2021届中考数学冲刺专题训练:统计与概率【含答案解析】
2021年九年级中考数学 冲刺集训:概率(含答案)
2021中考数学 冲刺集训:概率一、选择题1. 从正五边形的五个顶点中,任取四个顶点连成四边形,对于事件M :“这个四边形是等腰梯形”,下列推断正确的是( )A. 事件M 是不可能事件B. 事件M 是必然事件C. 事件M 发生的概率为15D. 事件M 发生的概率为252. 同时抛掷三枚质地均匀的硬币,至少有两枚硬币正面向上的概率是( )A.38B.58C.23D.123. 如图是一个可以自由转动的转盘,该转盘被平均分为8份,每份对应一种颜色,转动这个转盘,转出哪种颜色的可能性最小( )A .红色B .黄色C .绿色D .不确定4. 假定鸟卵孵化后,雏鸟为雌与雄的概率相同.如果三枚鸟卵全部成功孵化,那么三只雏鸟中有两只雌鸟的概率是( ) A.16B.38C.58D.235. 有A ,B 两个不透明的口袋,每个口袋里装有两个相同的球,A 袋中的两个球上分别写有“细”“致”的字样,B 袋中的两个球上分别写有“信”“心”的字样,从每个口袋里各摸出一个球,刚好能组成“细心”字样的概率是( ) A.13B.14C.23D.346. 从长度分别为2,3,4,5的4条线段中任取三条,能构成直角三角形的概率为( ) A.34B.12C.13D.147. 甲、乙、丙、丁、戊五名同学参加一次节日活动,很幸运的是他们都得到了一件精美的礼物(如图),他们每人只能从其中一串的最下端取一件礼物,直到礼物取完为止,甲第一个取得礼物,然后乙、丙、丁、戊依次取得第2件到第5件礼物,他们的取法各种各样,事后他们打开这些礼物仔细比较发现礼物D 最精美,那么取得礼物D 可能性最大的同学是( )A .乙B .丙C .丁D .戊8. 定义一种“十位上的数字比个位、百位上的数字都要小”的三位数叫做“V 数”,如“947”就是一个“V 数”.若某三位数十位上的数字为5,从4,6,8中任选两数分别作为个位和百位上的数字,则与5组成“V 数”的概率是( ) A.16B.14C.13D.23二、填空题9. 已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .10. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中仅有黑球10个和白球若干个,这些球除颜色不同外,其他都一样,由此估计口袋中有________个白球.11.2018·湘西州 农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.12. 同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上,一枚硬币反面向上的概率是________.13. 掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为________.14. 某校欲从初三年级3名女生、2名男生中任取两名学生代表学校参加全市举办的“中国梦·青春梦”演讲比赛,则恰好选中一男一女的概率是________.15. 如图,转盘中6个扇形的面积相等,任意转动转盘1次,转盘停止转动后,指针指向的数小于5的概率为________.16. 在一个不透明的袋子中装有除颜色不同外其余均相同的10个小球,其中红球有4个,黑球有6个,先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,若此时“摸出黑球”为必然事件,则m的值是________.三、解答题17. 如图,有一枚质地均匀的正二十面体形状的骰子,其中的1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”.将这枚骰子掷出后:(1)数字几朝上的概率最小?(2)奇数面朝上的概率是多少?18. (2019▪贵州毕节)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?19. 2020·武汉模拟为了有效保护环境,某景区要求游客将垃圾按可回收垃圾、不可回收垃圾、有害垃圾分类投放.一天,小林一家游玩了该景区后,把垃圾按要求分成三袋并随机投入三类垃圾桶中,请用画树状图的方法求三袋垃圾都投对的概率.20. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.2021中考数学 冲刺集训:概率-答案一、选择题1. 【答案】B 【解析】本题考查正多边形的性质、等腰梯形的判定以及概率的相关概念. 解题思路:先证明出符合条件的四边形是等腰梯形.所以事件M 是必然事件.故选B.2. 【答案】D [解析] 画树状图如下:所以至少有两枚硬币正面向上的概率是48=12.3. 【答案】B4. 【答案】B[解析] 从树状图(C 代表雌鸟,X 代表雄鸟)中可以看出,三只雏鸟中有两只雌鸟的概率是38.故选B.5. 【答案】B [解析] 从每个口袋里各摸出一个球,有“细信”“细心”“致信”“致心”4种等可能的结果,其中组成“细心”字样的有1种结果,故概率是14.6. 【答案】D[解析] 一共有四种可能,分别是2,3,4;2,3,5;2,4,5;3,4,5.其中只有长度分别是3,4,5的三条线段能构成直角三角形,所以能构成直角三角形的概率为14.7. 【答案】B[解析] 甲、乙、丙、丁、戊取礼物的顺序有10种, 如下:①A ,B ,C ,D ,E ;②A ,C ,D ,E ,B ; ③A ,C ,D ,B ,E ;④A ,C ,B ,D ,E ; ⑤C ,D ,E ,A ,B ;⑥C ,D ,A ,B ,E ; ⑦C ,D ,A ,E ,B ;⑧C ,A ,B ,D ,E ; ⑨C ,A ,D ,B ,E ;⑩C ,A ,D ,E ,B. 可见,取得礼物D 可能性最大的同学是丙.8. 【答案】C[解析] 根据题意,画树状图如下:共有6种等可能的结果,与5组成“V 数”的结果有2种(即658,856),所以从4,6,8中任选两数分别作为个位和百位上的数字,与5组成“V 数”的概率为26=13.二、填空题9. 【答案】 [解析]棕色糖果所占的百分比为1-20%-15%-30%-15%=1-80%=20%, 所以P (糖果的颜色为绿色或棕色)=30%+20%=50%=. 故答案为.10. 【答案】20 [解析] 摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13. 设口袋中有x 个白球,则10x +10=13, 解得x =20.经检验,x =20是原方程的解,故答案为20.11. 【答案】12 [解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.12. 【答案】12[解析] 同时抛掷两枚硬币共有4种等可能的结果,即正正,正反,反正,反反,其中一正一反的结果有2种, 所以所求概率=24=12.13. 【答案】38 [解析] 画树状图如下:∵共有8种等可能的结果,其中有两次正面朝上、一次反面朝上的结果有3种, ∴掷一枚硬币三次,其中有两次正面朝上、一次反面朝上的概率为38.14. 【答案】35[解析] 解法1:列表如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.解法2:画树状图如下:共有20种等可能的结果,其中恰好选中一男一女的结果有12种, 所以恰好选中一男一女的概率P =1220=35.15. 【答案】23[解析] 转盘转动一次,出现6种等可能的结果,小于5的结果共有4种,故指针指向的数小于5的概率为46=23.16. 【答案】4三、解答题17. 【答案】解:(1)因为骰子有20个面,1个面标有“1”,2个面标有“2”,3个面标有“3”,4个面标有“4”,5个面标有“5”,其余的面标有“6”,所以P(6朝上)=520=14,P(5朝上)=520=14,P(1朝上)=120,P(2朝上)=220=110,P(3朝上)=320,P(4朝上)=420=15, 所以数字1朝上的概率最小. (2)因为奇数包括了1,3,5, 所以P(奇数朝上)=1+3+520=920.18. 【答案】(1)此次调查的总人数为150÷30%=500(人), 则m=500×45%=225,n=500×5%=25, 故答案为:500,225,25;(2)C 选项人数为500×20%=100(人), 补全图形如下:(3)1×150+2×100+3×25=425.答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425; (4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).19. 【答案】解:设可回收垃圾、不可回收垃圾、有害垃圾分别为A ,B ,C ,画树状图如下:由树状图可知随机投入三类垃圾桶共有6种等可能的结果,其中三袋垃圾都投对的只有1种结果,∴三袋垃圾都投对的概率为16.20. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.。
2021年浙江省中考数学真题分类汇编:统计与概率(附答案解析)
2021年浙江省中考数学真题分类汇编:统计与概率一.选择题(共9小题)1.(温州)如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人2.(宁波)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如下表所示:甲乙丙丁9899S2 1.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁3.(衢州)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是()A.B.C.D.4.(台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是()A.<B.>C.s2>s12D.s2<s125.(杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是()A.B.C.D.6.(湖州)下列事件中,属于不可能事件的是()A.经过红绿灯路口,遇到绿灯B.射击运动员射击一次,命中靶心C.班里的两名同学,他们的生日是同一天D.从一个只装有白球和红球的袋中摸球,摸出黄球7.(绍兴)在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.8.(嘉兴)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33℃B.众数是33℃C.平均数是℃D.4日至5日最高气温下降幅度较大9.(丽水)一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是()A.B.C.D.二.填空题(共9小题)10.(杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为元/千克.11.(金华)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.12.(衢州)为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为分.13.(温州)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为.14.(台州)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机摸出一个小球,该小球是红色的概率为.15.(宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.16.(丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是.17.(湖州)某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是.18.(嘉兴)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为.马匹姓名下等马中等马上等马齐王6810田忌579三.解答题(共10小题)19.(嘉兴)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据,制成如图统计图(不完整):青少年视力健康标准类别视力健康状况A视力≥5.0视力正常B 4.9轻度视力不良C 4.6≤视力≤4.8中度视力不良D视力≤4.5重度视力不良根据以上信息,请解答:(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别B)的扇形圆心角度数和2020年初视力正常(类别A)的人数.(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.20.(衢州)为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).(1)求被调查的师生人数,并补全条形统计图.(2)求扇形统计图中表示“满意”的扇形圆心角度数.(3)若该校共有师生1800名,根据抽样结果,试估计该校对食堂“半份菜”服务“很满意”或“满意”的师生总人数.21.(金华)小聪、小明准备代表班级参加学校“党史知识”竞赛,班主任对这两名同学测试了6次,获得如图测试成绩折线统计图.根据图中信息,解答下列问题:(1)要评价每位同学成绩的平均水平,你选择什么统计量?求这个统计量.(2)求小聪成绩的方差.(3)现求得小明成绩的方差为S小明2=3(单位:平方分).根据折线统计图及上面两小题的计算,你认为哪位同学的成绩较好?请简述理由.22.(绍兴)绍兴莲花落,又称“莲花乐”,“莲花闹”,是绍兴一带的曲艺.为了解学生对该曲种的熟悉度,某校设置了:非常了解、了解、了解很少、不了解四个选项,随机抽查了部分学生进行问卷调查,要求每名学生只选其中的一项,并将抽查结果绘制成不完整的统计图.根据图中信息,解答下列问题:(1)本次接受问卷调查的学生有多少人?并求图2中“了解”的扇形圆心角的度数;(2)全校共有1200名学生,请你估计全校学生中“非常了解”、“了解”莲花落的学生共有多少人.23.(台州)杨梅果实成熟期正值梅雨季节,雨水过量会导致杨梅树大量落果,给果农造成损失.为此,市农科所开展了用防雨布保护杨梅果实的实验研究.在某杨梅果园随机选择40棵杨梅树,其中20棵加装防雨布(甲组),另外20棵不加装防雨布(乙组).在杨梅成熟期,统计了甲、乙两组中每一棵杨梅树的落果率(落地的杨梅颗数占树上原有杨梅颗数的百分比),绘制成统计图表(数据分组包含左端值不包含右端值).甲组杨梅树落果率频数分布表落果率组中值频数(棵)0≤x<10%5%1210%≤x<20%15%420%≤x<30%25%230%≤x<40%35%140%≤x<50%45%1(1)甲、乙两组分别有几棵杨梅树的落果率低于20%?(2)请用落果率的中位数或平均数,评价市农科所“用防雨布保护杨梅果实”的实际效果;(3)若该果园的杨梅树全部加装这种防雨布,落果率可降低多少?说出你的推断依据.24.(杭州)为了解某校某年级学生一分钟跳绳情况,对该年级全部360名学生进行一分钟跳绳次数的测试,并把测得数据分成四组,绘制成如图所示的频数表和未完成的频数分布直方图(每一组不含前一个边界值,含后一个边界值).某校某年级360名学生一分钟跳绳次数的频数表组别(次)频数100~13048130~16096160~190a190~22072(1)求a的值;(2)把频数分布直方图补充完整;(3)求该年级一分钟跳绳次数在190次以上的学生数占该年级全部学生数的百分比.25.(温州)某校将学生体质健康测试成绩分为A,B,C,D四个等级,依次记为4分,3分,2分,1分.为了解学生整体体质健康状况,拟抽样进行统计分析.(1)以下是两位同学关于抽样方案的对话:小红:“我想随机抽取七年级男、女生各60人的成绩.”小明:“我想随机抽取七、八、九年级男生各40人的成绩.”根据如图学校信息,请你简要评价小红、小明的抽样方案.如果你来抽取120名学生的测试成绩,请给出抽样方案.(2)现将随机抽取的测试成绩整理并绘制成如图统计图,请求出这组数据的平均数、中位数和众数.26.(宁波)图1表示的是某书店今年1~5月的各月营业总额的情况,图2表示的是该书店“党史”类书籍的各月营业额占书店当月营业总额的百分比情况.若该书店1~5月的营业总额一共是182万元,观察图1、图2,解答下列问题:(1)求该书店4月份的营业总额,并补全条形统计图.(2)求5月份“党史”类书籍的营业额.(3)请你判断这5个月中哪个月“党史”类书籍的营业额最高,并说明理由.27.(丽水)在创建“浙江省健康促进学校”的过程中,某数学兴趣小组针对视力情况随机抽取本校部分学生进行调查,并按照国家分类标准统计人数,绘制成两幅不完整的统计图表,请根据图表信息解答下列问题:抽取的学生视力情况统计表类别检查结果人数A正常88B轻度近视▲C中度近视59D重度近视▲(1)求所抽取的学生总人数;(2)该校共有学生约1800人,请估算该校学生中,近视程度为中度和重度的总人数;(3)请结合上述统计数据,为该校做好近视防控,促进学生健康发展提出一条合理的建议.28.(湖州)为了更好地了解党的历史,宣传党的知识,传颂英雄事迹,某校团支部组建了:A.党史宣讲;B.歌曲演唱;C.校刊编撰;D.诗歌创作等四个小组,团支部将各组人数情况制成了统计图表(不完整).各组参加人数情况统计表小组类别A B C D人数(人)10a155根据统计图表中的信息,解答下列问题:(1)求a和m的值;(2)求扇形统计图中D所对应的圆心角度数;(3)若在某一周各小组平均每人参与活动的时间如下表所示:小组类别A B C D 平均用时(小时) 2.5323求这一周四个小组所有成员平均每人参与活动的时间.2021年浙江省中考数学真题分类汇编:统计与概率参考答案与试题解析一.选择题(共9小题)1.(温州)如图是某天参观温州数学名人馆的学生人数统计图.若大学生有60人,则初中生有()A.45人B.75人C.120人D.300人【考点】扇形统计图.【专题】统计的应用;应用意识.【分析】利用大学生的人数以及所占的百分比可得总人数,用总人数乘以初中生所占的百分比即可求解.【解答】解:参观温州数学名人馆的学生人数共有60÷20%=300(人),初中生有300×40%=120(人),故选:C.【点评】本题考查了扇形统计图.关键是利用大学生的人数以及所占的百分比可得总人数,解题时要细心.2.(宁波)甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数(单位:环)及方差S2(单位:环2)如下表所示:甲乙丙丁9899S2 1.60.830.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【考点】算术平均数;方差.【专题】统计的应用;应用意识.【分析】根据平均环数比较成绩的好坏,根据方差比较数据的稳定程度.【解答】解:甲、丙、丁射击成绩的平均环数较大,∵丁的方差<甲的方差<丙的方差,∴丁比较稳定,∴成绩较好状态稳定的运动员是丁,故选:D.【点评】本题考查的是方差和算术平均数,掌握方差反映了一组数据的波动大小,方差越大,波动性越大,方差越小,数据越稳定是解题的关键.3.(衢州)一个布袋里放有3个红球和2个白球,它们除颜色外其余都相同.从布袋中任意摸出1个球,摸到白球的概率是()A.B.C.D.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】根据概率公式,用白球的个数除以球的总个数即可.【解答】解:∵从放有3个红球和2个白球布袋中摸出一个球,共有5种等可能结果,其中摸出的球是白球的有2种结果,∴从布袋中任意摸出1个球,摸到白球的概率是,故选:D.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.4.(台州)超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,设货架上原有鸡蛋的质量(单位:g)平均数和方差分别为,s2,该顾客选购的鸡蛋的质量平均数和方差分别为,s12,则下列结论一定成立的是()A.<B.>C.s2>s12D.s2<s12【考点】算术平均数;方差.【专题】统计的应用;应用意识.【分析】根据方差的意义求解.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.【解答】解:∵超市货架上有一批大小不一的鸡蛋,某顾客从中选购了部分大小均匀的鸡蛋,∴货架上原有鸡蛋的质量的方差s2>该顾客选购的鸡蛋的质量方差s12,而平均数无法比较.故选:C.【点评】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.5.(杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念;推理能力.【分析】画树状图,共有9种等可能的结果,甲和乙从同一节车厢上车的结果有3种,再由概率公式求解即可.【解答】解:把3节车厢分别记为A、B、C,画树状图如图:共有9种等可能的结果,甲和乙从同一节车厢上车的结果有3种,∴甲和乙从同一节车厢上车的概率为=,故选:C.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.6.(湖州)下列事件中,属于不可能事件的是()A.经过红绿灯路口,遇到绿灯B.射击运动员射击一次,命中靶心C.班里的两名同学,他们的生日是同一天D.从一个只装有白球和红球的袋中摸球,摸出黄球【考点】随机事件.【专题】数据的收集与整理;应用意识.【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.【解答】解:A、经过红绿灯路口,遇到绿灯是随机事件,故本选项不符合题意;B、射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、班里的两名同学,他们的生日是同一天是随机事件,故本选项不符合题意;D、从一个只装有白球和红球的袋中摸球,摸出黄球是不可能事件,故本选项符合题意;故选:D.【点评】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.7.(绍兴)在一个不透明的袋中装有6个只有颜色不同的球,其中3个红球、2个黄球和1个白球.从袋中任意摸出一个球,是白球的概率为()A.B.C.D.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】用白球的数量除以所有球的数量即可求得白球的概率.【解答】解:∵袋子中共有6个小球,其中白球有1个,∴摸出一个球是白球的概率是,故选:A.【点评】此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.(嘉兴)5月1日至7日,我市每日最高气温如图所示,则下列说法错误的是()A.中位数是33℃B.众数是33℃C.平均数是℃D.4日至5日最高气温下降幅度较大【考点】算术平均数;中位数;众数.【专题】统计的应用;数据分析观念.【分析】分别确定7个数据的中位数、众数及平均数后即可确定正确的选项.【解答】解:A、7个数排序后为23,25,26,27,30,33,33,位于中间位置的数为27,所以中位数为27℃,故A错误,符合题意;B、7个数据中出现次数最多的为33,所以众数为33℃,正确,不符合题意;C、平均数为(23+25+26+27+30+33+33)=,正确,不符合题意;D、观察统计表知:4日至5日最高气温下降幅度较大,正确,不符合题意,故选:A.【点评】考查了统计的知识,解题的关键是了解如何确定一组数据的中位数、众数及平均数,难度不大.9.(丽水)一个布袋里装有3个红球和5个黄球,它们除颜色外其余都相同.从中任意摸出一个球是红球的概率是()A.B.C.D.【考点】概率公式.【专题】概率及其应用;运算能力.【分析】用红球的个数除以球的总个数即可.【解答】解:∵布袋里装有3个红球和5个黄球,共有8个球,∴任意摸出一个球是红球的概率是.故选:C.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.二.填空题(共9小题)10.(杭州)现有甲、乙两种糖果的单价与千克数如下表所示.甲种糖果乙种糖果单价(元/千克)3020千克数23将这2千克甲种糖果和3千克乙种糖果混合成5千克什锦糖果,若商家用加权平均数来确定什锦糖果的单价,则这5千克什锦糖果的单价为24元/千克.【考点】加权平均数.【专题】统计的应用;应用意识.【分析】将两种糖果的总价算出,用它们的和除以混合后的总重量即可.【解答】解:这5千克什锦糖果的单价为:(30×2+20×3)÷5=24(元/千克).