实验2 离子交换层析

合集下载

离子交换层析的操作步骤

离子交换层析的操作步骤

离子交换层析的操作步骤嘿,朋友们!今天咱就来唠唠离子交换层析的那些事儿。

离子交换层析啊,就好比是一场精细的筛选游戏。

你想想看,就像是在一堆五颜六色的糖果中,要挑出你最喜欢的口味一样。

首先呢,你得准备好你的“游戏道具”,也就是离子交换剂啦。

这可是关键,就像你得有副好牌才能打好牌局嘛!得选那种质量好、性能稳定的离子交换剂,这可不能马虎。

然后呢,就是把你的样品溶液弄好。

这就像是给糖果们排好队,准备进入筛选的环节。

样品溶液的浓度、酸碱度啥的都得调好,不然可没法顺利进行游戏哦。

接下来,就是让样品溶液和离子交换剂来个亲密接触啦!这就像糖果们一个一个地走过选口味的关卡。

在这个过程中,那些符合离子交换剂要求的“糖果”就会被吸附住,其他的就会被淘汰掉。

吸附完了可不算完事儿哦,还得进行洗脱呢!这就好比是把选好的糖果从关卡里拿出来。

用合适的洗脱液去冲洗离子交换剂,把吸附在上面的东西给弄下来。

这可得掌握好洗脱液的浓度和流速,就像掌握好拿糖果的力度一样,太轻了拿不下来,太重了可能会把好东西也给冲坏了。

哎呀,你说这离子交换层析是不是很有意思呀?就像是一个神奇的魔法盒子,能把你想要的东西从一堆混合物里变出来。

在整个过程中,每一步都很重要哦!要是哪一步没做好,可能就得不到你想要的结果啦。

就像搭积木一样,一块没搭好,可能整个房子就歪了。

所以啊,大家在做离子交换层析的时候,一定要细心细心再细心,耐心耐心再耐心。

可别马马虎虎的,不然到最后哭都没地方哭去。

反正我觉得离子交换层析这玩意儿真的很神奇,能帮我们解决好多问题呢!大家只要认真去学,认真去做,肯定能掌握好这个技术,让它为我们服务!你们说是不是呀?。

离子交换层析实验报告

离子交换层析实验报告

离子交换层析实验报告离子交换层析实验报告引言:离子交换层析是一种常用的分离和纯化技术,广泛应用于化学、生物、环境等领域。

本实验旨在通过离子交换层析技术,研究不同离子在固定相上的吸附行为,并探讨离子交换层析的应用潜力。

实验材料与方法:材料:离子交换树脂、不同离子溶液、蒸馏水。

仪器:离子交换层析柱、分光光度计。

方法:1. 准备不同离子溶液,浓度分别为10 mM。

2. 将离子交换树脂装入层析柱中,并用蒸馏水洗涤至平衡。

3. 将不同离子溶液分别加入层析柱,收集洗脱液。

4. 使用分光光度计测定洗脱液中离子的浓度。

结果与讨论:通过实验,我们观察到不同离子在离子交换层析柱上的吸附行为存在一定差异。

以Na+、K+、Ca2+、Mg2+为例,我们发现Na+和K+的吸附量较小,洗脱较快,而Ca2+和Mg2+的吸附量较大,洗脱较慢。

这是因为离子交换树脂中的功能基团与离子之间的亲和性不同所致。

进一步分析发现,离子交换层析技术在水处理、食品加工、药物制备等领域具有广泛应用潜力。

例如,在水处理中,离子交换层析可用于去除水中的重金属离子和有害物质,提高水质;在食品加工中,离子交换层析可用于去除食品中的杂质和有害物质,提高食品质量;在药物制备中,离子交换层析可用于纯化和分离药物成分,提高药物的纯度和效果。

此外,离子交换层析还可以与其他分离技术相结合,形成多重分离系统,提高分离效率。

例如,离子交换层析与凝胶过滤、逆流色谱等技术的结合,可实现对复杂混合物的高效分离。

结论:离子交换层析是一种重要的分离和纯化技术,具有广泛的应用前景。

通过本实验,我们深入了解了离子在离子交换层析柱上的吸附行为,以及离子交换层析技术的应用潜力。

未来,我们将进一步探索离子交换层析技术在不同领域的应用,为科学研究和工程实践提供更多可能性。

离子交换层析原理步骤详细

离子交换层析原理步骤详细

离子交换层析原理步骤详细离子交换层析 (Ion Exchange Chromatography, IEC) 是一种常见的分离和纯化技术,广泛应用于生物科学、医药、环境和化学工业等领域。

