 48160 551765150(3)设回归直线方程为$$$y bx a=+,求系数$a,$b.解:利用回归分析检验地步骤,先求相关系数,再确定0.05r.(1)制表i i x i y2i x2i y i ix y141501600225006000242140176419600588034816023042560076804 513028935 70 25 900 5056515042252250097506791626241262441279878818577443422516280810016510000272251650091201901440036100228001111934250.808r=≈.即x与Y地相关关系0.808r≈.(2)因为0.75r>.所以x与Y之间具有很强地线性相关关系.(3)1329381077.7165.70.398709031077.7b-⨯⨯=≈-⨯,165.70.39877.7134.9a=-⨯=.高中新课标数学选修(2-3)综合测试题(2)一、选择题1.假定有一排蜂房,形状如图所示,一只蜜蜂在左下角地蜂房中,由于受了点伤,只能爬,不能飞,而且只能永远向右方(包括右上,右下)爬行,从一间蜂房爬到与之相邻地右方蜂房中去,若从最初位置爬到4号蜂房中,则不同地爬法有( ) A.4种 B.6种 C.8种 D.10种 答案:C2.乒乓球运动员10人,其中男女运动员各5人,从这10名运动员中选出4人进行男女混合双打比赛,选法种数为( )A.225()A B.225()C C.22254()C A · D.22252()C A ·答案:D3.已知集合{}123456M =,,,,,,{}6789N =,,,,从M 中选3个元素,N 中选2个元素,组成一个含有5个元素地集合T ,则这样地集合T 共有( )A.126个 B.120个 C.90个 D.26个 答案:C 4.342(1)(1)(1)n x x x +++++++L 地展开式中2x 地系数是( )A.33n C + B.32n C + C.321n C+- D.331n C+-答案:D 5.200620052008+被2006除,所得余数是( )A.2009 B.3 C.2 D.1 答案:B6.市场上供应地灯泡中,甲厂产品占70%,乙厂产品占30%,甲厂产品地合格率是95%,乙厂产品地合格率是80%,则从市场上买到一个是甲厂生产地合格灯泡地概率是()A.0.665 B.0.56 C.0.24 D.0.285 答案:A7.抛掷甲、乙两颗骰子,若事件A:“甲骰子地点数大于4”;事件B:“甲、乙两骰子地点数之和等于7”,则(|)P B A地值等于()A.13B.118C.16D.19答案:C8.在一次智力竞赛地“风险选答”环节中,一共为选手准备了A,B,C三类不同地题目,选手每答对一个A类、B类、C类地题目,将分别得到300分、200分、100分,但如果答错,则要扣去300分、200分、100分,而选手答对一个A类、B类、C类题目地概率分别为0.6,0.7,0.8,则就每一次答题而言,选手选择( )题目得分地期望值更大一些( ) A.A 类 B.B 类 C.C 类 D.都一样 答案:B9.已知ξ地分布列如下:并且23ηξ=+,则方差D η=( )A.17936 B.14336 C.29972 D.22772答案:A10.若2~(16)N ξ-,且(31)P ξ--≤≤0.4=,则(1)P ξ≥等于( ) A.0.1 B.0.2 C.0.3 D.0.4答案:A11.已知x ,y 之间地一组数据:则y 与x 地回归方程必经过( )A.(2,2) B.(1,3) C.(1.5,4) D.(2,5) 答案:C12.对于2()P K k ≥,当 2.706k 时,就约有地把握认为“x与y 有关系”( )A.99% B.99.5% C.95% D.90% 答案:D 二、填空题13.92x x ⎛- ⎪⎝⎭地展开式中,常数项为 (用数字作答). 答案:67214.某国际科研合作项目成员由11个美国人,4个法国人和5个中国人组成.现从中随机选出两位作为成果发布人,则此两人不属于同一个国家地概率为 (结果用分数表示). 答案:11919015.两名狙击手在一次射击比赛中,狙击手甲得1分、2分、3分地概率分别为0.4,0.1,0.5;狙击手乙得1分、2分、3分地概率分别为0.1,0.6,0.3,那么两名狙击手获胜希望大地是 . 答案:乙16.空间有6个点,其中任何三点不共线,任何四点不共面,以其中地四点为顶点共可作出个四面体,经过其中每两点地直线中,有对异面直线.答案:15,45三、解答题17.某人手中有5张扑克牌,其中2张为不同花色地2,3张为不同花色地A,他有5次出牌机会,每次只能出一种点数地牌,但张数不限,则有多少种不同地出牌方法?解:由于张数不限,2张2,3张A可以一起出,亦可分几次出,故考虑按此分类.出牌地方法可分为以下几类:(1)5张牌全部分开出,有5A种方法;5(2)2张2一起出,3张A 一起出,有25A 种方法;(3)2张2一起出,3张A 分开出,有45A 种方法;(4)2张2一起出,3张A 分两次出,有2335C A 种方法;(5)2张2分开出,3张A 一起出,有35A 种方法;(6)2张2分开出,3张A 分两次出,有2435C A 种方法;因此共有不同地出牌方法5242332455535535860A A A C A A C A+++++=种. 18.已知数列{}na 地通项na 是二项式(1)nx +与2(1)nx +地展开式中所有x 地次数相同地各项地系数之和,求数列地通项及前n 项和nS .解:按(1)nx +及2(1)nx +两个展开式地升幂表示形式,写出地各整数次幂,可知只有当2(1)nx x 地偶数次幂时,才能与(1)nx +地x 地次数相比较. 由0122(1)nn n n n n n x C C x C x C x+=++++L ,132120242213212222222222(1()()n nn nn n n nnnnnC C x C x C x C x C x Cx--=++++++++L L可得00122422222()()()()n nnn n n n n n n n aC C C C C C C C =++++++++L01202422222()()n nn n n n n n n n C C C C C C C C =+++++++++L L2122n n -=+, 2122n n n a -=+∵,∴222462112(222)(22222(21)(41)223nn nn n S =++++++++=-+⨯-L L122112122(21)(2328)33n n n n +++=-+-=+-·,2111(2328)3n n n S ++=-∴·.19.某休闲场馆举行圣诞酬宾活动,每位会员交会员费50元,可享受20元地消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6地6只均匀小球地抽奖箱中,有放回地抽两次球,抽得地两球标号之和为12,则获一等奖价值a 元地礼品,标号之和为11或10,获二等奖价值100元地礼品,标号之和小于10不得奖. (1)求各会员获奖地概率;(2)设场馆收益为ξ元,求ξ地分布列;假如场馆打算不赔钱,a 最多可设为多少元?解:(1)抽两次得标号之和为12地概率为11116636P =+=; 抽两次得标号之和为11或10地概率为2536P =,故各会员获奖地概率为1215136366P P P =+=+=. (2)ξ30a-30100- 30 P1365363036由1530(30)(70)300363636E a ξ=-⨯+-⨯+⨯≥,得580a≤元.所以a最多可设为580元.20.在研究某种新药对猪白痢地防治效果时到如下数据:存活数死亡数合计未用新药10138139用新药12920149合2358 2试分析新药对防治猪白痢是否有效? 解:由公式计算得2288(1012038129)8.658139********k ⨯⨯-⨯=≈⨯⨯⨯,由于8.658 6.635>,故可以有99%地把握认为新药对防治猪白痢是有效地.21.甲有一个箱子,里面放有x 个红球,y 个白球(x ,y ≥0,且x +y =4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出地3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球地个数,才能使自己获胜地概率最大?(2)在(1)地条件下,求取出地3个球中红球个数地期望.解:(1)要想使取出地3个球颜色全不相同,则乙必须取出黄球,甲取出地两个球为一个红球一个白球,乙取出黄球地概率是14,甲取出地两个球为一个红球一个白球地概率是11246x yC C xy C =·,所以取出地3个球颜色全不相同地概率是14624xy xyP ==·,即甲获胜地概率为24xyP =,由0x y ,≥,且4x y +=,所以12424xy P =≤2126x y +⎛⎫=⎪⎝⎭·,当2x y ==时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜地概率最大.(2)设取出地3个球中红球地个数为ξ,则ξ地取值为0,1,2,3.212221441(0)12C C P C C ξ===·,1112122222212144445(1)12C C C C C P C C C C ξ==+=··, 2111122222212144445(2)12C C C C C P C C C C ξ==+=··,212221441(3)12C C P C C ξ===·,所以取出地3个球中红球个数地期望:15510123 1.512121212E ξ=⨯+⨯+⨯+⨯=.22.规定(1)(1)mxAx x x m =--+L ,其中x ∈R ,m 为正整数,且01xA =,这是排列数mnA (n ,m 是正整数,且m ≤n )地一种推广.(1)求315A -地值;(2)排列数地两个性质:①11m m n n AnA --=,②11m m mn n n AmA A -++= (其中m ,n 是正整数).是否都能推广到mxA (x ∈R ,m 是正整数)地情形?若能推广,写出推广地形式并给予证明;若不能,则说明理由; (3)确定函数3xA 地单调区间.解:(1)315(15)(16)(17)4080A-=-⨯-⨯-=-;(2)性质①、②均可推广,推广地形式分别是 ①11m m xx AxA --=,②11()m m m x x x AmA A x m -*++=∈∈R N ,.事实上,在①中,当1m =时,左边1xA x ==, 右边01x xAx-==,等式成立;在②中,当1m =时,左边10111xxx A Ax A +=+=+==右边,等式成立;当2m ≥时,左边(1)(2)(1)(1)(2)(2)x x x x m mx x x x m =---++---+L L=(1)(2)(2)[(1)]x x x x m x m m ---+-++L 1(1)(1)(2)[(1)1]mx x x x x x m A +=+--+-+==L 右边, 因此②11()mm m x x x AmA A x m -*++=∈∈R N ,成立.(3)先求导数,得32()362xA xx '=-+.令23620xx -+>,解得x 或x >因此,当x ⎛∈- ⎝⎭∞时,函数为增函数, 当x ⎫∈+⎪⎪⎝⎭∞时,函数也为增函数,令23620xx -+≤x ,因此,当x ∈⎣⎦时,函数为减函数,∴函数3xA 地增区间为⎛- ⎝⎭∞,⎫+⎪⎪⎝⎭∞;减区间为⎣⎦.。

