最新标准答案 北京大学春季学期线性代数作业资料
线性代数参考题1-6答案
线性代数参考题一答案:(注:为了大家共同的利益,我做了每一道题,希望你发现有做错处及时告诉我,谢谢,你的朋友冯国晨 gcfeng@ )一. 填空题(每小题3分,满分30分)1.42342311a a a a 与44322311a a a a -;2.b a =;3.)(211E A A -=-;4.可逆阵或满秩阵或非奇异阵;5.特征根为0;6.1-=α;7.)()(T r A r =;8.3R ;9.负定;10.25≠t二. 陈治中版《线性代数》例题1.5.7(p.26)答案:nn bc ad D )(2-=三. 令⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛=130231,3512,343122321C B A 则⎪⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫⎝⎛----=--2115.053,2153,1115.235.123111X BA四. 令),,,(4321αααα=A ,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-----==0000310020101013130631120140121),,,(4321ααααA 因而3)(=A r ,321,,ααα构成一个极大无关组,且321432αααα+-=五. 陈治中版《线性代数》习题4.6(p.121)答案:p.211 六. 将二次型f 化成矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=211121112A ,显然A 为实对称阵,可以正交对角化的,即 由特征方程0||=-E A λ,得01=λ,33,2=λ当01=λ 对应的特征向量为T)1,1,1(1=α,标准化为T)1,1,1(311=η;当33,2=λ 对应的特征向量为T)0,1,1(2-=α和T)1,0,1(3-=α正交化T)0,1,1(22-==αβ,标准化为T)0,1,1(212-=ηT)1,1,0(,,2222333-=⋅><><-=ββββααβ,标准化T)1,1,0(213-=η因而),,(321ηηη=P ,且232233y y f += 七. 令αααααααααααααααβββββL n nn=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⋅⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3213213212113211111111111............由 1||=L 以及n αα,,1 线性无关得n ββ,,1 线性无关。
(完整word版)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C ) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B )k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项。
(A) 0 (B )2-n (C ) )!2(-n (D) )!1(-n4.=0001001001001000( )。
(A ) 0 (B)1- (C) 1 (D) 25. =0001100000100100( ).(A) 0 (B)1- (C ) 1 (D) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B )1- (C) 1 (D) 27。
若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A ) 4 (B) 4- (C) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A)ka (B)ka - (C )a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A )1- (B )2- (C )3- (D )011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( )。
线性代数参考答案(部分)
解:将行列式按第一列展开得
Dn = x (−1)1+1
x 0 0
y x 0
0 y 0
L L L
0 0 x
L L L L L
+ y (−1) n +1
y x 0
0 y 0
L L L
0 0 x
0 0 y
L L L L L
= x n + ( −1) n +1 y n
说明:请注意这种形式的行列式! 2. 含参数行列式的计算
x
yபைடு நூலகம்
0
L
0
0
0 x y L 0 0 Dn = L L L L L L 0 y 0 0 0 0
3
L L
x 0
y x
Generated by Foxit PDF Creator © Foxit Software For evaluation only.
1+ a 1 1 1 a + 10 a + 10 a + 10 a + 10 2 2+a 2 2 2 2+a 2 2 解: D4 = = 3 3 3+ a 3 3 3 3+ a 3 4 4 4 4+a 4 4 4 4+a
= ( a + 10) 1 1 2 2+a 3 4
3
1 2 3+ a 4
1 2 3 4+a
−2 λ +1 −2
2 λ +3
1 1
−2 −2
2 −k λ +3
=
k −4
− k = (λ − 1) 0 λ + 1
= (λ − 1) 0 λ + 1
北大版-线性代数第一章部分课后标准答案详解
北大版-线性代数第一章部分课后答案详解————————————————————————————————作者:————————————————————————————————日期:习题1.2:1 .写出四阶行列式中11121314212223243132333441424344a a a a a a a a a a a a a a a a 含有因子1123a a 的项解:由行列式的定义可知,第三行只能从32a 、34a 中选,第四行只能从42a 、44a 中选,所以所有的组合只有()()13241τ-11233244a a a a 或()()13421τ-11233442a a a a ,即含有因子1123a a 的项为11233244a a a a 和11233442a a a a2. 用行列式的定义证明11121314152122232425313241425152000000000a a a a a a a a a a a a a a a a =0 证明:第五行只有取51a 、52a 整个因式才能有可能不为0,同理,第四行取41a 、42a ,第三行取31a 、32a ,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0.以第五行为参考,含有51a 的因式必含有0,同理,含有52a 的因式也必含有0。
故所有因式都为0.原命题得证.。
3.求下列行列式的值:(1)01000020;0001000n n -L L M M M OM L L(2)00100200100000n n-L L M O M O M L L; 解:(1)010000200001000n n -LLM M M OM LL=()()23411n τ-L 123n ⨯⨯⨯⨯L =()11!n n --(2)00100200100000n n-L LM OM O M L L=()()()()12211n n n τ---L 123n ⨯⨯⨯⨯L =()()()1221!n n n --- 4.设n 阶行列式:A=1111nn nna a a a LM OM L,B=11111212212221212n n nn n n n n nna ab a b a b a a b a b a b a -----L L MMOM L,其中0b ≠,试证明:A=B 。
《线性代数》课后习题答案
《线性代数》课后习题答案第一章行列式习题1.11. 证明:(1)首先证明)3(Q 是数域。
因为)3(Q Q ?,所以)3(Q 中至少含有两个复数。
任给两个复数)3(3,32211Q b a b a ∈++,我们有3)()3()3)(3(3)()()3()3(3)()()3()3(21212121221121212211212122 11b a a b b b a a b a b a b b a a b a b a b b a a b a b a +++=++-+-=+-++++=+++。
因为Q 是数域,所以有理数的和、差、积仍然为有理数,所以)3(3)()3()3)(3()3(3)()()3()3()3(3)()()3()3(2121212122112121221 121212211Q b a a b b b a a b a b a Q b b a a b a b a Q b b a a b a b a ∈+++=++∈-+-=+-+∈+++=+++。
如果0322≠+b a ,则必有22,b a 不同时为零,从而0322≠-b a 。
又因为有理数的和、差、积、商仍为有理数,所以)3(33)(3)3()3)(3()3)(3(332222212122222121222222112211Q b a b a a b b a b b a a b a b a b a b a b a b a ∈--+--=-+-+=++。
综上所述,我们有)3(Q 是数域。
(2)类似可证明)(p Q 是数域,这儿p 是一个素数。
(3)下面证明:若q p ,为互异素数,则)()(q Q p Q ?。
(反证法)如果)()(q Qp Q ?,则q b a p Q b a +=?∈?,,从而有q ab qb a p p 2)()(222++==。
由于上式左端是有理数,而q 是无理数,所以必有02=q ab 。
所以有0=a 或0=b 。
线性代数练习题库及答案