本文将详细介绍离子交换层析的原理和步骤,并提供相关操作注意事项。

原理离子交换层析是基于离子交换剂与待分离物中的离子之间的相互作用来实现分离纯化的。

离子交换剂通常是一种带有功能基团的固体材料,如离子交换树脂。

当待分离物溶液通过离子交换层析柱时,待分离物中的离子与离子交换剂上的功能基团发生相互作用,使得不同离子具有不同的保留时间,进而实现分离纯化。

离子交换层析可以通过两种模式进行操作:阳离子交换和阴离子交换。

在阳离子交换中,离子交换剂具有负电荷的功能基团,可以吸附带有正电荷的离子,而排斥带有负电荷的离子。

在阴离子交换中,离子交换剂具有正电荷的功能基团,可以吸附带有负电荷的离子,而排斥带有正电荷的离子。

步骤离子交换层析通常包括以下几个步骤:1. 样品预处理在进行离子交换层析之前,需要对待分离样品进行预处理。

这包括将待分离物从其他成分中纯化或富集,并调整其pH值和离子浓度。

2. 选择合适的离子交换剂根据待分离物中的离子类型和性质,选择合适的离子交换剂。

如果待分离物中的离子是带正电荷的,则选择阴离子交换剂;如果待分离物中的离子是带负电荷的,则选择阳离子交换剂。

此外,还需要考虑离子交换剂的大小、形状、孔径和稳定性等因素。

3. 准备离子交换柱将选择的离子交换剂装填到离子交换柱中。

通常,离子交换剂以干燥的形式存在,因此在装填离子交换柱之前需将其充分湿润或反应活化。

4. 样品加载将经过预处理的待分离样品加载到离子交换柱中。

样品溶液会在离子交换柱中与交换剂的功能基团发生相互作用,从而实现分离纯化。

5. 洗脱通过改变洗脱缓冲液的条件,如改变pH值或离子浓度,来洗脱已经吸附在离子交换柱上的离子。

洗脱的条件需要根据待分离物和交换剂之间的相互作用来进行调节。

离子交换层析

离子交换层析



将酶活力峰峰尖处的样品 2ml 交给老师,(老师浓缩后用 于凝胶层析);
合并其它剩余酶活力峰得到E3,量出总体积V3。
பைடு நூலகம்

② ③

目测酶活力方法:取两支血糖管,各加入1ml 5%蔗糖液,然 后于一支中加入1ml起始缓冲液,另一支中加1ml洗柱流出 液,同时于35℃恒温水浴中进行水解反应3min,然后各加 DNS 试剂1ml,于沸水浴中反应5min ,比较两支试管颜色 的深浅。

洗脱:本实验用阶段洗脱进行。用含 0.15mol/L NaCl 的 0 . 0 0 5 mol/L pH6.0 的 磷 酸 缓 冲 液 1 0 0 ml, 控 制 流 速 为 1.5ml/min ,用小试管收集(5ml/管,收集7管左右即可)。 收集酶活力峰:目测记录仪上的蛋白峰的酶活力,确定酶 活力峰的位置(蛋白峰不一定是活力峰)。
制E3

实验操作
样品准备:将透析液 4℃ 8000r/min 离心5min,弃沉淀取 上清 E2,量体积 V2(约 =14ml ), 留出 2ml 置于冰箱中保存 , 其他酶液准备用离子交换柱纯化。 (2 只离心管 / 组, 1 支配 平) 调节:上样前打开紫外检测器 ( 与柱相连 ) 与记录仪,按照 第2天参数调节仪器。 上样:先将黄枪头慢慢拔出,再将胶塞慢慢拔出(尽量不 要晃动),打开阀门将柱中的5mmol/L pH6.0缓冲液逐渐放 出。当液面接近柱床表面时,用长吸管沿柱壁绕环小心加 入 E2(不要冲坏柱床表面);打开离子交换柱出口处的阀 门,使样品缓慢、均匀地进入柱床,打开截流阀,注意控 制流速,使流出液的流出速度为1.5ml/min左右。 洗柱:样品全部进入床面后,在柱面加入2cm的缓冲液,在 储液瓶中加入5mmol/L pH6.0的磷酸缓冲液,打开截流阀, 洗出未吸附的杂蛋白。目测记录仪上的紫外吸收峰及其余 部分的酶活力( 5ml/ 管),检查流出液中是否有酶活力存 在(即酶是否挂在离子交换树脂上)。洗柱体积控制在5个 柱体积左右(约35ml)。