故答案为:24.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求30、20这两个数的平均数,对平均数的理解不正确.11.(金华)某单位组织抽奖活动,共准备了150张奖券,设一等奖5个,二等奖20个,三等奖80个.已知每张奖券获奖的可能性相同,则1张奖券中一等奖的概率是.【考点】概率公式.【专题】概率及其应用;应用意识.【分析】直接根据概率公式即可得出结论.【解答】解:∵共有150张奖券,一等奖5个,∴1张奖券中一等奖的概率==.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数是解答此题的关键.12.(衢州)为庆祝建党100周年,某校举行“庆百年红歌大赛”.七年级5个班得分分别为85,90,88,95,92,则5个班得分的中位数为90分.【考点】中位数.【专题】统计的应用;数据分析观念.【分析】将这组数据重新排列,再根据中位数的定义求解即可.【解答】解:将这5个班的得分重新排列为85、88、90、92、95,∴5个班得分的中位数为90分,故答案为:90.【点评】本题主要考查中位数,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.13.(温州)一个不透明的袋中装有21个只有颜色不同的球,其中5个红球,7个白球,9个黄球.从中任意摸出1个球是红球的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】用红色球的个数除以球的总个数即可得出答案.【解答】解:∵一共有21个只有颜色不同的球,其中红球有5个,∴从中任意摸出1个球是红球的概率为,故答案为:.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.14.(台州)一个不透明布袋中有2个红球,1个白球,这些球除颜色外无其他差别,从中随机摸出一个小球,该小球是红色的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】直接根据概率公式求解.【解答】解:从中随机摸出一个小球,恰好是红球的概率P==.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.15.(宁波)一个不透明的袋子里装有3个红球和5个黑球,它们除颜色外其余都相同.从袋中任意摸出一个球是红球的概率为.【考点】概率公式.【专题】概率及其应用;数据分析观念.【分析】先求出球的总个数,再根据概率公式即可得出摸出一个球是红球的概率.【解答】解:∵一个不透明的袋子里装有3个红球和5个黑球,∴共有8个球,∴从袋中任意摸出一个球是红球的概率为.故答案为:.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(丽水)根据第七次全国人口普查,华东A,B,C,D,E,F六省60岁及以上人口占比情况如图所示,这六省60岁及以上人口占比的中位数是18.75%.【考点】中位数.【专题】统计的应用;运算能力.【分析】根据中位数的定义直接求解即可.【解答】解:把这些数从小大排列为:16.0%,16.9%,18.7%,18.8%,20.9%,21.8%,则中位数是=18.75%.故答案为:18.75%.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.(湖州)某商场举办有奖销售活动,每张奖券被抽中的可能性相同,若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是.【考点】概率公式.【专题】概率及其应用;运算能力.【分析】根据概率公式直接求解即可.【解答】解:只抽1张奖券恰好中奖的概率是=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.P(必然事件)=1;P(不可能事件)=0.18.(嘉兴)看了《田忌赛马》故事后,小杨用数学模型来分析:齐王与田忌的上中下三个等级的三匹马记分如表,每匹马只赛一场,两数相比,大数为胜,三场两胜则赢.已知齐王的三匹马出场顺序为10,8,6.若田忌的三匹马随机出场,则田忌能赢得比赛的概率为.下等马中等马上等马马匹姓名齐王6810田忌579【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念;推理能力.【分析】列表得出所有等可能的情况,田忌能赢得比赛的情况有1种,再由概率公式求解即可.【解答】解:由于田忌的上、中等马分别比齐王的中、下等马强,当齐王的三匹马出场顺序为10,8,6时,田忌的马按5,9,7的顺序出场,田忌才能赢得比赛,当田忌的三匹马随机出场时,双方马的对阵情况如下:双方马的对阵中,只有一种对阵情况田忌能赢,∴田忌能赢得比赛的概率为.故答案为:.【点评】本题考查了利用列表法或树状图法求概率;用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共10小题)19.(嘉兴)某市为了解八年级学生视力健康状况,在全市随机抽查了400名八年级学生2021年初的视力数据,并调取该批学生2020年初的视力数据,制成如图统计图(不完整):青少年视力健康标准类别视力健康状况A视力≥5.0视力正常B 4.9轻度视力不良C 4.6≤视力≤4.8中度视力不良D视力≤4.5重度视力不良根据以上信息,请解答:(1)分别求出被抽查的400名学生2021年初轻度视力不良(类别B)的扇形圆心角度数和2020年初视力正常(类别A)的人数.(2)若2021年初该市有八年级学生2万人,请估计这些学生2021年初视力正常的人数比2020年初增加了多少人?(3)国家卫健委要求,全国初中生视力不良率控制在69%以内.请估计该市八年级学生2021年初视力不良率是否符合要求?并说明理由.【考点】用样本估计总体;统计表;扇形统计图.【专题】数据的收集与整理;统计的应用;运算能力;应用意识.【分析】(1)利用2021年初视力不良的百分比乘360°即可求解.(2)分别求出2021、2020年初视力正常的人数即可求解.(3)用1﹣31.25%即可得该市八年级学生2021年视力不良率,即可判断.【解答】解:(1)被抽查的400名学生2021年初轻度视力不良的扇形圆心角度数=360°×(1﹣31.25%﹣24.5%﹣32%)=44.1°.该批400名学生2020年初视力正常人数=400﹣48﹣91﹣148=113(人).(2)该市八年级学生2021年初视力正常人数=20000×31.25%=6250(人).这些学生2020年初视力正常的人数=(人).∴估计增加的人数=6250﹣5650=600(人).∴该市八年级学生2021年初视力正常的人数比2020年初增加了600人.(3)该市八年级学生2021年视力不良率=1﹣31.25%=68.75%.∵68.75%<69%.∴该市八年级学生2021年初视力不良率符合要求.【点评】本题考查扇形统计图、统计表的知识,关键在于计算的准确性.20.(衢州)为进一步做好“光盘行动”,某校食堂推出“半份菜”服务,在试行阶段,食堂对师生满意度进行抽样调查.并将结果绘制成如下统计图(不完整).。
2021学年初中数学三年全国经典中考题21统计与概率(含答案解析)
专题21统计与概率学校:___________姓名:__________班级:___________考号:___________一、单选题1.已知一组数据5,4,3,4,9,关于这组数据的下列描述:①平均数是5,②中位数是4,③众数是4,④方差是4.4,其中正确的个数为()A.1 B.2 C.3 D.42.如果将一组数据中的每个数都减去5,那么所得的一组新数据()A.众数改变,方差改变B.众数不变,平均数改变C.中位数改变,方差不变D.中位数不变,平均数不变3.李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A.4,5 B.5,4 C.5,5 D.5,64.为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:则关于这组数据的结论正确的是()A.平均数是144 B.众数是141 C.中位数是144.5 D.方差是5.4 5.为提升学生的自理和自立能力,李老师调查了全班学生在一周内的做饭次数情况,调查结果如下表:那么一周内该班学生的平均做饭次数为()A.4 B.5 C.6 D.76.为了增强学生预防新冠肺炎的安全意识,某校开展疫情防控知识竞赛.来自不同年级的30名参赛同学的得分情况如下表所示,这些成绩的中位数和众数分别是()A.92分,96分B.94分,96分C.96分,96分D.96分,100分7.下图是甲、乙两同学五次数学测试成绩的折线图,比较甲、乙的成绩,下列说法正确的是()A.甲平均分高,成绩稳定B.甲平均分高,成绩不稳定C.乙平均分高,成绩稳定D.乙平均分高,成绩不稳定8.下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差.要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()A.甲B.乙C.丙D.丁9.某中学开展“读书伴我成长”活动,为了解八年级学生四月份的读书册数,对从中随机抽取的20名学生的读书册数进行调查,结果如下表:根据统计表中的数据,这20名同学读书册数的众数,中位数分别是()A.3,3 B.3,7 C.2,7 D.7,310.为了调查疫情对青少年人生观、价值观产生的影响,某学校团委对初二级部学生进行了问卷调查,其中一项是:疫情期间出现的哪一个高频词汇最触动你的内心?针对该项调查结果制作的两个统计图(不完整)如下,由图中信息可知,下列结论错误的是()A.本次调查的样本容量是600B.选“责任”的有120人C.扇形统计图中“生命”所对应的扇形圆心角度数为64.8D.选“感恩”的人数最多11.如图,随机闭合开关1S,2S,3S中的两个,则能让两盏灯泡同时发光的概率为()A.23B.12C.13D.1612.从马鸣、杨豪、陆畅,江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.112B.18C.16D.1213.布袋中装有除颜色外没有其他区别的1个红球和2个白球,搅匀后从中摸出一个球,放回搅匀,再摸出第二个球,两次都摸出白球的概率是()A.49B.29C.23D.1314.小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,……按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.1100B.120C.1101D.2101二、填空题15.某校女子排球队队员的年龄分布如下表:则该校女子排球队队员的平均年龄是岁.16.某公司要招聘一名职员,根据实际需要,从学历、经验和工作态度三个方面对甲、乙两名应聘者进行了测试.测试成绩如下表所示.如果将学历、经验和工作态度三项得分按2:1:3的比例确定两人的最终得分,并以此为依据确定录用者,那么__________将被录用(填甲或乙)17.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.18.从1-,2,3-,4这四个数中任取两个不同的数分别作为a,b的值,得到反比例函数abyx=,则这些反比例函数中,其图象在二、四象限的概率是______.19.某校开展读书日活动,小亮和小莹分别从校图书馆的“科技”、“文学”、“艺术”三类书籍中随机地抽取一本,抽到同一类书籍的概率是________.20.如图,在44⨯的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是________.三、解答题21.小颖和小亮都想去观看“垃圾分类”宣传演出,但只有一张入场券,于是他们设计了一个“配紫色”游戏:A,B是两个可以自由转动的转盘,每个转盘都被分成面积相等的几个扇形、同时转动两个转盘,如果其中一个转盘转出了红色,另一个转盘转出了蓝色,那么可以配成紫色.若配成紫色,则小颖去观看,否则小亮去观看.这个游戏对双方公平吗?请说明理由.22.某校举行了“防溺水”知识竞赛,八年级两个班选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).(1)统计表中,a=________, b =________;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额 在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.23.在4月23日“世界读书日”来临之际,某校为了了解学生的课外阅读情况,从全校随机抽取了部分学生,调查了他们平均每周的课外阅读时间t (单位:小时).把调查结果分为四档,A 档:8t <;B 档:89t ≤<;C 档:910t ≤<;D 档:10t ≥.根据调查情况,给出了部分数据信息:①A 档和D 档的所有数据是:7,7,7.5,10,7,10,7,7.5,7,7,10.5,10.5; ②图1和图2是两幅不完整的统计图. 根据以上信息解答问题:(1)求本次调查的学生人数,并将图2补充完整; (2)已知全校共1200名学生,请你估计全校B 档的人数;(3)学校要从D 档的4名学生中随机抽取2名作读书经验分享,已知这4名学生1名来自七年级,1名来自八年级,2名来自九年级,请用列表或画树状图的方法,求抽到的2名学生来自不同年级的概率.24.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤,并绘制出如下不完整的统计图.(1)求被抽取的学生成绩在C :18090x ≤<组的有多少人; (2)所抽取学生成绩的中位数落在哪个组内;(3)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人. 25.2020年是脱贫攻坚年,为实现全员脱贫目标,某村贫困户在当地政府支持帮助下,办起了养鸡场,经过一段时间精心饲养,总量为3000只的一批鸡可以出售.现从中随机抽取50只,得到它们质量的统计数据如下:根据以上信息,解答下列问题:(1)表中a=______,补全频数分布直方图;(2)这批鸡中质量不小于1.7kg的大约有多少只?(3)这些贫因户的总收入达到54000元,就能实现全员脱贫目标.按15元/kg的价格售出这批鸡后,该村贫困户能否脱贫?26.为了提高学生的综合素养,某校开设了五门手工活动课.按照类别分为:A“剪纸”、B“沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如下两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为________;统计图中的a=________,b=________;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.27.奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.28.某校数学实践小组就近期人们比较关注的五个话题:“A.5G通讯;B.民法典;C.北斗导航;D.数字经济;E.小康社会”,对某小区居民进行了随机抽样调查,每人只能从中选择一个本人最关注的话题,根据调查结果绘制了如图两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)数学实践小组在这次活动中,调查的居民共有人;(2)将上面的最关注话题条形统计图补充完整;(3)最关注话题扇形统计图中的a=,话题D所在扇形的圆心角是度;(4)假设这个小区居民共有10000人,请估计该小区居民中最关注的话题是“民法典”的人数大约有多少?29.小伟和小梅两位同学玩掷骰子的游戏,两人各掷一次均匀的骰子,以掷出的点数之差的绝对值判断输赢.若所得数值等于0,1,2,则小伟胜:若所得数值等于3,4,5,则小梅胜(1)请利用表格分别求出小伟、小梅获胜的概率(2)判断上述游戏是否公平.如果公平,请说明理由;如果不公平,请利用上表修改游戏规则,以确保游戏的公平性30.东营市某中学对2020年4月份线上教学学生的作业情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.请根据图表中提供的信息,解答下列问题: (1)本次抽样共调查了多少名学生? (2)将统计表中所缺的数据填在表中横线上;(3)若该中学有1800名学生,估计该校学生作业情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的作业本中,有2本“非常好”(记为12A A 、),1本“较好”(记为B ),1本“一般”(记为C ),这些作业本封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回, 从余下的3本中再抽取一本 ,请用“列表法”或“画树状图”的方法求出两次抽到的作业本都是“非常好”的概率.31.某校为调查学生对海洋科普知识的了解情况,从全校学生中随机抽取n名学生进行测试,测试成绩进行整理后分成五组,并绘制成如下的频数直方图和扇形统计图.请根据图中信息解答下列问题:(1)补全频数直方图;(2)在扇形统计图中,“70~80”这组的百分比m=__________;(3)已知“80~90”这组的数据如下:81,83,84,85,85,86,86,86,87,88,88,89.抽取的n名学生测试成绩的中位数是__________分;(4)若成绩达到80分以上(含80分)为优秀,请你估计全校1200名学生对海洋科普知识了解情况为优秀的学生人数.32.为迎接2020年第35届全国青少年科技创新大赛,某学校举办了A:机器人;B:航模;C:科幻绘画;D:信息学;E:科技小制作等五项比赛活动(每人限报一项),将各项比赛的参加人数绘制成如图两幅不完整的统计图.根据统计图中的信息解答下列问题:(1)本次参加比赛的学生人数是_________名;(2)把条形统计图补充完整;(3)求扇形统计图中表示机器人的扇形圆心角α的度数;(4)在C组最优秀的3名同学(1名男生2名女生)和E组最优秀的3名同学(2名男生1名女生)中,各选1名同学参加上一级比赛,利用树状图或表格,求所选两名同学中恰好是1名男生1名女生的概率.33.某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有________人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为________;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.34.2020年,新型冠状病毒肆虐全球,疫情期间学生在家进行网课学习和锻炼,学习和身体健康状况都有一定的影响.为了解学生身体健康状况,某校对学生进行立定跳远水平测试.随机抽取50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.学生立定跳远测试成绩的频数分布表x<1.62.02.0 2.4x<x<2.4 2.8学生立定跳远测试成绩的频数分布直方图请根据图表中所提供的信息,完成下列问题:(1)表中a=________,b=________;(2)样本成绩的中位数落在________范围内;(3)请把频数分布直方图补充完整;x<范围内的有(4)该校共有1200名学生,估计该学校学生立定跳远成绩在2.4 2.8多少人?35.今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)参考答案1.D2.C3.C4.B5.C6.B7.D8.C9.A10.C11.C12.C13.A14.D15.14.16.乙17.2 518.2 319.1 320.1 621.这个游戏对双方公平,理由见解析22.(1)96,96;(2)3 523.(1)40人,补全图形见解析;(2)480人;(3)5 624.(1)24人;(2)C组;(3)150人.25.(1)12,补全频数分布图见解析;(2)480只;(3)该村贫困户能脱贫.26.(1)120,12,36;(2)详见解析;(3)62527.(1)200名;(2)见解析;(3)树状图见解析,4528.(1)200 ;(2)图见解析;(3)25,36; (4)3000人 29.(1)P (小伟胜)=23,P (小梅胜)=13;(2)游戏不公平;修改为:两次掷出的点数之差的绝对值为1,2,则小伟胜;否则小梅胜. 30.(1)200;(2)见解析;(3)约1008名;(4)16. 31.(1)见解析;(2)20%;(3)84.5分;(4)672人 32.(1)80;(2)见解析;(3)72º;(4)图表见解析,5933.(1)50,36%;(2)见解析;(3)能获奖.理由见解析;(4)2334.(1)8a =,20b =;(2)2.0 2.4x <;(3)详见解析;(4)240人 35.(1)176,164;(2)157.4°。
九年级中考数学 专题冲刺训练:概率(含答案)