线性代数练习册答案第五章 相似矩阵及二次型51ξ- 内积52ξ- 方阵的特征值与特征向量一.填空题:1.A 是正交矩阵,则A1A =± . 2.已知n 阶方阵A 的特征值为12,,,n λλλ⋅⋅⋅, 则E A λ-= ()()()12n λλλλλλ--⋅⋅⋅- .3.已知3阶方阵A 的特征值为1,1,2-,则232B A A =-的特征值为 1,5,8 ;A = 2- ;A 的对角元之和为 2 .4.若0是A 的特征值,则A 不可逆 (可逆,不可逆).5.A 是n 阶方阵,A d =,则AA *的特征值是 ,,,d d d ⋅⋅⋅(共n 个) . 二.用施密特法把下列向量组规范正交化123111(,,)124139ααα⎛⎫⎪= ⎪ ⎪⎝⎭解:()111,1,1Tβα==[]()()()2122121,61,2,31,1,11,0,13TT Tαββαββ=-=-=- [][]313233122212,,αβαββαββββ=--()()()1481211,4,91,1,11,0,1,,32333TTTT⎛⎫=---=- ⎪⎝⎭故)1111,1,1T b ββ==,)2221,0,1T b ββ==-,)3331,2,1Tb ββ==-.三.求下列矩阵的特征值和特征向量1. 1221A ⎛⎫= ⎪⎝⎭2. 100020012B ⎛⎫⎪= ⎪ ⎪⎝⎭解:1. A 的特征多项式为12(3)(1)21A E λλλλλ--==-+-故A 的特征值为123,1λλ==-.当13λ=时,解方程()30A E x -=.由221132200rA E --⎛⎫⎛⎫-= ⎪ ⎪-⎝⎭⎝⎭:得基础解系111P ⎛⎫= ⎪⎝⎭,故1(0)kPk ≠是对应于13λ=的全部特征向量. 当21λ=-时,解方程()0A E x +=.由22112200r A E ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭:得基础解系211P -⎛⎫= ⎪⎝⎭,故2(0)kP k ≠是对应于21λ=-的全部特征向量.2. B 的特征多项式为2100020(1)(2)012B E λλλλλλ--=-=--- 故B 的特征值为1231,2λλλ===.当11λ=时,解方程()0B E x -=.由000011010010011000r B E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系1100P ⎛⎫⎪= ⎪ ⎪⎝⎭,故1(0)kP k ≠是对应于11λ=的全部特征向量. 当232λλ==时,解方程()20B E x -=.由1001002000000010010r B E -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:得基础解系2001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,故2(0)kP k ≠是对应于232λλ==的全部特征向量.四.证明下列各题1. x 为n 维列向量,且1T x x =,求证:2T H E xx =-是对称的正交阵.2. 设A 、B 为同阶正交阵,证明:AB 也是正交阵. 证明:1. ()()222TTTTT TT T H E xx H E xxE xx H =-⇒=-=-=故H 为对称阵.又()()()224444T T T T T T T T H H E xx E xx E xx x x x x E xx xx E =--=-+=-+=故H 为正交阵.2. 因,A B 为同阶正交阵,故,T T A A E B B E ==. 又()()TT T T T AB AB B A AB B EB B B E ====,故AB 为正交阵.五.A 是n 阶方阵,命题P 为:A 的特征值均不为0.请尽量多的列举与P 等价的命题.(如A 可逆.至少列举3个) 解:等价命题:1P :A 的列(行)向量组线性无关 2P :0A ≠3P :齐次线性方程组0Ax =只有0解 4P :A 的秩为n53ξ- 相似矩阵54ξ- 实对称矩阵的相似矩阵一.填空题:1.若ξ是A 的特征向量,则 1P ξ- 是1P AP -的特征向量.2.若A 与B 相似,则A.3.20000101A x ⎛⎫ ⎪= ⎪ ⎪⎝⎭与20000001B y ⎛⎫ ⎪= ⎪ ⎪-⎝⎭相似,则x = 0 ,y = 1 .4.若λ是A 的k 重特征根,则必有k 个相应于λ的线性无关的特征向量, 不对 (对,不对),若A 是实对称的呢? 对 (对,不对).二.多项选择题(选出全部正确的选项,可能不只一个)1.n 阶方阵A 相似于对角矩阵的充分必要条件是A 有n 个( C ) (A )互不相同的特征值; (B )互不相同的特征向量; (C )线性无关的特征向量; (D )两两正交的特征向量;2.方阵A 与B 相似,则必有( BD )(A )E A E B λλ-=-; (B )A 与B 有相同的特征值; (C )A 与B 有相同的特征向量; (D )A 与B 有相同的秩; 3.A 为n 阶实对称矩阵,则( ACD )(A )属于不同特征值的特征向量必定正交; (B )0A >;(C )A 必定有n 个两两正交的特征向量; (D )A 的特征值均为实数;三.100021012A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,试求一个可逆矩阵P 使得1P AP -为对角阵,并求m A .解:先求A 的特征值和特征向量.2100021(1)(3)012E A λλλλλλ--=-=--- 故A 的所有特征值为1233,1λλλ===.当13λ=时,解方程()30A E x -=.2001003011011011000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:令1011P ⎛⎫⎪= ⎪ ⎪⎝⎭,则1P 即为对应于13λ=的特征向量. 当231λλ==时,解方程()0A E x -=.000000011011011000r A E ⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:令23100,101P P ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于231λλ==的特征向量.显然,123,,P P P 线性无关.令()123010,,101101P P P P ⎛⎫⎪==- ⎪ ⎪⎝⎭,则11110031313102211313022mm m m mm P AP A P P A P P ---⎛⎫ ⎪⎛⎫ ⎪+-+ ⎪⎪Λ==⇒=Λ⇒=Λ= ⎪⎪⎪ ⎪⎝⎭-++ ⎪⎪⎝⎭四.三阶实对称矩阵A 的特征值为0,2,2,又相应于特征值0的特征向量为1111P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,求出相应于2的全部特征向量.解:因为A 为三阶实对称矩阵,故A 有三个线性无关的特征向量,且对应于不同特征值的 特征向量两两正交.已知对应于10λ=的特征向量为1P ,设对应于232λλ==的特征向量为23,P P ,则12130,0T T P P P P ==.即23,P P 为齐次线性方程组10T P x =的两个线性无关的解.由10T P x =得1230x x x ++=.令2310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则11,1x =--.取23111,001P P --⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则23,P P 即为对应于232λλ==的特征向量.令2233k P k P ξ=+(23,k k 不全为零),则ξ为对应于232λλ==的全部特征向量. 五.设3阶方阵A 的特征值为1231,0,1λλλ===-,对应的特征向量分别依次为1231222,2,1212P P P -⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,求A .解:因为123λλλ≠≠,故A 可对角化,且123,,λλλ所对应的特征向量123,,P P P 线性无关.显然()()112312323,,,,A P P P P P P λλλ⎛⎫⎪= ⎪ ⎪⎝⎭,令()123,,P PP P =, 故1112311021001231220A P P P P λλλ---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭.55ξ- 二次型及其标准形56ξ- 用配方法化二次型为标准形57ξ- 正定二次型一.填空题:1. 22(,)22f x y x xy y x =+++是不是二次型?答: 不是 .2. 123121323(,,)422f x x x x x x x x x =-++的秩是 3 ;秩表示标准形中 平方项 的个数.3.21101000A k k ⎛⎫⎪= ⎪ ⎪⎝⎭,A 为正定矩阵,则k 满足 大于1 .二.A 为实对称矩阵,选出全部的A 为正定矩阵的充分必要条件( 12346 ) 1.对任意的列向量0x ≠,0x Ax '> 2.存在可逆方阵C ,使得A C C '= 3.A 的顺序主子式全部大于零 4.A 的主子式全部大于零 5.A 的行列式大于零 6.A 的特征值全部大于零三.212312331001(,,)(,,)300430x f x x x x x x x x ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭1.求二次型123(,,)f x x x 所对应的矩阵A ;2.求正交变换x Py =,将二次型化为标准形.解:1. 2112312331232123001(,,)(,,)300(,,)343043x x f x x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭22212233343x x x x x =+++ 故二次型123(,,)f x x x 所对应的矩阵100032023A ⎛⎫⎪= ⎪ ⎪⎝⎭.2. 问题可转化为求正交矩阵P ,将A 化为对角形.21032(1)(5)023A E λλλλλλ--=-=--- 故A 的特征值为1231,5λλλ===.当121λλ==时,解方程()0A E x -=.000011022000022000r A E ⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭:.令1310,01x x ⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,得20,1x =-.取12100,101ξξ⎛⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,则12,ξξ即为对应于121λλ==的特征向量.显然,12,ξξ正交.将12,ξξ单位化得121212010,0P P ξξξξ⎛⎫ ⎪ ⎪⎛⎫⎪==== ⎪ ⎪⎝⎭⎪ ⎪⎝⎭当35λ=时,解方程()50A E x -=.4001005022011022000rA E -⎛⎫⎛⎫⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭:.令31x =,得1201x x =⎧⎨=⎩.取3011ξ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则3ξ即为对应于35λ=的特征向量.将3ξ单位化得3330P ξξ⎛⎫⎪ ⎪==. 令()123P P P P =,则1115P AP -⎛⎫⎪= ⎪ ⎪⎝⎭.故123(,,)f x x x 的标准形为2221235y y y ++.四.已知A 和B 都为n 阶正定矩阵,求证A B +的特征值全部大于零. 证明:因为,A B 都为n 阶正定矩阵,则对任意n 维列向量0x ≠, 有()0,00T T T x Ax x Bx x A B x >>⇒+>.即A B +是正定矩阵. 故A B +的特征值全部大于零. 五.已知A 为n 阶正定矩阵,求证1A E +>.证明:因为A 为n 阶正定矩阵,则A 的n 个特征值12,,,n λλλ⋅⋅⋅全大于零且存在正交矩阵P ,使得112211n n P AP A P P λλλλλλ--⎛⎫⎛⎫⎪⎪⎪ ⎪=⇒= ⎪ ⎪⋅⋅⋅⋅⋅⋅⎪ ⎪⎝⎭⎝⎭. 由1122111n n A E P P PP P E P λλλλλλ---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪⎪ ⎪+=+=+ ⎪ ⎪ ⎪⋅⋅⋅⋅⋅⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭121111n P P λλλ-+⎛⎫⎪+⎪= ⎪⋅⋅⋅ ⎪+⎝⎭,得()()()121121111111n n A E PP λλλλλλ-+++==++⋅⋅⋅+>⋅⋅⋅+六.求22:1L x xy y ++=围成的面积.解:设二次型()22112(,),112x f x y x xy y x y y ⎛⎫ ⎪⎛⎫=++=⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭. 令112112A ⎛⎫ ⎪=⎪ ⎪ ⎪⎝⎭,则A 是对称矩阵且正定.设12,λλ为A 的特征值,可知存在正交矩阵P ,使得11200T P AP P AP λλ-⎛⎫== ⎪⎝⎭.由0E A λ-=,得1213,22λλ==. 因为正交变换不改变向量的长度,故可用正交变换12z x P z y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,使得1221122T T T T X AX Z P APZ Z P APZ z z λλ-===+,其中12,z x X Z z y ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 综上可知,经过正交变换后,221213(,)22f x y z z =+.故L 的面积即为椭圆: 221213122z z +=的面积.面积S =.第五章 复习题三、计算题1、设3阶对称阵A 的特征值为6,3,3,与特征值6对应的特征向量为()11,1,1Tp =,求A解:因为对称矩阵对应于不同特征值的特征向量是两两正交的,所以求对应于3的特征向量即为求与()1,1,1T正交的特征向量。