2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案

2021-2022学年人教版高中数学选修2-3教材用书:模块综合检测(一) Word版含答案

模块综合检测(一)(时间120分钟,满分150分)一、选择题(共12小题,每小题5分,共60分) 1.方程C x 14=C 2x -414的解集为( )A .{4}B .{14}C .{4,6}D .{14,2}解析:选C 由C x 14=C 2x -414得x =2x -4或x +2x -4=14,解得x =4或x =6.经检验知x =4或x =6符合题意.2.设X 是一个离散型随机变量,则下列不能成为X 的概率分布列的一组数据是( ) A .0,12,0,0,12 B .0.1,0.2,0.3,0.4C .p,1-p (0≤p ≤1) D.11×2,12×3,…,17×8解析:选D 利用分布列的性质推断,任一离散型随机变量X 的分布列都具有下述两共性质:①p i ≥0,i =1,2,3,…,n ;②p 1+p 2+p 3+…+p n =1.选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36. 3.已知随机变量X ~N (2,σ2),若P (X <a )=0.32,则P (a ≤X <4-a )等于( ) A .0.32 B .0.68 C .0.36 D .0.64解析:选C 如图,由正态曲线的对称性可得P (a ≤X <4-a )=1-2P (X <a )=0.36.4.已知x ,y 取值如下表:x 0 1 4 5 6 8 y1.31.85.66.17.49.3从所得的散点图分析可知:y 与x 线性相关,且y ^=0.95x +a ,则a 等于( ) A .1.30 B .1.45 C .1.65 D .1.80解析:选B 依题意得,x -=16×(0+1+4+5+6+8)=4,y -=16×(1.3+1.8+5.6+6.1+7.4+9.3)=5.25.又直线y ^=0.95x +a 必过样本中心点(x -,y -), 即点(4,5.25),于是有5.25=0.95×4+a , 由此解得a =1.45.5.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是( )A .0.45B .0.6C .0.65D .0.75 解析:选D 目标被击中P 1=1-0.4×0.5=0.8, ∴P =0.60.8=0.75. 6.从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选法有( ) A .36种 B .30种 C .42种 D .60种解析:选A 直接法:选出3名志愿者中含有1名女生和2名男生或2名女生和1名男生,故共有C 12C 26+C 22C 16=2×15+6=36种选法;间接法:从8名同学中选出3名,减去全部是男生的状况,故共有C 38-C 36=56-20=36种选法.7.⎝ ⎛⎭⎪⎫x +2x 2n 的开放式中只有第6项二项式系数最大,则开放式中的常数项是( )A .180B .90C .45D .360 解析:选A 由已知得,n =10,T r +1=C r10(x )10-r⎝ ⎛⎭⎪⎫2x 2r =2r ·C r 10x 5-52r ,令5-52r =0,得r =2,T 3=4C 210=180.8.(四川高考)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种解析:选B 当最左端排甲时,不同的排法共有A 55种;当最左端排乙时,甲只能排在中间四个位置之一,则不同的排法共有C 14A 44种.故不同的排法共有A 55+C 14A 44=9×24=216种.9.箱子里有5个黑球和4个白球,每次随机取出一个球.若取出黑球,则放回箱中,重新取球,若取出白球,则停止取球.那么在第4次取球之后停止的概率为( )A.C 35C 14C 45 B .⎝ ⎛⎭⎪⎫593×49C.35×14D .C 14⎝ ⎛⎭⎪⎫593×49解析:选B 记“从箱子里取出一球是黑球”为大事A ,“从箱子里取出一个球是白球”为大事B ,则P (A )=59,P (B )=49,在第4次取球后停止,说明前3次取到的都是黑球,第4次取到的是白球,又每次取球是相互独立的,由独立大事同时发生的概率公式,在第4次取球后停止的概率为59×59×59×49=⎝ ⎛⎭⎪⎫593×49.10.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变; ②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归直线y ^=b ^x +a ^必过(x -,y -); ④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得k =13.079.则其两个变量间有关系的可能性是90%. 其中错误的个数是( ) A .1 B .2 C .3D .4解析:选C 由方差的定义知①正确,由线性回归直线的特点知③正确,②④⑤都错误. 11.对两个变量y 和x 进行线性相关检验,已知n 是观看值组数,r 是相关系数,且已知: ①n =10,r =0.953 3;②n =15,r =0.301 2;③n =17,r =0.999 1;④n =3,r =0.995 0. 则变量y 和x 具有线性相关关系的是( ) A .①和② B .①和③ C .②和④D .③和④解析:选B 相关系数r 的确定值越接近1,变量x ,y 的线性相关性越强.②中的r 太小,④中观看值组数太小.12.某市政府调查市民收入与旅游欲望时,接受独立性检验法抽取3 000人,计算发觉k =6.023,则依据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )P (K 2≥k )… 0.25 0.15 0.10 0.025 0.010 0.005 … k…1.3232.0722.7065.0246.6357.879…A.90% B .95% C .97.5%D .99.5%解析:选C ∵k =6.023>5.024,∴可断言市民收入增减与旅游欲望有关的把握为97.5%. 二、填空题(共4小题,每小题5分,共20分)13.有5名男生和3名女生,从中选出5人分别担当语文、数学、英语、物理、化学学科的科代表,若某女生必需担当语文科代表,则不同的选法共有________种.(用数字作答)解析:由题意知,从剩余7人中选出4人担当4个学科的科代表,共有A 47=840(种)选法. 答案:84014.某射手对目标进行射击,直到第一次命中为止,每次射击的命中率为0.6,现共有子弹4颗,命中后剩余子弹数目的均值是________.解析:设ξ为命中后剩余子弹数目,则P (ξ=3)=0.6,P (ξ=2)=0.4×0.6=0.24,P (ξ=1)=0.4×0.4×0.6=0.096,P (ξ=0)=0.4×0.4×0.4=0.064,E (ξ)=3×0.6+2×0.24+0.096=2.376.答案:2.37615.抽样调查表明,某校高三同学成果(总分750分)X 近似听从正态分布,平均成果为500分.已知P (400<X <450)=0.3,则P (550<X <600)=________.解析:由下图可以看出P (550<X <600)=P (400<X <450)=0.3.答案:0.316.某高校“统计初步”课程的老师随机调查了选该课的一些同学状况,具体数据如下表:专业性别非统计专业统计专业 男 13 10 女720为了推断主修统计专业是否与性别有关系,依据表中的数据,计算得到K 2=________(保留三位小数),所以判定________(填“能”或“不能”)在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系.解析:依据供应的表格得 K 2=50×13×20-7×10223×27×20×30≈4.844>3.841.所以可以在犯错误的概率不超过0.05的前提下认为主修统计专业与性别有关系. 答案:4.844 能三、解答题(共6小题,共70分,解答时应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)若⎝⎛⎭⎪⎪⎫6x +16x n开放式中第2,3,4项的二项式系数成等差数列.(1)求n 的值.(2)此开放式中是否有常数项?为什么?解:(1)T k +1=C k n·⎝⎛⎭⎫6x n -k·⎝ ⎛⎭⎪⎪⎫16x k =C kn ·x n -2k 6,由题意可知C 1n +C 3n =2C 2n ,即n 2-9n +14=0, 解得n =2(舍)或n =7.∴n =7. (2)由(1)知T k +1=C k7·x 7-2k6. 当7-2k 6=0时,k =72,由于k ∉N *, 所以此开放式中无常数项.18.(本小题满分12分)某篮球队与其他6支篮球队依次进行6场竞赛,每场均决出胜败,设这支篮球队与其他篮球队竞赛胜场的大事是独立的,并且胜场的概率是13.(1)求这支篮球队首次胜场前已经负了2场的概率; (2)求这支篮球队在6场竞赛中恰好胜了3场的概率; (3)求这支篮球队在6场竞赛中胜场数的均值和方差.解:(1)这支篮球队首次胜场前已负2场的概率为P =⎝ ⎛⎭⎪⎫1-132×13=427.(2)这支篮球队在6场竞赛中恰好胜3场的概率为P =C 36×⎝ ⎛⎭⎪⎫133×⎝ ⎛⎭⎪⎫1-133=20×127×827=160729.(3)由于X 听从二项分布,即X ~B ⎝ ⎛⎭⎪⎫6,13,∴E (X )=6×13=2,D (X )=6×13×⎝⎛⎭⎪⎫1-13=43.故在6场竞赛中这支篮球队胜场的均值为2,方差为43.19.(本小题满分12分)某商场经销某商品,依据以往资料统计,顾客接受的付款期数X 的分布列为商场经销一件该商品,接受250元;分4期或5期付款,其利润为300元.Y 表示经销一件该商品的利润.(1)求大事:“购买该商品的3位顾客中,至少有1位接受1期付款”的概率P (A ); (2)求Y 的分布列及E (Y ).解:(1)由A 表示大事“购买该商品的3位顾客中至少有1位接受1期付款”知,A 表示大事“购买该商品的3位顾客中无人接受1期付款”.P (A )=(1-0.4)3=0.216, P (A )=1-P (A )=1-0.216=0.784.(2)Y 的可能取值为200元,250元,300元.P (Y =200)=P (X =1)=0.4,P (Y =250)=P (X =2)+P (X =3)=0.2+0.2=0.4,P (Y =300)=1-P (Y =200)-P (Y =250)=1-0.4-0.4=0.2, Y 的分布列为E (Y )20.(本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为14,16;1小时以上且不超过2小时离开的概率分别为12,23;两人滑雪时间都不会超过3小时. (1)求甲、乙两人所付滑雪费用相同的概率;(2)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望E (ξ). 解:(1)若两人所付费用相同,则相同的费用可能为0元,40元,80元, 两人都付0元的概率为P 1=14×16=124,两人都付40元的概率为P 2=12×23=13,两人都付80元的概率为P 3=⎝ ⎛⎭⎪⎫1-14-12×1-16-23=14×16=124,则两人所付费用相同的概率为P =P 1+P 2+P 3=124+13+124=512. (2)由题意得,ξ全部可能的取值为0,40,80,120,160.P (ξ=0)=14×16=124, P (ξ=40)=14×23+12×16=14, P (ξ=80)=14×16+12×23+14×16=512, P (ξ=120)=12×16+14×23=14, P (ξ=160)=14×16=124, ξ的分布列为E (ξ)=0×124+40×14+80×12+120×4+160×24=80.21.(本小题满分12分)甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,接受分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中的微量元素x ,y 的含量(单位:毫克).下表是乙厂的5件产品的测量数据:编号1 2 3 4 5 x 169 178 166 175 180 y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量.(2)当产品中的微量元素x ,y 满足x ≥175,且y ≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量.(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值. 解:(1)乙厂生产的产品总数为5÷1498=35. (2)样品中优等品的频率为25,乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i )=C i 2C 2-i3C 25(i =0,1,2),ξ的分布列为ξ 0 1 2 P31035110均值E (ξ)=1×35+2×110=45.22.(本小题满分12分)某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L 1,L 2两条巷道通往作业区(如下图),L 1巷道有A 1,A 2,A 3三个易堵塞点,各点被堵塞的概率都是12;L 2巷道有B 1,B 2两个易堵塞点,被堵塞的概率分别为34,35.(1)求L 1巷道中,三个易堵塞点最多有一个被堵塞的概率;(2)若L 2巷道中堵塞点个数为X ,求X 的分布列及均值E (X ),并依据“平均堵塞点少的巷道是较好的抢险路线”的标准,请你挂念救援队选择一条抢险路线,并说明理由.解:(1)设“L 1巷道中,三个易堵塞点最多有一个被堵塞”为大事A ,则P (A )=C 03×⎝ ⎛⎭⎪⎫123+C 13×12×⎝ ⎛⎭⎪⎫122=12.(2)依题意,X 的可能取值为0,1,2,P (X =0)=⎝⎛⎭⎪⎫1-34×⎝⎛⎭⎪⎫1-35=110, P (X =1)=34×⎝⎛⎭⎪⎫1-35+⎝⎛⎭⎪⎫1-34×35=920,P (X =2)=34×35=920,所以随机变量X 的分布列为X 0 1 2 P110920920E (X )=0×110+1×920+2×920=2720.法一:设L 1巷道中堵塞点个数为Y ,则Y 的可能取值为0,1,2,3,P (Y =0)=C 03×⎝ ⎛⎭⎪⎫123=18,P (Y =1)=C 13×12×⎝ ⎛⎭⎪⎫122=38,P (Y =2)=C 23×⎝ ⎛⎭⎪⎫122×12=38, P (Y =3)=C 33×⎝ ⎛⎭⎪⎫123=18, 所以,随机变量Y 的分布列为Y0 1 2 3 P18383818E (Y )=0×18+1×38+2×38+3×18=2,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.法二:设L 1巷道中堵塞点个数为Y ,则随机变量Y ~B ⎝ ⎛⎭⎪⎫3,12, 所以,E (Y )=3×12=32,由于E (X )<E (Y ),所以选择L 2巷道为抢险路线为好.。