离子交换层析的原理和应用

离子交换层析的原理和应用

离子交换层析的原理和应用1. 原理概述离子交换层析是一种常用的分离和纯化技术,基于离子交换剂与目标物质之间的相互作用。

其原理是利用交换剂固定在固定相上的活性基团与待分离物质之间的化学吸附和解析度差异来实现目标物质的纯化和富集。

2. 交换剂的选择在离子交换层析中,选择合适的交换剂对分离效果至关重要。

- 强酸型离子交换剂:适用于分离酸性物质。

- 强碱型离子交换剂:适用于分离碱性物质。

- 强酸型离子交换剂与强碱型离子交换剂的混合:适用于分离中性物质。

3. 实验步骤离子交换层析的实验步骤如下: 1. 样品预处理:将待分离物质从样品中提取出来并纯化。

2. 选择合适的离子交换剂:根据目标物质的特性选择合适的离子交换剂。

3. 准备固定相:将离子交换剂固定在合适的固定相上。

4. 填充层析柱:将固定相装填到层析柱中。

5. 样品加载:将样品溶液加载到层析柱上,目标物质与离子交换剂发生相互作用。

6. 洗脱:通过改变溶液条件,如浓度、pH值等,使目标物质与离子交换剂解离,从而洗脱出来。

4. 应用领域离子交换层析广泛应用于以下领域: - 生物制药:用于分离和纯化蛋白质、抗体、核酸等生物大分子。

- 环境监测:用于分离和富集水样中的有机和无机污染物。

- 食品工业:用于食品添加剂、色素、香料等的分离和纯化。

- 化学分析:用于分析样品中的离子和有机物质。

- 生命科学研究:用于研究生物大分子的性质和相互作用。

5. 优点和局限性离子交换层析具有以下优点: - 分离效果好:可以实现高纯度的目标物质。

-操作简单:实验步骤相对简单,易于操作。

- 高选择性:可以通过调整离子交换剂和溶液条件来实现目标物质的选择性分离。

然而,离子交换层析也存在一些局限性: - 样品负荷量有限:由于固定相的固定容量限制,样品负荷量较小。

- 洗脱效果难以调控:洗脱条件的调控比较复杂,对操作者要求较高。

- 耗时较长:由于样品加载和洗脱等步骤的需要,离子交换层析需要较长的时间。

离子交换层析实验原理及步骤

离子交换层析实验原理及步骤

离子交换层析实验原理及步骤离子交换层析实验方法阴离子交换剂与阳离子交换剂的装柱和层析过程基本相同。

交联葡聚糖的预处理只需充分溶胀和平衡,不需要除去细粒碎片和酸碱处理。

其他步骤也基本同离子交换纤维素。

1. 剂型的选择根据蛋白质在所用缓冲液pH值下带电荷的种类选择,如pH高于蛋白质等电点,应选阴离子交换剂,反之应选阳离子交换剂。

一般情况下,DEAE-纤维素用于分离酸性蛋白,而CM纤维素用于分离碱性蛋白质。

下面以DEAE-纤维素操作为例,介绍试验方法2. 膨胀活化此步的目的在于除去杂质,暴露DEAE-纤维素上的极性基团。

DEAE-纤维素的用量则根据柱容积的大小和所需过柱样品的量来决定。

一般是1.0g DEAE-纤维素相当于6ml~8ml柱床体积。

表1-4 分离的血清与所需DEAE—纤维素量及其他条件的大致关系血清样品量(ml)DEAE需用量(g)选层析柱规格(cm)选脱液量(ml)1~221×25100~150552×12200~30010102×20300~40020202×37400~800称取所需的量,撒于0.5Mol/L NaOH溶液中(1g DEAE—纤维素干粉约需15倍NaOH液),浸泡1h左右,不时搅拌。