线性代数习题及解答完整版
线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数习题册(答案)
线性代数习题册答案第一章 行列式 练习 一班级 学号 姓名1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ(3421)= 5 ; (2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n (n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i= 8 、j= 3 .3.在四阶行列式中,项12233441a a a a 的符号为 负 .4.00342215= -24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5 或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ) = -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式:(1)111ab c a b c abc +++ = 13233110110011,0110111111r r r r c c a b c b ca b ca b c-----+-==++++++(2)xy x y y x y x x yxy+++(3)130602121476----(4)1214012110130131-5.计算下列n 阶行列式:(1)n x a aa x a D a a x=(每行都加到第一行,并提公因式。
)(2)131111n +(3)123123123n n n a ba a a a ab a a a a a a b+++练习 三班级 学号 姓名1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。
线性代数课后习题答案全)习题详解
线性代数课后习题答案全)习题详解前言因能力有限,资源有限,现粗略整理了《工程数学线性代数》课后习题,希望对您的了解和学习线性代数有参考价值。
第一章行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---;(2)b a c a c b c b a ; (3)222111c b a c b a ;(4)y x y x x y x yyx y x +++. 解(1)=---381141102811)1()1(03)4(2??+-?-?+?-?)1()4(18)1(2310-?-?-?-?-??-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;(2)4 1 3 2;(3)3 4 2 1;(4)2 4 1 3;(5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2.解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)7110025*********4;(2)-265232112131412;(3)---ef cf bf de cd bd ae ac ab ;(4)---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-?---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=1 11111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(3 3+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-?;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22) 1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(+++++++++++++++ +=d d d d d c c c c c b b b b b a a a a a 左边964412964412964412964412241312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+dd d c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)11))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =?---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =?-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) n nn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 000100000000 00001000 =按最后一行展开)1()1(1000000000010000)1(-?-+-n n n aa a)1)(1(2)1(--?-+n n n a a a(再按第一行展开)n n n nn a a a+-?-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-?-?-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即∏=-=ni i i iin D c b d22)(而 111111112c b d a d c b a D -==得∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0 432111111111111111111111 --------------n n n n ,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n (6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------100 00100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------000 00000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=--- )11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x=+=++=++=++=+.15,065,065,065,165)2(545434323212 1x x x x x x x x x x x x x上一页下一页。
数值线性代数 北大版 答案全
数值线性代数习题解答习题11.求下三角阵的逆矩阵的详细算法。
[解] 设下三角矩阵L的逆矩阵为T我们可以使用待定法,求出矩阵T的各列向量。
为此我们将T按列分块如下:注意到我们只需运用算法1·1·1,逐一求解方程便可求得[注意]考虑到内存空间的节省,我们可以置结果矩阵T的初始状态为单位矩阵。
这样,我们便得到如下具体的算法:算法(求解下三角矩阵L的逆矩阵T,前代法)2.设为两个上三角矩阵,而且线性方程组是非奇异的,试给出一种运算量为的算法,求解该方程组。
[解]因,故为求解线性方程组,可先求得上三角矩阵T的逆矩阵,依照上题的思想我们很容易得到计算的算法。
于是对该问题我们有如下解题的步骤:(1)计算上三角矩阵T的逆矩阵,算法如下:算法1(求解上三角矩阵的逆矩阵,回代法。
该算法的的运算量为)(2)计算上三角矩阵。
运算量大约为.(3)用回代法求解方程组:.运算量为;(4)用回代法求解方程组:运算量为。
算法总运算量大约为:3.证明:如果是一个Gauss变换,则也是一个Gauss变换。
[解]按Gauss变换矩阵的定义,易知矩阵是Gauss变换。
下面我们只需证明它是Gauss变换的逆矩阵。
事实上注意到,则显然有从而有4.确定一个Gauss变换L,使[解] 比较比较向量和可以发现Gauss变换L应具有功能:使向量的第二行加上第一行的2倍;使向量的第三行加上第一行的2倍。
于是Gauss变换如下5.证明:如果有三角分解,并且是非奇异的,那么定理1·1·2中的L和U都是唯一的。
[证明]设,其中都是单位下三角阵,都是上三角阵。
因为A非奇异的,于是注意到,单位下三角阵的逆仍是单位下三角阵,两个单位下三角阵的乘积仍是单位下三角阵;上三角阵的逆仍是上三角阵,两个上三角阵的乘积仍是上三角阵。
因此,上述等将是一个单位下三角阵与一个上三角阵相等,故此,它们都必是单位矩阵。
即,从而即A的LU分解是唯一的。
北大版-线性代数部分课后答案详解
2•用行列式的泄义证明习题1.2:如如如如1 •写岀四阶行列式中幻I'2勺3"24含有因子的项“3】a 32 a 33a 34«41勺 2«43仙解:由行列式的泄义可知,第三行只能从@2、中选,第四行只能从厲2、中选,所 以所有的组合只有(-l )f (,324)如给角2知或(-1)"网 a H a 23a 34a 42,即含有因子勺]“23的项为一如吹32% 和 a H a 23a 34a 42证明:第五行只有取他「山2整个因式才能有可能不为°,同理,第四行取“42,第三 行取①I 、©2,由于每一列只能取一个,则在第三第四第五行中,必有一行只能取0 •以第 五行为参考,含有的因式必含有0,同理,含有的因式也必含有0“故所有因式都为0 •原命题得证・。
3 •求下列行列式的值:0 1 0♦ • ♦0 •… 0 1 00 02 ♦ • 00 ... 2 0 0(1)■ ■ ■ ■■ ;(2)• • ■ • • •0 00 • • ”一〃 一 1 0 0 0n 0 0 • •• 00 …0 H0 1 0 ♦ • • 00 2• • • 0解:(1) ■ ■ ■■ ■ ■ ■■ ■/lX r(234...nl)=("1)Ix2x3x--•xn =(-1)*"1 n\0 0 ・•・//-In 0 0 • • • 0a 2l0 01 0 0 ■ …2 • •0 ■ 0 ■■ ”一• • …0 • 0 ■0 0 00 n=(-1)侶心5)» B= 如■ •“22 ■■f 1-n…5少…如尸■5肝・・・a nn证明:A=BoE (T 严•”%叫2…%沪Wi"叫z (T 严%%…讣A 叩2・・%和巾 时2 ••叭和巾命题得证。