最新人教版高中数学选修2-3模块综合测评3

最新人教版高中数学选修2-3模块综合测评3

模块综合测评本试卷分第Ⅰ卷和第Ⅱ卷两部分,共150分,考试时间120分钟第Ⅰ卷(选择题 共60分)一、选择题(每小题5分,共60分,每小题所给的四个选项中,只有一个符合题目要求)1.(2006北京高考卷,3)在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为奇数的共有( )A.36个B.24个C.18个D.6个思路解析:依题意,所选的三位数字有两种情况:(1)3个数字都是奇数,有33A 种方法;(2)3个数字中有一个是奇数,有13C 33A 种方法.故共有33A +13C 33A =24种方法. 答案:B2.(2006全国高考卷Ⅰ,文10)在(x-x21)10的展开式中,x 4的系数为( ) A.-120 B.120 C.-15 D.15 思路解析:在(x-x 21)10的展开式中,x 4项是310C (x)7(-x21)3=-15x 4,选C. 答案:C3.某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法的种数有( )A.210B.50C.60D.120思路解析:首先安排甲学校,有6种参观方案,其余两所学校有25A 种参观方案,根据分步计数原理,安排方法共625A =120(种).答案:D4.设ξ的概率分布如下:ξ-1 0 1 P i21 31 P则P 等于( )A.0B.61 C.31D.不确定 思路解析:根据分布列的性质,可得21+31+P=1,故P=1-21-31=61.答案:B5.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生2次的概率,则事件A 在一次试验中发生的概率的取值范围是( )A.[0.4,1)B.(0,0.6]C.(0,0.4]D.[0.6,1)思路解析:设事件A 发生一次的概率为P,则事件A 的概率可以构成二项分布,根据独立重复试验的概率公式可得14C P(1-P)3≤24C P 2(1-P)2,即可得4(1-P)≤6P,P≥0.4,又0<P <1,故0.4≤P <1. 答案:A6.已知ξ的分布列为:ξ 1 2 3 4P41 31 61 41 则Dξ等于( )A.1229 B.144131 C.14411 D.144179 思路解析:由已知可得Eξ=1×41+2×31+3×61+4×41=1229,代入方差公式即可得Dξ=144179.答案:D7.(2006全国高考卷Ⅰ,理12)设集合I={1,2,3,4,5}.选择I 的两个非空子集A 和B,要使B 中最小的数大于A 中最大的数,则不同的选择方法共有( )A.50种B.49种C.48种D.47种解法一:若集合A 、B 中分别有一个元素,则选法种数有25C =10种;若集合A 中有一个元素,集合B 中有两个元素,则选法种数有35C =10种;若集合A 中有一个元素,集合B 中有三个元素,则选法种数有45C =5种;若集合A 中有一个元素,集合B 中有四个元素,则选法种数有55C =1种;若集合A 中有两个元素,集合B 中有一个元素,则选法种数有35C =10种;若集合A 中有两个元素,集合B 中有两个元素,则选法种数有45C =5种;若集合A 中有两个元素,集合B 中有三个元素,则选法种数有55C =1种;若集合A 中有三个元素,集合B 中有一个元素,则选法种数有45C =5种;若集合A 中有三个元素,集合B 中有两个元素,则选法种数有55C =1种;若集合A 中有四个元素,集合B 中有一个元素,则选法种数有55C =1种.总计有49种,选B.解法二:集合A 、B 中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有25C =10种选法,小的给A 集合,大的给B 集合;从5个元素中选出3个元素,有35C =10种选法,再分成1、2两组,较小元素的一组给A 集合,较大元素的一组给B 集合,共有2×10=20种方法;从5个元素中选出4个元素,有45C =5种选法,再按集合中所含元素的个数分成1、3;2、2;3、1两组,较小元素的一组给A 集合,较大元素的一组给B 集合,共有3×5=15种方法;从5个元素中选出5个元素,有55C =1种选法,再按集合中所含元素的个数分成1、4;2、3;3、2;4、1两组,较小元素的一组给A 集合,较大元素的一组给B 集合,共有4×1=4种方法;总计为10+20+15+4=49种方法.选B. 答案:B8.下列说法错误的是( )A.如果变量η与ξ之间存在着线性相关关系,则我们根据实验数据得到的点(x i ,y i )(i=1,2,3, …,n)将散布在某一条直线的周围B.如果变量η与ξ之间不存在着线性相关关系,则我们根据实验数据得到的点(x i ,y i )(i=1,2,3, …,n),不能写出一个线性方程C.设x 、y 是具有相关关系的两个变量,且x 关于y 的线性回归方程是y^=bx+a,则b 叫做回归系数D.为使求出的线性回归方程有意义,可用统计假设检验的方法来判断变量η与ξ之间是否存在线性相关关系思路解析:回归分析是对相关关系进行分析的一种方法,对于不具有线性关系的两个变量也可以写出一个线性回归方程,只不过其意义并不大,也就是说,它不能正确反映两个变量之间的关系. 答案:B9.在一次独立性检验中,得出列联表如下:A A合计 B 200 800 1 000B180 A 180+a 合计380 800+a 1180+a 且最后发现,两个分类变量A 和B 没有任何关系,则a 的可能值是( )A.200B.720C.100D.180 思路解析:A 和B 没有任何关系,也就是说,对应的比例b a a +和dc c +基本相等,根据列联表可得1000200和a+180180基本相等,检验可知,B 满足条件. 答案:B10.从装有3个黑球和3个白球(大小、形状相同)的盒子中随机摸出3个球,用ξ表示摸出的黑球个数,则P(ξ≥2)的值为( ) A.101 B.51 C.21 D.52 思路解析:根据条件,摸出2个黑球的概率为361323C C C ∙,摸出3个黑球的概率为3633C C ,故P(ξ≥2)=213633361323=+∙C C C C C . 答案:C11.某旅游团为了找到合适的车辆,对该团的48人中的6人及所带物品进行了称量,得出人的重量(单位:kg)分别为:60,66,70,72,58,50,所带物品重量(单位:kg)分别为:5,7,4,8,6,11,若需要两辆客车,每辆车各载一半的游客(包括他们的物品),试估计下列车辆的载重量最为合适的是( )A.1吨B.2吨C.4吨D.6吨 思路解析:6个人及所带物品的平均重量为:642761168475505872706660=+++++++++++,而每辆车载客24人,故每辆车的载重量要略大于6427×24=1 708(kg),故载重量为2吨的较为合适.12.关于x i (i=1,2,…,10)的方程x 1+2x 2+x 3+x 4+…+x 10=3的非负整数解的组数为( ) A.174 B.172 C.165 D.156思路解析:若x 2=1,则x 1,x 3,x 4,…,x 10中有一个为1,其余为0,这种情况有C 19=9组解;若x 2=0,则x 1,x 3,x 4, …,x 10中可以有一个为3,其余为0,也可以有一个为2,一个为1,其余为0,还可以有三个为1,其余为0,这些情况有C 19+A 29+C 39=165组解,所以,原方程共有165+9=174个非负整数解.答案:A第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13.(xx 1222+-)4展开式中,常数项为_______________(用数字作答).思路解析:( xx 1222+-)4=(4412xx -∙)8,则展开后,第r+1项为T r+1=2424848482)1()2(r r r rrrxC xx C ---∙∙=∙∙,由24r-=0,可得r=4,所以,常数项为48C ·22=280. 答案:28014.某班40人随机平均分成两组,两组学生一次考试成绩的统计如下:统计量 组别平均分方差 第一组80 16 第二组90 36则全班的平均分为___________,方差为___________. 思路解析:平均分为401(20×80+20×90)=85(分), 第一组分数的方差:s 12=201(x 12+x 22+…+x 202-20×802),所以,x 12+x 22+…+x 202=16×20+20×802,同理,x 212+x 222+…+x 402=36×20+20×902,所以,s 2=401[(x 12+x 22+…+x 402)-40×852]=51(分).答案:85分 51分15.对于回归方程y=4.75x+2.57,当x=28时,y 的估计值是___________. 思路解析:只需把x=28代入方程即可,y=4.75×28+2.57=135.57. 答案:135.5716.A 、B 、C 、D 、E 五种不同的商品要在货架上排成一排,其中A 、B 两种商品必须排在一起,而C 、D 两种商品不能排在一起,则不同的排法共有___________种.思路解析:先把A 、B 进行排列,有22A 种排法,再把A 、B 看成一个元素,和E 进行排列,有22A 种排法,再把C 、D 插入进去,有A 23种排法,根据分步计数原理可得22A 22A A 23=24种排法.三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)某医院有内科医生12名,外科医生8名,现要派5名医生参加,赈灾医疗队,则: (1)某内科医生必须参加,某外科医生不能参加,有多少种选法? (2)至少有一名内科医生且至少有一名外科医生参加有几种选法? 思路分析:根据条件,(1)即从18名医生中选取4名;(2)可以从正面考虑,也可以从反面考虑,先把总体种数求出,再减掉不符合条件的即可.解:(1)某内科医生参加,某外科医生不参加,只要从剩余的18名医生中选4名即可.故有41811C C =3 060(种).(2)方法1(直接法):至少有一名内科医生且至少有一名外科医生参加的方法可以分为四类:“一内四外、二内三外、三内二外、四内一外”.故有18412283123821248112C C C C C C C C +++=14 656(种). 方法2(间接法):问题的反面是5名内科医生或者5名外科医生参加,故有)(51248520C C C +-=146 656(种).18.(本题满分12分)已知(2323x x +)n 的展开式中,各项系数和比它的二项式系数和大992. (1)求展开式中二项式系数最大的项; (2)求展开式中系数最大的项.思路分析:首先根据条件求出指数n,再使用二项式展开的通项式及二项式系数的性质即可求出结果.解:令x=1,则展开式中各项系数和为(1+3)n =22n , 又展开式中二项式系数和为2n , ∴22n -2n =992,n=5.(1)∵n=5,展开式共6项,二项式系数最大的项为第三、四两项, ∴T 3=25C (32x )3(3x 2)2=90x 6,T 4=35C(32x )2(3x 2)3=322270x ,(2)设展开式中第r+1项系数最大,则T r+1=34105253253)3()(r rrr rr xC x x C +-=,∴27333315151515⇒⎪⎩⎪⎨⎧≥≥++--r r r r r r r r C C C C ≤r≤29.∴r=4, 即展开式中第5项系数最大,T 5=45C (32x )(3x 2)4=326405x.19.(本题满分12分)(2006全国高考卷Ⅰ,文19)A 、B 是治疗同一种疾病的两种药,用若干试验组进行对比试验.每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效.若在一个试验组中,服用A 有效的小白鼠的只数比服用B 有效的多,就称该试验组为甲类组.设每只小白鼠服用A 有效的概率为32,服用B 有效的概率为21. (1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率. 思路分析:代入独立重复试验的概率公式即可.解:(1)设A i 表示事件“一个试验组中,服用A 有效的小鼠有i 只”,i=0,1,2, B i 表示事件“一个试验组中,服用B 有效的小鼠有i 只”,i=0,1,2, 依题意有P(A 1)=2×31×32=94,P(A 2)= 32×32=94, P(B 0)=21×21=41, P(B 1)=2×21×21=21,所求概率为P=P(B 0·A 1)+P(B 0·A 2)+P(B 1·A 2)=41×94+41×94+21×94=94. (2)所求概率为P=1-(1-94)3=729604. 20.(本题满分12分)甲有一个箱子,里面放有x 个红球,y 个白球(x 、y≥0,且x+y=4);乙有一个箱子,里面放有2个红球,1个白球,1个黄球.现在甲从箱子里任取2个球,乙从箱子里任取1个球.若取出的3个球颜色全不相同,则甲获胜.(1)试问甲如何安排箱子里两种颜色球的个数,才能使自己获胜的概率最大? (2)在(1)的条件下,求取出的3个球中红球个数的平均数.思路分析:对于(1)可以先列出甲获胜的概率表达式,根据表达式调整数据求最大值,对于(2)代入平均数的公式即可.解:(1)要想使取出的3个球颜色全不相同,则乙必须取出黄球,甲取出的两个球中有一个红球一个白球,乙取出黄球的概率是41,甲取出的两个球中有一个红球一个白球的概率是62411xyC C C yx =∙,所以取出的3个球颜色全不相同的概率是P=41·246xy xy =,即甲获胜的概率为P=24xy ,由于x,y≥0,且x+y=4,所以P=24xy ≤61)2(2412=+y x ,当x=y=2时取等号,即甲应在箱子里放2个红球2个白球才能使自己获胜的概率最大.(2)设取出的3个球中红球的个数为ξ,则ξ的取值为0,1,2,3. P(ξ=0)=2114122422=∙C C C C ,P(ξ=1)=125141224221412241212=∙+∙∙C C C C C C C C C ,P(ξ=2)=125141224121214122422=∙∙+∙C C C C C C C C C P(ξ=3)= 12114122422=∙C C C C ,所以取出的3个球中红球个数的平均数为:Eξ=0×121312521251121⨯+⨯+⨯+=1.5. 21.(本题满分12分)研究某特殊药物有无副作用(比如服用后恶心),给50个患者服用此药,给另外50个患者服用安慰剂,记录每类样本中出现恶心的数目如下表:有恶心 无恶心 合计给药A15 35 50 给安慰剂4 46 50 合计19 81 100 试问此药物有无恶心的副作用?思路分析:根据列联表中的数据代入公式求得K 2的值,与临界值进行比较判断得出相应结论. 解:由题意,问题可以归纳为独立检验假设H 1:服该药物(A )与恶心(B )独立.为了检验假设,计算统计量K 2=81195050)3544615(1002⨯⨯⨯⨯-⨯⨯≈7.86>6.635.故拒绝H 1,即不能认为药物无恶心副作用,也可以说,我们有99%的把握说,该药物与副作用(恶心)有关.22.(本题满分14分)为了响应中央建设社会主义新农村的号召,中央电视台农业频道决定到全国著名的“红色亿元村”——南街村拍一个专题节目,在拍摄专题节目前,南街村随机抽取某地区进行了一次调查,调查了500人,其中对南街村了解的有300人,在中央电视台专题节目播出之后,南街村又随机抽取一个地区进行调查,这次抽取了1 000人,结果了解南街村的有700人. (1)试根据题目中的数据给出列联表;(2)画出二维条形图,并给出你所观察到的结论;(3)分析你的结论的可信度(即在多大概率上得出的结果). 参考数据: P(K 2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 续表P(K 2≥k) 0.010 0.005 0.001 k 6.635 7.879 10.828思路分析:本题可以根据列联表画出二维条形图,根据条形图主要判断中央电视台的专题节目对南街村的知名度是否发生了影响,再采用独立性检验的方法即可得这种结论的可信度. 解:(1)根据数据可得列联表为:了解南街村的人数 不了解南街村的人数 合计专题节目前300 200 500 专题节目后700 300 1 000 合计1 000 500 1 500 (2)根据列联表作出二维条形图如下:根据二维条形图观察可知,专题节目后,了解南街村的人数比例大于专题节目前,说明:中央电视台对南街村的专题报道加深了人们对南街村的了解.(3)令a=300,b=200,c=700,d=300,则a+b+c+d=1 500,构造随机变量:K 2=))()()(()(2d b c a d c b a bc ad n ++++-,其中n=a+b+c+d,把数据代入可得K 2=50010001000500)200700300300(15002⨯⨯⨯⨯-⨯⨯=15,查表可知,P(K 2≥10.828)=0.001,所以,得出(2)的结论的可信度至少为99.9%.。