2021中考数学专题冲刺训练:概率一、选择题1. 下列事件中,是必然事件的是()A.购买一张彩票,中奖B.射击运动员射击一次,命中靶心C.经过有交通信号灯的路口,遇到红灯D.任意画一个三角形,其内角和是180°2. 下列说法错误的是()A.必然事件发生的概率是1B.通过大量重复试验,可以用频率估计概率C.概率很小的事件不可能发生D.掷一枚图钉,“钉尖朝上”的概率不能用列举法求得3. 下列事件中,是必然事件的为()A.三点确定一个圆B.抛掷一枚骰子,朝上的一面点数恰好是5C.四边形有一个外接圆D.圆的切线垂直于过切点的半径4. 下列事件是确定性事件的是()A.阴天一定会下雨B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门C.打开电视机,任选一个频道,屏幕上正在播放新闻联播D.在五个抽屉中任意放入6本书,则至少有一个抽屉里不少于2本书5. 掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.必有5次正面向上C.可能有7次正面向上D.不可能有10次正面向上6. 在▱ABCD中,AC ,BD 是两条对角线,现从以下四个关系式:① AB =BC ,②AC =BD ,③AC ⊥BD ,④ AB ⊥BC 中任选一个作为条件,可推出▱ABCD 是菱形的概率为( ) A.12B.14C.34D.257. 如图,△ABC 是一块绿化带,将阴影部分修建为花圃,已知AB =13,AC =5,BC =12,阴影部分是△ABC 的内切圆.一只自由飞翔的小鸟随机落在这块绿化带上,则小鸟落在花圃上的概率为( )A.115πB.215πC.415πD.π58. 将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A.25B.12C.35D .无法确定二、填空题9. 从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知口袋中有10个黑球和若干个白球,这些球除颜色外,其他都一样,由此估计口袋中有 个白球.10. 2019·贵阳一个袋中装有m 个红球,10个黄球,n 个白球,每个球除颜色外都相同,任意摸出1个球,如果摸到黄球的概率与不是黄球的概率相同,那么m 与n 的关系是____________.11. 有五张卡片(形状、大小、质地等均相同),正面分别画有下列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆.将卡片背面朝上洗匀,从中任取一张,其正面图形既是轴对称图形,又是中心对称图形的概率是________.12. 在一个不透明的袋子中有若干个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表:根据试验所得数据,估计“摸出黑球”的概率是________(结果保留小数点后一位).13. (2019·浙江台州)一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是__________.14. 一个不透明的袋中装有除颜色不同外其余均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出1个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球有________个.15. 如图,在△ABC中,∠C=90°,AC=BC.如果在AB上任取一点M,那么AM≤AC的概率是________.16. 任取不等式组⎩⎨⎧k -3≤0,2k +5>0的一个整数解,则能使关于x 的方程2x +k =-1的解为非负数的概率为________.三、解答题17. 甲、乙、丙三名同学站成一排合影留念.(1)请按从左向右的顺序列出所有可能站位的结果; (2)求出甲同学站在中间位置的概率.18. 方案设计盒中装有红球、黄球共10个,每个球除颜色不同外其余都相同,每次从盒中摸出1个球,摸三次,不放回,请你按要求设计盒中红球的个数. (1)“摸出的3个球都是红球”是不可能事件; (2)“摸出红球”是必然事件;(3)“至少摸出2个黄球”是确定性事件; (4)“至少摸出2个黄球”是随机事件.19.某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1min 的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理.下面是这四名同学提供的部分信息:甲:将全体测试数据分成6组绘成直方图(如图); 乙:跳绳次数不少于105次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12; 丁:第②、③、④组的频数之比为4∶17∶15. 根据这四名同学提供的材料,请解答如下问题:(1)这次跳绳测试共抽取多少名学生?各组有多少人?(2)如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级达到跳绳优秀的人数为多少?(3)以每组的组中值(每组的中点对应的数据)作为这组跳绳次数的代表,估计这批学生1 min 跳绳次数的平均值.20. A,B,C三人玩篮球传球游戏,游戏规则:第一次传球由A将球随机地传给B,C两人中的某一人,以后的每一次传球都是由上次的传球者随机地传给其他两人中的某一人.(1)求两次传球后,球恰好在B手中的概率;(2)求三次传球后,球恰好在A手中的概率.21. 某水果公司以1.5元/千克的成本价新进了20000千克雪梨,销售人员首先从所有的雪梨中随机地抽取若干千克,进行了“雪梨损坏率”的统计,并把获得的数据记录在下表中.(1)请你帮忙完成此表;(2)如果公司希望售完这些雪梨后所得的税前利润超过10000元,那么在出售雪梨(已去掉损坏的雪梨)时,售价最低应定为多少元/千克(结果精确到0.1元/千克)?22. 想经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时:(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间均为30秒,在绿灯总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.23. 如图①,在Rt△ABC中,∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.(1)若Rt△ABC的两直角边长之比为2∶3,现随机向图②掷一枚小针,则针尖落在四个直角三角形区域的概率是多少?(2)若正方形EFMN的边长为8,Rt△ABC的周长为18,求Rt△ABC的面积.24. 母亲节当天,小明去花店买花送给母亲,挑中了康乃馨和兰花两种花.已知康乃馨每枝5元,兰花每枝3元,小明只有30元,希望购买花的枝数不少于7枝,其中至少有一枝是康乃馨.(1)小明一共有多少种可能的购买方案?列出所有方案;(2)如果小明先购买一张2元的祝福卡,再从(1)中任选一种方案买花,求他能实现购买愿望的概率.2021中考数学专题冲刺训练:概率-答案一、选择题1. 【答案】D2. 【答案】C[解析]本题考查必然事件和不可能事件的概念,以及大量重复试验下,用频率估计概率.必然事件是一定会发生的事件,因而概率为1,选项A正确;通过大量重复试验,可以将频率近似地当作概率,选项B正确;概率很小的事件也可能发生,只是发生的机率比较小,选项C错误;掷一枚图钉,“钉尖朝上”的概率近似是大量重复试验发生的频率,不能用列举法求得,选项D正确.3. 【答案】D4. 【答案】D[解析] 阴天和下雨没有必然关联,因此是一个随机事件;黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门也是一个随机事件;打开电视机,任选一个频道,屏幕上正在播放新闻联播也是一个随机事件;选项D包含着抽屉原理,是一个必然事件,也是一个确定性事件.5. 【答案】C[解析] 因为一枚质地均匀的硬币只有正、反两面,所以不管掷多少次,硬币正面朝上的概率都是12,所以掷一枚质地均匀的硬币10次,可能有7次正面向上.故选C.6. 【答案】A[解析] ①AB=BC,③AC⊥BD能够推出▱ABCD为菱形,4种情形中有2种符合要求,所以所求概率为24=12.7. 【答案】B[解析] 因为132=122+52,即AB2=BC2+AC2,所以△ABC为直角三角形,所以△ABC的内切圆半径=12×(12+5-13)=2.所以S△ABC=12AC·BC=12×12×5=30,S圆=4π.所以小鸟落在花圃上的概率=S圆S△ABC=4π30=215π.故选B.8. 【答案】B二、填空题9. 【答案】20[解析]摸了150次,其中有50次摸到黑球,则摸到黑球的频率是=,设口袋中大约有x个白球,则=,解得x=20.经检验,x=20是原方程的解,故答案为20.10. 【答案】m+n=10[解析] ∵一个袋中装有m个红球,10个黄球,n个白球,摸到黄球的概率与不是黄球的概率相同,∴m与n的关系是m+n=10.故答案为m+n=10.11. 【答案】25[解析] 五种图形中,既是中心对称图形,又是轴对称图形的有线段、圆2种,所以所求概率为2 5.12. 【答案】0.4[解析] 利用大量重复试验下摸球的频率可以估计摸球的概率.观察表格发现随着摸球次数的增多,频率逐渐稳定在0.4附近,故摸到黑球的频率估计值为0.4.故答案为0.4.13. 【答案】4 9【解析】画树状图如图所示:一共有9种等可能的情况,两次摸出的小球颜色不同的有4种,∴两次摸出的小球颜色不同的概率为49;故答案为:49.14. 【答案】8[解析] 由题意可得,摸到黑球和白球的频率之和为1-0.4=0.6,所以球的总个数为(8+4)÷0.6=20,所以红球有20-(8+4)=8(个).15. 【答案】22 [解析] 在等腰直角三角形ABC 中,设边AC 的长为1,则边AB的长为 2.在AB 上取点D ,使AD =1,则点M 在线段AD 上时,才满足条件.故在AB 上任取一点M ,AM ≤AC 的概率为12=22.16. 【答案】13 [解析] 因为不等式组⎩⎨⎧k -3≤0,2k +5>0的解集为-52<k≤3,所以不等式组的整数解为-2,-1,0,1,2,3. 关于x 的方程2x +k =-1的解为x =-k +12. 因为关于x 的方程2x +k =-1的解为非负数, 所以k +1≤0,解得k≤-1,所以能使关于x 的方程2x +k =-1的解为非负数的k 的值为-1,-2, 所以能使关于x 的方程2x +k =-1的解为非负数的概率为26=13.三、解答题17. 【答案】解:(1)三名同学的站法从左到右有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲),共6种等可能的结果.(2)甲同学站在中间位置的结果有2种,记为事件A ,所以P(A)=26=13.18. 【答案】解:(1)2个或1个. (2)8个或9个. (3)9个或1个.(4)多于1个且小于9个.19. 【答案】解:(1)第①组频率为1-96%=0.04. ∴第②组频率为0.12-0.04=0.08, 从而,总人数为12÷0.08=150人.又②③④组的频数之比为4∶17∶15,可算得第①~⑥组的人数分别为6、12、51、45、24、12.(2)第⑤、⑥两组的频率之和为0.16+0.08=0.24.由样本是随机抽取的,估计全年级有900×0.24=216人达到优秀. (3)x = 100×6+110×12+120×51+130×45+140×24+150×12150=127(次).20. 【答案】解:(1)根据题意,画树状图如下:∵共有4种等可能的结果,两次传球后,球恰好在B 手中的结果只有1种, ∴两次传球后,球恰好在B 手中的概率为14. (2)根据题意,画树状图如下:∵共有8种等可能的结果,三次传球后,球恰好在A 手中的结果有2种, ∴三次传球后,球恰好在A 手中的概率为28=14.21. 【答案】解:(1)表中从上到下依次填:0.101,0.097,0.097,0.103,0.101,0.098,0.099,0.103.(2)填完表后,从表中可以看出,雪梨损坏的频率在常数0.1左右摆动,并且随统计量的增加,这种规律逐渐明显,那么可以估计雪梨损坏的概率为0.1, 则在20000千克雪梨中完好的雪梨的质量约为20000×(1-0.1)=18000(千克),完好的雪梨的实际进价为1.5×2000018000=53(元/千克). 设雪梨的售价为x 元/千克,则有 ⎝ ⎛⎭⎪⎫x -53×18000>10000,解得x>2.2. 故在出售雪梨时,售价最低应定为2.3元/千克.22. 【答案】(1)根据题意,画出树状图如下:故P(三辆车全部同向而行)=19. (2)P(至少有两辆车向左转)=727.(3)依题意得,汽车右转、左转、直行的概率分别为25,310,310,在不改变各方向绿灯亮的总时间的条件下,可调整绿灯亮的时间如下: 左转绿灯亮的时间为90×310=27(秒); 直行绿灯亮的时间为90×310=27(秒); 右转绿灯亮的时间为90×25=36(秒).23. 【答案】(1)因为Rt △ABC 的两直角边长之比为2∶3, 所以设b =2k ,a =3k ,由勾股定理,得c =a2+b2=13k ,所以针尖落在四个直角三角形区域的概率为4×12×2k×3k 13k2=1213. (2)因为正方形EFMN 的边长为8,所以c =8,所以a2+b2=c2=64. 因为Rt △ABC 的周长为18, 即a +b +c =18, 所以a +b =10,所以Rt △ABC 的面积=12ab =14[(a +b)2-(a2+b2)] =9.24. 【答案】(1)设小明购买x 枝康乃馨,y 枝兰花,其中x≥1,x ,y 均为整数,则⎩⎨⎧5x +3y≤30,①7≤x +y.②①+②×3,得5x +3y +21≤30+3x +3y , 所以x≤92,所以1≤x≤92. 当x =1时,5×1+3y≤30, 所以y≤253,所以y 可取8,7,6,所以可购买1枝康乃馨,8枝兰花或1枝康乃馨,7枝兰花或1枝康乃馨,6枝兰花.当x =2时,5×2+3y≤30, 所以y≤203,所以y 可取6,5,所以可购买2枝康乃馨,6枝兰花或2枝康乃馨,5枝兰花. 当x =3时,5×3+3y≤30, 所以y≤5,所以y 可取5,4,所以可购买3枝康乃馨,5枝兰花或3枝康乃馨,4枝兰花. 当x =4时,5×4+3y≤30, 所以y≤103,所以y 可取3, 所以可购买4枝康乃馨,3枝兰花. 综上所述,共有8种购买方案. 方案如下表:(单位:枝)(2)若小明先购买一张2元的祝福卡,则5x+3y≤28,则他能实现购买愿望的方案为方案二、方案三、方案四、方案五、方案七,共5种,所以从(1)中任选一种方案买花,他能实现购买愿望的概率为5 8.。
2021年 中考数学 专题复习:统计与概率(含答案)
2021年 中考数学 专题复习:统计与概率一、选择题1. 甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是s 2甲=0.90,s 2乙=1.22,s 2丙=0.43,s 2丁=1.68.在本次射击测试中,成绩最稳定的是( )A .甲B .乙C .丙D .丁2. 如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是 ( )A .12B .13C .49D .593. 2018·大连一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,从中随机摸出一个小球,记下标号后放回,再从中随机摸出一个小球并记下标号,两次摸出的小球标号之和是偶数的概率是( ) A.13B.49C.12D.594. (2019•湖北天门)下列说法正确的是A .了解我市市民知晓“礼让行人”交通新规的情况,适合全面调查B .甲、乙两人跳远成绩的方差分别为S 2甲=3,S 2乙=4,说明乙的跳远成绩比甲稳定C .一组数据2,2,3,4的众数是2,中位数是2.5D .可能性是1%的事件在一次试验中一定不会发生5. 某小组做“用频率估计概率”的试验时,绘出的某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是( ) A .抛掷一枚硬币,出现正面朝上B .掷一枚正六面体骰子,向上一面的点数是3C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃D .从一个装有2个红球、1个黑球的袋子中任取一球,取到的是黑球6. (2019•湖南株洲)若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为 A .2 B .3C .4D .57. 如图,正方形ABCD 内有一个内切圆⊙O.电脑可设计程序:在正方形内可随机产生一系列点,当点数很多时,电脑自动统计正方形内的点数为a ,⊙O 内的点数为b(在正方形边上和圆上的点不在统计中).根据用频率估计概率的原理,可推得π的大小是 ( )A .π≈a bB .π≈4b aC .π≈b aD .π≈4a b8. (2019•浙江绍兴)为了解某地区九年级男生的身高情况,随机抽取了该地区100名九年级男生,他们的身高x(cm)统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180cm 的概率是 A .0.85 B .0.57C .0.42D .0.159. (2019·甘肃天水)如图,正方形ABCD 内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为A .14B .12C .8π D .4π10. 将一枚飞镖任意投掷到如图所示的正六边形镖盘上,飞镖落在白色区域的概率为( )A.25B.12C.35D .无法确定二、填空题11. 某商品四天内每天每千克的进价与售价的信息如图所示,则售出这种商品每千克利润最大的是第天.12. 一个猜想是否正确,科学家们要经过反复的实验论证.下表是几位科学家“掷硬币”的实验数据:实验者 德·摩根 蒲丰 费勒 皮尔逊 罗曼诺夫斯基 掷币次数 6140 4040 10000 36000 80640 出现“正面朝上”的次数3109204849791803139699频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到0.1).13. 2019·贵阳一个袋中装有m个红球,10个黄球,n个白球,每个球除颜色外都相同,任意摸出1个球,如果摸到黄球的概率与不是黄球的概率相同,那么m 与n的关系是____________.14. 2018·湘西州农历五月初五为端午节,端午节吃粽子是中华民族的传统习俗.小明妈妈买了3个红豆粽、2个碱水粽、5个腊肉粽,粽子除了内部馅料不同外其他均相同.小明随意吃了1个,则吃到腊肉棕的概率为________.15. 一张圆桌旁有四个座位,A先坐在如图所示的位置上,B,C,D三人随机坐到其他三个座位上,则A与B不相邻坐的概率为________.16. 如图,在△ABC中,∠C=90°,AC=BC.如果在AB上任取一点M,那么AM≤AC的概率是________.17. 一个不透明的袋中装有除颜色不同外其余均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出1个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中红球有________个.三、解答题18. 随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540680640640780111010705460 (1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元.(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适吗?答:(填“合适”或“不合适”).②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.19. 某景区7月1日~7月7日一周的天气预报如图25-2-2,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.20. (2019·甘肃天水)天水市某中学为了解学校艺术社团活动的开展情况,在全校范围内随机抽取了部分学生,在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,围绕你最喜欢哪一项活动(每人只限一项)进行了问卷调查,并将调查结果绘制成如下两幅不完整的统计图.请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了__________名学生.(2)请你补全条形统计图.(3)扇形统计图中喜欢“乐器”部分扇形的圆心角为__________度.(4)请根据样本数据,估计该校1200名学生中喜欢“舞蹈”项目的共多少名学生?21. (2019▪贵州毕节)某地区在所有中学开展《老师,我想对你说》心灵信箱活动,为师生之间的沟通增设了一个书面交流的渠道.为了解两年来活动开展的情况,某课题组从全地区随机抽取部分中学生进行问卷调查.对“两年来,你通过心灵信箱给老师总共投递过封信?”这一调查项设有四个回答选项,选项A:没有投过;选项B:一封;选项C:两;选项D:三封及以上.根据接受问卷调查学生的回答,统计出各选项的人数以及所占百分比,分别绘制成如下条形统计图和扇形统计图:(1)此次抽样调查了500名学生,条形统计图中m=225,n=25;(2)请将条形统计图补全;(3)接受问卷调查的学生在活动中投出的信件总数至少有425封;(4)全地区中学生共有110000名,由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有多少名?2021年 中考数学 专题复习:统计与概率-答案一、选择题 1. 【答案】C2. 【答案】C[解析]本题解答时要分别算出大正方形的面积和阴影部分的面积,然后利用概率公式进行计算.设小正方形的边长为a ,则大正方形的面积为9a 2,阴影部分的面积为4×12×a ×2a=4a 2,则飞镖落在阴影部分的概率为:4a 29a =49,故选C .3. 【答案】D[解析] 列表得:共有9种等可能的结果,其中两次摸出的小球标号之和是偶数的结果有5种,所以两次摸出的小球标号之和是偶数的概率为59.4. 【答案】C【解析】A .了解我市市民知晓“礼让行人”交通新规的情况,适合抽样调查,A 错误;B .甲、乙两人跳远成绩的方差分别为S 2甲=3,S 2乙=4,说明甲的跳远成绩比乙稳定,B 错误;C .一组数据2,2,3,4的众数是2,中位数是2.5,正确;D .可能性是1%的事件在一次试验中可能会发生,D 错误. 故选C .5. 【答案】D [解析] 由折线图可知,这一结果出现的概率约为0.33.A .抛掷一枚硬币,出现正面朝上的概率为12=0.5,不符合题意;B .掷一枚正六面体骰子,向上一面的点数是3的概率为16≈0.17,不符合题意;C .一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为1352=0.25,不符合题意;D .从一个装有2个红球、1个黑球的袋子中任取一球,取到的是黑球的概率为13≈0.33,符合题意.故选D.6. 【答案】A【解析】当x ≤1时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去);当1<x<3时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2;当3≤x<6时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去);当x ≥6时,中位数与平均数相等,则得到:15(x+3+1+6+3)=3,解得x=2(舍去).所以x 的值为2.故选A .7. 【答案】B [解析] 设圆的半径为r ,则正方形的边长为2r.根据题意,得πr24r2≈b a ,故π≈4b a.故选B.8. 【答案】D【解析】样本中身高不低于180cm 的频率==0.15,所以估计他的身高不低于180cm 的概率是0.15. 故选D .9. 【答案】C【解析】设正方形ABCD 的边长为2a ,针尖落在黑色区域内的概率=22124a a ⨯π⨯=8.故选C .10. 【答案】B二、填空题11. 【答案】二 [解析]由图象中的信息可知,利润=售价-进价,利润最大的是第二天.12. 【答案】0.513. 【答案】m +n =10[解析] ∵一个袋中装有m 个红球,10个黄球,n 个白球,摸到黄球的概率与不是黄球的概率相同,∴m 与n 的关系是m +n =10. 故答案为m +n =10.14. 【答案】12[解析] 一共有10种等可能的结果,其中吃到腊肉粽的结果有5种,所以吃到腊肉粽的概率为12.15. 【答案】13 [解析] 可设第一个位置和第三个位置都与A 相邻.画树状图如下:∵共有6种等可能结果,A 与B 不相邻坐的结果有2种, ∴A 与B 不相邻坐的概率为13.16. 【答案】22 [解析] 在等腰直角三角形ABC 中,设边AC 的长为1,则边AB的长为 2.在AB 上取点D ,使AD =1,则点M 在线段AD 上时,才满足条件.故在AB 上任取一点M ,AM ≤AC 的概率为12=22.17. 【答案】8 [解析] 由题意可得,摸到黑球和白球的频率之和为1-0.4=0.6,所以球的总个数为(8+4)÷0.6=20, 所以红球有20-(8+4)=8(个).三、解答题18. 【答案】解:(1)780 680 640 (2)①不合适②用星期一到星期日的日平均营业额进行估算:780×30=23400(元).19. 【答案】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为47.(2)∵随机选择连续的两天的结果有晴晴,晴雨,雨阴,阴晴,晴晴,晴阴, ∴随机选择连续的两天,恰好天气预报都是晴的概率为26=13.20. 【答案】(1)8÷16%=50,所以在这次调查中,一共抽查了50名学生; (2)喜欢戏曲的人数为50–8–10–12–16=4(人), 条形统计图为:11 / 11 (3)扇形统计图中喜欢“乐器”部分扇形的圆心角的度数为360°×1650=115.2°; 故答案为50;115.2; (4)1200×1250=288, 所以估计该校1200名学生中喜欢“舞蹈”项目的共288名学生.21. 【答案】(1)此次调查的总人数为150÷30%=500(人),则m=500×45%=225,n=500×5%=25,故答案为:500,225,25;(2)C 选项人数为500×20%=100(人),补全图形如下:(3)1×150+2×100+3×25=425.答:接受问卷调查的学生在活动中投出的信件总数至少有425封,故答案为:425;(4)由此次调查估算,在此项活动中,全地区给老师投过信件的学生约有110000×(1﹣45%)=60500(名).。
中考数学复习攻略 专题5 统计与概率综合(含答案)