5•证明:如下2007阶行列式不等于61 2 …2006 200722 32 …20072 2OO82 D=33 • 43 • …20083 • • 20083■• ■■ •• • • •■ ■证明:最后一行元素,除去2007*”是奇数以外,其余都是偶数,故含2008^7的因式也都 是偶数。
线性代数(含全部课后题详细答案)1第一章一元多项式习题及解答.docx
A 组1.判别Q (厉)二{0 +勿亦|0,处0}是否为数域?解是.2.设/(x) = x3 4-x2 4-x+l, g(兀)=兀2+3兀+ 2,求 /(兀)+ g(x),/(x)-g(x), f(x)g(x). 解/(x) + g (x) = x3 4- 2x2 + 4x + 3 ,/(兀)-g(x)"-2x-l,f(x)g(x) = x5 +4x4 +6兀'+6兀$ +5x + 2 .3.设/(%) = (5x-4),993(4x2 -2x-l),994 (8x3 -1 lx+2)'995,求 /(%)的展开式中各项系数的和.解由于/(兀)的各项系数的和等于/⑴,所以/(I) = (5-4严3(4-2- 1尸94(8-11 + 2)1995 =-1.4.求g(兀)除以/(兀)的商q(x)与余式心).(1)f (x) —— 3%2— x — 1, g(兀)=3F - 2兀+1 ;(2)/(x) = x4 -2x4-5, g(x) = x2 -x + 2 .解(1)用多项式除法得到x 73x~ — 2x +13_93X + 3—x —x-i3 37 ° 14 7-- 无_+ —x --3 9 926 2-- X ---9 9所以'恥)十岭心)W(2)用多项式除法得到x4— 2x + 5兀4 —”丫" + 2 兀2— 2x~ — 2 兀+5 jy?—兀~ + 2 兀-x2-4x4-5-兀? + X - 2—5x + 7所以,q(x) = x2 +x-l, r(x) = -5x + 7 .5.设是两个不相等的常数,证明多项式/(兀)除以(x-a)(x-b)所得余式为af(b)_bg)a-b a-h证明依题意可设/(x) = (x - a)(x - b)q(x) + cx+d,则”(a) = ca + d,[f(b) = cb + d.解得F=(/a) --,\d = (af(b)-bf(a))/(a-b).故所得余式为a-b a-b6.问m,p,q适合什么条件时,/(兀)能被g(x)整除?(1) /(x) = x3 + px + q , g(x) = x2 + nvc-1;(2) f(x) = x4 + px2 +q , g(兀)=x2 + mx+l.解(1)由整除的定义知,要求余式r(x) = 0 .所以先做多项式除法,3x2 + mx -1x-in“+ “X + q3 2x + mx^ - x-mx1 +(〃 + l)x + g2 2一 mx_ — m^x + m°(# +1 + 加〜)兀 + (g —m)要求厂(x) = (/? + l +加2)兀+ (§ —加)=0 ,所以(“ + 1 +加2) = 0, q-m = 0.即p = -l-m2, q - m时, 可以整除.(2)方法同上.先做多项式除法,所得余式为厂(兀)=加(2 — ”一nr )兀+ (1 + @ —卩一加〜),所以 m (2-p-/772) = 0, 1 + ^ - p - m 2= 0 ,即 m = 0, p = q + \ 或“二 2— 加[q = l 时,可以整除.7. 求/(兀)与gCr )的最大公因式:(1) f (x) — x 4 + — 3%2 — 4x — 1, g (x)=兀彳 + — x — 1 ; (2) f(x) = x 4— 4x 3+ 1, g(x) = x 3— 3x 2+1 ;(3) /(x) = x 4 -10x 2 +1, g(x) = x 4 -4A /2X 3 +6X 2 +4A /2X +1 .解(1)用辗转相除法得到用等式写出來,就是所以(/(x),g(x)) = x + l ・(2)同样地,<8 4 / 3 3= -X + — — -X-—(3 344-2x 2-3x-l1 1 --- X 4——2 -- 4 X 3+ X 2- X - 1 x 4 + x 3- 3x 2- 4x- 11 2 3 , -2x 2 — 3兀—12 21 2 3 1 -- X ----- X ---—2兀~ — 2兀2 4 433-- X ----X -144一丄 184—X H - 3 3 0心宀丄兀2 24 3 2牙+牙-X - Xf(x) = xg(x)^(-2x 2-3x-l),g(x) =所以(/⑴,g (兀)) = 1.⑶ 同样用辗转相除法,可得(/(x),g(x)) = F —2血兀一1.8.求 w(x),仄兀)使 w(x) f\x) + v(x)g(ji) = (/(x), g(%)):(1) f (x) = %4 4- 2x^ — %2 — 4x — 2, (x) = %4 + x — x~ — 2x — 2 : (2) /(x) = 4x 4-2x 3-16x 2+5x4-9, g(x) = 2兀3-x 2-5x+4:(3) /(x) = x A-x 3-4x 2 +4x + l, g (兀)=x 2 -x-l.解(1)利用辗转相除法,可以得到/(x) = g (A :) + (x 3-2x)'g (兀)=(x+l)(x 3 - 2x) + (x 2 -2),x — 2兀=x(^x~ — 2).因而,(/(x),g(x)) = x 2-2,并且(/(兀),g (兀))=/ 一 2 = g (兀)_ (兀+1)(疋 _ 2兀) =g (兀)一(X +1) (f(x) -g (兀))=(一兀 一 1)/(兀)+ (兀+2)g(x),所以 u(x) = -x-\, v(x) = x + 21 10 -- X H --- 3 9x 3 - 3x 2x-13 1 2 2X H —X X 3 3 10 2 2~~'- ---- X H 兀+ 13 -- 3 10 ° 10 20 X --- 兀 3 9 916~~1T —X ------ 9 927 441 --------- X ---------------16 256-3x 2+—x1649一一539 兀+ --- 27 256(2)利用辗转相除法,可以得到/(x) = 2xg(x)-(6x 2 +3兀-9),(\ 1Ag(x) = —(6x_ + 3兀一9) ——% + — — (% — 1), —(6x - + 3x — 9) = —(x —1)(6% + 9).因而,(/⑴,g(Q) = x-1,并且(1 1 …厶— —X + _ f (x) + _兀_—x~\ I 3 3丿 (3 3丿] 1 2 7 2fi/f 以 W (X )= X H —, V (X )= — --- X — \ •3 3 3 3(3) 利用辗转相除法,可以得到fM = X —3)g(x) + (x — 2),g(x) = (x+l)(x-2) + l ・因而( f(x), g(x)) = 1 ,并且(/(兀),g(x)) = 1 = g(x) - (x+1)(兀一 2)=g (兀)-(兀+1)(/(兀)-(x 2 一3)gCr))—(—兀―1) f (x) + (兀'+ 兀2 — 3兀—2)g(x),所以u (兀)= -x-l, v(x) = x 3 +x 2 -3x-2.9.设/(x) = %3+ (14-t)x 2+ 2x + 2w, g(x)二F+zx + u 的最大公因式是一个二次多项式,求/,凤的值.解利用辗转相除法,可以得到/(%) = g(x) + (l + /)兀2 +(2-/)兀 + « ,(/(x), g(x)) = x-l = -(6x 2+ 3x-9)+ | _g(x)I d J J(I ] \= (/(x)-2xg(x)) --x+- -g(x)\ 3丿 <2 o 2 d ,、 U 3 广—---- 兀+ (1 + r t-2(l +r)2(尸 + r—w)(i+r) + (t— 2)~u[(l + t)2 — (r —2)]由题意,/(x)与g(Q的最大公因式是一个二次多项式,所以(广 + / —w)(l + /) + (f— 2)~(T H?皿(l + r)2-(r-2)] A ;=0,(l + O2解得u = o^t = -4.10.设(x —I)[(A/+ B F+I),求A和B.由题意要求知解用(兀一1)2 去除f\x) = Ar4 + Bx2 +1 ,得余式”(x) = (4A + 2B)兀+1 -3人一B,斤(兀)=0,即4A + 2B = 0,1-3A-B = O,解得A = l,B = -2.11.证明:如果(/(x),g(x)) = l, (/(x),/z(x)) = l,那么(/(x), g(x)/z(x)) = l. 证明由条件可知,存在络(兀)和片⑴ 使得旳(兀)/(兀)+岭⑴g(x) = l,存在如(兀)和卩2(兀)使得u2(x)f(x) + v2(x)h(x) = 1.用/?(兀)乘以第一式得坷(x)f(x)h(x) + V, (x)g(x)h(x) = h(x),代入第二式得u2(x)f(x) + v2 (x) [u t (x)f(x)h(x) 4-Vj (x)g(x)/z(x)] = 1, 即[w2(兀)+ u\ (x)v2(x)h(x)]f(x) + [v, (x)v2(x)]g(x)h(x) = 1,所以(/(x),g(x)/z(x)) = l.12.证明:如果/(x)与g(x)不全为零,且/心)/(兀)+ 咻)g(兀)=(/(%), g(Q),证明由于w(x)/(x) + v(x)g(x) = (/(x),g(x)), /(X )与 g(x)不全为零,所以(/(x),g(x))HO.两 边同时除以(/(Hg(Q)HO,有所以(弘(兀),咻)) = 1 .13.证明:如果〃(兀)|/(兀),〃(兀)|g(x),且〃(兀)为/(兀)与g(x)的一个组合,那么〃(兀)是/G)与 g(x)的一个最大公因式.证明由题意知d(x)是/(X )与g(x)的公因式.再由条件设d(x) = w(x)/(x) + v(x)^(x) •又设h(x) 为/(x)与g(x)的任一公因式,即/z(x)|/(x), h(x)\g(x),则由上式有h(x)\d(x).故而”(兀)是/(兀)与 g(x)的一个最大公因式.14.证明:(.fO)/2(X ), gO)/2(X )) = (.f(X ), g(x))〃(x),其中力(兀)的首项系数为 1.证明显然(/(x), g(x))/?(x)是f{x)h{x)与g(x)h(x)的一个公因式.下面來证明它是最大公因式. 设 /心),v(x)满足 w(x)/(x) + v(x)g(x) = (/(x), g(X>),贝iJu(x)f(x)h(x) + v(x)g(x)h(x) = (/(x),g(x))/z(x).由上题结果知,(/(兀),g(X ))/7(X )是/(X )/?(X )与g(JC”7(X )的一个最大公因式,又首项系数为1,所以(/(x)A(x), ^(%)/?(%)) = (/(x), ^(x))/i(x)・/⑴ g (兀)、(/(兀),g (兀))’(f(x),g(x))丿证明设〃(兀)=(/(兀),g(x)),则存在多项式M (x), v(x),使d(x) = u(x)f(x) + v(x)g(x)・因为/(X )与g (尢)不全为零,所以d(x)HO.上式两边同时除以〃(兀),有故 /(兀) _____________ g (x)l (/(x),g(x))‘(/(x),g(x))‘u(x) /(X ) (/(%), g(x)) + v(x) g(x) (y (x ),^(x ))15.