高中数学人教a版高二选修2-3_模块综合测评2_word版有答案

高中数学人教a版高二选修2-3_模块综合测评2_word版有答案

模块综合测评(二)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,不同的种植方法有()A.24种B.18种C.12种D.6种【解析】种植黄瓜有3种不同的种法,其余两块地从余下的3种蔬菜中选一种种植有3×2=6种不同种法.由分步乘法计数原理知共有3×6=18种不同的种植方法.故选B.【答案】 B2.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是() 【导学号:97270068】A.6和2.4 B.2和2.4C.2和5.6 D.6和5.6【解析】由已知随机变量X+Y=8,所以有Y=8-X.因此,求得E(Y)=8-E(X)=8-10×0.6=2,D(Y)=(-1)2D(X)=10×0.6×0.4=2.4.【答案】 B3.设随机变量ξ服从正态分布N(2,9),若P(ξ>c)=P(ξ<c-2),则c的值是()A.1 B.2 C.3 D.4【解析】随机变量ξ服从正态分布N(2,9),∴曲线关于x=2对称,∵P(ξ>c)=P(ξ<c-2),∴c+c-22=2,∴c=3.故选C.【答案】 C4.设A=37+C27·35+C47·33+C67·3,B=C17·36+C37·34+C57·32+1,则A-B的值为() A.128 B.129 C.47D.0【解析】A-B=37-C17·36+C27·35-C37·34+C47·33-C57·32+C67·3-1=(3-1)7=27=128,故选A.【答案】 A5.若⎝ ⎛⎭⎪⎫x +1x n 展开式的二项式系数之和为64,则展开式的常数项为( )A .10B .20C .30D .120【解析】 ∵C 0n +C 1n +…+C n n =2n=64,∴n =6. T r +1=C r 6x 6-r x -r =C r 6x6-2r ,令6-2r =0,∴r =3, 常数项T 4=C 36=20,故选B. 【答案】 B6.已知某离散型随机变量X 服从的分布列如下,则随机变量X 的数学期望E (X )等于( )A.19B.29C.13D.23【解析】 由题意可知m +2m =1,所以m =13,所以E (X )=0×13+1×23=23. 【答案】 D7.12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是( )A .C 28A 23B .C 28A 66 C .C 28A 26D .C 28A 25【解析】 从后排8人中选2人安排到前排6个位置中的任意两个位置即可,所以选法种数是C 28A 26,故选C.【答案】 C8.一个电路如图1所示,A ,B ,C ,D ,E ,F 为6个开关,其闭合的概率都是12,且是相互独立的,则灯亮的概率是( )图1A.164B.5564C.18D.116【解析】 开关C 断开的概率为12,开关D 断开的概率为12,开关A ,B 至少一个断开的概率为1-12×12=34,开关E ,F 至少一个断开的概率为1-12×12=34,故灯不亮的概率为12×12×34×34=964,故灯亮的概率为1-964=5564,故选B.【答案】 B9.利用下列盈利表中的数据进行决策,应选择的方案是()A.A1B.234【解析】利用方案A1,期望为50×0.25+65×0.30+26×0.45=43.7;利用方案A2,期望为70×0.25+26×0.30+16×0.45=32.5;利用方案A3,期望为-20×0.25+52×0.30+78×0.45=45.7;利用方案A4,期望为98×0.25+82×0.30-10×0.45=44.6;因为A3的期望最大,所以应选择的方案是A3,故选C.【答案】 C10.在4次独立重复试验中,随机事件A恰好发生1次的概率不大于其恰好发生2次的概率,则事件A在一次试验中发生的概率的取值范围是()A.[0.4,1) B.(0,0.6]C.(0,0.4] D.[0.6,1)【解析】设事件A发生一次的概率为p,则事件A的概率可以构成二项分布,根据独立重复试验的概率公式可得C14p(1-p)3≤C24p2(1-p)2,即可得4(1-p)≤6p,p≥0.4.又0<p<1,故0.4≤p<1.【答案】 A11.有10件产品,其中3件是次品,从中任取两件,若X表示取得次品的个数,则P(X<2)等于()A.715 B.815 C.1415D.1【解析】 由题意,知X 取0,1,2,X 服从超几何分布,它取每个值的概率都符合等可能事件的概率公式,即P (X =0)=C 27C 210=715,P (X =1)=C 17·C 13C 210=715,P (X =2)=C 23C 210=115,于是P (X <2)=P (X =0)+P (X =1)=715+715=1415.【答案】 C12.已知0<a <1,方程a |x |=|log a x |的实根个数为n ,且(x +1)n +(x +1)11=a 0+a 1(x +2)+a 2(x +2)2+…+a 10(x +2)10+a 11(x +2)11,则a 1等于( )A .-10B .9C .11D .-12 【解析】作出y =a |x |(0<a <1)与y =|log a x |的大致图象如图所示,所以n =2.故(x +1)n +(x +1)11=(x +2-1)2+(x +2-1)11,所以a 1=-2+C 1011=-2+11=9.故选B.【答案】 B二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上) 13.已知(1-x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则(a 0+a 2+a 4)·(a 1+a 3+a 5)的值等于________.【解析】 令x =1,得a 0+a 1+a 2+a 3+a 4+a 5=0,① 再令x =-1,得a 0-a 1+a 2-a 3+a 4-a 5=25=32,② ①+②得a 0+a 2+a 4=16, ①-②得a 1+a 3+a 5=-16,故(a 0+a 2+a 4)·(a 1+a 3+a 5)的值等于-256. 【答案】 -25614.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为a ,b ,共可得到lg a -lg b 的不同值的个数是________. 【导学号:97270069】【解析】 首先从1,3,5,7,9这五个数中任取两个不同的数排列,共A 25=20种排法,因为31=93,13=39,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是20-2=18.【答案】 1815.某市工商局于2016年3月份,对全市流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的X 饮料的合格率为80%,现有甲、乙、丙3人聚会,选用6瓶X 饮料,并限定每人喝2瓶.则甲喝2瓶合格的X 饮料的概率是________.【解析】 “第一瓶X 饮料合格”为事件A 1,“第二瓶X 饮料合格”为事件A 2,P (A 1)=P (A 2)=0.8,A 1与A 2是相互独立事件,则“甲喝2瓶X 饮料”都合格就是事件A 1,A 2同时发生,根据相互独立事件的概率乘法公式得:P (A 1A 2)=P (A 1)·P (A 2)=0.8×0.8=0.64. 【答案】 0.6416.某单位组织4个部门的职工旅游,规定每个部门只能在韶山、衡山、张家界3个景区中任选一个,假设各部门选择每个景区是等可能的.则3个景区都有部门选择的概率是________.【解析】 根据题意,每个部门都有3种情况可选,则4个部门选择3个景区有34=81种不同的选法,记“3个景区都有部门选择”为事件A ,如果3个景区都有部门选择,则某一个景区必须有2个部门选择,其余2个景区各有1个部门选择,分2步分析:(1)从4个部门中任选2个作为1组,另外2个部门各作为1组,共3组,共有C 24=6种分法;(2)每组选择不同的景区,共有A 33=6种选法.所以3个景区都有部门选择可能出现的结果数为6×6=36种.则P (A )=3681=49. 【答案】 49三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)(2016·河南周口)在二项式⎝ ⎛⎭⎪⎪⎫x +124x n 的展开式中,前三项的系数成等差数列,求展开式中的有理项和二项式系数最大的项.【解】 ∵二项展开式的前三项的系数分别是1,n 2,18n (n -1),∴2·n 2=1+18n (n -1), 解得n =8或n =1(不合题意,舍去), ∴T k +1=C k 8x 8-k 2⎝ ⎛⎭⎪⎪⎫124x k =C k 82-k x 4-34k , 当4-34k ∈Z 时,T k +1为有理项.∵0≤k ≤8且k ∈Z ,∴k =0,4,8符合要求.故有理项有3项,分别是T 1=x 4,T 5=358x ,T 9=1256x -2. ∵n =8,∴展开式中共9项.中间一项即第5项的二项式系数最大,则为T 5=358x .18.(本小题满分12分)某班从6名班干部中(其中男生4人,女生2人),任选3人参加学校的义务劳动.(1)设所选3人中女生人数为ξ,求ξ的分布列; (2)求男生甲或女生乙被选中的概率;(3)设“男生甲被选中”为事件A ,“女生乙被选中”为事件B ,求P (B )和P (B |A ). 【解】 (1)ξ的所有可能取值为0,1,2,依题意,得P (ξ=0)=C 34C 36=15,P (ξ=1)=C 24C 12C 36=35,P (ξ=2)=C 14C 22C 36=15.∴ξ的分布列为(2)设“甲、乙都不被选中”则P (C )=C 34C 36=420=15,∴所求概率为P (C )=1-P (C )=1-15=45.(3)P (B )=C 25C 36=1020=12,P (A )=C 25C 36=12,P (AB )=C 14C 36=15,P (B |A )=P (AB )P (A )=25. 19.(本小题满分12分)从某居民区随机抽取10个家庭,获得第i 个家庭的月收入x i (单位:千元)与月储蓄y i (单位:千元)的数据资料,算得∑i =110x i =80,∑i =110y i =20,∑i =110x i y i =184,∑i =110x 2i =720.(1)求家庭的月储蓄y 对月收入x 的线性回归方程y ^=b ^x +a ^; (2)判断变量x 与y 之间是正相关还是负相关;(3)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.附:线性回归方程y ^=b^x +a ^中,b =∑i =1nx i y i -n x y ∑i =1nx 2i -n x 2,a^=y -b ^ x ,其中x ,y 为样本平均值.【解】 (1)由题意知n =10,x =1n ∑i =1n x i =8010=8,y =1n ∑i =1n y i =2010=2,又l xx =∑i =1nx 2i -n x 2=720-10×82=80,l xy =∑i =1nx i y i -n x y =184-10×8×2=24,由此得b^=l xy l xx=2480=0.3,a ^=y -b ^ x =2-0.3×8=-0.4. 故所求线性回归方程为y =0.3x -0.4.(2)由于变量y 的值随x 值的增加而增加(b =0.3>0),故x 与y 之间是正相关. (3)将x =7代入回归方程可以预测该家庭的月储蓄为y =0.3×7-0.4=1.7(千元). 20.(本小题满分12分)(2015·北京高考)A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间相互独立,从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a =25,求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明) 【解】 设事件A i 为“甲是A 组的第i 个人”, 事件B i 为“乙是B 组的第i 个人”,i =1,2, (7)由题意知P (A i )=P (B i )=17,i =1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A 组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P (A 5∪A 6∪A 7)=P (A 5)+P (A 6)+P (A 7)=37.(2)设事件C 为“甲的康复时间比乙的康复时间长”.由题意知C =A 4B 1∪A 5B 1∪A 6B 1∪A 7B 1∪A 5B 2∪A 6B 2∪A 7B 2∪A 7B 3∪A 6B 6∪A 7B 6, 因此P (C )=P (A 4B 1)+P (A 5B 1)+P (A 6B 1)+P (A 7B 1)+P (A 5B 2)+P (A 6B 2)+P (A 7B 2)+P (A 7B 3)+P (A 6B 6)+P (A 7B 6)=10P (A 4B 1)=10P (A 4)P (B 1)=1049. (3)a =11或a =18.21.(本小题满分12分)(2016·广州综合测试)甲、乙、丙三人参加某次招聘会,假设甲能被聘用的概率是25,甲、丙两人同时不被聘用的概率是625,乙、丙两人同时被聘用的概率是310,且三人各自能否被聘用相互独立.(1)求乙、丙两人各自能被聘用的概率;(2)设ξ表示甲、乙、丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望). 【导学号:97270070】【解】 记甲、乙、丙各自能被聘用的事件分别为A 1,A 2,A 3,由已知A 1,A 2,A 3相互独立,且满足⎩⎪⎨⎪⎧P (A 1)=25,[1-P (A 1)][1-P (A 3)]=625,P (A 2)P (A 3)=310,解得P (A 2)=12,P (A 3)=35.所以乙、丙两人各自能被聘用的概率分别为12,35. (2)ξ的可能取值为1,3.因为P (ξ=3)=P (A 1A 2A 3)+P (A 1 A 2 A 3) =P (A 1)P (A 2)P (A 3)+ [1-P (A 1)][1-P (A 2)][1-P (A 3)]=25×12×35+35×12×25=625,所以P (ξ=1)=1-P (ξ=3)=1-625=1925, 所以ξ的分布列为E (ξ)=1×1925+3×625=3725.22.(本小题满分12分)(2016·辽宁抚顺月考)有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为27.(1)请完成上面的2×2关”;(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E (ξ).附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),【解】 (1)k ≈12.2,所以按照99% (2)ξ~B ⎝ ⎛⎭⎪⎫3,27,且P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫27k ·⎝ ⎛⎭⎪⎫573-k(k =0,1,2,3),ξ的分布列为125343+1×150343+2×60343+3×8343=67.E(ξ)=0×。