专题五 统计与概率综合统计图表:认真审题,从统计图表中获取有用信息,根据题意求出相应的量.统计量的计算:中位数是排出来的,众数是数出来的,平均数、方差是算出来的.概率的计算和应用:利用画树状图或列表法列举所有等可能结果是解决这类题目的关键.利用画树状图或列表法可以不重复不遗漏地列出所有等可能的结果,列表法适合于两步完成的事件,画树状图适合两步或两步以上完成的事件.注意用到的知识点:概率等于所求情况数与总情况数之比.中考重难点突破 统计图表与三数的综合【例1】(2021·苏州中考)为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如表.班级一班 二班 三班 四班 五班 废纸质量/kg4.54.45.13.35.7则每个班级回收废纸的平均质量为( C ) A .5 kg B .4.8 kg C .4.6 kg D .4.5 kg【解析】求五个班废纸回收质量的平均数即可得出答案.1.(2021·盘锦中考)甲、乙、丙、丁四人10次随堂测验的成绩如图所示,从图中可以看出这10次测验平均成绩较高且较稳定的是( C )A .甲B .乙C .丙D .丁概率的计算【例2】(2019·百色适应性演练)欢度端午节,小新用不透明袋子装了4个粽子来学校与同学分享,其中有豆沙棕和肉棕各1个,板栗粽2个,这些粽子形状与大小完全一样.(1)若小新随机从袋子中取出一个粽子,取出的是肉粽的概率是多少?(2)若小新随机从袋子中取出两个粽子,试用画树状图或列表的方法表示所有可能的结果,并求出小新取出的两个都是板栗粽的概率.【解析】(1)直接根据概率公式计算可得结果;(2)画树状图得出所有等可能结果,再从中找到符合条件的结果数,利用概率公式计算可得结果. 【解答】解:(1)∵一共有4个粽子,其中肉粽有1个,∴取出的是肉粽的概率是14;(2)由题意,画树状图:由图可知,共有12种等可能的结果,其中小新取出的两个都是板栗粽的结果有2种,∴小新取出的两个都是板栗粽的概率为212 =16.2.(2021·南通中考)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4. (1)随机摸取一个小球的标号是奇数,该事件的概率为________;(2)随机摸取一个小球后放回,再随机摸取一个小球.求两次取出小球标号的和等于5的概率.解:(1)12;(2)由题意,画树状图:由图可知,共有16种等可能的结果,其中两次取出小球标号的和等于5的结果有4种,∴两次取出小球标号的和等于5的概率为416 =14.统计与概率的综合【例3】(2021·西藏中考)为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调查结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.甲 乙(1)在抽取的200名学生中,选择“演讲比赛”的人数为________,在扇形统计图中,m 的值为________; (2)根据本次调查结果,估计全校2 000名学生中选择“文艺汇演”的学生大约有多少人?(3)现从喜爱“知识竞赛”的四名同学a ,b ,c ,d 中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a 同学参加的概率.【解析】(1)总人数乘以A 对应的百分比即可求出其人数,再根据四种方案的人数之和等于总人数求出C 方案人数,再用C 方案人数除以总人数即可得出m 的值;(2)用总人数乘以样本中B 方案人数所占比例即可得出答案;(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)40;30;[选择“演讲比赛”的人数为200×20%=40(人),则选择“书画展览”的人数为200-(40+80+20)=60(人),∴在扇形统计图中,m %=60200×100%=30%,即m =30.](2)估计全校2 000名学生中选择“文艺汇演”的学生大约有2 000×80200=800(人);(3)由题意,列表:a b c da (b ,a ) (c ,a )(d ,a ) b (a ,b )(c ,b ) (d ,b ) c (a ,c ) (b ,c ) (d ,c ) d (a ,d ) (b ,d ) (c ,d )由表可知,共有12种等可能的结果,其中a 同学参加的结果有6种,∴a 同学参加的概率为612 =12.3.(2020·百色一模)学校实施新课程改革以来,学生的学习能力有了很大提高,陈老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差).并将调查结果绘制成以下两幅不完整的统计图,请根据统计图解答下列问题:(1)本次调查中,陈老师一共调查了______名学生;(2)将条形统计图补充完整;扇形统计图中D 类学生所对应的圆心角是多少度?(3)为了共同进步,陈老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.解:(1)20;(2)C 类学生人数为20×25%=5(名),C 类女生人数为5-2=3(名).D 类学生所占的百分比为1-15%-50%-25%=10%,D 类学生人数为20×10%=2(名),D 类男生人数为2-1=1(名).补充条形统计图如图所示.扇形统计图中D 类学生所对应的圆心角是360°×10%=36°; (3)A 类学生中的两名女生分别记为A 1和A 2, 由题意,列表:女A 1 女A 2 男A 男D (女A 1,男D) (女A 2男D) (男A ,男D) 女D (女A 1,女D) (女A 2,女D) (男A ,女D)由表可知,共有6种等可能结果,其中一男一女的结果有3种,∴所选两位同学恰好是一名男生和一名女生的概率为36 =12 .中考专题过关1.(2021·陕西中考)今年9月,第十四届全国运动会将在陕西省举行.本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图.根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为________,众数为________; (2)求这60天的日平均气温的平均数;(3)若日平均气温在18 ℃~21 ℃的范围内(包含18 ℃和21 ℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.解:(1)19.5 ℃;19 ℃;[这60天的日平均气温的中位数为19+202=19.5(℃),众数为19 ℃.](2)这60天的日平均气温的平均数为160×(17×5+18×12+19×13+20×9+21×6+22×4+23×6+24×5)=20(℃);(3)∵12+13+9+660×30=20(天),∴估计西安市今年9月份日平均气温为“舒适温度”的天数为20天. 2.(2021·营口中考)李老师为缓解小如和小意的压力,准备了四个完全相同(不透明)的锦囊,里面各装有一张纸条,分别写有:A.转移注意力,B.合理宣泄,C.自我暗示,D.放松训练.(1)若小如随机取走一个锦囊,则取走的是写有“自我暗示”的概率是________; (2)若小如和小意每人先后随机抽取一个锦囊(取走后不放回),请用列表法或画树状图的方法求小如和小意都没有取走“合理宣泄”的概率.解:(1)14;(2)由题意,画树状图:由图可知,共有12种等可能的结果,其中小如和小意都没有取走“合理宣泄”的结果有6种,∴小如和小意都没有取走“合理宣泄”的概率为612 =12.3.(2021·盐城中考)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.祖冲之(1)从π的小数部分随机取出一个数字,估计数字是6的概率为________;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)解:(1)110;(2) 甲 乙 丙 丁 甲 (乙,甲) (丙,甲) (丁,甲) 乙 (甲,乙) (丙,乙) (丁,乙) 丙 (甲,丙) (乙,丙) (丁,丙) 丁 (甲,丁) (乙,丁) (丙,丁)由表可知,共有∴其中有一幅是祖冲之的概率为612 =12.4.(2021·枣庄中考)某中学为组织学生参加庆祝中国共产党成立100周年书画展评活动,全校征集学生书画作品.王老师从全校20个班中随机抽取了A ,B ,C ,D 四个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.图1图2(1)王老师采取的调查方式是________(填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品______件,并补全条形统计图;(2)在扇形统计图中,表示C 班的扇形圆心角的度数为________;(3)如果全校参展作品中有4件获得一等奖,其中有1件作品的作者是男生,3件作品的作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)解:(1)抽样调查;24;B 班级的件数有4÷60°360°-4-10-4=6(件),补全条形统计图如图所示;(2)150°;[1024×360°=150°.](3)由题意,画树状图如图:由图可知,共有12种等可能的结果,其中恰好抽中一男一女的结果有6种,∴P (恰好抽中一男一女)=612 =12.5.(2021·济宁中考)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是________; (2)请补全条形统计图;(3)若该校九年级共有学生1 200人,则估计该校“良好”的人数是________;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率.解:(1)108°;[在这次调查中,“优秀”所在扇形的圆心角的度数是360°×30%=108°.] (2)这次调查的人数为12÷30%=40(人).则及格的人数为40-3-17-12=8(人).补全条形统计图如图;(3)510人;[估计该校“良好”的人数为1 200×1740=510(人).](4)由题意,画树状图如图:由图可知,共有6种等可能的结果,其中抽到两名男生的结果有2种,26=1 3.∴抽到两名男生的概率为。
2021年江苏省中考数学真题分类汇编:统计与概率(附答案解析)
2021年江苏省中考数学真题分类汇编:统计与概率一.选择题(共9小题)1.(2021•南通)以下调查中,适宜全面调查的是()A.了解全班同学每周体育锻炼的时间B.调查某批次汽车的抗撞击能力C.调查春节联欢晚会的收视率D.鞋厂检测生产的鞋底能承受的弯折次数2.(2021•无锡)已知一组数据:58,53,55,52,54,51,55,这组数据的中位数和众数分别是()A.54,55B.54,54C.55,54D.52,55 3.(2021•徐州)第七次全国人口普查的部分结果如图所示.根据该统计图,下列判断错误的是()A.徐州0~14岁人口比重高于全国B.徐州15~59岁人口比重低于江苏C.徐州60岁以上人口比重高于全国D.徐州60岁以上人口比重高于江苏4.(2021•常州)以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是()A.B.C.D.5.(2021•宿迁)已知一组数据:4,3,4,5,6,则这组数据的中位数是()A.3B.3.5C.4D.4.5 6.(2021•泰州)“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则()A.P=0B.0<P<1C.P=1D.P>1 7.(2021•徐州)甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.红色黄色绿色总计糖果袋子甲袋2颗2颗1颗5颗乙袋4颗2颗4颗10颗若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋()A.摸到红色糖果的概率大B.摸到红色糖果的概率小C.摸到黄色糖果的概率大D.摸到黄色糖果的概率小8.(2021•苏州)为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如表:班级一班二班三班四班五班4.5 4.45.1 3.3 5.7废纸重量(kg)则每个班级回收废纸的平均重量为()A.5kg B.4.8kg C.4.6kg D.4.5kg 9.(2021•扬州)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽二.填空题(共5小题)10.(2021•泰州)某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是.11.(2021•盐城)一组数据2,0,2,1,6的众数为.12.(2021•连云港)一组数据2,1,3,1,2,4的中位数是.13.(2021•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.14.(2021•扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是.三.解答题(共16小题)15.(2021•徐州)如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,A1、B1、B2…D3、D4分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口A1处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内.用画树状图的方法,求圆球落入③号槽内的概率.16.(2021•南通)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表序号1234567甲种西瓜75858688909696(分)80838790909294乙种西瓜(分)甲、乙两种西瓜得分统计表平均数中位数众数甲种西瓜88a96乙种西瓜8890b (1)a=,b=;(2)从方差的角度看,种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.17.(2021•泰州)近5年,我省家电业的发展发生了新变化.以甲、乙、丙3种家电为例,将这3种家电2016~2020年的产量(单位:万台)绘制成如图所示的折线统计图,图中只标注了甲种家电产量的数据.观察统计图回答下列问题:(1)这5年甲种家电产量的中位数为万台;(2)若将这5年家电产量按年份绘制成5个扇形统计图,每个统计图只反映该年这3种家电产量占比,其中有一个扇形统计图的某种家电产量占比对应的圆心角大于180°,这个扇形统计图对应的年份是年;(3)小明认为:某种家电产量的方差越小,说明该家电发展趋势越好.你同意他的观点吗?请结合图中乙、丙两种家电产量变化情况说明理由.18.(2021•常州)为降低处理成本,减少土地资源消耗,我国正在积极推进垃圾分类政策,引导居民根据“厨余垃圾”、“有害垃圾”、“可回收物”和“其他垃圾”这四类标准将垃圾分类处理.调查小组就某小区居民对垃圾分类知识的了解程度进行了抽样调查,并根据调查结果绘制成统计图.(1)本次调查的样本容量是;(2)补全条形统计图;(3)已知该小区有居民2000人,请估计该小区对垃圾分类知识“完全了解”的居民人数.19.(2021•无锡)某企业为推进全民健身活动,提升员工身体素质,号召员工开展健身锻炼活动,经过两个月的宣传发动,员工健身锻炼的意识有了显著提高.为了调查本企业员工上月参加健身锻炼的情况,现从1500名员工中随机抽取200人调查每人上月健身锻炼的次数,并将调查所得的数据整理如下:某企业员工参加健身锻炼次数的频数分布表锻炼次数x (代号)0<x≤5(A)5<x≤10(B)10<x≤15(C)15<x≤20(D)20<x≤25(E)25<x≤30(F)频数10a68c246频率0.05b0.34d0.120.03(1)表格中a=;(2)请把扇形统计图补充完整;(只需标注相应的数据)(3)请估计该企业上月参加健身锻炼超过10次的员工有多少人?20.(2021•南京)某市在实施居民用水定额管理前,对居民生活用水情况进行了调查.通过简单随机抽样,获得了100个家庭去年的月均用水量数据,将这组数据按从小到大的顺序排列,其中部分数据如表:序号12...2526...5051...7576 (99100)月均用水量/t1.3 1.3… 4.5 4.5… 6.4 6.8…1113…25.628(1)求这组数据的中位数.已知这组数据的平均数为9.2t,你对它与中位数的差异有什么看法?(2)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费.若要使75%的家庭水费支出不受影响,你觉得这个标准应该定为多少?21.(2021•宿迁)某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了尚不完整的统计图表:人口年龄结构统计表类别A B C D 年龄(t岁)0≤t<1515≤t<6060≤t<65t≥65人数(万人) 4.711.6m 2.7根据以上信息解答下列问题:(1)本次抽样调查,共调查了万人;(2)请计算统计表中m的值以及扇形统计图中“C”对应的圆心角度数;(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.22.(2021•连云港)端午节吃粽子是中华民族的传统习俗.某食品厂为了解市民对去年销量较好的A、B、C、D四种粽子的喜爱情况,在端午节前对某小区居民进行抽样调查(每人只选一种粽子),并将调查情况绘制成两幅尚不完整的统计图.根据以上信息,解答下列问题:(1)补全条形统计图;(2)扇形统计图中,D种粽子所在扇形的圆心角是°;(3)这个小区有2500人,请你估计爱吃B种粽子的人数为.23.(2021•苏州)某学校计划在八年级开设“折扇”、“刺绣”、“剪纸”、“陶艺”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“陶艺”课程的学生占%;(3)若该校八年级一共有1000名学生,试估计选择“刺绣”课程的学生有多少名?24.(2021•扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:抽样调查各类喜欢程度人数统计表喜欢程度人数A.非常喜50人欢m人B.比较喜欢C.无所谓n人D.不喜欢16人根据以上信息,回答下列问题:(1)本次调查的样本容量是;(2)扇形统计图中表示A程度的扇形圆心角为°,统计表中m=;(3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).25.(2021•泰州)江苏省第20届运动会将在泰州举办,“泰宝”和“凤娃”是运动会吉祥物.在一次宣传活动中,组织者将分别印有这两种吉祥物图案的卡片各2张放在一个不透明的盒子中并搅匀,卡片除图案外其余均相同.小张从中随机抽取2张换取相应的吉祥物,抽取方式有两种:第一种是先抽取1张不放回,再抽取1张;第二种是一次性抽取2张.(1)两种抽取方式抽到不同图案卡片的概率(填“相同”或“不同”);(2)若小张用第一种方式抽取卡片,求抽到不同图案卡片的概率.26.(2021•徐州)某市近年参加初中学业水平考试的人数(以下简称“中考人数”)的情况如图所示.根据图中信息,解决下列问题.(1)这11年间,该市中考人数的中位数是万人;(2)与上年相比,该市中考人数增加最多的年份是年;(3)下列选项中,与该市2022年中考人数最有可能接近的是.A.12.8万人B.14.0万人C.15.3万人(4)2019年上半年,该市七、八、九三个年级的学生总数约为.A.23.1万人B.28.1万人C.34.4万人(5)该市2019年上半年七、八、九三个年级的数学教师共有4000人,若保持数学教师与学生的人数之比不变,根据(3)(4)的结论,该市2020年上半年七、八、九三个年级的数学教师较上年同期增加多少人?(结果取整数)27.(2021•常州)在3张相同的小纸条上,分别写上条件:①四边形ABCD是菱形;②四边形ABCD有一个内角是直角;③四边形ABCD的对角线相等.将这3张小纸条做成3支签,放在一个不透明的盒子中.(1)搅匀后从中任意抽出1支签,抽到条件①的概率是;(2)搅匀后先从中任意抽出1支签(不放回),再从余下的2支签中任意抽出1支签.四边形ABCD同时满足抽到的2张小纸条上的条件,求四边形ABCD一定是正方形的概率.28.(2021•无锡)将4张分别写有数字1、2、3、4的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率.(请用“画树状图”或“列表”等方法写出分析过程)(1)取出的2张卡片数字相同;(2)取出的2张卡片中,至少有1张卡片的数字为“3”.29.(2021•盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表方法求解)30.(2021•宿迁)即将举行的2022年杭州亚运会吉祥物“宸宸”、“琮琮”、“莲莲”,将三张正面分别印有以上3个吉祥物图案的卡片(卡片的形状、大小、质地都相同)背面朝上、洗匀.(1)若从中任意抽取1张,抽得卡片上的图案恰好为“莲莲”的概率是.(2)若先从中任意抽取1张,记录后放回,洗匀,再从中任意抽取1张,求两次抽取的卡片图案相同的概率.(请用树状图或列表的方法求解)2021年江苏省中考数学真题分类汇编:统计与概率参考答案与试题解析一.选择题(共9小题)1.(2021•南通)以下调查中,适宜全面调查的是()A.了解全班同学每周体育锻炼的时间B.调查某批次汽车的抗撞击能力C.调查春节联欢晚会的收视率D.鞋厂检测生产的鞋底能承受的弯折次数【考点】全面调查与抽样调查.【专题】数据的收集与整理;应用意识.【分析】根据全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,抽样调查得到的调查结果比较近似进行解答.【解答】解:A.了解全班同学每周体育锻炼的时间,适合全面调查,故选项A符合题意;B.调查某批次汽车的抗撞击能力,适合抽样调查,故选项B不符合题意;C.调查春节联欢晚会的收视率,适合抽样调查,故选项C不符合题意;D.鞋厂检测生产的鞋底能承受的弯折次数,适合抽样调查,故选项D不符合题意;故选:A.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2.(2021•无锡)已知一组数据:58,53,55,52,54,51,55,这组数据的中位数和众数分别是()A.54,55B.54,54C.55,54D.52,55【考点】中位数;众数.【专题】数据的收集与整理;数据分析观念.【分析】根据众数和中位数的定义求解即可.【解答】解:将这组数据按照从小到大的顺序排列:51、52、53、54、55、55、58,中位数为54,∵55出现的次数最多,∴众数为55,故选:A.【点评】本题主要考查的是众数和中位数的定义,掌握相关定义是解题的关键.3.(2021•徐州)第七次全国人口普查的部分结果如图所示.根据该统计图,下列判断错误的是()A.徐州0~14岁人口比重高于全国B.徐州15~59岁人口比重低于江苏C.徐州60岁以上人口比重高于全国D.徐州60岁以上人口比重高于江苏【考点】条形统计图.【专题】数据的收集与整理;数据分析观念.【分析】根据条形统计图分析数据解答判断即可.【解答】解:根据表格内容可知,徐州0~14岁人口比重高于全国,故A正确,不符合题意;徐州15~59岁人口比重低于江苏,故B正确,不符合题意;徐州60岁以上人口比重高于全国,故C正确,不符合题意;徐州60岁以上人口比重低于江苏,故D错误,符合题意;故选:D.【点评】此题考查了条形统计图,根据条形统计图分析出正确的数据是解题的关键.4.(2021•常州)以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是()A.B.C.D.【考点】几何概率.【专题】概率及其应用;数据分析观念.【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.【解答】解:A.∵圆被等分成2份,其中阴影部分占1份,∴落在阴影区域的概率为:,故此选项不合题意;B.∵圆被等分成4份,其中阴影部分占1份,∴落在阴影区域的概率为:,故此选项不合题意;C.∵圆被等分成5份,其中阴影部分占2份,∴落在阴影区域的概率为:,故此选项不合题意;D.∵圆被等分成6份,其中阴影部分占2份,∴落在阴影区域的概率为:=,故此选项符合题意;故选:D.【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.5.(2021•宿迁)已知一组数据:4,3,4,5,6,则这组数据的中位数是()A.3B.3.5C.4D.4.5【考点】中位数.【专题】统计的应用;数据分析观念.【分析】将这组数据重新排列,再根据中位数的定义求解即可.【解答】解:将这组数据重新排列为3、4、4、5、6,所以这组数据的中位数为4,故选:C.【点评】本题主要考查中位数,解题的关键是掌握将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.6.(2021•泰州)“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则()A.P=0B.0<P<1C.P=1D.P>1【考点】随机事件.【专题】概率及其应用;数据分析观念;推理能力.【分析】先确定“14人中至少有2人在同一个月过生日”这一事件为必然事件,即可求解.【解答】解:“14人中至少有2人在同一个月过生日”这一事件为必然事件,∴“14人中至少有2人在同一个月过生日”这一事件发生的概率为P=1,故选:C.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(2021•徐州)甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.糖果红色黄色绿色总计袋子甲袋2颗2颗1颗5颗乙袋4颗2颗4颗10颗若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋()A.