设多项式/(x)与gS)不全为零,证明1 = u(x)/(兀)(/(兀),g(x))+咻)g(x) (/(兀),g(x))=1成立.16. 分别在复数域、实数域和有理数域上分解兀4+ 1为不可约因式之积.在有理数域上兀°+1是不可约多项式.否则,若+ +1可约,有以下两种可能.(1) 兀4+1有一次因式,从而它有有理根,但/(±1)工0,所以卍+1无有理根.(2) x 4+ 1 无一次因式,设x 4+1 = (x 2+处 +方)(F +cx + d),其中 a,b y c,cl 为整数.于是a + c = O, b+ 〃 + ac = O, cut + be = 0 , bd = \,又分两种情况:① b = d = \,又 a = —c,从而由 b + 〃 + ac = O,得 a 2=2,矛盾; ② b = d = — \,则 a 2= —2 ,矛盾.综合以上情况,即证.17. 求下列多项式的有理根: (1) /(x) = x 3-6x 2+15兀一 14 ;(2) ^(X ) = 4X 4-7X 2-5X -1;(3) /z(x) = x 5+ %4— 6x^ — 14x~ — 1 lx — 3 ・解(1)由于/(x)是首项系数为1的整系数多项式,所以有理根必为整数根,且为-14的因数.-14的 因数有:±1, ±2, ±7, ±14,计算得到:/(D = -4, /(-1) = -36, /(2) = 0, /(-2) = -72,/(7) = 140, /(-7) = -756, /(14) = 1764, /(一 14) = —4144,故x = 2是/(兀)的有理根.再由多项式除法可知,x = 2是于(兀)的单根.⑵ 类似(1)的讨论可知,g(x)的可能的有理根为:故x = --是巩兀)的有理根.再由多项式除法可知,兀二-丄是/(劝的2重根.2 2⑶ 类似地,加兀)的可能的有理根为:±1,±3,计算得到解在实数域上的分解式为X4+ 1 = (X 2 + 1)2-2X 2 =(X 2+V2X + 1)(X 2-V2X +1).在复数域上的分解式为x + ----------1 2 2%4+ 1 = f亠迈亠近、X ---------- 12 2/±1, ±1 ±?计算得到g(l) = -9,g(-1) = 1, g(]、r 、171=-5, g —=0, g — 一 —‘ g —〔2< 264 ,4丿11A(l) = -28, /?(-l) = 0,(3) = 0,加一3) = -96.故x = -l, x = 3是//(兀)的有理根.再由多项式除法可知,x = -\是/z(x)的4重根,兀=3是//(兀)的单根.18.若实系数方程x34- px + q = 0有一根a + bi (a,b为实数,/?工0),则方程x3 + px-q = 0有实根2—证明设原方程有三个根不失一般性,令=a + bi,从而有a2 =a-bi,由根与系数的关系可知0 = $ + 冬 + 他=(° + 勿)+ (a - bi) + ,所以冬二-2d,即(-2a)‘ + /?(-2a) + g = 0,故(2a)' + p(2a)-q = 0.这说明x3 + /zr-g = 0有实根2a .19.证明:如果(%-i)|/(r),那么证明因为u-i)|/(z),所以/(r)= /(i)= 0.因此,令y(x)=(x-i)g(x),则有E =(*-i)g(;),即(伙-1)|/(疋).20.下列多项式在有理数域上是否可约?(1)土 (%) = F+1;(2)/;(X)= X4-8?+12X2+2;(3)人(x) = x" +『+1 ;(4)厶(无)=* + "; + 1,门为奇素数;(5)厶(兀)=兀°+4尬+ 1, A为整数.解(1) ./;(兀)的可能的有理根为:±1,而/(±1) = 2,所以它在有理数域上不可约.(2)由Eisenstein判别法,取素数p = 2,则2不能整除1,而2|(-8), 2|12, 2|2,但是2?不能整除2,所以该多项式在有理数域上不可约.(3)令x=y + l,代入厶(x) = P+x'+l有^(y) = ^(y + l) = / + 6/+15/+21/+18y24-9y4-3.取素数0 = 3,由Eisenstein判别法知,g(y)在有理数域上不可约,所以/(兀)在有理数域上不可约.(4)令兀= y_l,代入f4(x) = x p 4-px + 1,得g(y)=厶(y j) = -+ cy~2——C;-2y2 + (Cf* + p)y-p,取素数p,由Eisenstein判别法知,g(y)在有理数域上不可约,所以£(兀)在有理数域上不可约.(5)令x=y + l,代入农(兀)=兀4+4Ax+l,得g(.y)=厶(y +1) = y" + 4y‘ + 6y2 + (4k + 4)y + 4R + 2 ,収素数p = 2,由Eisenstein判别法知,g(y)在有理数域上不可约,所以点(兀)在有理数域上不可约.1•设/(X),g(X),加兀)是实数域上的多项式,(1)若/2U) = xg2(x) + x/z2(x),则/(x) = g(x) = h{x) = 0 .(2)在复数域上,上述命题是否成立?证明(1)当g(兀)=/2(兀)=0时,有严⑴=0,所以/(%) = 0 ,命题成立.如果g(x), /z(x)不全为零,不妨设g(x)H0・当h(x) = 0时,a(xg2(x) + x/i2U)) = l + 2a^(x)为奇数;当加兀)工0时,因为g(x),瓜兀)都是实系数多项式,所以Xg2(x)与兀胪(兀)都是首项系数为正实数的奇次多项式,于是也有d(xg2(x) + x/『(x))为奇数.而这时均有/2(x)^0 ,且df\x) = 2df(x)为偶数,矛盾.因此有g(兀)=力(兀) = 0,从而有f(x) = 0 .(2)在复数域上,上述命题不成立.例如,设f(x) = 0 , g(x) = x\ h(x) = ix,1,其中斤为自然数, 有/2 (x) = xg2 (x)xh2 (x),但g(x) / 0 ,力(兀)工0.2.设/(x), g(x)9 h(x)e P[x],满足(x2 4-l)h(x)4-(x-l)/(x) + (x+2)g(x) = 0,(x2 + l)/?(x) + (x+ l)/(x) + (x - 2)^(%) = 0.证明(X2+1)|(/U), g(X))・证明两式相加得到2(x2 + l)h(x) + 2x(/(x) + g(兀))=0.由(x2+l,兀)=1可知(x2 + l)|(/(x) + g(x)).两式相减得到-2f(x) + 4g(x) = 0, f(x) = 2g(x).故(x2 + l)|/(x), (x2+l)|g(x), BP(X2+1)|(/(X),g(x)).3・设gi(x)g2(x)\f{(x)f2(x),证明(1)若/(x)|g](x),/(X)H0,则g2(x)\f2(x);(2)若g2(x)|/;(x)/;(x),是否有g2(x)\f2(x)?解(1)因为gi(兀)g2(兀)庞(兀)£(兀),/O)|gi(X),故存在多项式h(x), h}(x)使得fl(x)f 2(x) = g](x)g 2(x)h(x\ g](兀)=Z (x)h }(x).于是/;(兀)£(兀)=/(兀)人(兀)g2(x)力(兀)•由于 土(兀)工0,故有 f 2(x) = h l (x)g 2(x)h(x),即g 2(x)\f 2(x).(2)否•例如取 g {(x) = x-2 , ^2(X ) = X 2-1 , (x) = (x-l)(x-2), (x) = (x + l)(x4-2).虽 然 gSx)g 2(x)\f^x)f 2(x)且 g 2(x)\f {(x)f 2(x),但 g 2(x)不能整除 f 2(x).4.当R 为何值时,/(x) = X 2 +伙+ 6)x + 4k + 2和g(x) = F+(£ + 2)x + 2R 的最大公因式是一次 的?并求出此吋的最大公因式.解 显然 g(x) = (x + £)(x+2).当(/(x),g(Q) = x + 2时'/(一2) = 4 — 2伙+ 6) + 4£ + 2 = 0‘ 则k = 3.当(于(兀),g(Q )=兀 + £ 时’/(一灯=k 2 - k(k + 6) + 4Z: + 2 = 0 ‘ 则 k = l.这时(/(x), g(x))=兀+1. 5.证明:对于任意正整数斤,都有(/(x),g(Q)"=(/"(x),g"(x))・证明 由题意可知/(%)与&(兀)不全为零.令(/(x), g(x)) = d(x),Z 、” g(x) 、d(x)丿/心)/"(兀)+ 咚)g"(兀)=d\x).又由 d(x)\f(x), d(x)|g(x),有 d n (x) f l \x), d"(x) g"(x),因此 d"(x)是厂(x)与 g"(x)的首项系数为1的最大公因式,从而有(广(x),g"(x))= 〃"(兀)=(/(x),g(x))" •6.设 / (x) = af(x) + bg(x), g[ (x) = c/(x) + dg(x),且 ad - be H 0 ,证明(/(x),g(x)) = (/](x), g](X ))・证明设(/(x), g(x)) = d(x),则 d(x)\f(x\d(x)\g(x).由于 “所以对任意正整如,有爲J 寫〕"卜 于是有u{x) +咻) 则〃(兀)工0,从而fi (兀)=妙(x) + bg(x) , g] (x) = (x) + dg (x),故d (x)| (x), d (x)|g t (x).又设h(x)\ (x), /z(x)|(x),由上式及ad-bc^O ,可得从而/?(x)|/(x), h(x)\g(x),于是h(x)\d(x),即〃(兀)也是/;(兀)和g|(x)的最大公因式,即(/(x), g(x)) = (/;(x),&(兀))・7.设 /(x) = t/(x)/(x), g(Q 二 dCr)g](x),且/O)与 gd)不全为零,证明〃(兀)是/O)与 gCO的一个最大公因式的充分必要条件是(/(劝,g|(x)) = 1.证明必要性.若〃(x)是/(兀)与g (兀)的一个最大公因式,则存在多项式w(x),v(x)使W (x)/(x) +v(x)g(x) = d(x),于是u(x)d(x)f t (x) + v(x)d(x)g l (x) = d(x).由/(力与g (兀)不全为零知如工0,因此有u(x)f l (x) + v(x)g l (x) = l f 即(土(兀),g©))i •充分性.若(f l (x),g l (x)) = l ,则存在多项式u(x),v(x),使 u(x)f l (x)+ v(x)g l (x) = l. 两边同吋乘〃(兀)有u(x)f(x) + v(x)g(x) = d(x)・由d(x)是/(x)与g(x)的一个公因式知,d(x)是f(x)与g(x)的一个最大公因式.8.设于(兀)和g(x)是两个多项式,证明(f(x), g(x)) = l 当且仅当(f(x)-l-g(x), f(x)g(x)) = l. 证明 必要性.设(f(x)9g(x)) = l,若f(x) + g(x)与/⑴g(x)不互素,则有不可约公因式p(x), 使p(x)lf(x)g(x)f所以 p(x)| /(X )或 0(x)|g(x).不妨设 p(x)\ /(x),由 P (x)|(/(x) + g (兀))可知 p(x)|g(x),因此 P (兀)是 /(兀)和g“)的公因式,与/(%), g (x)互素矛盾,故 蚀+g (兀)与蚀g (兀)互素.充分性.设(/(兀)+ gO) J(x)g (兀)) = 1,则存在w(x), v(x)使(/(兀)+ g (兀))心)+ /(x)g(x)v(x) = 1 , f(x)u(x) + g (兀)(臥兀)+d ad-be zw- h ad 一gi (兀), g(x) -c ad -be a ad -be g](x),/(x)v(x)) = 1, 上式说明(/(兀),g(兀)) = 1.9.如果(x2 +x + l)|/j(x3) + x/^(x3),那么(x-l)|/;(x), 0 — 1)|/;(兀)・T;®所以,^3=£23 = 1.证明X2+X + l的两个根为£\= 士护和£2=因为U2+x+l)|(/;(^3) + x/;(^3)),所以(兀一£|)(x - £2)|/;(X')+/(F),故有y 窗)+ £/(郃)=0,[爪哥)+ £2£(哥)=0,即解得/(l) = /;(l) = o,从而(兀—1)|久(兀),(x-1)|/;(%).10.若f(x)\f(x H),则/(x)的根只能是零或单位根.证明因为f(x)\f(x n),故存在多项式g(x),使/(x n) = /(x)^(x).设。