(完整版)高二数学选修2-3测试题(含答案)经典.doc

(完整版)高二数学选修2-3测试题(含答案)经典.doc
10个白球,5个红球。从袋中任取
2
个球,所取的2个球中恰有
1个白球,1个红球的概率为(

A.1
B.
11
10
D.
5
21
C.
21
21

.(x2
x
y)5的展开式中,
x5y2的系数为( )
(A)10
(B)20
(C)30
(D)60

.一个家庭中有两个小孩, 已知其中有一个是女孩,
则这时另一个小孩是男孩的概率为
x
14.已知随机变量
X服从二项分布
B n, p,若E
X 30,
V
DX 20
,则p
1
.
3
15.用数字0,1,2,3,4,5组成没有重复数字的
,4位数,
其中偶数的个数为
.156
DE
16.有一小球从如图管道的入口
V处落下,在管道的每一个节A
B
C
点等可能地选择路径,则小球最后落到
C点处的概率是
3
(第16题)
11.
已知某类型的高射炮在它们控制的区域内击中具有某种速度敌机的概率为
1,要使敌机
5
一旦进入这个区域内有
90%以上的概率被击中,至少需要布置高射炮的门数是(

(参考数据lg
2 0.301,lg3
0.4771

(A)8个
(B)9个
(C)10个
(D)11个
12.
某个部件由三个元件按下图方式连接而成,元件
18.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个
红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的

人教版高二数学选修(2-3)综合测试题

人教版高二数学选修(2-3)综合测试题

高中数学选修2-3综合测试题一、选择题1.已知随机变量X的分布列为1()122kP X k k n===,,,,,则(24)P X<≤为()A.316 B.14 C.116 D.5162.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()A.100B.90C.81D.723.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有()A.24种B.60种C.90种D.120种4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人5.工人工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x,下列判断中正确的是()A.劳动生产率为1000元时,工资为130元B.劳动生产率平均提高1000元时,工资平均提高80元C.劳动生产率平均提高1000元时,工资平均提高130元D.当工资为250元时,劳动生产率为2000元6.设1nx⎛⎫⎪⎝⎭的展开式的各项系数的和为P,所有二项式系数的和为S,若P+S=272,则n为()A.4B.5C.6D.87.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170”.根据这位负责人的话可以推断出参加面试的人数为()A.21B.35C.42D.708.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()A.0.59B.0.54C.0.8D.0.159.设一随机试验的结果只有A和A,()P A p=,令随机变量1AXA=⎧⎨⎩,出现,,不出现,,则X的方差为()A.pB.2(1)p p-C.(1)p p--D.(1)p p-10.310(1)(1)x x-+的展开式中,5x的系数是()A.297-B.252-C.297 D.20711.某厂生产的零件外直径ξ~N(10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm和9.3cm,则可认为()A.上午生产情况正常,下午生产情况异常B.上午生产情况异常,下午生产情况正常C.上、下午生产情况均正常D.上、下午生产情况均异常12.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于( )A.2027 B.49 C.827 D.1627二、填空题13.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法种.14.设随机变量ξ的概率分布列为()1cP k k ξ==+,0123k =,,,,则(2)P ξ==. 15.已知随机变量X 服从正态分布2(0)N σ,且(20)P X -≤≤0.4=则(2)P X >=.16.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为,方差为. 三、解答题17概率有多大? 18.假设关于某设备使用年限x (年)和所支出的维修费用(万元)有如下统计资料: 若由资料知,y 对x 呈线性相关关系,试求: (1)回归直线方程; (2)估计使用年限为10年时,维修费用约是多少? 19.用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数? (2)能组成多少个无重复数字且为5的倍数的五位数? (3)能组成多少个无重复数字且比1325大的四位数?20.已知()(1)(1)()m n f x x x m n *=+++∈N ,的展开式中x 的系数为19,求()f x 的展开式中2x 的系数的最小值.21.某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.22.奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望 1-6答案:CBABAA 7-12答案:AADDAA 13.15 14.42515答案:0.1 16答案:0.3,0.2645 17解:2135(62222823) 4.06690458550k ⨯⨯-⨯=≈⨯⨯⨯.因为4.066 3.844>,所以有95%的把握,认为数学成绩与物理成绩有关,判断出错的概率只有5%. 18解:(1)依题列表如下:521522215112.354512.31.239054105i i ii xxy b xx==--⨯⨯====-⨯-∑∑.5 1.2340.08a y bx =-=-⨯=.∴回归直线方程为 1.230.08y x =+.(2)当10x =时, 1.23100.0812.38y =⨯+=万元. 即估计用10年时,维修费约为12.38万元.19.解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时有35A 个;第二类:2在个位时,首位从1,3,4,5中选定1个(有14A 种),十位和百位从余下的数字中选(有24A 种),于是有1244A A ·个;第三类:4在个位时,与第二类同理,也有1244A A ·个.由分类加法计数原理知,共有四位偶数:3121254444156A A A A A ++=··个. (2)符合要求的五位数中5的倍数的数可分为两类:个位数上的数字是0的五位数有45A 个;个位数上的数字是5的五位数有1344A A ·个.故满足条件的五位数的个数共有413544216A A A +=·个. (3)符合要求的比1325大的四位数可分为三类:第一类:形如2□□□,3□□□,4□□□,5□□□,共1345A A ·个;第二类:形如14□□,15□□,共有1224A A ·个;第三类:形如134□,135□,共有1123A A ·个;由分类加法计数原理知,无重复数字且比1325大的四位数共有:131211452423270A A A A A A ++=···个.20解:122122()11m m n nm m m n n n f x C x C x C x C x C x C x =+++++++++112222()()m n m n C C x C C x =+++++.由题意19m n +=,m n *∈N ,.2x ∴项的系数为222(1)(1)1919172224mnm m n n C C m --⨯⎛⎫+=+=-+ ⎪⎝⎭.∵m n *∈N ,,根据二次函数知识,当9m =或10时,上式有最小值,也就是当9m =,10n =或10m =,9n =时,2x 项的系数取得最小值,最小值为81.21解:设该工人在2006年一年里所得奖金为X ,则X 是一个离散型随机变量.由于该工人每季度完成任务与否是等可能的,所以他每季度完成任务的概率等于12,所以, 044111(0)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,1314111(300)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 2224113(750)228P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,3134111(1260)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,4044111(1800)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. ∴其分布列为22解:设此次摇奖的奖金数额为ξ元, 当摇出的3个小球均标有数字2时,6ξ=;当摇出的3个小球中有2个标有数字2,1个标有数字5时,9ξ=; 当摇出的3个小球有1个标有数字2,2个标有数字5时,12ξ=。

高中数学选修2-3综合测试题及答案(优选.)