摸到红色糖果的概率大B.摸到红色糖果的概率小C.摸到黄色糖果的概率大D.摸到黄色糖果的概率小【考点】概率公式.【专题】概率及其应用;数据分析观念;推理能力.【分析】由概率公式分别求出小明从甲、乙两个袋子中,摸到红色糖果的概率和摸到黄色糖果的概率,即可求解.【解答】解:小明从甲袋子中各随机摸出一颗糖果,摸到红色糖果的概率为,摸到黄色糖果的概率为,从乙袋子中摸出一颗糖果,摸到红色糖果的概率为=,摸到黄色糖果的概率为=,∵>,∴小明从甲袋比从乙袋摸到黄色糖果的概率大,故选:C.【点评】本题考查了概率公式,求出小明从甲、乙两个袋子中,摸到红色糖果的概率和摸到黄色糖果的概率是解题的关键.8.(2021•苏州)为增强学生的环保意识,共建绿色文明校园,某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如表:班级一班二班三班四班五班4.5 4.45.1 3.3 5.7废纸重量(kg)则每个班级回收废纸的平均重量为()A.5kg B.4.8kg C.4.6kg D.4.5kg【考点】统计表;算术平均数.【专题】统计的应用;数据分析观念.【分析】将五个班废纸回收质量相加,再除以5即可得出答案.【解答】解:每个班级回收废纸的平均重量为×(4.5+4.4+5.1+3.3+5.7)=4.6(kg),故选:C.【点评】本题主要考查算术平均数和统计表,解题的关键是掌握算术平均数的定义.9.(2021•扬州)下列生活中的事件,属于不可能事件的是()A.3天内将下雨B.打开电视,正在播新闻C.买一张电影票,座位号是偶数号D.没有水分,种子发芽【考点】随机事件.【专题】概率及其应用;数据分析观念.【分析】根据事件发生的可能性大小判断即可.【解答】解:A、3天内将下雨,是随机事件;B、打开电视,正在播新闻,是随机事件;C、买一张电影票,座位号是偶数号,是随机事件;D、没有水分,种子不可能发芽,故是不可能事件;故选:D.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二.填空题(共5小题)10.(2021•泰州)某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是0.3.【考点】频数与频率.【专题】统计的应用;数据分析观念;运算能力.【分析】根据各组频率之和为1,可求出答案.【解答】解:由各组频率之和为1得,1﹣0.2﹣0.5=0.3,故答案为:0.3.【点评】本题考查频数和频率,理解“各组频数之和等于样本容量,各组频率之和等于1”是正确解答的前提.11.(2021•盐城)一组数据2,0,2,1,6的众数为2.【考点】众数.【专题】统计的应用;数据分析观念.【分析】根据众数的意义,找出这组数据中出现次数最多的数即可.【解答】解:这组数据2,0,2,1,6中出现次数最多的是2,共出现2次,因此众数是2,故答案为:2.【点评】本题考查众数,理解众数是一组数据中出现次数最多的数是正确解答的关键.12.(2021•连云港)一组数据2,1,3,1,2,4的中位数是2.【考点】中位数.【专题】数据的收集与整理;运算能力.【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:将这组数据从小到大的顺序排列:1,1,2,2,3,4,处于中间位置的两个数是2,2,那么由中位数的定义可知,这组数据的中位数是(2+2)÷2=2.故答案为:2.【点评】本题为统计题,考查中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.13.(2021•苏州)一个小球在如图所示的方格地砖上任意滚动,并随机停留在某块地砖上,每块地砖的大小、质地完全相同,那么该小球停留在黑色区域的概率是.【考点】几何概率.【专题】概率及其应用;应用意识.【分析】若将每个方格地砖的面积记为1,则图中地砖的总面积为9,其中阴影部分的面积为2,再根据概率公式求解可得.【解答】解:若将每个方格地砖的面积记为1,则图中地砖的总面积为9,其中阴影部分的面积为2,所以该小球停留在黑色区域的概率是,故答案为:.【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.14.(2021•扬州)已知一组数据:a、4、5、6、7的平均数为5,则这组数据的中位数是5.【考点】算术平均数;中位数.【专题】数据的收集与整理;数据分析观念.【分析】根据平均数的定义先算出a的值,再把数据按从小到大的顺序排列,找出最中间的数,即为中位数.【解答】解:∵这组数据的平均数为5,则,解得:a=3,将这组数据从小到大重新排列为:3,4,5,6,7,观察数据可知最中间的数是5,则中位数是5.故答案为:5.【点评】本题考查了平均数和中位数的意义.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.三.解答题(共16小题)15.(2021•徐州)如图,是一个竖直放置的钉板,其中,黑色圆面表示钉板上的钉子,A1、B1、B2…D3、D4分别表示相邻两颗钉子之间的空隙,这些空隙大小均相等,从入口A1处投放一个直径略小于两颗钉子之间空隙的圆球,圆球下落过程中,总是碰到空隙正下方的钉子,且沿该钉子左右两个相邻空隙继续下落的机会相等,直至圆球落入下面的某个槽内.用画树状图的方法,求圆球落入③号槽内的概率.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念.【分析】根据题意画出该过程的树状图,写出所有可能的情况,即可求圆球落入③号槽内的概率.【解答】解:根据题意,画出如下树形图,共有8种情况,其中落入③号槽的有3种,P(落入③号槽)=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.16.(2021•南通)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表序号123456775858688909696甲种西瓜(分)80838790909294乙种西瓜(分)。
备考2021年中考数学复习专题:统计与概率_数据收集与处理_总体、个体、样本、容量,综合题专训及答案
请根据以上统计表(图)解答下列问题:试的成绩(等级)情况,现从中随机抽取部分员工的成绩(等级),统计整理并制作了如下的统计图:(1)求这次抽样调查的样本容量,并补全图①;(2019丹阳.中考模拟) 为了传承中华优秀传统文化,某校组织了一次八年级350名学生参加的“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解本次大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩取整数,总分100分)作为样本进行整理,得到下列不完整的统计图表:成绩x/分频数频率50≤x<6020.0460≤x<7060.1270≤x<80980≤x<900.3690≤x≤100150.30请根据所给信息,解答下列问题:(1) a等于多少,b等于多少;(2)请补全频数分布直方图;(3)这次比赛成绩的中位数会落在哪个分数段;(4)若成绩在90分以上(包括90分)的为“优”等,则该年级参加这次比赛的350名学生中成绩“优”等的约有多少人?4、(2017高港.中考模拟) 为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.5、(2017徐州.中考模拟) 为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1) A组的频数a比B组的频数b小24,样本容量,a为:(2) n为°,E组所占比例为 %:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.6、(2019秀洲.中考模拟) 国学经典进校园,传统文化润心灵,某校开设了“围棋入门”、“诗歌汉字”、“翰墨飘香”、“史学经典”四门拓展课(每位学生必须且只选其中一门).(1)学校对八年级部分学生进行选课调查,得到如图所示的统计图,请估计该校八年级420名学生选“诗歌汉字”的人数.(2) “翰墨飘香”书画社的甲、乙、丙三人的书法水平相当,学校决定从这三名同学中任选两名参加市书法比赛,求甲和乙被选中的概率.(要求列表或画树状图)7、(2016舟山.中考真卷) 为了落实省新课改精神,我是各校都开设了“知识拓展类”、“体艺特长类”、“实践活动类”三类拓展性课程,某校为了解在周二第六节开设的“体艺特长类”中各门课程学生的参与情况,随机调查了部分学生作为样本进行统计,绘制了如图所示的统计图(部分信息未给出)根据图中信息,解答下列问题:(1)求被调查学生的总人数;(2)若该校有200名学生参加了“体艺特长类”中的各门课程,请估计参加棋类的学生人数;(3)根据调查结果,请你给学校提一条合理化建议.8、(2018龙岩.中考模拟) “不忘初心,牢记使命.”全面建设小康社会到了攻坚克难阶段. 为了解2017年全国居民收支数据国家统计局组织实施了住户收支与生活状况调查,按季度发布.调查采用分层、多阶段、与人口规模大小成比例的概率抽样方法,在全国31个省(区、市)的1650个县(市、区)随机抽选16万个居民家庭作为调查户.已知2017年前三季度居民人均消费可支配收入平均数是2016年前三季度居民人均消费可支配收入平均数的115%,人均消费支出为11423元,根据下列两个统计图回答问题:(以下计算最终结果均保留整数)(1)求年度调查的样本容量及2017年前三季度居民人均消费可支配收入平均数(元);(2)求在2017年前三季度居民人均消费支出中用于医疗保健所占圆心角度数;(3)求在2017年前三季度居民人均消费支出中用于居住的金额.9、(2017襄城.中考模拟) 今年是襄阳“创建文明城市”工作的第二年,为了更好地做好“创建文明城市”工作,市教育局相关部门对某中学学生“创文”的知晓率,采取随机抽样的方法进行问卷调查,调查结果分为“非常了解”,“比校了解”,“基本了解”,和“不了解”四个等级.小辉根据调查结果绘制了如图所示的统计图,请根据提供的信息回答问题:(1)本次调查中,样本容量是;(2)扇形统计图中“基本了解”部分所对应的圆心角的度数是;在该校2000名学生中随机提问一名学生,对“创文”不了解的概率估计值为;(3)请补全频数分布直方图.10、(2019梧州.中考模拟) 2019年4月23日是“第二十四个世界读书日”,我市某中学发起了“读好书”活动.为了解九年级学生阅读“艺术类、科普类、文学类、军事类“这四类书籍的情况,数学老师随机抽查了该年级学生课外阅读的数量,绘制了下面不完整的条形图和扇形图.(1)求本次抽查中阅读科普类书籍的人数,并补充完整条形图;(2)小明要从这四类书籍中任选两类来阅读,请你用列表法或树状图求小明刚好选择科普类和军事类书籍的概率.11、(2019海南.中考模拟) 某学校计划在“阳光体育”活动课程中开设乒乓球、羽毛球、篮球、足球四个体育活动项目供学生选择.为了估计全校学生对这四个活动项目的选择情况,体育老师从全体学生中随机抽取了部分学生进行调查(规定每人必须并且只能选择其中的一个项目),并把调查结果绘制成如图所示的不完整的条形统计图和扇形统计图,请你根据图中信息解答下列问题:(1)求参加这次调查的学生人数,并补全条形统计图;(2)求扇形统计图中“篮球”项目所对应扇形的圆心角度数;(3)若该校共有600名学生,试估计该校选择“足球”项目的学生有多少人?12、(2019乐山.中考真卷) 某校组织学生参加“安全知识竞赛”(满分为分),测试结束后,张老师从七年级名学生中随机地抽取部分学生的成绩绘制了条形统计图,如图所示.试根据统计图提供的信息,回答下列问题:(1)张老师抽取的这部分学生中,共有名男生,名女生;(2)张老师抽取的这部分学生中,女生成绩的众数是;(3)若将不低于分的成绩定为优秀,请估计七年级名学生中成绩为优秀的学生人数大约是多少.13、(2019铜仁.中考模拟) (2019·松桃模拟) 如图是某校九年级学生为灾区捐款情况抽样调查的条形图和扇形统计图.(1)求抽样调查的人数;(2)在扇形统计图中,求该样本中捐款15元的人数所占的圆心角度数;(3)若该校九年级学生有1000人,据此样本估计九年级捐款总数为多少元?14、(2019大连.中考模拟) 某校为了解本校九年级男生“引体向上”项目的训练情况,随机抽取该年级部分男生进行了一次测试(满分15分,成绩均记为整数分),按测试成绩m(单位:分)分为A、B、C、D四个组别并绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:分组成绩人数A12≤m≤1510B9≤m≤1122C6≤m≤8D m≤53(1)在被调查的男生中,成绩等级为D的男生有人,成绩等级为A的男生人数占被调查男生人数的百分比为%;(2)本次抽取样本容量为,成绩等级为C的男生有人;(3)若该校九年级男生有300名,估计成绩少于9分的男生人数.15、(2019长春.中考模拟) 据《中国教育报》2004年5月24日报道:目前全国有近3万所中小学建设了校园网,该报为了了解这近3万所中小学校园网的建设情况,从中抽取了4600所学校,对这些学校校园网的建设情况进行问卷调查,并根据答卷绘制了如图的两个统计图:说明:统计图1的百分数= ×100%;统计图2的百分数= ×100%.根据上面的文字和统计图提供的信息回答下列问题:(1)在这个问题中,总体指什么?样本容量是什么?(2)估计:在全国已建设校园网的中小学中:①校园网建设时间在2003年以后(含2003年)的学校大约有多少所?②校园网建设资金投入在200万元以上(不含200万元)的学校大约有多少所?(3)所抽取的4600所学校中,校园网建设资金投入的中位数落在那个资金段内?(4)图中还提供了其他信息,例如:校园网建设资金投入在10~50万元的中小学的数量最多等,请再写出其他两条信息.备考2021中考数学复习专题:统计与概率_数据收集与处理_总体、个体、样本、样本容量,综合题答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。
中考数学专题训练统计与概率(含解析)
中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。
2021中考数学冲刺专题训练统计与概率含解析
统计与概率一、选择题(本大题共8个小题.每小题5分.共40分.在每小题给出的四个选项中.只有一个选项是符合题目要求的)1.下列调查中.调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查【答案】C【解析】A.对全国初中学生视力情况的调查.适合用抽样调查.不合题意;B.对2019年央视春节联欢晚会收视率的调查.适合用抽样调查.不合题意;C.对一批飞机零部件的合格情况的调查.适合全面调查.符合题意;D.对我市居民节水意识的调查.适合用抽样调查.不合题意;故选:C.2.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队.这22名运动员的年龄(岁)如下表所示.该足球队队员的平均年龄是()A.12岁B.13岁C.14岁D.15岁【答案】B【解析】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁).故选:B.3.某校为了解全校同学五一假期参加社团活动的情况.抽查了100名同学.统计它们假期参加社团活动的时间.绘成频数分布直方图(如图).则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定【答案】B【解析】100个数据.中间的两个数为第50个数和第51个数.而第50个数和第51个数都落在第三组.所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图.由图可知.下列说法错误..的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】CA.扇形统计图能反映各部分在总体中所占的百分比.此选项正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为.超过.此选项正确;C.每天阅读1小时以上的居民家庭孩子占.此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是.此选项正确;故选:C.5.如图.正方形ABCD内的图形来自中国古代的太极图.现随机向正方形内掷一枚小针.则针尖落在黑色区域内的概率为()A.14B.12C.8πD.4π【答案】C【解析】设正方形ABCD的边长为2a.针尖落在黑色区域内的概率221248aaππ⨯⨯==.故选:C.6.一个不透明的盒子里有n个除颜色外其他完全相同的小球.其中有9个黄球.每次摸球前先将盒子里的球摇匀.任意摸出一个球记下颜色后再放回盒子.通过大量重复摸球实验后发现.摸到黄球的频率稳定在30%.那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.30【答案】D【解析】根据题意得9n=30%.解得n=30.所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.7.某射击运动员在训练中射击了10次.成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】根据图表可得10环的2次.9环的2次.8环的3次.7环的2次.6环的1次.所以可得众数是8.中位数是8.平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D8.商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量.如表:尺码/码36 37 38 39 40数量/双15 28 13 9 5商场经理最关注这组数据的( )A.众数B.平均数C.中位数D.方差【答案】A【解析】对这个鞋店的经理来说.他最关注的是哪一型号的卖得最多.即是这组数据的众数.故选:A.二、填空题(本大题共4个小题.每小题6分.共24分)9.董永社区在创建全国卫生城市的活动中.随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况.将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天).则扇形统计图B部分所对应的圆心角的度数是__________.【答案】108°【解析】∵被调查的总户数为915%60÷=(户).∴B类别户数为60(92112)18-++=(户).则扇形统计图B部分所对应的圆心角的度数是18 36010860⨯=︒︒.故答案为:108°.10.为了解某班学生体育锻炼的用时情况.收集了该班学生一天用于体育锻炼的时间(单位:小时).整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为_____小时.【答案】1.15.【解析】由图可知.该班一共有学生:81612440+++=(人).该班学生这天用于体育锻炼的平均时间为:(0.58116 1.51224)40 1.15⨯+⨯+⨯+⨯÷=(小时).故答案为1.15.11.从一个不透明的口袋中随机摸出一球.再放回袋中.不断重复上述过程.一共摸了150次.其中有50次摸到黑球.已知囗袋中仅有黑球10个和白球若干个.这些球除颜色外.其他都一样.由此估计口袋中有___个白球.【答案】20.【解析】摸了150次.其中有50次摸到黑球.则摸到黑球的频率是501 1503=.设口袋中大约有x个白球.则101103 x=+.解得20x.故答案为:20.12.在阳光中学举行的春季运动会上.小亮和大刚报名参加100米比赛.预赛分,,,A B C D四组进行.运动员通过抽签来确定要参加的预赛小组.小亮和大刚恰好抽到同一个组的概率是_______.【答案】1 4如下图所示.小亮和大刚两人恰好分在同一组的情况有4种.共有16种等可能的结果.∴小亮和大刚两人恰好分在同一组的概率是41 164=.故答案为:14.三、解答题(本大题共3个小题.每小题12分.共36分.解答应写出文字说明、证明过程或演算步骤)13.在“慈善一日捐”活动中.为了解某校学生的捐款情况.抽样调查了该校部分学生的捐款数(单位:元).并绘制成下面的统计图.(1)本次调查的样本容量是________.这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款.请你估计该校学生的捐款总数.【答案】(1)30.10;(2)平均数为12元;(3)学生的捐款总数为7200元.【解析】(1)本次调查的样本容量是6118530+++=.这组数据的众数为10元;故答案为:30.10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).14.本学期初.某校为迎接中华人民共和国建国七十周年.开展了以“不忘初心.缅怀革命先烈.奋斗新时代”为主题的读书活动。
(名师整理)最新人教版数学中考冲刺压轴题《统计与概率》专题训练(含答案解析)
中考数学压轴题强化训练:统计与概率1、在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x ,再从乙袋中任意摸出一个小球,记其标有的数字为y ,以此确定点M 的坐标(x ,y ). (1)请你用画树状图或列表的方法,写出点M 所有可能的坐标; (2)求点M (x ,y )在函数y=﹣2x的图象上的概率.2、某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:(1)这次调查的学生共有多少名?(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B.C.D.E).3、在四个完全相同的小球上分别标上1,2,3,4四个数字,然后装入一个不透明的口袋内搅匀,小明同学随机摸取一个小球记下标号,然后放回,再随机摸取一个小球,记下标号;(1)请你用画树状图或列表的方法分别表示小明同学摸球的所有可能出现的结果。
(2)按照小明同学的摸球方法,把第一次取出的小球的数字作为点M的横坐标,把第二次取出的小球的数字作为点M的纵坐标,试求出点M(x,y)落在直线y=x上的概率是多少?4、《政府工作报告》中提出了十大新词汇,为了解同学们对新词汇的关注度,某数学兴趣小组选取其中的A:“互联网+政务服务”,B:“工匠精神”,C:“光网城市”,D:“大众旅游时代”四个热词在全校学生中进行了抽样调查,要求被调查的每位同学只能从中选择一个我最关注的热词.根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学?(2)条形统计图中,m= ,n= ;(3)扇形统计图中,热词B所在扇形的圆心角是多少度?5、某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).图(1)项目人数/人108246C图(2)6、如图,转盘A 的三个扇形面积相等,分别标有数字1,2,3,转盘B 的四个扇形面积相等,分别标有数字1,2,3,4。
中考数学专题复习《统计与概率》经典例题及测试题(含答案)
中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。
备考2021年中考数学复习专题:统计与概率_数据分析_方差,单选题专训及答案
备考2021年中考数学复习专题:统计与概率_数据分析_方差,单选题专训及答
案
备 考 2021中 考 数 学 复 习 专 题 : 统 计 与 概 率 _数 据 分 析 _方 差 , 单 选 题 专 训
1、 (2020满洲里.中考模拟) 一组数据1,3,4,4,4,5,5,6的众数和方差分别是( ) A . 4,1 B . 4,2 C . 5,1 D . 5,2 2、 (2019盘锦.中考真卷) 下列说法正确的是( ) A . 方差越大,数据波动越小 B . 了解辽宁省初中生身高情况适合采用全面调查 C . 抛掷一枚硬币,正面向上是必然事件 D . 用 长为3cm,5cm,9cm的三条线段围成一个三角形是不可能事件 3、 (2019锦州.中考真卷) 甲、乙、丙、丁四名同学进行跳高测试,每人10次跳高成绩的平均数都是1.28m,方差分别是s甲 2=0.60,s乙2=0.62,s丙2=0.58,s丁2=0.45,则这四名同学跳高成绩最稳定的是( ) A. 甲 B . 乙 C . 丙 D . 丁 4、 (2019阜新.中考真卷) 商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:
图所示:
)如下
设两队队员身高的平均数依次为
A.
B.
,方差依次为 C.
,下列关系中完全正确的是( ) D.