线性代数北邮版课后习题答案习题2
习题 二 (A 类)1. 1. 设A =121221211234⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦,B =432121210101⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦, (1) 计算3A -B ,2A +3B ;(2) 若X 满足A +X =B ,求X ;(3) 若Y 满足(2A -Y )+2(B -Y )=0,求Y .解:(1)3A -B =3636636333912⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-432121210101⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦=1315828237913-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
2A +3B =242442422468⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦+1296363630303⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦=14138725252165⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦。
(2)因A +X =B ,则X =B -A ,即X =432121210101⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦-121221211234⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=311140401335-⎡⎤⎢⎥--⎢⎥⎢⎥----⎣⎦。
(3)因为(2A -Y )+2(B -Y )=0,所以3Y =2A +2B ,即Y =23(A +B )=23(432121210101⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦+121221211234⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦)=55332020231133⎡⎤⎢⎥⋅⎢⎥⎢⎥⎣⎦=10102233440033222233⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦。
2. 计算下列矩阵的乘积.(1)[]11321023⎡⎤⎢⎥-⎢⎥-⎢⎥⎢⎥⎣⎦=; (2)500103120213⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦;(3) []32123410⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦; (4)()111213112321222323132333a a a x x x x a a a x a a a x ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (5) 111213212223313233100011001a a a a a a a a a ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦; (6) 12101031010101210021002300030003⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎣⎦⎣⎦. 【解】(1) 32103210;64209630-⎡⎤⎢⎥--⎢⎥⎢⎥-⎢⎥-⎣⎦(2)531⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦; (3) (10);(4)3322211122233312211213311323322311()()()ij i j i j a x a x a x a a x x a a x x a a x x a x x ==++++++++=∑∑(5)111212132122222331323233a a a a a a a a a a a a +⎡⎤⎢⎥+⎢⎥⎢⎥+⎣⎦; (6) 1252012400430009⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥-⎣⎦. 3. 设111111111⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦A ,121131214⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦B , 求(1)2-AB A ;(2) -AB BA ;(3) 22()()-=-A+B A B A B 吗?【解】(1) 2422;400024⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦AB A (2) 440;531311⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦AB BA(3) 由于AB ≠BA ,故(A +B )(AB )≠A 2B 2.4. 举例说明下列命题是错误的.(1) 若2=A O , 则=A O ; (2) 若2=A A , 则=A O 或=A E ;(3) 若AX =AY ,≠A O , 则X =Y . 【解】(1) 以三阶矩阵为例,取2001,000000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦0A A ,但A ≠0(2) 令110000001-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A ,则A 2=A ,但A ≠0且A ≠E(3) 令11021,=,0111210110⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=≠=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦A Y X 0则AX =AY ,但X ≠Y .5. 计算:(1)3010001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦;(2)cos sin sin cos kθθθθ⎡⎤⎢⎥-⎣⎦(k 为正整数); (3)101kλ⎡⎤⎢⎥⎣⎦(k 为正整数). 解:(1)3010001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=010001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦010001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦010001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=001000000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦010001000⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦ =33000000000⨯⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦O 。
(完整版)线性代数习题集带答案
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
北京大学《线性代数》六套试卷与答案
线性代数参考题一一. 填空题(每小题3分,满分30分)1. 写出4阶行列式44434241343332312423222114131211a a a a a a a a a a a a a a a a 中含因子2311a a 的项为_________。
2. 行列式01112222=+b b a a b ab a 的充分必要条件为___________。
3. 设A 为方阵,满足022=--E A A ,则=-1A _________。
4. C B A ,,同阶方阵,0≠A ,若AC AB =,必有C B =,则A 应为_______矩阵。
5. 设A 为n 阶方阵,0=Ax 有非零解,则A 必有一个特征值为_________。
6. 设⎪⎪⎪⎭⎫⎝⎛=122212221A 相似于对角阵⎪⎪⎪⎭⎫⎝⎛-α51,则=α_________。
7. 设向量组r A αα,,:1 是向量组T 的一个最大无关组,则A 与T 间关系为___________。
8. 由()()()0,1,1,1,0,1,1,1,0321===ααα所生成的线性空间为_________。
9. 二次型xz xy z y x f 44465222++---=的正定性为________。
10.若⎪⎪⎪⎭⎫⎝⎛=t A 31322101,且()3=A R ,则=t _________。