高中数学选修2-3综合测试题及答案(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改高中数学选修2-3综合测试题一、选择题(本题共12小题,每题5分,共60分.只有一项是符合题目要求) 1、在一次试验中,测得(x ,y)的四组值分别是A(1,2),B(2,3),C(3,4),D(4,5),则y 与x 间的线性回归方程为( )A. y ^=x +1 B. y ^=x +2 C. y ^=2x +1 D. y ^=x -12、某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有( ) A .36种B .42种C .48种D .54种3、从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为 ( ) A .24B .18C .12D .64、两人进行乒乓球比赛,先赢3局者获胜,决出胜负为止,则所有可能出现的情形(各人输赢局次的不同视为不同情形)共有 ( ) A .10种 B .15种 C .20种D .30种5、现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一.每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是 ( ) A .152 B .126 C .90D .546、在⎝ ⎛⎭⎪⎫2x 2-1x 5的二项展开式中,x 的系数为( ) A .10B .-10C .40D .-407、(x +a x )(2x -1x )5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-40B .-20C .20D .408、若随机变量X 的分布列如下表,则E(X)等于( )A.118 B.9 C.9D.209、随机变量ξ服从正态分布N(0,1),如果P(ξ<1)=0.841 3,则P(-1<ξ<0)=( )A. 0.341 3B. 0.3412C. 0.342 3D. 0.441 310、五一节放假,甲去北京旅游的概率为13,乙、丙去北京旅游的概率分别为14,15.假定三人的行动相互之间没有影响,那么这段时间内至少有1人去北京旅游的概率为( )A.5960B.35C.12D.16011、 如图所示的电路,有a ,b ,c 三个开关,每个开关开或关的概率都是12,且是相互独立的,则灯泡甲亮的概率为( ). A. 31B.18C.14D.1212、已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=bx +a ,则“(x 0,y 0)满足线性回归方程y ^=bx +a”是“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题(本题共4小题,每题5分,共20分)13、 3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同的排法种数是________. 14、已知X 的分布列为:设Y =2X +1,则Y .15、1()n x x+的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为______.16、若将函数f(x)=x 5表示为f(x)=0a +1a ()1x ++…+()551a x +,其中012,,a a a ,…,5a 为实数,则0a =________。

人教版数学高二A数学选修2-3测试卷(五)

人教版数学高二A数学选修2-3测试卷(五)

高中同步测试卷(五)单元检测 离散型随机变量及其分布列 (时间:120分钟,满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个袋子中有质量相等的红,黄,绿,白四种小球各若干个,一次倒出三个小球,下列变量是离散型随机变量的是( )A .小球滚出的最大距离B .倒出小球所需的时间C .倒出的三个小球的质量之和D .倒出的三个小球的颜色的种数2.某人进行射击,共有5发子弹,击中目标或子弹打完就停止射击,射击次数为ξ,则“ξ=5”表示的试验结果是( )A .第5次击中目标B .第5次未击中目标C .前4次未击中目标D .第4次击中目标3.设离散型随机变量ξ的分布列为A .P (ξ=1.5)=0B .P (ξ≥-1)=1C .P (ξ≤3)=1D .P (ξ<0)=04. 袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为X ,则表示事件“放回5个红球”的是( )A .X =4B .X =5C .X =6D .X ≤55.设随机变量X 等可能取值为1,2,3,…,n ,如果P (X <4)=0.3,那么( ) A .n =3 B .n =4 C .n =9 D .n =106.设某项试验的成功率是失败率的2倍,用随机变量X 去描述1次试验的成功次数,则P (X =0)等于( )A .0 B.12 C.13 D.237.设X 是一个离散型随机变量,其分布列为:则q 为( )A .1B .1±22 C .1+22 D .1-228.随机变量X 的分布列如下:其中a ,b ,c A.16 B.13 C.12 D.239.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=( ) A.17 B.27 C.37 D.4710.设随机变量X 的概率分布列如下表所示:F (x )=P (X ≤x ),则当x ) A.13 B.16 C.12 D.5611.若P (X ≤x 2)=1-β,P (X ≥x 1)=1-α,其中x 1<x 2,则P (x 1≤X ≤x 2)等于( ) A .(1-α)(1-β) B .1-(α+β) C .1-α(1-β) D .1-β(1-α)12.设随机变量X 的概率分布列为P (X =k )=ak ,k =1,2,3,…,n ,则常数a 等于( ) A.110 B.1n C.1n 2 D.2n (n +1)13.在一次比赛中,需回答三个问题,比赛规则规定:每题回答正确得100分,回答不正确得-100分,则选手甲回答这三个问题的总得分ξ的所有可能取值是____________.14.某保险公司新开设了一项保险业务,若在一年内事件E 发生,该公司要赔偿a 元,设一年内E 发生的概率为p ,公司要求投保人交x 元,则公司收益X 的分布列是________.15.从4名男生和2名女生中选3人参加演讲比赛,则所选3人中女生人数不超过1人的概率是________.16.随机变量ξ的分布列为P (ξ=k )=ck (1+k ),k =1,2,3,其中c 为常数,则P (ξ≥2)等于________.三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)一个袋中装有5个白球和5个黑球,从中任取3个,其中所含白球的个数为ξ,(1)列表说明可能出现的结果与对应的ξ的值;(2)若规定抽取3个球中,每抽到一个白球加5分,抽到黑球不加分,且最后不管结果如何都加上6分,求最终得分η的可能取值,并判定η的随机变量类型.18.(本小题满分12分)某次演唱比赛,需要加试文化科学素质,每位参赛选手需回答3个问题,组委会为每位选手都备有10道不同的题目可供选择,其中有5道文史类题目,3道科技类题目,2道体育类题目.测试时,每位选手从给定的10道题中不放回地随机抽取3次,每次抽取一道题,回答完该题后,再抽取下一道题目作答.设某选手抽到科技类题目ξ道.(1)试求随机变量ξ的取值集合;(2){ξ=1}表示的事件是什么?可能出现多少种结果?19.(本小题满分12分)某种福利彩票每期的开奖方式是从1,2,…,20的基本号码中由电脑随机选出4个不同的幸运号码(不计顺序),凡购买彩票者,可自由选择1个,2个,3个或4个不同的基本号码组合成一注彩票,若彩票上所选的基本号码都为幸运号码就中奖.根据所选基本号码(幸运号码)的个数,中奖等级分为(2)设随机变量X表示一注彩票的获奖等级,X取值0,1,2,3,4(0表示未获奖),求随机变量X的分布列.20.(本小题满分12分)某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.(1)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列;(2)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率.21.(本小题满分12分)口袋中有n (n ∈N *)个白球,3个红球.依次从口袋中任取一球,如果取到红球,那么继续取球,且取出的红球不放回;如果取到白球,就停止取球.记取球的次数为X .若P (X =2)=730,求:(1)n 的值; (2)X 的分布列.22.(本小题满分12分)某校校庆,各届校友纷至沓来,某班共来了n 位校友(n >8且n ∈N *),其中女校友6位,组委会对这n 位校友登记制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友代表是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率不小于12,求n 的最大值;(2)当n =12时,设选出的2位校友代表中女校友人数为X ,求X 的分布列.参考答案与解析1.[导学号:21280030] 【解析】选D.小球颜色的种数是一个离散型随机变量. 2.【解析】选C.射击次数ξ=5,则说明前4次均未击中目标.3.【解析】选D.选项B 、C 中变量ξ可取到所有值,所以B 、C 是正确的;由于ξ不能取1.5,故选项A 也是正确的;对于D ,P (ξ<0)=P (ξ=-1)=110,故选项D 是错误的,故选D.4.[导学号:21280031] 【解析】选C.由条件知事件“放回5个红球”对应的X 为6. 5.【解析】选D.P (X <4)=P (X =1)+P (X =2)+P (X =3)=1n +1n +1n =3n =0.3,所以n =10.6.【解析】选C.由题意知X 服从两点分布,且P (X =0)+2P (X =0)=1,得P (X =0)=13.7.[导学号:21280032] 【解析】选D.由分布列性质知12+1-2q +q 2=1,解得q =1±22,又1-2q ≥0,所以q ≤12,所以q =1-22,故选D.8.【解析】选D.因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.9.【解析】选D.设二级品有k 个,所以一级品有2k 个,三级品有k 2个,总数为72k 个.所以分布列为P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47.10.[导学号:21280033] 【解析】选D.因为a +13+16=1,所以a =12.因为x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.11.【解析】选B.由分布列性质可有:P (x 1≤X ≤x 2)=P (X ≤x 2)+P (X ≥x 1)-1=(1-β)+(1-α)-1=1-(α+β).12.【解析】选D.因为a +2a +3a +…+na =1, 所以a =2n (n +1).13.[导学号:21280034] 【解析】可能回答全对,两对一错,两错一对,全错四种结果,相应得分为300分,100分,-100分,-300分.【答案】300分,100分,-100分,-300分 14.【解析】P (X =x -a )=p ,P (X =x )=1-p , 所以X 的分布列如下表:【答案】15.【解析】N =6,M =2,n =3,则P (X ≤1)=P (X =0)+P (X =1)=C 02C 34C 36+C 12C 24C 36=45.【答案】4516.【解析】ξ的分布列为由分布列的性质可知c 2+c 6+c 12=1,所以c =43,所以P (ξ≥2)=1-P (ξ=1)=1-12×43=1-23=13.【答案】1317.[导学号:21280035] 【解】(1)(2)由题意可得η所以η对应的值分别是:6,11,16,21.故η的可能取值为{6,11,16,21},显然η为离散型随机变量. 18.【解】(1)由题意得ξ的取值集合是{0,1,2,3}. (2){ξ=1}表示的事件是“恰抽到一道科技题”.考虑顺序,三类题目各抽取一道有5×3×2×A 33=180种结果.1道科技题,2道文史题有C 13·C 25·A 33=180种结果. 1道科技题,2道体育题有C 13·C 22·A 33=18种结果. 由分类加法计数原理知可能出现的结果为180+180+18=378种. 19.【解】(1)设A 表示事件“获得三等奖或四等奖”, 则P (A )=C 14C 120+C 24C 220=15+395=2295.(2)因为X 取值0,1,2,3,4.所以P (X =4)=C 14C 120=15,P (X =3)=C 24C 220=395,P (X =2)=C 34C 320=1285,P (X =1)=C 44C 420=14 845,P (X =0)=1-[P (X =1)+P (X =2)+P (X =3)+P (X =4)]=1317.所以随机变量X 的分布列为20.[P (ξ=0)=C 24C 25·C 23C 25=18100=950;P (ξ=1)=C 14C 25·C 23C 25+C 24C 25·C 13·C 12C 25=1225; P (ξ=2)=C 14C 25·C 13·C 12C 25+C 24C 25·C 22C 25=1550=310; P (ξ=3)=C 14C 25·C 22C 25=125.ξ的分布列为(2)所求的概率为P (ξ≥2)=P (ξ=2)+P (ξ=3)=310+125=1750. 21.【解】(1)由题意知P (X =2)=A 13·A 1nA 2n +3=3n (n +3)(n +2)=730,即7n 2-55n +42=0,即(7n -6)(n -7)=0. 因为n ∈N *,所以n =7.(2)由题意知,X 的可能取值为1,2,3,4,又P (X =1)=A 17A 110=710,P (X =2)=730,P (X =3)=A 23A 17A 310=7120,P (X =4)=1-710-730-7120=1120,所以,X 的分布列为:22.[导学号:21280037] 【解】(1)由题意可知,所选2人为“最佳组合”的概率为C 1n -6C 16C 2n=12(n -6)n (n -1),则12(n -6)n (n -1)≥12, 化简得n 2-25n +144≤0,解得9≤n ≤16, 故n 的最大值为16.(2)由题意得,X 的可能取值为0,1,2,则P (X =0)=C 26C 212=522,P (X =1)=C 16C 16C 212=611,P (X =2)=C 26C 212=522,X 的分布列为。