备 考 2021中 考 数 学 复 习 专 题 : 统 计 与 概 率 _数 据 分 析 _方 差 , 单 选 题 答 案
2021年中考数学专题训练—统计与概率综合
2021年中考数学专题训练—统计与概率综合1.某学校组建了书法、音乐、美术、舞蹈、演讲五个社团,全校1600名学生每人都参加且只参加了其中一个社团的活动.校团委从这1600名学生中随机选取部分学生进行了参加活动情况的调查,并将调查结果制成了如图不完整的统计图.请根据统计图完成下列问题:参加本次调查有名学生,根据调查数据分析,全校约有名学生参加了音乐社团;请你补全条形统计图.2.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对该年级学生在2021年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2021年全年阅读中外名著的总本数.3.为了掌握某次数学模拟考试卷的命题质量与难度系数,命题教师选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩分为5组:第一组75~90;第二组90~105;第三组105~120;第四组120~135;第五组135~150.统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图.观察图形的信息,回答下列问题:请将频数分布直方图补充完整;若老师找到第五组中一个学生的语文、数学、英语三科成绩,如表.老师将语文、数学、英语成绩按照3:5:2的比例给出这位同学的综合分数.求此同学的综合分数.4.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b 班征集到作品 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率. 科目 语文 数学 英语 得分 120 146 1405.2021年3月20日上午8时,重庆国际马拉松赛在南滨路鸣枪开赛,来自30个国家和地区的3万多名跑者朝着快乐奔跑,最终埃塞俄比亚选手夺得男子组冠军,而女子全程前三名则由中国选手包揽.某校课外活动小组为了调查该校学生对“马拉松”喜爱的情况,随机对该校学生进行了调查,调查的结果分为“非常喜欢”、“比较喜欢”、“基本喜欢”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制成了两幅不完整的统计图,请解答下列总量:请你补全两种统计图并估算该校600名学生中“非常喜欢”马拉松的人数.6.双福育才中学为积极响应学校提出的“实现伟大育才梦,建设美丽双福”的号召,面向全校学生开展征文活动,校学生会对七年级各班一周内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)图中投稿篇数为2所对应的扇形的圆心角度数为,并将该条形统计图补充完整.(2)求学校七年级各班在这一周内投稿的平均篇数.(3)若全校共有72个班,请估计全校征文投稿不低于6篇的班级有多少个?7.重庆市巴川中学是全国啦啦操基地,每届学生对啦啦操技巧的掌握都将得到传承,初2021级的同学们本周正在认真学习啦啦操,为庆“六一”表演积极做准备.学校艺体处为了解同学们跳啦啦操的热情和喜爱情况,组织大队委对本年级学生进行随机抽样调查.大队委文艺副部长小王对抽样的同学们对啦啦操的喜爱程度分为四类:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢,并将自己的调查结果绘制成如图的统计图,请你结合图中所给信息解答下列问题:请将条形统计图补充完整;初2021级共有学生2400人,请你用小王的调查结果估计该年级“非常喜欢”和“比较喜欢”跳啦啦操的人数之和有多少人?8.学校教务处为了了解学生下午参加体育活动的情况,采用随机抽样的方式进行问卷调查,调查结果分为“篮球”、“足球”、“乒乓球”、“跳绳”“体育舞蹈”、“其他”六类,分别用A、B、C、D、E、F表示.根据调查结果绘制了如图所示两幅不完整的统计图.结合图中所给出的信息,请补全条形统计图,并根据抽样调查估计全校3600名学生中选择跳绳和体育舞蹈的总人数.9.2021年春节联欢晚会分为A(语言类)、B(歌舞类)、C(魔术类)、D(杂技类)四类节目.为了了解某养老院老人对这几类节目的喜好程度,民政部门在该养老院随机抽取部分老人进行了问卷调查,规定每位老人只能选一类自己最喜欢的节目,并制成了以下两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)补全条形统计图;(2)已知该养老院共有230位老人,请你估计该养老院喜欢语言类节目的老人大约有多少人?10.为丰富我校学生的课余生活,增强学生的综合能力,学校计划在下新开设A:国际象棋社;B:皮影社;C:话剧社;D:手语社这四个社团;为了解学生喜欢哪一个社团,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图,请结合图中信息解答下列问题:求样本中喜欢C社团的人数在扇形统计图中的圆心角的度数,并把条形统计图补充完整.11.随着一部在重庆取景拍摄的电影《火锅英雄》在山城的热播,山城人民又掀起了一股去吃洞子老火锅的热潮.某餐饮公司为了大力宣传和推广该公司的企业文化,准备举办一个火锅美食节.为此,公司派出了若干业务员到几个社区作随机调查,了解市民对火锅的喜爱程度.业务员小王将“喜爱程度”按A、B、C、D进行分类,并将自己的调查结果绘制成如下的统计图,请你结合图中所给信息解答下列问题:“喜爱程度”条形统计图“喜爱程度”扇形统计图(说明:A:非常喜欢;B:比较喜欢;C:一般喜欢;D:不喜欢)(1)请把条形统计图补充完整;(2)扇形统计图中A类所在的扇形的圆心角度数是;(3)若小王调查的社区大概有5000人,请你用小王的调查结果估计“非常喜欢”和“比较喜欢”的人数之和.12.电视节目“了不起的挑战”播出后深受中小学生的喜爱,小刚想知道我校学生最喜欢哪位明星,于是在我校随机抽取了一部分学生进行抽查(每人只能选一个自己最喜欢的明星),将调查结果进行了整理后绘制成如图两幅不完整的统计图,请结合图中提供的信息解答下列问题:(1)本次被调查的学生有人.并将两幅统计图补充完整.(2)若小刚所在学校有3500名学生,请根据图中信息,估计全校喜欢“阮经天”的人数.13.数学兴趣小组为了解我校初三年级1800名学生的身体健康情况,从初三随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.补全条形统计图,并估计我校初三年级体重介于47kg至53kg的学生大约有多少名.14.自1939年创办以来,重庆育才中学一直坚守文化底线,不断挑战自我极限,在沧桑文化中愈加根深叶茂.在今年,即将推出的本部改造计划不仅是文化审美层面的颠覆尝试,也是学校发展的巨大工程,其中三种style的民国大门各具特色,A磅礴大气,B清爽简约,C典雅古朴款,为调查民意学校让教职工进行投票呈现了四种结果,喜欢A款、喜欢B款、喜欢C款、都可以,现调查结果如下:(1)如图,喜欢C款的占20%,喜欢B款的占15%,则调查总人数为,扇形统计图中认为“都可以”的所占圆心角为度;根据题中信息补全条形统计图.(2)我们学校共有600名教职工,请根据上图估算喜欢A款的有多少人?15.重庆市某超市举行盛大的周年庆庆祝活动,推出“感恩顾客,回馈真情”抽奖活动,活动规定,凡购买商品价值不低于200元的顾客,都能参与一次抽奖活动,奖励的等级分为下列五等:A等级:奖励现金50元,B等级:奖励现金30元;C等级:奖励现金10元;D等级:奖励现金6元;E等级:呵呵,恭喜发财,下次再来(没有奖励)!超市根据部分顾客的抽奖情况,对抽奖结果进行分析,绘制了下列两幅不完整的统计图:根据提供的信息,求扇形统计图中“D等级”所对应的圆心角度数,并求出顾客抽一次奖的平均收益,并补全条形统计图.16.小明参加班委竞选,需进行演讲答辩与民主测评,民主测评时一人一票,按“优秀、良好、一般”三选一投票.如图是五位评委对小明“演讲答辩”的评分条形统计图及全班50位同学民主测评票数统计表,已知小明“演讲答辩”得分是95分(1)请补全条形统计图;(2)小明的民主测评得分是;(3)请求出小明的综合得分.17.在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.18.食品安全关系千家万户,春节期间,食监部门对某超市的甲、乙两种品牌的菜籽油进行了抽检,共随机抽取了36桶油进行检测,检测结果分成“优秀”、“合格”、“不合格”三个等级,已知乙种品牌的菜籽油全部合格,统计人员将数据处理后制成了如下的扇形统计图及折线统计图,其中扇形统计图表示甲种品牌菜籽油检测的结果,折线统计图表示甲、乙两种品牌菜籽油检测的结果.(1)甲、乙两种品牌的菜籽油各被抽取了多少桶进行检测?(2)甲、乙两种品牌的菜籽油检测结果中“优秀”各有多少桶?19.近年来,“小组合作学习”成为我区推动课堂教学活动改革,打造高效课堂的重要举措.某中学为了了解“小组合作学习”实施后学生的学习兴趣,随机调查了部分学生,并根据调查结果绘制成如图图表:(1)求调查的学生中学习兴趣“高”的人数的百分比和其所在扇形图中的圆心角的度数;(2)请把条形统计图补充完整;(3)已知该校有750人,请根据调查情况估计全校学习兴趣“极高”的人数是多少?20.某中学上学期开展了以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制如图所示的不完整的统计图,请你根据图中提供的信息补全条形统计图并估计该中学1500名学生中最喜爱律师职业的学生有多少名?21.“六一”儿童节前夕,某县××局准备给留守儿童赠送一批学习用品,先对某小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名、7名、8名、10名、12名这五种情形,并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据上述统计图,解答下列问题:(1)该校有个班级;各班留守儿童人数的中位数是;并补全条形统计图;(2)若该镇所有小学共有65个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.22.《中国足球改革总体方案》提出足球要进校园,为了解某校学生对校园足球喜爱的情况,随机对该校部分学生进行了调查,将调查结果分为“很喜欢”、“较喜欢”、“一般”、“不喜欢”四个等级,并根据调查结果绘制成了如下两幅不完整的统计图;(1)一共调查了名学生,请补全条形统计图;(2)在此次调查活动中,选择“一般”的学生中只有两人来自初三年级,现在要从选择“一般”的同学中随机抽取两人来谈谈各自对校园足球的感想,请用画树状图或列表法求选中的两人刚好都来自初三年级的概率.23.中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生;C类所占百分比为;(2)将图1补充完整;(3)现有6名学生,其中A类三名,B类三名,张华在A类,王雨在B类,从A、B中各选1名学生,请用列表法或树状图法求张华、王雨至少有一个被抽到的概率.24.创造节期间,重庆育才中学向学生征集校服自主设计作品.初三年级信息技术张老师从全年级32个班中随机抽取了A、B、C、D共四个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)张老师所调查的4个班征集到作品共件,其中B班征集到作品件,请把图2补充完整.(2)如果全年级参赛作品中有4件获全校一等奖,其中有2名作者是男生,2名作者是女生.现在要在获一等奖的四个人中抽两人去参加全校自主校服设计的走秀活动,求恰好抽中一男一女的概率(要求用树状图或列表法写出分析过程).25.某区教委对部分学校的七年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A 级:对学习很感兴趣,B级:对学习比较感兴趣,C级:对学习不敢兴趣)并将调查结果绘制成图1和图2的统计图(不完整)根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了名学生,图2中C级扇形的圆心角是度.并将图1补充完整.(2)已知A级中有4名数奥尖子学生,其中有2名男生,2名女生,B级中有3名体育尖子学生,其中有2名男生,1名女生,从这4名数奥尖子学生和3名体育尖子生中各选出1名学生,参加学校的“特长学生经验交流会”.利用”树状图“或者”列表”法求所选出的2名学生恰好是一名男生和一名女生的概率.26.我校学生社团下将新增四个社团:A.开心农场、B.小小书吧、C.宏帆传媒、D.学生大使团.为了了解学生对四个社团的喜欢情况,学生会干部随机抽取了部分学生进行调查,并将调查结果绘制成下列的统计图,请结合图中的信息解答下列问题:(1)在这次调查中,共调查了多少名学生?(2)请计算扇形统计图中B的圆心角;并将条形统计图补充完整;(3)为了了解学生喜欢“宏帆传媒”社团的原因,调查到喜欢“宏帆传媒”社团的5个学生中有2个初一的,3个初二的,现在这5个学生中任抽取2名学生参加座谈,请用树状图或列表的方法,求刚好抽到同一年级学生的概率.27.某校七年级(1)班班主任对本班学生进行了“我最喜欢的课外活动”的调查,并将调查结果分为书法和绘画类(记为A)、音乐类(记为B)、球类(记为C)、其它类(记为D).根据调查结果发现该班每个学生都进行了登记且每人只登记了一种自己最喜欢的课外活动.班主任根据调查情况把学生进行了归类,并制作了如下两幅统计图.请你结合图中所给信息解答下列问题:(1)七年级(1)班学生总人数为人,扇形统计图中D类所对应扇形的圆心角为度,请补全条形统计图;(2)学校将举行书法和绘画比赛,每班需派两名学生参加,A类4名学生中有两名学生擅长书法,另两名学生擅长绘画.班主任现从A类4名学生中随机抽取两名学生参加比赛,请你用列表或画树状图的方法求出抽到的两名学生恰好是一名擅长书法,另一名擅长绘画的概率.28.为贯彻政府报告中“全民创新,万众创业”的精神,某镇对辖区内所有的小微企业按年利润w(万元)的多少分为以下四个类型:A类(w<10),B类(10≤w<20),C类(20≤w<30),D类(w≥30),该镇政府对辖区内所有小微企业的相关信息进行统计后,绘制成以下条形统计图和扇形统计图,请你结合图中信息解答下列问题:(1)该镇本次统计的小微企业总个数是,扇形统计图中B类所对应扇形圆心角的度数为度,请补全条形统计图;(2)为了进一步解决小微企业在发展中的问题,该镇政府准备召开一次座谈会,每个企业派一名代表参会.计划从D类企业的4个参会代表中随机抽取2个发言,D类企业的4个参会代表中有2个来自高新区,另2个来自开发区.请用列表或画树状图的方法求出所抽取的2个发言代表都来自高新区的概率.29.经国家体育总局、重庆市××局批准,国家级青少年体育俱乐部-重庆巴蜀青少年体育俱乐部-于2021年12月20日成立.体育老师吴老师为了了解七年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如下两幅不完整的统计图(说明:每位学生只选一种自己喜欢的一种球类),请根据这两幅图形解答下列问题:(1)将两个不完整的统计图补充完整;(2)七(一)班在本次调查中有3名女生和2名男生喜欢篮球,现从这5名学生中任意抽取2名学生当篮球队的队长,请用列表法或画树状图的方法求出刚好抽到一男一女的概率.30.某公司××部分员工到一博览会的A、B、C、D、E五个展馆参观,公司所购门票种类、数量绘制成的条形和扇形统计图如图所示.请根据统计图回答下列问题:(1)将条形统计图和扇形统计图在图中补充完整;(2)若B馆门票仅剩下一张,而员工小明和小华都想要,他们决定采用抽扑克牌的方法来确定,规则是:“将同一副牌中正面分别标有数字1,2,3,4的四张牌洗匀后,背面朝上放置在桌面上,每人随机抽一次且一次只抽一张;一人抽后记下数字,将牌放回洗匀背面朝上放置在桌面上,再由另一人抽.若抽出的两次数字之积为偶数则小明获得门票,反之小华获得门票.”请用画树状图或列表的方法计算出小明和小华获得门票的概率,并说明这个规则对双方是否公平.。
2021年中考数学专题复习:概率与统计 试题精选汇编(含答案解析)
2021年中考数学专题复习:概率与统计试题精选汇编一.选择题(共17小题)1.(2020•济南)某班级开展“好书伴成长”读书活动,统计了1至7月份该班同学每月阅读课外书的数量,绘制了折线统计图,下列说法正确的是()A.每月阅读课外书本数的众数是45B.每月阅读课外书本数的中位数是58C.从2到6月份阅读课外书的本数逐月下降D.从1到7月份每月阅读课外书本数的最大值比最小值多452.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是()A.众数是9B.中位数是8.5C.平均数是9D.方差是73.(2020•西藏)格桑同学一周的体温监测结果如下表:星期一二三四五六日体温(单位:℃)36.635.936.536.236.136.536.3分析上表中的数据,众数、中位数、平均数分别是()A.35.9,36.2,36.3B.35.9,36.3,36.6C.36.5,36.3,36.3D.36.5,36.2,36.64.(2020•盘锦)在市运动会射击比赛选拔赛中,某校射击队甲、乙、丙、丁四名队员的10次射击成绩如图所示.他们的平均成绩均是9.0环,若选一名射击成绩稳定的队员参加比赛,最合适的人选是()A.甲B.乙C.丙D.丁5.(2020•盘锦)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:身高x/cm x<160160≤x<170170≤x<180x≥180人数60260550130根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是()A.0.32B.0.55C.0.68D.0.87 6.(2020•德阳)某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是()A.19.5元B.21.5元C.22.5元D.27.5元7.(2020•大连)在一个不透明的袋子中有3个白球、4个红球,这些球除颜色不同外其他完全相同.从袋子中随机摸出一个球,它是红球的概率是()A.B.C.D.8.(2020•鞍山)我市某一周内每天的最高气温如下表所示:最高气温(℃)25262728天数1123则这组数据的中位数和众数分别是()A.26.5和28B.27和28C.1.5和3D.2和3 9.(2020•眉山)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面考核打分,各项满分均为100,所占比例如下表:项目学习卫生纪律活动参与所占比例40%25%25%10%八年级2班这四项得分依次为80,90,84,70,则该班四项综合得分(满分100)为()A.81.5B.82.5C.84D.86 10.(2020•沈阳)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯11.(2020•河池)某学习小组7名同学的《数据的分析》一章的测验成绩如下(单位:分):85,90,89,85,98,88,80,则该组数据的众数、中位数分别是()A.85,85B.85,88C.88,85D.88,88 12.(2020•绵阳)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.13.(2020•宁夏)小明为了解本班同学一周的课外阅读量,随机抽取班上15名同学进行调查,并将调查结果绘制成折线统计图(如图),则下列说法正确的是()A.中位数是3,众数是2B.众数是1,平均数是2C.中位数是2,众数是2D.中位数是3,平均数是2.514.(2020•邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2 15.(2020•鄂尔多斯)下列说法正确的是()①的值大于;②正六边形的内角和是720°,它的边长等于半径;③从一副扑克牌中随机抽取一张,它是黑桃的概率是;④甲、乙两人各进行了10次射击测试,他们的平均成绩相同,方差分别是s2甲=1.3,s2=1.1,则乙的射击成绩比甲稳定.乙A.①②③④B.①②④C.①④D.②③16.(2020•雅安)在课外活动中,有10名同学进行了投篮比赛,限每人投10次,投中次数与人数如下表:投中次数578910人数23311则这10人投中次数的平均数和中位数分别是()A.3.9,7B.6.4,7.5C.7.4,8D.7.4,7.5 17.(2020•鄂尔多斯)一次数学测试,某小组5名同学的成绩统计如表(有两个数据被遮盖):组员甲乙丙丁戊平均成绩众数得分7781■808280■则被遮盖的两个数据依次是()A.81,80B.80,2C.81,2D.80,80二.填空题(共11小题)18.(2020•德阳)小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投。
中考数学专题统计与概率(解析版)
(1)本次抽样调查了多少户贫困户?
(2)抽查了多少户C类贫困户?并补全统计图;
(3)若该地共有13000户贫困户,请估计至少得到4项帮扶措施的大约有多少户?
(4)为更好地做好精准扶贫工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行重点帮扶,请用树状图或列表法求出恰好选中甲和丁的概率.
1.(2020年湖北省武汉市江汉区常青第一学校中考数学一模试题)某中学计划根据学生的兴趣爱好组建课外兴趣小组,并随机抽取了部分同学的兴趣爱好进行调查,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:
学校这次调查共抽取了名学生;
求 的值并补全条形统计图;
在扇形统计图中,“围棋”所在扇形的圆心角度数为;
②列表如图所示:
共有9个等可能的结果,乙组两次都拿到8元球的结果有4个,
∴乙组两次都拿到8元球的概率为 .
【名师点睛】本题考查了众数、中位数以及列表法求概率;熟练掌握众数、中位数的定义,列表得出所有结果是解题的关键.
4.(2019年江西中考)为纪念建国70周年,某校举行班级歌咏比赛,歌曲有:《我爱你,中国》,《歌唱祖国》,《我和我的祖国》(分别用字母A,B,C依次表示这三首歌曲).比赛时,将A,B,C这三个字母分别写在3张无差别不透明的卡片正面上,洗匀后正面向下放在桌面上,八(1)班班长先从中随机抽取一张卡片,放回后洗匀,再由八(2)班班长从中随机抽取一张卡片,进行歌咏比赛.