二. (8分)计算2n 阶行列式d cdc dc b a ba ba D n 0002=三. (8分)解矩阵方程⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛1302313512343122321X求?=X四. (10分)设向量组A:()()()()3,6,2,0,1,3,0,1,3,1,1,2,0,1,4,14321-=--=--==αααα求向量组A 的秩及一个最大无关组. 五. 12分)讨论方程组的解的情况⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x六. (16分)求正交变换PY X =,将二次型323121232221222222x x x x x x x x x f ---++=化为标准形,并写出其标准形.七. (8分)设n n ααβααβαβ++=+== 121211,,,且n αα,,1 线性无关, 证明:n ββ,,1 线性无关.八. (8分)A 为n 阶方阵,且A 与())1,,2,1(1-=-+n i iE A i均不可逆.则A 可否对角化?线性代数参考题二一、 填空题(每小题3分,满分30分) 1. 设B A ,都是5阶矩阵,且2,31=-=-B A ,则=A B2. 已知0222=++I A A ,则=+-1)(I A (其中I 是n 阶单位阵)3. ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=12241031x A 设,已知矩阵A 的秩r(A)=2,则=x4.()814370122222632144-==⨯ija A 设,又ij A 是ij a 的代数余子式,则=+++44434241A A A A5.若一向量组只有唯一的极大无关组,则该向量组6.设3221232221321222),,(x tx x x x x x x x x f ++++=是正定二次型, 则t 的取值区间为7.设A 是n 阶正交矩阵,1-=A ,则()=*TA8.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=20002121x A 相似于对角阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--211,则=x9.设非齐次线性方程组b AX =的两个解为)(,,2121ξξξξ≠A 的秩为1-n ,则 b AX =的一般解=ξ .10.已知向量组[][][]1,4,2,1,0,,0,2,1,1,2,1321--==-=αααt 的秩为2,则=t 二.(8分)计算n 阶行列式ba a a ab a a a a b a D n n n n ---=212121三.(8分)求矩阵X 满足⎥⎦⎤⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎦⎤⎢⎣⎡1041120112201117241X 四.(10分)设[][][][]10,2,1,2,4,1,5,1,3,6,3,11,5,5,10,2,3,2,1,24321-==-=-=αααα求向量组的秩及其一个极大无关组. 五. (12分)问常数b a ,各取何值时, 方程组()()⎪⎪⎩⎪⎪⎨⎧=+++++=++++=+-=+++,5853,34232,12,1432143214324321x a x x x b x x a x x x x x x x x x 无解,有唯一解,或有无穷多解,并在有无穷多解时写出其一般解. 六. (16分)求正交变换PY X =,将二次型()323121232221321222222,,x x x x x x x x x x x x f ---++=化为标准形,并写出其标准形.七. (8分)设向量432,,,1αααα线性无关,且43214432134321243211,,,ββββαββββαββββαββββα+---=-+--=--+-=---=证明向量组4321,,,ββββ线性无关.八. (8分)A 为n 阶方阵,且A 与())1,,2,1(1-=-+n i iI A i均不可逆。
线性代数习题参考答案
线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。
(2) i = ,j = 时,排列1274i56j9为偶排列。
(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。
若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。
(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。
2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。
(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。
3.证明:在全部n 元排列中,奇排列数与偶排列数相等。
证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。
对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。
4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。
北理-线性代数-在线作业
若行列式主对角线上的元素全为0,则此行列式为0.()判断题10.0 错误未判断×.有非零解的齐次线性方程组的基础解系是唯一判断题10.0 错误未判断×单选题10.0 2 ×单选题10.0 3 ×1 / 58单选题10.0 4 ×单选题10.0 1 ×按定义,5阶行列式有项,其中带负号的有项.填空题10.0 120&60×填空题10.0 5&奇×填空题10.0 ×2 / 58填空题10.0&×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%单选题10.2 ×3 / 58单选题10.3 ×单选题10.3 ×单选题10.2 ×单选题10.1 ×4 / 585 / 58 填空题10.0 &×填空题10.正×填空题10.×填空题10.0 &×6 / 58 填空题10.0 &×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%判断题10.0 正确未判断×行阶梯形矩阵中非零行的个数就是它的秩判断题10.0 正确未判断×判断题10.0 正确未判断×单10.0 1 ×选题单10.0 4 ×选题单10.0 4 ×选题单10.0 2 ×选题填10.0 ×空题填10.0 E×空题7 / 58填空题10.0相等×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%判断题10.0 错误未判断×对于一个给定的向量组,不是线性相关就是线性无关;判断题10.0 正确未判断×.有非零解的齐次线性方程组的基础解系是唯一判断题10.0 错误未判断×单选题10.0 1 ×8 / 58单10.0 1 ×选题单10.0 1 ×选题单10.0 2 ×选题填10.0 ×空题填10.0 唯一×空题填10.0 ×空题9 / 58本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%判断题10.0 正确特征多项式相同的矩阵相似. 判断题10.0 错误单选题10.0 3下面二次型中正定的是单选题10.0 2单选题10.0 310 / 58单10.0 2选题单10.0 1选题填10.0空题填10.0空题填10.0空题本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%11 / 58判断题10.0 正判断题10.0 正判断题10.0 错单选题10.0 2下面二次型中正定的是单选题10.0 2单选题10.0 312 / 58单10.0 1选题填10.0空题填10.0空题填10.0空题本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%13 / 58若行列式主对角线上的元素全为0,则此行列式为0.( ) 判断题10.0 错误错误√.有非零解的齐次线性方程组的基础解系是唯一判断题10.0 错误错误√单选题10.0 2 2 √单选题10.0 3 3 √14 / 58单选题10.0 4 4 √单选题10.0 1 1 √按定义,5阶行列式有120项,其中带负号的有______项. 填空题10.060*&*6060 ×填空题10.05*&*奇5&奇×填空题10.0 0 零×填空10.0 正×15 / 58题本次作业总分值:100.0 得分:60.0 正确的题数:6 题目总数:10 正确率:60.000004%16 / 58判断题10.0错误错误√对于一个给定的向量组,不是线性相关就是线性无关;判断题10.0正确正确√.有非零解的齐次线性方程组的基础解系是唯一判断题10.0错误错误√单选题10.0 1 1 √单选题10.0 1 1 √单选10.0 1 1 √17 / 58题单选题10.0 2 ×填空题10.0 1 ×填空题10.0唯一×填空题10.0 n*s ×本次作业总分值:100.0 得分:60.0 正确的题数:6 题目总数:10 正确率:60.000004%18 / 58判断题10.0 正确未判断×特征多项式相同的矩阵相似. 判断题10.0 错误未判断×判断题10.0 错误未判断×单选题10.0 3 ×单选题10.0 2 ×单选题10.0 1 ×19 / 58单选题10.0 1 ×填空题10.0将A的第1列的1/a倍加到第2列×填空题10.0线性无关×填空题10.0 C'AC ×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%本次作业总分值:100.0 得分:70.0 正确的题数:7 题目总数:10 正确率:70.0%20 / 58单选题10.0 2 ×下列各项中,()为某4阶行列式中带正号的项单选题10.0 4 ×单选题10.0 4 ×21 / 58单10.0 3 ×选题单10.0 4 ×选题填10.0 10 ×空题填10.0 -18 ×空题22 / 58填空题10.0-113×填空题10.0 -1 ×填空题10.0 192 ×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%23 / 58判断题10.0正确未判断×行阶梯形矩阵中非零行的个数就是它的秩判断题10.0正确未判断×判断题10.0正确未判断×单选题10.0 1 ×单选题10.0 4 ×单选题10.0 4 ×24 / 58单选题10.0 2 ×填空题10.0 1 ×填空题10.0 E ×填空题10.0相等×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%25 / 58判断题10.0错误未判断×判断题10.0错误未判断×判断题10.0错误未判断×单选题10.0 1 ×单选题10.0 1 ×单选题10.0 1 ×26 / 58单选题10.0 2 ×本次作业总分值:100.0 得分:90.0 正确的题数:9 题目总数:10 正确率:90.0%[复习建议][返回阶段列表]北京理工大学现代远程教育学院版权所有京ICP备05065315号Copyright©2000-2006 All right reserved. 填空题10.0 3 ×填空题10.0 -2 ×27 / 58填空题10.0 2 ×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%单选题10.0 2 ×下列各项中,()为某4阶行列式中带正号的项单选题10.0 4 ×单选题10.0 4 ×28 / 58单10.0 3 ×选题单10.0 4 ×选题填10.0 10 ×空题填10.0 -18 ×空题29 / 58填空题10.0-113×填空题10.0 -1 ×填空题10.0 192 ×本次作业总分值:100.0 得分:0.0 正确的题数:0 题目总数:10 正确率:0.0%[复习建议][返回阶段列表]北京理工大学现代远程教育学院版权所有京ICP备05065315号Copyright©2000-2006 All right reserved.30 / 58判断题10.0 错误错误√对于一个给定的向量组,不是线性相关就是线性无关;判断题10.0 正确正确√.有非零解的齐次线性方程组的基础解系是唯一判断题10.0 错误错误√单选题10.0 1 1 √单选题10.0 1 1 √单选题10.0 1 1 √单选题10.0 2 2 √31 / 58填空题10.0 1 ×填空题10.0 唯一唯一√填空题10.0 n*s n*s √单10.0 2 ×选题32 / 58单选题10.0 3 ×单选题10.0 3 ×单选题10.0 2 ×单选题10.0 1 ×i=4,j=____ 填空10.0 j=7 ×33 / 58题填空题10.0 正×4阶行列式中含有因子a13a31的项是___填空题10.0-a13a22a31a44+a13a24a31a42×i=4,j=____填空题10.0 2 ×X3的系数是157。