高中数学选修2-3综合测试题

高中数学选修2-3综合测试题

高中数学选修2-3综合检测题(满分150分)一.单选题(共8小题)1.n ∈N *,则(20-n )(21-n)……(100-n)等于 ( )A .80100n A -B .nn A --20100C .81100n A - D .8120n A -2.、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A.32B. 31C. 1D. 03.已知 (1+x )6=a 0+a 1x +a 2x 2+…+a 6x 6,在a 0,a 1,a 2,…,a 6这7个数中,从中任取两数,则所取的两数之和为偶数的概率为( ) A .B .C .D .4.现有5人站成一排照相,其中甲、乙相邻,且丙、丁不相邻,这样的排法有( ) A .12种B .24种C .36种D .48种5.某工厂周一到周六轮流由甲、乙、丙3人值班,每人值两天,3人通过抽签决定每个人在哪两天值班,若乙恰好本周六需要出差,则乙需要与他人换班的概率为( ) A .B .C .D .6.奥运会乒乓球单打的淘汰赛采用七局四胜制,猜先后由一方先发球,双方轮流先发球,当一方赢得四局胜利时,该方获胜,比赛结束,现有甲、乙两人比赛,根据前期比赛成绩,单局甲先发球并取胜的概率为0.8,乙先发球并取胜的概率为0.4,且各局比赛的结果相互独立;如果第一局由乙先发球,则甲以4:0获胜的概率是( ) A .0.1024B .0.2304C .0.2048D .0.46087.已知随机变量X 的分布列为,k =1,2,…10,则P (3≤X ≤4)=( )A .B .C .D .8.PM 2.5是空气质量的一个重要指标,我国PM 2.5标准采用世卫组织设定的最宽限值,即PM 2.5日均值在35μg /m 3以下空气质量为一级,在35μg /m 3~75μg /m 3之间空气质量为二级,在75μg /m 3以上空气质量为超标.如图是某市2019年12月1日到10日PM 2.5日均值(单位:μg /m 3)的统计数据.若从这10天中随机抽取3天进行进一步的空气质量数据分析,则空气质量为一级的恰好抽取了2天的概率为( )A .B .C .D .二.多选题(共4小题)9.设命题1p :42()x x +的展开式共有4项;命题2p :42()x x+展开式中的常数项为24 命题3p :42()x x +的展开式中各项的二项式系数之和为16 ; 命题p4:42()x x+的展开式 各项的系数之和为81 .那么,下列命题中为真命题的是( ) A. 1p B 2p C 3p D p410.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是( ) A .B .C .事件B 与事件A 1相互独立D .A 1,A 2,A 3是两两互斥的事件11.关于(a ﹣b )11的说法,正确的是( ) A .展开式中的二项式系数之和为2048B .展开式中只有第6项的二项式系数最大C .展开式中第6项和第7项的二项式系数最大D .展开式中第6项的系数最小12.已知由样本数据点集合{(x i ,y i )|i =1,2,…,n },求得的回归直线方程为=1.5x +0.5,且=3,现发现两个数据点(1.2,2.2)和(4.8,7.8)误差较大,去除后重新求得的回归直线l 的斜率为1.2,则( ) A .变量x 与y 具有正相关关系 B .去除后的回归方程为=1.2x +1.4 C .去除后y 的估计值增加速度变快D .去除后相应于样本点(2,3.75)的残差为0.05三.填空题(共4小题)13.若⎝⎛⎭⎫ax 2+bx 6的展开式中x 3项的系数为20,则a 2+b 2的最小值为________ 14.若(ax ﹣1)(+x )6的展开式中含x 3的系数为30,则a 的值为 .15.汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,“赵爽弦图”如图所示,由四个全等的直角三角形和一个正方形构成,现有五种不同的颜色可供涂色,要求相邻的区域不能用同一种颜色,则不同的涂色方案有 种(用数字作答).16.根据公共卫生传染病分析中心的研究,传染病爆发疫情期间,如果不采取任何措施,则会出现感染者基数猛增,重症挤兑,医疗资源负荷不堪承受的后果.如果采取公共卫生强制措施,则会导致峰值下降,峰期后移.如图,设不采取措施、采取措施情况下分别服从正态分布N (35,2),N (70,8),则峰期后移了 天,峰值下降了 %(注:正态分布的峰值计算公式为)四.解答题(共6小题)17.(10分) 设⎝ ⎛⎭⎪⎪⎫32+133n 的展开式的第7项与倒数第7项的比是1∶6,求展开式中的第7项.18.(12分)已知二项式(ax+)n的第三项和第八项的二项式系数相等.(1)求n的值.(2)若展开式的常数项为84,求a.19.(12分)近年来,国家相关政策大力鼓励创新创业种植业户小李便是受益者之一,自从2017年毕业以来,其通过自主创业而种植的某种农产品广受市场青睐,他的种植基地也相应地新增加了一个平时小李便带着部分员工往返于新旧基地之间进行科学管理和经验交流,新旧基地之间开车单程所需时间为i,由于不同时间段车流量的影响,现对50名员工往返新旧基地之间的用时情况进行统计,结果如表:t(分钟)3035404550频数(人)10201055(1)若有50名员工参与调查,现从单程时间在35分钟,40分钟,45分钟的人员中按分层抽样的方法抽取7人,再从这7人中随机抽取3人进行座谈,用X表示抽取的3人中时间在40分钟的人数,求X的分布列和数学期望;(2)某天,小李需要从旧基地驾车赶往新基地召开一个20分钟的紧急会议,结束后立即返回旧基地.(以50名员工往返新旧基地之间的用时的频率作为用时发生的概率)①求小李从离开旧基地到返回旧基地共用时间不超过110分钟的概率;②若用随机抽样的方法从旧基地抽取8名骨干员工陪同小李前往新基地参加此次会议,其中有Y名员工从离开旧基地到返回旧基地共用时间不超过110分钟,求随机变量Y的方差.20.(12分)为响应“坚定文化自信,建设文化强国”,提升全民文化修养,引领学生“读经典,用经典”,某广播电视台计划推出一档“阅读经典”节目.工作人员在前期的数据采集中,在某高中学校随机抽取了120名学生做调查,统计结果显示:样本中男女比例为3:2,而男生中喜欢阅读中国古典文学和不喜欢的比例是7:5,女生中喜欢阅读中国古典文学和不喜欢的比例是5:3.(1)填写下面列联表,并根据联表判断是否有95%的把握认为喜欢阅读中国古典文学与性别有关系?男生女生总计喜欢阅读中国古典文学不喜欢阅读中国古典文学总计(2)为做好文化建设引领,实验组把该校作为试点,和该校的的学生进行中国古典文学阅读交流.实验人员已经从所调查的120人中筛选出4名男生和3名女生共7人作为代表,这7个代表中有2名男生代表和2名女生代表喜欢中国古典文学.现从这7名代表中任选3名男生代表和2名女生代表参加座谈会,记ξ为参加会议的5人中喜欢古典文学的人数,求ξ的分布列及数学期望E(ξ).附表及公式:.P(K2>k0)0.050.0250.0100.0050.001 k0 3.841 5.024 6.6357.87910.82821.(12分)某果园种植“糖心苹果”已有十余年,根据其种植规模与以往的种植经验,产自该果园的单个“糖心苹果”的果径(最大横切面直径,单位:mm)在正常环境下服从正态分布N(68,36).(1)一顾客购买了20个该果园的“糖心苹果”,求会买到果径小于56mm的概率;(2)为了提高利润,该果园每年投入﹣定的资金,对种植、采摘、包装、宜传等环节进行改进.如图是2009年至2018年,该果园每年的投资金额x(单位:万元)与年利润增量y(单位:万元)的散点图:该果园为了预测2019年投资金额为20万元时的年利润增量,建立了y关于x的两个回归模型;模型①:由最小二乘公式可求得y与x的线性回归方程:=2.50x﹣2.50;模型②:由图中样本点的分布,可以认为样本点集中在曲线:y=blnx+a的附近,对投资金额x做交换,令t=lnx,则y=b•t+a,且有,(I)根据所给的统计量,求模型②中y关于x的回归方程;(II)根据下列表格中的数据,比较两种模型的相关指数R2,并选择拟合精度更高、更可靠的模型,预测投资金额为20万元时的年利润增量(结果保留两位小数).回归模型模型①模型②回归方程=2.50x﹣2.50=blnx+a102.2836.19附:若随机变量X~N(μ,σ2),则P(μ﹣2σ≤X≤μ+2σ)=0.9544,P(μ﹣3σ≤X≤μ+3σ)=0.9974;样本(t i,y i)(i=1,2,…,n)的最小乘估计公式为=,=﹣;相关指数R2=1﹣.参考数据:0.977220≈0.6305,0.998720≈0.9743,ln2≈0.6931,ln5≈1.6094.22.(12分)某学校为了解全校学生的体重情况,从全校学生中随机抽取了100人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.(1)估计这100人体重数据的平均值μ和样本方差σ2(结果取整数,同一组中的数据用该组区间的中点值作代表)(2)从全校学生中随机抽取3名学生,记X为体重在[55,65)的人数,求X的分布列和数学期望;(3)由频率分布直方图可以认为,该校学生的体重Y近似服从正态分布N(μ,σ2).若P(μ﹣2σ≤Y<μ+2σ)>0.9544,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.。

高二数学人教版选修2-3测试卷及答案

高二数学人教版选修2-3测试卷及答案

高二数学选修2-3测试题一、选择题1、某公共汽车上有10名乘客,沿途有5个车站,乘客下车的可能方式()A.种B.种C.50种D.10种2、随机变量服从二项分布~,且则等于()A. B. C. 1 D.03、已知集合M=,N=,从两个集合中各取一个元素作为点的坐标,则在直角坐标系中第一,二象限不同点的个数为()A: 18 B:14 C:16 D:174、某学习小组男女生公8人,现从男生中选2人,女生中选1人,分别去做3中不同的工作,共有90种不同的选法,则男女生人数为()A: 2,6 B:3,5 C:5,3 D:6,25、二项式的展开式的常数C项为第()项A. 17B.18C. 19D.206、.在某一试验中事件A出现的概率为,则在次试验中出现次的概率为()A . 1- B. C. 1- D.7、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者不能从事翻译工作,则选派方案共有()A.96种 B.180种 C.240种 D.280种8、设,那么的值为()A:- B:- C:- D:-19、在10件产品中有2件次品,现从中任取3件产品,至多有1件次品的概率是()(A) (B) (C) (D)10、随机变量的概率分布列为,() 其中为常数,则的值为()A: B: C: D:11、已知随机变量X满足D(X)=2,则D(3X+2)=()A.2B.8C.18D.2012、某次语文考试中考生的分数X~N(90,100),则分数在70~110分的考生占总考生数的百分比是()A.68.26% B.95.44%C.99.74% D.31.74%二、填空题:13、从5名男医生,4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有种。