B组同学的测试成绩按照从小到大排列是:83,84,85,86,87,88,88,94,97,98,
则a=(87+88)÷2=87.5,
b=91,
c= =5.8,
故答案为:87.5,91,5.8;
2021年九年级中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习(含答案)
2021年中考数学第三轮压轴题冲刺:统计与概率的综合专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为;(2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.2、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x<;及格6075x;良好7585格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是;(2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A、B、C、D四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有人.(2)喜欢C种口味粽子的人数所占圆心角为度.根据题中信息补全条形统计图.(3)若该居民小区有6000人,请你估计爱吃D种粽子的有人.(4)若有外型完全相同的A、B、C、D棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.4、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<,D等级:060x<.该校随机抽取了x<,C等级:6080x,B等级:8090一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<t<2040t<4060t<6080t<80100解答下列问题:(1)频数分布表中a=,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080<的男生人数为2人,其余为女生,现从该组中任选2人h t h代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________.(2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A .书画类”所占扇形的圆心角的度数为___________度; (2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C .社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全守护行动,其中就要求骑行摩托车、电动车需要佩戴头盔.某日我市交警部门在某个十字路口共拦截了50名不带头盔的骑行者,根据年龄段和性别得到如下表的统计信息,根据表中信息回答下列问题:(1)统计表中m 的值为_______;(2)若要按照表格中各年龄段的人数来绘制扇形统计图,则年龄在“3040x ≤<”部分所对应扇形的圆心角的度数为_______;(3)在这50人中女性有______人;x<”的4人中随机抽取2人参加交通安全知识学习,请用列表或画树(4)若从年龄在“20状图的方法,求恰好抽到2名男性的概率.14、为了提高学生的综合素养,某校开设了五门手工活动课,按照类别分为:A“剪纸”、B “沙画”、C“葫芦雕刻”、D“泥塑”、E“插花”.为了了解学生对每种活动课的喜爱情况,随机抽取了部分同学进行调查,将调查结果绘制成如图两幅不完整的统计图.根据以上信息,回答下列问题:(1)本次调查的样本容量为;统计图中的a=,b=;(2)通过计算补全条形统计图;(3)该校共有2500名学生,请你估计全校喜爱“葫芦雕刻”的学生人数.15、为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕“在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的30%.请你根据图中提供的信息回答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.16、“新冠病毒”疫情防控期间,我市积极开展“停课不停学”网络教学活动,了了解和指导学生有效进行网络学习,某校对学生每天在家网络学习时间进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图①,图②两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的学生共有___________人;(2)请补全图①中的条形统计图;(3)图②中,D选项所对应的扇形圆心角为_________度;(4)若该校共有1500名学生,请你估计该校学生“停课不停学”期间平均每天利用网络学习时间在C选项的有多少人?17、为了解天水市民对全市创建全国文明城市工作的满意程度,某中学数学兴趣小组在某个小区内进行了调查统计.将调查结果分为不满意,一般,满意,非常满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中的信息,解决下列问题:(1)此次调查中接受调查的人数为__________人;(2)请你补全条形统计图;(3)扇形统计图中“满意”部分的圆心角为__________度;(4)该兴趣小组准备从调查结果为“不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位男性,2位女性.请用画树状图的方法求出选择回访的市民为“一男一女”的概率.参考答案2021年中考数学第三轮压轴题冲刺:统计与概率的综合 专题复习练习1、某校“校园主持人大赛”结束后,将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:(1)本次比赛参赛选手共有 50 人,扇形统计图中“79.5~89.5”这一范围的人数占总参赛人数的百分比为 ; (2)补全图2频数直方图;(3)赛前规定,成绩由高到低前40%的参赛选手获奖.某参赛选手的比赛成绩为88分,试判断他能否获奖,并说明理由;(4)成绩前四名是2名男生和2名女生,若从他们中任选2人作为该校文艺晚会的主持人,试求恰好选中1男1女为主持人的概率.【解答】解:(1)本次比赛参赛选手共有:(84)24%50+÷=(人), “59.5~69.5”这一范围的人数占总参赛人数的百分比为23100%10%50+⨯=, 79.5~89.5∴”这一范围的人数占总参赛人数的百分比为100%24%10%30%36%---=;故答案为:50,36%;(2) “69.5~79.5”这一范围的人数为5030%15⨯=(人),∴ “69.5~74.5”这一范围的人数为1587-=(人),“79.5~89.5”这一范围的人数为5036%18⨯=(人),∴ “79.5~84.5”这一范围的人数为18810-=(人);补全图2频数直方图:(3)能获奖.理由如下:本次比赛参赛选手50人,∴成绩由高到低前40%的参赛选手人数为5040%20⨯=(人),又8884.5>,∴能获奖;(4)画树状图为:共有12种等可能的结果数,其中恰好选中1男1女的结果数为8,所以恰好选中1男1女的概率82==.1232、为了解某校九年级学生的体质健康状况,随机抽取了该校九年级学生的10%进行测试,将这些学生的测试成绩()x分为四个等级:优秀85100x<;不及x;良好7585x<;及格6075格060x<,并绘制成如图两幅统计图.根据以上信息,解答下列问题:(1)在抽取的学生中不及格人数所占的百分比是 5% ; (2)计算所抽取学生测试成绩的平均分;(3)若不及格学生的人数为2人,请估算出该校九年级学生中优秀等级的人数. 【解答】解:(1)在抽取的学生中不及格人数所占的百分比120%25%50%5%=---=, 故答案为5%.(2)所抽取学生测试成绩的平均分9050%7825%6620%425%79.81⨯+⨯+⨯+⨯==(分).(3)由题意总人数25%40=÷=(人),4050%20⨯=,2010%200÷=(人)答:该校九年级学生中优秀等级的人数约为200人.3、端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对A 、B 、C 、D 四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:(1)本次参加抽样调查的居民有 600 人.(2)喜欢C 种口味粽子的人数所占圆心角为 度.根据题中信息补全条形统计图. (3)若该居民小区有6000人,请你估计爱吃D 种粽子的有 人.(4)若有外型完全相同的A 、B 、C 、D 棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A 种粽子的概率. 【解答】解:(1)24040%600÷=(人), 所以本次参加抽样调查的居民有60人;(2)喜欢B 种口味粽子的人数为60010%60⨯=(人),喜欢C种口味粽子的人数为60018060240120---=(人),所以喜欢C种口味粽子的人数所占圆心角的度数为12036072︒⨯=︒;600补全条形统计图为:(3)600040%2400⨯=,所以估计爱吃D种粽子的有2400人;故答案为600;72;2400;(4)画树状图为:共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,所以他第二个吃的粽子恰好是A种粽子的概率31==.1244、某校对九年级学生进行一次综合文科中考模拟测试,成绩x分(x为整数)评定为优秀、良好、合格、不合格四个等级(优秀、良好、合格、不合格分别用A、B、C、D表示),A等级:90100x<.该校随机抽取了x<,D等级:060x,B等级:8090x<,C等级:6080一部分学生的成绩进行调查,并绘制成如图不完整的统计图表.请你根据统计图表提供的信息解答下列问题:(1)上表中的a8 ,b=,m=.(2)本次调查共抽取了多少名学生?请补全条形图.(3)若从D等级的4名学生中抽取两名学生进行问卷调查,请用画树状图或列表的方法求抽取的两名学生恰好是一男一女的概率.【解答】解:(1)1640%20%8a=÷⨯=,1640%(120%40%10%)12b=÷⨯---=,120%40%10%30%m=---=;故答案为:8,12,30%;(2)本次调查共抽取了410%40÷=名学生;补全条形图如图所示;(3)将男生分别标记为A,B,女生标记为a,b,共有12种等可能的结果,恰为一男一女的有8种,∴抽得恰好为“一男一女”的概率为82 123=.5、某校为了响应市政府号召,在“创文创卫”活动周中,设置了“A:文明礼仪;B:环境保护;C;卫生保洁;D:垃圾分类”四个主题,每个学生选一个主题参与;为了解活动开展情况,学校随机抽取了部分学生进行调查,并根据调查结果绘制了如下条形统计图和扇形统计图.⑴.本次调查的学生人数是人,m= ;⑵.请补全条形统计图;⑶.学校要求每位同学从星期一至星期五选择两天参加活动,如果小张同学随机选择连续两天,其中有一天是星期一的概率是;小李同学星期五要参加市演讲比赛,他在其余四天中随机选择两天,其中一天是星期三的概率是.【详解】(1)1220%60÷=,∴本次调查的学生人数为60人,1830%60=,故m=30.故答案为:60,m=30.(2)C的人数为:60-18-12-9=21(人),补全图形如下所示:(3)星期一到星期五连续的两天为(星期一、星期二),(星期二、星期三),(星期三、星期四),(星期四、星期五)共4种情况,符合题意的只有(星期一、星期二)这一种情况,故概率为14;在星期一到星期四任选两天的所有情况如下:(星期一、星期二),(星期一、星期三),(星期一、星期四),(星期二、星期三)、(星期二、星期四),(星期三、星期四)共6种情况,其中有一天是星期三的情况有:(星期一、星期三),(星期二、星期三),(星期三、星期四)共3种情况,所以概率是31 62 =.故答案为:14,12.6、为了了解本校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,课题小组随机选取该校部分学生进行了问卷调査(问卷调査表如图1所示),并根据调查结果绘制了图2、图3两幅统计图(均不完整),请根据统计图解答下列问题.(1)本次接受问卷调查的学生有________名.(2)补全条形统计图.(3)扇形统计图中B类节目对应扇形的圆心角的度数为________.(4)该校共有2000名学生,根据调查结果估计该校最喜爱新闻节目的学生人数.【详解】(1)本次接受问卷调查的学生有:3636%100÷=(名),故答案为100;(2)喜爱C的有:10082036630----=(人),补全的条形统计图如右图所示;(3)扇形统计图中B类节目对应扇形的圆心角的度数为:2036072100︒︒⨯=,故答案为72︒;(4)82000160100⨯=(人),答:该校最喜爱新闻节目的学生有160人.7、某中学为了了解本校学生对排球、篮球、毽球、羽毛球和跳绳五项“大课间”活动的喜欢情况,随机抽查了部分学生进行问卷调查(每名学生只选择一项),将调查结果整理并绘制成如图所示不完整的统计图表.请结合统计图表解答下列问题:抽样调查学生喜欢大课间活动人数的统计表(1)本次抽样调查的学生有50 人,请补全条形统计图;(2)求扇形统计图中,喜欢毽球活动的学生人数所对应圆心角的度数;(3)全校有学生1800人,估计全校喜欢跳绳活动的学生人数是多少?【解答】解:(1)612%50m=----=(人),÷=(人),5018410612故答案为:50;补全条形统计图如图所示:(2)103607250︒⨯=︒,答:喜欢“毽球”所在的圆心角的度数为72︒;(3)18180064850⨯=(人),答:全校1800名学生中喜欢跳绳活动的有648人.8、我市某中学举行“法制进校园”知识竞赛,赛后将学生的成绩分为A、B、C、D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图.请你根据统计图解答下列问题.(1)成绩为“B等级”的学生人数有名;(2)在扇形统计图中,表示“D等级”的扇形的圆心角度数为,图中m的值为;(3)学校决定从本次比赛获得“A等级”的学生中选出2名去参加市中学生知识竞赛.已知“A等级”中有1名女生,请用列表或画树状图的方法求出女生被选中的概率.【详解】(1)学生总人数为3÷15%=20(人)∴成绩为“B等级”的学生人数有20-3-8-4=5(人)故答案为:5;(2)“D等级”扇形的圆心角度数为436072 20⨯︒=︒m=810040 20⨯=,故答案为:72°;40;(3)根据题意画树状图如下:∴P(女生被选中)=42 63 =.9、遵义市各校都在深入开展劳动教育,某校为了解七年级学生一学期参加课外劳动时间(单位:)h的情况,从该校七年级随机抽查了部分学生进行问卷调查,并将调查结果绘制成如下不完整的频数分布表和频数分布直方图.课外劳动时间频数分布表:020t<2040t<4060t<6080t<80100t<解答下列问题:(1)频数分布表中a= 5 ,m=;将频数分布直方图补充完整;(2)若七年级共有学生400人,试估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)已知课外劳动时间在6080h t h<的男生人数为2人,其余为女生,现从该组中任选2人代表学校参加“全市中学生劳动体验”演讲比赛,请用树状图或列表法求所选学生为1男1女的概率.【分析】(1)根据频数分布表所给数据即可求出a,m;进而可以补充完整频数分布直方图;(2)根据样本估计总体的方法即可估计该校七年级学生一学期课外劳动时间不少于60h的人数;(3)根据题意画出用树状图即可求所选学生为1男1女的概率.【解答】解:(1)(20.1)0.255a=÷⨯=,m=÷=,4200.2补全的直方图如图所示:故答案为:5,0.2;(2)400(0.250.15)160⨯+=(人);(3)根据题意画出树状图,由树状图可知:共有20种等可能的情况, 1男1女有12种,故所选学生为1男1女的概率为:123205P ==. 10、每年6月26日是“国际禁毒日”.某中学为了让学生掌握禁毒知识,提高防毒意识,组织全校学生参加了“禁毒知识网络答题”活动.该校德育处对八年级全体学生答题成绩进行统计,将成绩分为四个等级:优秀、良好、一般、不合格;并绘制成如下不完整的统计图.请你根据图1、图2中所给的信息解答下列问题:(1)该校八年级共有_________名学生,“优秀”所占圆心角的度数为_________. (2)请将图1中的条形统计图补充完整.(3)已知该市共有15000名学生参加了这次“禁毒知识网络答题”活动,请以该校八年级学生答题成绩统计情况估计该市大约有多少名学生在这次答题中成绩不合格?(4)德育处从该校八年级答题成绩前四名甲、乙、丙、丁学生中随机抽取2名同学参加全市现场禁毒知识竞赛,请用树状图或列表法求出必有甲同学参加的概率. 【详解】(1)由条形统计图知:等级“良好”的人数为:200名 由扇形统计图知:等级“良好”的所占的比例为:40% 则该校八年级总人数为:20040%500÷=(名) 由条形统计图知:等级“优秀”的人数为:150名 其站该校八年级总人数的比例为:15050030%÷= 所以其所对的圆心角为:36030%108︒︒⨯= 故答案为:500,108°(2)等级“一般”的人数为:50015020050100---=(名) 补充图形如图所示:(3)该校八年级中不合格人数所占的比例为:5010% 500=故该市15000名学生中不合格的人数为:1500010%1500⨯=(名)(4)从甲,乙,丙,丁四名学生中任取选出两人,所得基本事件有:共计12种,其中必有甲同学参加的有6种,必有甲同学参加的概率为:61 122=.11、广元市某中学举行了“禁毒知识竞赛”,王老师将九年级(1)班学生成绩划分为A、B、C、D、E五个等级,并绘制了图1、图2两个不完整的统计图,请根据图中的信息解答下列问题:(1)求九年级(1)班共有多少名同学?(2)补全条形统计图,并计算扇形统计图中的“C”所对应的圆心角度数;(3)成绩为A类的5名同学中,有2名男生和3名女生;王老师想从这5名同学中任选2名同学进行交流,请用列表法或画树状图的方法求选取的2名同学都是女生的概率.【详解】解:(1)由题意可知总人数=10÷20%=50名;(2)补全条形统计图如图所示:扇形统计图中C等级所对应扇形的圆心角=15÷50×100%×360°=108°;(3)列表如下:得到所有等可能的情况有20种,其中恰好抽中2名同学都是女生的情况有6种,所以恰好选到2名同学都是女生的概率=620=310.12、为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:(1)本次被抽查的学生共有_____________名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为___________度;(2)请你将条形统计图补全;(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.【详解】解:(1)本次被抽查的学生共有:20÷40%=50名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为103607250⨯︒=︒;故答案为:50,72;(2)B类人数是:50-10-8-20=12名,补全条形统计图如图所示:(3)86009650⨯=名,答:估计该校学生选择“C.社会实践类”的学生共有96名;(4)所有可能的情况如下表所示:由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,∴王芳和小颖两名学生选择同一个项目的概率41 164==.13、根据公安部交管局下发的通知,自2020年6月1日起,将在全国开展“一带一盔”安全。
2021年山东省中考数学真题分类汇编:统计与概率(附答案解析)
2021年山东省中考数学真题分类汇编:统计与概率一.选择题(共10小题)1.(2021•淄博)小明收集整理了本校八年级1班20名同学的定点投篮比赛成绩(每人投篮10次),并绘制了折线统计图,如图所示.那么这次比赛成绩的中位数、众数分别是()A.6,7B.7,7C.5,8D.7,8 2.(2021•枣庄)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数141144145146(个)学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.43.(2021•威海)某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡眠时间,统计结果如表:78910睡眠时间/小时人数69114这些学生睡眠时间的众数、中位数是()A.众数是11,中位数是8.5B.众数是9,中位数是8.5C.众数是9,中位数是9D.众数是10,中位数是9 4.(2021•聊城)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池45678数/节人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是()A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节5.(2021•烟台)连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A .B .C .D .6.(2021•威海)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为()A .B .C .D .7.(2021•菏泽)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次)1211109人数(名)1342关于这组数据的结论不正确的是()A.中位数是10.5B.平均数是10.3C.众数是10D.方差是0.818.(2021•东营)经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为()A .B .C .D .9.(2021•临沂)现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()A.B.C.D.10.(2021•泰安)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7h 7h B.8h 7.5h C.7h 7.5h D.8h 8h二.填空题(共3小题)11.(2021•东营)如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11岁,最大为15岁,根据统计图所提供的数据,该小组组员年龄的中位数为岁.12.(2021•临沂)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是.13.(2021•聊城)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是.三.解答题(共10小题)14.(2021•聊城)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:请根据以上的信息,回答下列问题:(1)抽取的学生有人,n=,a=;(2)补全条形统计图;(3)若该校有学生3200人,估计参加书法社团活动的学生人数.15.(2021•临沂)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a=,b=,c=,d=;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.16.(2021•泰安)为庆祝中国共产党成立100周年,落实教育部《关于在中小学组织开展“从小学党史,永远跟党走”主题教育活动的通知》要求,某学校举行党史知识竞赛,随机调查了部分学生的竞赛成绩,绘制成两幅不完整的统计图表.根据统计图表提供的信息,解答下列问题:(1)本次共调查了名学生;C组所在扇形的圆心角为度;(2)该校共有学生1600人,若90分以上为优秀,估计该校优秀学生人数为多少?(3)若E组14名学生中有4人满分,设这4名学生为E1,E2,E3,E4,从其中抽取2名学生代表学校参加上一级比赛,请用列表或画树状图的方法求恰好抽到E1,E2的概率.竞赛成绩统计表(成绩满分100分)组别分数人数4A组75<x≤80B组80<x≤8510C组85<x≤90D组90<x≤9514E组95<x≤100合计17.(2021•威海)某校为提高学生的综合素养,准备开展摄影、书法、绘画、表演、手工五类社团活动.为了对此项活动进行统筹安排,随机抽取了部分学生进行调查,要求每人从五个类别中只选择一个,将调查结果绘制成了两幅统计图(未完成).请根据统计图中的信息,解答下列问题:(1)本次共调查了名学生;(2)请将条形统计图补充完整;(3)扇形统计图中,“摄影”所占的百分比为;“手工”所对应的圆心角的度数为.(4)若该校共有2700名学生,请估计选择“绘画”的学生人数.18.(2021•淄博)为迎接中国共产党的百年华诞,某中学就有关中国共产党历史的了解程度,采取随机抽样的方式抽取本校部分学生进行了测试(满分100分),并将测试成绩进行了收集整理,绘制了如下不完整的统计图、表.成绩等级分数段频数(人数)优秀90≤x≤100a良好80≤x<90b较好70≤x<8012一般60≤x<7010较差x<603请根据统计图、表中所提供的信息,解答下列问题:(1)统计表中的a=,b=;成绩扇形统计图中“良好”所在扇形的圆心角是度;(2)补全上面的成绩条形统计图;(3)若该校共有学生1600人,估计该校学生对中国共产党历史的了解程度达到良好以上(含良好)的人数.19.