(精选)线性代数课后作业及参考答案
(精选)线性代数课后作业及参考答案《线性代数》作业及参考答案一.单项选择题1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于()A. m+nB. -(m+n)C. n-mD. m-n2.设矩阵A=100020003,则A-1等于()A.130012001B.100120013C. 1 3 00 010 00 1 2D. 1 2 00 10013.设矩阵A=312101214---,A*是A的伴随矩阵,则A *中位于(1,2)的元素是()A. –6B. 6C. 24.设A是方阵,如有矩阵关系式AB=AC,则必有()A. A =0B. B≠C时A=0C. A≠0时B=CD. |A|≠0时B=C5.已知3×4矩阵A的行向量组线性无关,则秩(A T)等于()A. 1B. 2C. 3D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则()A.有不全为0的数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0的数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0的数λ1,λ2,…,λs使λ1(α1-β1)+λ2(α2-β2)+…+λs(αs-βs)=0D.有不全为0的数λ1,λ2,…,λs和不全为0的数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07.设矩阵A的秩为r,则A中()A.所有r-1阶子式都不为0B.所有r-1阶子式全为0C.至少有一个r阶子式不等于0D.所有r阶子式都不为08.设Ax=b是一非齐次线性方程组,η1,η2是其任意2个解,则下列结论错误的是()A.η1+η2是Ax=0的一个解2η1+12η2是Ax=b的一个解C.η1-η2是Ax=0的一个解D.2η1-η2是Ax=b的一个解9.设n阶方阵A不可逆,则必有()A.秩(A)<n< bdsfid="226" p=""></n<>B.秩(A)=n-1C.A=0D.方程组Ax=0只有零解10.设A是一个n(≥3)阶方阵,下列陈述中正确的是()A.如存在数λ和向量α使Aα=λα,则α是A的属于特征值λ的特征向量B.如存在数λ和非零向量α,使(λE-A)α=0,则λ是A的特征值C.A的2个不同的特征值可以有同一个特征向量D.如λ1,λ2,λ3是A的3个互不相同的特征值,α1,α2,α3依次是A的属于λ1,λ2,λ3的特征向量,则α1,α2,α3有可能线性相关11.设λ0是矩阵A的特征方程的3重根,A的属于λ0的线性无关的特征向量的个数为k,则必有()A. k≤3B. k<3C. k=3D. k>312.设A是正交矩阵,则下列结论错误的是()A.|A|2必为1B.|A|必为1C.A-1=A TD.A的行(列)向量组是正交单位向量组13.设A是实对称矩阵,C是实可逆矩阵,B=C T AC.则()A.A与B相似B. A与B不等价C. A与B有相同的特征值D. A与B合同15.设有矩阵Am×n,Bm×s,Cs×m,则下列运算有意义的是()。
标准答案 北京大学春季学期线性代数作业
2016年春季学期线性代数作业一、选择题(每题2分,共36分)1.(教材§1.1)行列式(B)。
A.6B.5C.10D.72.(教材§1.1)行列式(A)。
A.B.C.0 D.3.(教材§1.2)行列式(D)。
A.40B.-40C.10D.-104.(教材§1.3)下列对行列式做的变换中,(A)会改变行列式的值。
A.将行列式的某一行乘以3B.对行列式取转置C.将行列式的某一行加到另外一行D.将行列式的某一行乘以3后加到另外一行5.(教材§1.3)行列式(2/9)。
(提示:参考教材P32例1.3.3)A.2/9B.2/3C.2/9D. 3/46.(教材§1.4)若线性方程组有唯一解,那么(B)。
A.2/3B.1C.-2/3D.1/37.(教材§2.2)矩阵2110231134411132⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦的秩是(D)。
A.1B.2C.3D.48.(教材§2.2)若线性方程组无解,则a的值为(C)。
A.-1B.-2C.-3D.09.(教材§3.1)已知向量,,,则向量(B)。
A.B. C. D.10.(教材§3.3)已知向量组线性相关,下面说法正确的是(C)。
A.如果,则必有;B.矩阵的秩等于向量的个数;C.元齐次线性方程组有非零解;D.向量组A 中任何一个向量都不能由其余的个向量线性表示。
11.(教材§3.3)下列向量组中,线性无关的是(C)。
A.B.C.D.12.(教材§3.3)下列向量组中,线性相关的是(D)。
A.B.C.D.13.(教材§4.1)已知矩阵,矩阵和矩阵均为n阶矩阵,为实数,则下列结论不正确的是(C)。
A. B.C. D.14.(教材§4.1)已知矩阵,矩阵,则(A)。
A. B.C. D.15.(教材§4.1)已知矩阵,为矩阵,矩阵为矩阵,为实数,则下列关于矩阵转置的结论,不正确的是(D)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年春季学期线性代数作业
一、选择题(每题2分,共36分)
1.(教材§1.1B)。
A.6
B.5
C.10
D.7
2.(教材§1.1)行列式A)。
C.0
3.(教材§1.2)行列式D)。
A.40
B.-40
C.10
D.-10
4.(教材§1.3)下列对行列式做的变换中,(A)会改变行列式的值。
A.将行列式的某一行乘以3
B.对行列式取转置
C.将行列式的某一行加到另外一行
D.将行列式的某一行乘以3后加到另外一行
5.(教材§1.3)行列式(2/9)。
(提示:参考教材P32例1.3.3)
A.2/9
B.2/3
C.2/9
D. 3/4
6.(教材§1.4B)。
A.2/3
B.1
C.-2/3
D.1/3
7.(教材§2.2)矩阵
2110
2311
3441
1132
⎡⎤
⎢⎥
⎢⎥
⎢⎥
⎢⎥
-
⎣⎦
的秩是(D)。
A.1
B.2
C.3
D.4
8.(教材§2.2
a的值为(C)。
A.-1
B.-2
C.-3
D.0
9.(教材§3.1)已知向量
B)。
10.(教材§3.3
C)。
A.
B.
D.向量组A
11.(教材§3.3)下列向量组中,线性无关的是(C)。
12.(教材§3.3)下列向量组中,线性相关的是(D)。
13.(教材§4.1n
结论不正确的是(C)。
B.
C.
14.(教材§4.1A)。
A. B.
C.
15.(教材§4.1)已知矩阵,矩阵,则下列关于矩阵转置的结论,不正确的是(D)。
A. B.
C.
16.(教材§4.2)已知矩阵A)。
17.(教材§4.3)下列矩阵中,(B)不是初等矩阵。
A. B. C. D.
18.(教材§5.1的特征值是(C)。
B.
二、填空题(每题2分,共24分)
19.(教材§1.1的值是abe 。
20.(教材§1.4
为1
±。
21.(教材§2.2
45-1-6 12-1-3 01-20⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦
_______,系数矩阵的秩等于3
22(公式).(教材§2.3)齐次线性方程组
1234
1234
123
1234
320
20
320
3230
x x x x
x x x x
x x x
x x x x
+-+=
⎧
⎪+-+=
⎪
⎨
-+=
⎪
⎪-++=
⎩
没有(填“有”
或“没有”)非零解。
23.(教材§4.1
358 683⎡⎤⎢⎥⎣⎦
_____
24.(教材§3.3
= 4
25.(教材§3.3是线性无关(填“相关”或“无关”)的。
26. (教材§4.1)已知矩阵
9 。
27.(教材§5.2
写出所有的特征值:1和-8
28.(教材§4.1)已知上三角矩阵,求12016
01
⎤
⎥
⎦。
29. (教材§4.2)已知矩阵
-12-101-11-22⎤⎥⎥⎢⎥⎣⎦。
30. (教材§5.1)以下关于相似矩阵的说法,正确的有 1,3,4 (多选)。
①
②
③
④
二、解答题(每题8分,共40分)
31.(教材§4.1),求(1)2
)
解:(1)
T 1252135AB =-13132=65114-1013⎡⎤⎡⎤⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥
⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦
(2)
1252A =8A =8-131=811
14
⨯
32.(教材§4.1
解:
()2
1-28-49-6A+B=+=9-2-66349-69-663-78A+B ==343439-2⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦
⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥
⎣⎦⎣⎦⎣⎦
33.(教材§1.3
解:
1+13+13310
141310
01-41
=(-1)3413(-1)1141
141-3
682682
0-682
3245616-⨯⨯-+⨯⨯--- =⨯- =
34.(教材§3.4
)求向量组
数。
解:
设12345A=(,,,,)ααααα,对矩阵A 进行初等行变换
115221
152221
334011370A=314570
2191114112109033218151691304
31
19311522115220113700113700219111007310332181000000
4
31
19
300000--⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢
⎥⎢⎥⎢⎥
=---⎢⎥⎢
⎥---⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦
--⎡⎤⎢⎥----⎢⎥⎢⎥ ==---⎢⎥--⎢⎥⎢⎥--⎣⎦⎡⎤
⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦
可见125,,ααα是一个极大无关组
352171322αααα=+- 45213711αααα=--+
12345(,,,,)()3r r A ααααα==
35. (教材§5.2)求矩阵
解:
3221
1
()121(2)113(2)
1
1
2(1)(4)f A E λλλλ
λλλ
λλ-=-=-=-++-⨯-- =---
令()0f λ=
得:1234,1λλλ===
当14λ=时,对应的特征向量为其次线性方程组()A-40E x =的解 得123x x x ==,特征向量为()11,1,1T
α=
当11λ=时,对应的特征向量为其次线性方程组()A-0E x =的解 得1230x x x ++=,当10x =时,特征向量为()20,1,1T
α=-
当10x ≠时,特征向量为()32,-1,-1T
α=。