14、将一颗骰子连掷100次,则点6出现次数X的均值E(X)=________。

15、在的展开式中,二项式系数最大值为16、甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4、0.5,则恰有一人击中敌机的概率为三,解答题(解答应写出文字说明、演算步骤或推证过程)17、有20件产品,其中5件是次品,其余都是合格品,现不放回的从中依次抽2件.求:⑴第一次抽到次品的概率;⑵第一次和第二次都抽到次品的概率;⑶在第一次抽到次品的条件下,第二次抽到次品的概率.18、已知的展开式中前三项的系数成等差数列.(Ⅰ)求n的值;(Ⅱ)求展开式中系数最大的项.19、袋中有5个大小相同的小球,其中1个白球和4个黑球,每次从中任取一球,每次取出的黑球不再放回去,直到取出白球为止.求取球次数X的均值和方差.20、9粒种子种在甲,乙,丙3个坑内,每坑3粒,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种.(1)求甲坑不需要补种的概率;(2)求3个坑中恰有1个坑不需要补种的概率;(3)求有坑需要补种的概率(精确到0.001).21.(本题满分12分)(2010·浙江杭州高二检测)甲、乙等五名奥运志愿者被随机地分到A,B,C,D四个不同的岗位服务,每个岗位至少有一名志愿者.(1)求甲、乙两人同时参加A岗位服务的概率;(2)求甲、乙两人不在同一个岗位服务的概率;(3)设随机变量X为这五名志愿者中参加A岗位服务的人数,求X的分布列.22.(本题满分12分)坛子里放着5个相同大小,相同形状的咸鸭蛋,其中有3个是绿皮的,2个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第一次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿到绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.高二数学选修2-3测试题参考答案一选择:1-5:ABDBC ;6-10:DCADD ;11-12:CB 二填空:13、70;14、50/3;15、252;16、0.5 三解答题17、解:设第一次抽到次品为事件A,第二次都抽到次品为事件B. ⑴第一次抽到次品的概率⑵⑶在第一次抽到次品的条件下,第二次抽到次品的概率为18、解:(Ⅰ)由题设,得 , 即,解得n =8,n=1(舍去).(Ⅱ)设第r +1的系数最大,则 即 解得r =2或r=3.所以系数最大的项为,.19、[解析] 取球次数X 是一个随机变量,X 的所有可能值是1、2、3、4、5.为了求X 的均值和方差,可先求X 的分布列.P (X =1)=15=0.2,P (X =2)=45×14=0.2,P (X =3)=45×34×13=0.2,P (X =4)=45×34×23×12=0.2,P (X =5)=45×34×23×12×11=0.2.于是,我们得到随机变量X 的分布列X 1 2 3 4 5 P0.20.20.20.20.2由随机变量的均值和方差的定义可求得: E (X )=1×0.2+2×0.2+3×0.2+4×0.2+5×0.2 =0.2×(1+2+3+4+5)=3,D (X )=(1-3)2×0.2+(2-3)2×0.2+(3-3)2×0.2+(4-3)2×0.2+(5-3)2×0.2=0.2×(22+12+02+12+22)=2.20、[解析] (1)因为甲坑内3粒种子都不发芽的概率为(1-0.5)3=18,所以甲坑不需要补种的概率为1-18=78=0.875.(2)3个坑恰有一个坑不需要补种的概率为 C13×78×⎝⎛⎭⎫182≈0.041.(3)因为3个坑都不需要补种的概率为⎝⎛⎭⎫783,所以有坑需要补种的概率为1-⎝⎛⎭⎫783≈0.330. 21、[解析] (1)记甲、乙两人同时参加A 岗位服务为事件E A ,那么P (E A )=A33C25A44=140.即甲、乙两人同时参加A 岗位服务的概率是140.(2)记甲、乙两人同时参加同一岗位服务为事件E , 那么P (E )=A44C25A44=110. 所以,甲、乙两人不在同一岗位服务的概率是P (E )=1-P (E )=910.(3)随机变量X 可能取的值为1,2,事件“X =2”是指有两人同时参加A 岗位服务,则P (X =2)=C25A33C25A44=14.所以P (X =1)=1-P (X =2)=34,X 的分布列为:X 1 2 P341422、[解析] 设第1次拿出绿皮鸭蛋为事件A ,第2次拿出绿皮鸭蛋为事件B ,则第1次和第2次都拿出绿皮鸭蛋为事件AB .(1)从5个鸭蛋中不放回地依次拿出2个的基本事件数为μ(Ω)=A25=20. 又μ(A )=A13×A14=12.于是P (A )=μ(A)μ(Ω)=1220=35.(2)因为μ(AB )=A23=6,所以P (AB )=μ(AB)μ(Ω)=620=310.(3)解法一:由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P (B |A )=P(AB)P(A)=31035=12.解法二:因为μ(AB )=6,μ(A )=12,所以P (B |A )μ(AB)μ(A)=612=12.=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学选修2-3综合测试题(一)一、选择题
1.已知随机变量X的分布列为
1
()12
2k
P X k k n
===
,,,,,则(24)
P X
<≤为()
A.316 B.14 C.116 D.516
2.从0,1,2,…,9这10个数字中,任取两个不同数字作为平面直角坐标系中点的坐标,能够确定不在x轴上的点的个数是()
A.100 B.90 C.81 D.72
3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边,(A,B可以不相邻)那么不同的排法有()
A.24种B.60种C.90种D.120种
4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()
A.2人或3人B.3人或4人C.3人D.4人
5.工人工资(元)依劳动生产率(千元)变化的回归方程为y=50+80x,下列判断中正确的是()A.劳动生产率为1000元时,工资为130元
B.劳动生产率平均提高1000元时,工资平均提高80元
C.劳动生产率平均提高1000元时,工资平均提高130元
D.当工资为250元时,劳动生产率为2000元
6.设
1n
x
⎛⎫

⎝⎭
的展开式的各项系数的和为P,所有二项式系数的和为S,若P+S=272,则n为()
A.4 B.5 C.6 D.8
7.两位同学一起去一家单位应聘,面试前单位负责人对他们说:“我们要从面试的人中招聘3人,你们俩同时被招聘进来的概率是170”.根据这位负责人的话可以推断出参加面试的人数为()A.21 B.35 C.42 D.70
8.有外形相同的球分装三个盒子,每盒10个.其中,第一个盒子中7个球标有字母A、3个球标有字母B;第二个盒子中有红球和白球各5个;第三个盒子中则有红球8个,白球2个.试验按如下规则进行:先在第一号盒子中任取一球,若取得标有字母A的球,则在第二号盒子中任取一个球;若第一次取得标有字母B的球,则在第三号盒子中任取一个球.如果第二次取出的是红球,则称试验成功,那么试验成功的概率为()
A.0.59 B.0.54 C.0.8 D.0.15
9.设一随机试验的结果只有A和A,()
P A p
=,令随机变量
1
A
X
A
=



,出现,
,不出现,
,则X的方差为()
A.pB.2(1)
p p
-C.(1)
p p
--D.(1)
p p
-
10.310
(1)(1)
x x
-+的展开式中,5x的系数是()
A.297
-B.252
-C.297 D.207
11.某厂生产的零件外直径ξ~N(10,0.04),今从该厂上、下午生产的零件中各随机取出一个,测得其外直径分别为9.9cm和9.3cm,则可认为()
A.上午生产情况正常,下午生产情况异常
B.上午生产情况异常,下午生产情况正常
C.上、下午生产情况均正常
12.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局.若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于( )
A.
2027 B.49 C.827 D.16
27
二、填空题
13.有6名学生,其中有3名会唱歌,2名会跳舞,1名既会唱歌也会跳舞.现从中选出2名会唱歌的,1名会跳舞的去参加文艺演出,则共有选法 种.
14.设随机变量ξ的概率分布列为()1
c
P k k ξ==
+,0123k =,,,,则(2)P ξ== . 15.已知随机变量X 服从正态分布2(0)N σ,且(20)P X -≤≤0.4=则(2)P X >= .
16.已知100件产品中有10件次品,从中任取3件,则任意取出的3件产品中次品数的数学期望为 ,方差为 . 三、解答题
17
试判断数学成绩与物理成绩之间是否线性相关,判断出错的概率有多大?
18.假设关于某设备使用年限x (年)和所支出的维修费用y (万元)有如下统计资料: 若由资料知,y 对x 呈线性相关关系,试求:
(1)回归直线方程; (2)估计使用年限为10年时,维修费用约是多少?
19.用0,1,2,3,4,5这六个数字: (1)能组成多少个无重复数字的四位偶数?
(2)能组成多少个无重复数字且为5的倍数的五位数? (3)能组成多少个无重复数字且比1325大的四位数?
20.已知()(1)(1)()m n f x x x m n *=+++∈N ,的展开式中x 的系数为19,求()f x 的展开式中2x 的系数的最小值.
21.某厂工人在2006年里有1个季度完成生产任务,则得奖金300元;如果有2个季度完成生产任务,则可得奖金750元;如果有3个季度完成生产任务,则可得奖金1260元;如果有4个季度完成生产任务,可得奖金1800元;如果工人四个季度都未完成任务,则没有奖金,假设某工人每季度完成任务与否是等可能的,求他在2006年一年里所得奖金的分布列.
22.奖器有10个小球,其中8个小球上标有数字2,2个小球上标有数字5,现摇出3个小球,规定所得奖金(元)为这3个小球上记号之和,求此次摇奖获得奖金数额的数学期望
1-6答案:CBABAA 7-12答案:AADDAA 13.15 14.
4
25
15答案:0.1 16答案:0.3,0.2645 17解:2
135(62222823) 4.06690458550
k ⨯⨯-⨯=≈⨯⨯⨯.
因为4.066 3.844>,所以有95%的把握,认为数学成绩与物理成绩有关,判断出错的概率只有5%. 18解:(1)依题列表如下:
521
52
2215112.354512.3 1.239054105i
i i i x xy b x x ==--⨯⨯====-⨯-∑∑. 5 1.2340.08a y bx =-=-⨯=.
∴回归直线方程为 1.230.08y x =+.
(2)当10x =时, 1.23100.0812.38y =⨯+=万元. 即估计用10年时,维修费约为12.38万元.
19.解:(1)符合要求的四位偶数可分为三类: 第一类:0在个位时有35A 个;
第二类:2在个位时,首位从1,3,4,5中选定1个(有1
4A 种),十位和百位从余下的数字中选(有
24A 种),于是有1244A A ·个;
第三类:4在个位时,与第二类同理,也有12
44A A ·个.
由分类加法计数原理知,共有四位偶数:312125
4444156A A A A A ++=··个. (2)符合要求的五位数中5的倍数的数可分为两类:个位数上的数字是0的五位数有45A 个;个位
数上的数字是5的五位数有1344A A ·个.故满足条件的五位数的个数共有413
54
4216A A A +=·个. (3)符合要求的比1325大的四位数可分为三类:
第一类:形如2□□□,3□□□,4□□□,5□□□,共13
45A A ·个;
第二类:形如14□□,15□□,共有12
24A A ·个;
第三类:形如134□,135□,共有1123A A ·个;
由分类加法计数原理知,无重复数字且比1325大的四位数共有:
131211
452423270A A A A A A ++=···个.
1122
22()()m n m n C C x C C x =+++++

由题意19m n +=,m n *∈N ,.
2x ∴项的系数为2
2
2(1)(1)191917
2224m
n
m m n n C C m --⨯⎛⎫+=
+=-+ ⎪⎝⎭
. ∵m n *∈N ,,
根据二次函数知识,当9m =或10时,上式有最小值,也就是当9m =,10n =或10m =,9n =时,2x 项的系数取得最小值,最小值为81.
21解:设该工人在2006年一年里所得奖金为X ,则X 是一个离散型随机变量.由于该工人每季度
完成任务与否是等可能的,所以他每季度完成任务的概率等于
1
2
,所以, 0
4
4
111(0)2216
P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,1
3
14111(300)224P X C ⎛⎫⎛⎫=== ⎪ ⎪
⎝⎭⎝⎭, 2224113(750)228P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭
,3134111(1260)224P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,40
44111(1800)2216P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭.
∴其分布列为
22解:设此次摇奖的奖金数额为ξ元, 当摇出的3个小球均标有数字2时,6ξ=;
当摇出的3个小球中有2个标有数字2,1个标有数字5时,9ξ=; 当摇出的3个小球有1个标有数字2,2个标有数字5时,12ξ=。

所以,157)6(31038===C C P ξ 157)9(3
10
1228===C C C P ξ 151)12(3102
218===C C C P ξ 771396(912)15
15
15
5
E ξ=⨯+⨯+⨯=
答:此次摇奖获得奖金数额的数字期望是5
39
元。

相关文档
最新文档