(2021•烟台)2021年是中国共产党成立100周年.为普及党史知识,培养爱国主义精神,今年五月份,某市党校举行党史知识竞赛,每个班级各选派15名学员参加了网上测试,现对甲、乙两班学员的分数进行整理分析如下:甲班15名学员测试成绩(满分100分)统计如下:87,84,88,76,93,87,73,98,86,87,79,85,84,85,98.乙班15名学员测试成绩(满分100分)统计如下:77,88,92,85,76,90,76,91,88,81,85,88,98,86,89(1)按如表分数段整理两班测试成绩班级70.5~75.575.5~80.580.5~85.585.5~90.590.5~95.595.5~100.5甲12a512乙033621表中a=;(2)补全甲班15名学员测试成绩的频数分布直方图;(3)两班测试成绩的平均数、众数、中位数、方差如表所示:班级平均数众数中位数方差甲86x8644.8乙8688y36.7表中x=,y=.(4)以上两个班级学员掌握党史相关知识的整体水平较好的是班;(5)本次测试两班的最高分都是98分,其中甲班2人,乙班1人.现从以上三人中随机抽取两人代表党校参加全市党史知识竞赛,利用树状图或表格求出恰好抽取甲、乙两班各一人参加全市党史知识竞赛的概率.20.(2021•东营)为庆祝建党100周年,让同学们进一步了解中国科技的快速发展,东营市某中学九(1)班团支部组织了一次手抄报比赛.该班每位同学从A.“北斗卫星”;B.“5G 时代”;C.“东风快递”;D.“智轨快运”四个主题中任选一个自己喜欢的主题.统计同学们所选主题的频数,绘制成不完整的统计图,请根据统计图中的信息解答下列问题:(1)九(1)班共有名学生;(2)补全折线统计图;(3)D所对应扇形圆心角的大小为;(4)小明和小丽从A、B、C、D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.21.(2021•济宁)某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,并根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题.(1)在这次调查中,“优秀”所在扇形的圆心角的度数是;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是;(4)已知“不及格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率是多少?22.(2021•菏泽)2021年5月,菏泽市某中学对初二学生进行了国家义务教育质量检测,随机抽取了部分参加15米折返跑学生的成绩,学生成绩划分为优秀、良好、合格与不合格四个等级,学校绘制了如下不完整的统计图.根据图中提供的信息解答下列问题:(1)请把条形统计图补充完整;(2)合格等级所占百分比为%;不合格等级所对应的扇形圆心角为度;(3)从所抽取的优秀等级的学生A、B、C…中,随机选取两人去参加即将举办的学校运动会,请利用列表或画树状图的方法,求出恰好抽到A、B两位同学的概率.23.(2021•枣庄)某中学为组织学生参加庆祝中国共产党成立100周年书画展评活动,全校征集学生书画作品.王老师从全校20个班中随机抽取了A,B,C,D四个班,对征集作品进行了数量分析统计,绘制了如下两幅不完整的统计图.(1)王老师采取的调查方式是(填“普查”或“抽样调查”),王老师所调查的4个班共征集到作品件,并补全条形统计图;(2)在扇形统计图中,表示C班的扇形圆心角的度数为;(3)如果全校参展作品中有4件获得一等奖,其中有1件作品的作者是男生,3件作品的作者是女生.现要从获得一等奖的作者中随机抽取两人去参加学校的总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)2021年山东省中考数学真题分类汇编:统计与概率参考答案与试题解析一.选择题(共10小题)1.(2021•淄博)小明收集整理了本校八年级1班20名同学的定点投篮比赛成绩(每人投篮10次),并绘制了折线统计图,如图所示.那么这次比赛成绩的中位数、众数分别是()A.6,7B.7,7C.5,8D.7,8【考点】折线统计图;中位数;众数.【专题】数据的收集与整理;数据分析观念.【分析】将八年级1班20名同学的定点投篮比赛成绩按照从小到大的顺序排列,根据众数、中位数的定义求解即可.【解答】解:八年级1班20名同学的定点投篮比赛成绩按照从小到大的顺序排列如下:3,3,5,5,5,5,6,6,6,7,7,7,7,7,7,8,8,8,9,9,这次比赛成绩的中位数是=7,众数是7,故选:B.【点评】此题考查了折线统计图、中位数以及众数,根据折线统计图得出解题所需数据并熟练掌握众数、中位数定义是解题的关键.2.(2021•枣庄)为调动学生参与体育锻炼的积极性,某校组织了一分钟跳绳比赛活动,体育组随机抽取了10名参赛学生的成绩,将这组数据整理后制成统计表:一分钟跳绳个数141144145146(个)学生人数(名)5212则关于这组数据的结论正确的是()A.平均数是144B.众数是141C.中位数是144.5D.方差是5.4【考点】加权平均数;中位数;众数;方差.【专题】统计的应用;应用意识.【分析】根据平均数,众数,中位数,方差的性质分别计算出结果,然后判判断即可.【解答】解:根据题目给出的数据,可得:平均数为:,故A选项错误;众数是:141,故B选项正确;中位数是:,故C选项错误;方差是:=4.4,故D选项错误;故选:B.【点评】本题考查的是平均数,众数,中位数,方差的性质和计算,熟悉相关性质是解题的关键.3.(2021•威海)某校为了解学生的睡眠情况,随机调查部分学生一周平均每天的睡眠时间,统计结果如表:睡眠时间/78910小时人数69114这些学生睡眠时间的众数、中位数是()A.众数是11,中位数是8.5B.众数是9,中位数是8.5C.众数是9,中位数是9D.众数是10,中位数是9【考点】中位数;众数.【专题】统计的应用;数据分析观念.【分析】根据中位数、众数的意义求解即可.【解答】解:抽查学生的人数为:6+9+11+4=30(人),这30名学生的睡眠时间出现次数最多的是9小时,共出现11次,因此众数是9,将这30名学生的睡眠时间从小到大排列,处在中间位置的两个数的平均数为=8.5,因此中位数是8.5,故选:B.【点评】本题考查中位数、众数,理解中位数、众数的意义,掌握中位数、众数的计算方法是解决问题的关键.4.(2021•聊城)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:废旧电池45678数/节人数/人9111154请根据学生收集到的废旧电池数,判断下列说法正确的是()A.样本为40名学生B.众数是11节C.中位数是6节D.平均数是5.6节【考点】加权平均数;中位数;众数.【专题】统计的应用;数据分析观念.【分析】根据样本的概念、众数、中位数及加权平均数的定义分别求解即可.【解答】解:A.样本为40名学生收集废旧电池的数量,此选项错误;B.众数是5节和6节,此选项错误;C .中位数为=5.5(节),此选项错误;D .平均数为×(4×9+5×11+6×11+7×5+8×4)=5.6(节),故选:D.【点评】本题主要考查众数、中位数、加权平均数,解题的关键是掌握众数、中位数及加权平均数的定义.5.(2021•烟台)连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为()A.B.C.D.【考点】几何概率.【专题】概率及其应用;数据分析观念.【分析】如图,将阴影部分分割成图形中小三角形的大小,令小三角形的面积为a,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.【解答】解:如图所示,令S△ABC=a,则S阴影=6a,S正六边形=18a,∴将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为=,故选:B.【点评】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.6.(2021•威海)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为()A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;模型思想;应用意识.【分析】用列表法表示所有可能出现的结果情况,进而得出两球上的数字都是奇数的概率即可.【解答】解:用列表法表示所有可能出现的结果情况如下:共有20种等可能出现的结果情况,其中两球上的数字都是奇数的有6种,所以从中随机一次摸出两个小球,小球上的数字都是奇数的概率为=,故选:C.【点评】本题考查列表法求简单的等可能事件发生的概率,列举出所有可能出现的结果情况是解决问题的关键.7.(2021•菏泽)在2021年初中毕业生体育测试中,某校随机抽取了10名男生的引体向上成绩,将这组数据整理后制成如下统计表:成绩(次)1211109人数(名)1342关于这组数据的结论不正确的是()A.中位数是10.5B.平均数是10.3C.众数是10D.方差是0.81【考点】加权平均数;中位数;众数;方差.【专题】统计的应用;运算能力.【分析】根据中位数,平均数,众数,方差的性质分别计算出结果,然后判断即可.【解答】解:根据题目给出的数据,可得:中位数是=10(分),平均数为:=10.3,∵10出现了4次,出现的次数最多,∴众数是10;方差是:[(12﹣10.3)2+3×(11﹣10.3)2+4×(10﹣10.3)2+2×(9﹣10.3)2]=0.81.这组数据的结论不正确的是A.故选:A.【点评】本题考查的是平均数,众数,中位数和方差,熟练掌握平均数,众数,中位数,方差的计算公式是解题的关键.8.(2021•东营)经过某路口的汽车,可能直行,也可能左拐或右拐.假设这三种可能性相同,现有两车经过该路口,恰好有一车直行,另一车左拐的概率为()A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念;推理能力.【分析】画树状图,共有9种等可能的结果数,其中恰好有一车直行,另一车左拐的结果数为2种,再由概率公式求解即可.【解答】解:画树状图为:共有9种等可能的结果数,其中恰好有一车直行,另一车左拐的结果数为2种,∴恰好有一车直行,另一车左拐的概率=,故选:A.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(2021•临沂)现有4盒同一品牌的牛奶,其中2盒已过期,随机抽取2盒,至少有一盒过期的概率是()A.B.C.D.【考点】列表法与树状图法.【专题】概率及其应用;数据分析观念;推理能力.【分析】画树状图,共有12种等可能的结果,至少有一盒过期的结果有10种,再由概率公式求解即可.【解答】解:把2盒不过期的牛奶记为A、B,2盒已过期的牛奶记为C、D,画树状图如图:共有12种等可能的结果,至少有一盒过期的结果有10种,∴至少有一盒过期的概率为=,故选:D.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(2021•泰安)为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,调查了一个班50名学生每天的睡眠时间,绘成睡眠时间频数分布直方图如图所示,则所调查学生睡眠时间的众数,中位数分别为()A.7h 7h B.8h 7.5h C.7h 7.5h D.8h 8h【考点】频数(率)分布直方图;中位数;众数.【专题】统计的应用;数据分析观念.【分析】直接利用众数以及中位数的概念分别分析求出即可.【解答】解:∵7h出现了19次,出现的次数最多,∴所调查学生睡眠时间的众数是7h;∵共有50名学生,中位数是第25、26个数的平均数,∴所调查学生睡眠时间的中位数是=7.5(h).故选:C.【点评】此题主要考查了众数、中位数的概念,正确把握中位数的概念是解题关键.二.填空题(共3小题)11.(2021•东营)如图所示是某校初中数学兴趣小组年龄结构条形统计图,该小组年龄最小为11岁,最大为15岁,根据统计图所提供的数据,该小组组员年龄的中位数为13岁.【考点】条形统计图;中位数.【专题】数据的收集与整理;数据分析观念.【分析】将该小组年龄按照从小到大顺序排列,找出中位数即可.【解答】解:根据题意排列得:11,11,12,12,12,13,13,13,13,13,14,14,14,14,15,15,15,15,则该小组组员年龄的中位数为×(13+13)=13(岁),故答案为:13.【点评】此题考查了条形统计图,以及中位数,弄清中位数的计算方法是解本题的关键.12.(2021•临沂)某学校八年级(2)班有20名学生参加学校举行的“学党史、看红书”知识竞赛,成绩统计如图.这个班参赛学生的平均成绩是95.5.【考点】条形统计图;加权平均数.【专题】统计的应用;数据分析观念.【分析】先根据统计图得出每组的人数,在根据加权平均数的计算公式即可.【解答】解:由统计图可知四个成绩的人数分别为3,2,5,10,∴,故答案为95.5.【点评】本题主要考查条形统计图的识图能力和加权平均数的计算,要牢记加权平均数的计算公式,不然此题不知从何做起.13.(2021•聊城)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是.【考点】轴对称图形;中心对称图形;列表法与树状图法.【专题】概率及其应用;平移、旋转与对称;数据分析观念;推理能力.【分析】画树状图,共有12种等可能的结果,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的结果有2种,再由概率公式求解即可.【解答】解:等边三角形是轴对称图形,平行四边形是中心对称图形,菱形和圆既是轴对称图形,又是中心对称图形,把印有等边三角形、平行四边形、菱形和圆的四张卡片分别记为:A、B、C、D,画树状图如图:共有12种等可能的结果,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的结果有2种,∴所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率为=,故答案为:.【点评】此题考查了列表法与树状图法以及轴对称图形、中心对称图形等知识;用到的知识点为:概率=所求情况数与总情况数之比.三.解答题(共10小题)14.(2021•聊城)为扎实推进“五育并举”工作,某校利用课外活动时间,开设了书法、健美操、乒乓球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成条形统计图和扇形统计图:请根据以上的信息,回答下列问题:(1)抽取的学生有200人,n=54,a=25;(2)补全条形统计图;(3)若该校有学生3200人,估计参加书法社团活动的学生人数.【考点】用样本估计总体;扇形统计图;条形统计图.【专题】统计的应用;应用意识.【分析】(1)由参加乒乓球社团活动的学生人数及其所占百分比可得抽取的总人数,用360°乘以参加健美操社团活动的学生人数所占比例即可得n,根据参加书法社团活动的学生人数和抽取的总人数求出参加书法社团活动的学生所占比例可得a的值;(2)先根据参加四个社团活动的学生数之和等于总人数求出参加朗诵社团活动的学生人数,再补全条形统计图;(3)用总人数乘以样本中参加书法社团活动的学生人数对应的百分比可得答案.【解答】解:(1)抽取的学生有80÷40%=200(人),360°×=54°,∴n=54,×100%=25%,∴a=25,故答案为:200,54,25;(2)参加朗诵社团活动的学生人数为200﹣(50+30+80)=40(人),补全条形统计图如图:;(3)估计参加书法社团活动的学生人数为3200×25%=800(人).答:估计参加书法社团活动的学生人数为800人.【点评】本题主要考查读条形统计图与扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.15.(2021•临沂)实施乡村振兴计划以来,我市农村经济发展进入了快车道,为了解梁家岭村今年一季度经济发展状况,小玉同学的课题研究小组从该村300户家庭中随机抽取了20户,收集到他们一季度家庭人均收入的数据如下(单位:万元):0.69 0.73 0.74 0.80 0.81 0.98 0.93 0.81 0.89 0.690.74 0.99 0.98 0.78 0.80 0.89 0.83 0.89 0.94 0.89研究小组的同学对以上数据进行了整理分析,得到下表:分组频数0.65≤x<0.7020.70≤x<0.7530.75≤x<0.8010.80≤x<0.85a0.85≤x<0.9040.90≤x<0.9520.95≤x<1.00b统计量平均数中位数众数数值0.84c d(1)表格中:a=5,b=3,c=0.82,d=0.89;(2)试估计今年一季度梁家岭村家庭人均收入不低于0.8万元的户数;(3)该村梁飞家今年一季度人均收入为0.83万元,能否超过村里一半以上的家庭?请说明理由.【考点】用样本估计总体;频数(率)分布表;加权平均数;中位数;众数.【专题】统计的应用;应用意识.【分析】(1)根据所给数据计数即可得a、b的值,根据根据中位数和众数的定义求解可得c、d的值;(2)求出今年一季度梁家岭村家庭人均收入不低于0.8万元的户数所占得百分比即可得到结论;(3)根据中位数进行判断即可.【解答】解:(1)由统计频数的方法可得,a=5,b=3,将该村家庭收入从小到大排列,处在中间位置的两个数的平均数为(0.81+0.83)÷2=0.82,因此中位数是0.82,即c=0.82,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021届中考数学冲刺专题训练统计与概率一、选择题(本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列调查中,调查方式最适合普查(全面调查)的是()A.对全国初中学生视力情况的调查B.对2019年央视春节联欢晚会收视率的调查C.对一批飞机零部件的合格情况的调查D.对我市居民节水意识的调查【答案】C【解析】A.对全国初中学生视力情况的调查,适合用抽样调查,不合题意;B.对2019年央视春节联欢晚会收视率的调查,适合用抽样调查,不合题意;C.对一批飞机零部件的合格情况的调查,适合全面调查,符合题意;D.对我市居民节水意识的调查,适合用抽样调查,不合题意;故选:C.2.为参加全市中学生足球赛.某中学从全校学生中选拔22名足球运动员组建校足球队,这22名运动员的年龄(岁)如下表所示,该足球队队员的平均年龄是()年龄(岁)12 13 14 15人数7 10 3 2A.12岁B.13岁C.14岁D.15岁【答案】B【解析】解:该足球队队员的平均年龄是127131014315222⨯+⨯+⨯+⨯=13(岁),故选:B.3.某校为了解全校同学五一假期参加社团活动的情况,抽查了100名同学,统计它们假期参加社团活动的时间,绘成频数分布直方图(如图),则参加社团活动时间的中位数所在的范围是()A.4﹣6小时B.6﹣8小时C.8﹣10小时D.不能确定【答案】B【解析】100个数据,中间的两个数为第50个数和第51个数,而第50个数和第51个数都落在第三组,所以参加社团活动时间的中位数所在的范围为6﹣8(小时).故选B.4.根据《居民家庭亲子阅读消费调查报告》中的相关数据制成扇形统计图,由图可知,下列说法错误..的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30分钟以上的居民家庭孩子超过50%C.每天阅读1小时以上的居民家庭孩子占20%D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是108°【答案】CA.扇形统计图能反映各部分在总体中所占的百分比,此选项正确;B.每天阅读30分钟以上的居民家庭孩子的百分比为,超过,此选项正确;C.每天阅读1小时以上的居民家庭孩子占,此选项错误;D.每天阅读30分钟至1小时的居民家庭孩子对应扇形的圆心角是,此选项正确;故选:C.5.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.14B.12C.8πD.4π【答案】C【解析】设正方形ABCD的边长为2a,针尖落在黑色区域内的概率221248aaππ⨯⨯==.故选:C.6.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为()A.20 B.24 C.28 D.30【答案】D【解析】根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故选D.7.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是()A.众数是8 B.中位数是8 C.平均数是8.2 D.方差是1.2【答案】D【解析】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2)1.5610⨯-+⨯-+⨯-+⨯-+-=故选D8.商场经理调查了本商场某品牌女鞋一个月内不同尺码的销售量,如表:尺码/码36 37 38 39 40数量/双15 28 13 9 5商场经理最关注这组数据的( )A.众数B.平均数C.中位数D.方差【答案】A【解析】对这个鞋店的经理来说,他最关注的是哪一型号的卖得最多,即是这组数据的众数.故选:A.二、填空题(本大题共4个小题,每小题6分,共24分)9.董永社区在创建全国卫生城市的活动中,随机检查了本社区部分住户五月份某周内“垃圾分类”的实施情况,将他们绘制了两幅不完整的统计图(A.小于5天;B.5天;C.6天;D.7天),则扇形统计图B部分所对应的圆心角的度数是__________.【答案】108°【解析】∵被调查的总户数为915%60÷=(户),∴B类别户数为60(92112)18-++=(户),则扇形统计图B部分所对应的圆心角的度数是18 36010860⨯=︒︒,故答案为:108°.10.为了解某班学生体育锻炼的用时情况,收集了该班学生一天用于体育锻炼的时间(单位:小时),整理成如图的统计图.则该班学生这天用于体育锻炼的平均时间为_____小时.【答案】1.15.【解析】由图可知,该班一共有学生:81612440+++=(人),该班学生这天用于体育锻炼的平均时间为:(0.58116 1.51224)40 1.15⨯+⨯+⨯+⨯÷=(小时).故答案为1.15.11.从一个不透明的口袋中随机摸出一球,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,已知囗袋中仅有黑球10个和白球若干个,这些球除颜色外,其他都一样,由此估计口袋中有___个白球.【答案】20.【解析】摸了150次,其中有50次摸到黑球,则摸到黑球的频率是501 1503=,设口袋中大约有x个白球,则101103 x=+,解得20x.故答案为:20.12.在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.【答案】1 4【解析】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果,∴小亮和大刚两人恰好分在同一组的概率是41 164=,故答案为:14.三、解答题(本大题共3个小题,每小题12分,共36分.解答应写出文字说明、证明过程或演算步骤)13.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.【答案】(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【解析】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为:30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).14.本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动。
校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,填出本次所抽取学生四月份“读书量”的众数为;(2)求本次所抽取学生四月份“读书量”的平均数;(3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数。
【答案】(1)如图所示,众数为3(本);(2)平均数为3;(3)四月份“读书量”为5本的学生人数为120人.【解析】(1)抽取的学生数为:3÷5%=60人,读书量为4本的人数为:60×20%=12(人),读书量为3本的人数所占的百分比为:1-5%-30%-20%-10%=35%,补全统计图如图所示:读书量为3本的人数最多,所以“读书量”的众数为:3,故答案为:3.(2)平均数=3118221312465331821126⨯+⨯+⨯+⨯+⨯=++++;(3)四月份“读书量”为5本的学生人数=6120012060⨯=(人).15.2019年4月23日是第二十四个“世界读书日“.某校组织读书征文比赛活动,评选出一、二、三等奖若干名,并绘成如图所示的条形统计图和扇形统计图(不完整),请你根据图中信息解答下列问题:(1)求本次比赛获奖的总人数,并补全条形统计图; (2)求扇形统计图中“二等奖”所对应扇形的圆心角度数;(3)学校从甲、乙、丙、丁4位一等奖获得者中随机抽取2人参加“世界读书日”宣传活动,请用列表法或画树状图的方法,求出恰好抽到甲和乙的概率. 【答案】(1)40,补图详见解析;(2)108°;(3)16. 【解析】解:(1)本次比赛获奖的总人数为4÷10%=40(人), 二等奖人数为40﹣(4+24)=12(人), 补全条形图如下:(2)扇形统计图中“二等奖”所对应扇形的圆心角度数为360°×1240=108°; (3)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是212=16.。