抽滤(以布氏漏斗加两层滤纸或尼龙纱布抽滤),以蒸馏水洗涤,再抽滤,直至滤液近中性为止,再将纤维素浸泡于0.5Mol/L HCl中1h,同样抽滤液至近中性。

再将纤维素浸于0.5Mol/L NaOH液中,同样处理,洗至中性。

3. 平衡将DEAE—纤维素放入0.0lMol/L pH 7. 4 PB液中(即起始缓冲液),静止1h,不时搅拌,待纤维素下沉后,倾去上清液或抽滤除去洗液,如此反复几次至倾出液体的pH值与加入的PB液的pH值相近时为止。

4. 装柱层析柱的选择要大小、长度适当。

一般而言,柱长和柱直径之比为10∶1~20∶1,柱的内径上下要均匀一致。

用前将层析柱在清洁液内浸泡处理24h,然后依次用常水、蒸馏水、起始缓冲液充分洗涤。

化工专业实验-蛋白质的离子交换层析分离实验-2013

化工专业实验-蛋白质的离子交换层析分离实验-2013

化⼯专业实验-蛋⽩质的离⼦交换层析分离实验-2013化⼯专业实验蛋⽩质的离⼦交换层析实验⼀、实验⽬的1.了解离⼦交换层析分离蛋⽩质的基本原理。

2.掌握离⼦交换层析分离操作的基本步骤及⽅法。

⼆、实验原理1. 离⼦交换层析蛋⽩质的基本原理离⼦交换层析(Ion Exchange Chromatography,简称为IEC)是以离⼦交换剂为固定相,依据流动相中的组分离⼦与交换剂上的平衡离⼦进⾏可逆交换时的结合⼒⼤⼩的差别⽽进⾏分离的⼀种层析分离⽅法。

离⼦交换层析中,基质是由带有电荷的树脂或纤维素组成,带负电荷能吸附正电荷的称之阳离⼦交换树脂,⽽带有正电荷能吸附负电荷的称之阴离⼦交换树脂。

蛋⽩质(protein)是⽣命的物质基础,它是与⽣命及与各种形式的⽣命活动紧密联系在⼀起的⽣物⼤分⼦物质。

蛋⽩质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同⽐例组合⽽成的。

虽然蛋⽩质是⼤分⼦有机物,但由于蛋⽩质中含有氨基、羧基等亲⽔基团,蛋⽩质长链中的亲⽔基团向外⽽疏⽔基团向内,可以形成特定的三维结构,所以⼤部分蛋⽩质仍能较好的溶解在⽔溶液中。

在⼀定的离⼦强度范围内,溶液中的⼩分⼦离⼦在静电作⽤下吸附包裹在蛋⽩质表⾯亲⽔基团外侧,形成双电层结构,⼀定程度上有助于稳定蛋⽩结构及其⽔溶性。

但蛋⽩质在不同的pH条件下,其带电状况不同。

当pH较低时,蛋⽩质表⾯正电荷多于负电荷,总体电性为正;当pH较⾼时,蛋⽩质表⾯正电荷少于负电荷,总体电性为负;当蛋⽩质表⾯正电荷量与负电荷量相当时,蛋⽩质总体显⽰电中性,双点层结构解体,蛋⽩质亲⽔性降到最低,将表现出明显的疏⽔性,发⽣疏⽔性团聚和沉淀,此时的pH值即为蛋⽩质的等电点。

不同蛋⽩质结构不同,等电点亦不同,但⼤部分已知蛋⽩多属于阴离⼦蛋⽩,在中性溶液中显⽰出电负性。

离⼦交换层析可以⽤于蛋⽩质的分离纯化:阴离⼦交换基质能吸附带有负电荷的蛋⽩质,阳离⼦交换基质能结合带有正电荷的蛋⽩质。

质粒两步层析法实验方案

质粒两步层析法实验方案

质粒两步层析法实验方案1. 方案目标质粒两步层析法是一种用于从混合溶液中纯化质粒的方法。

本方案的目标是通过两步层析法,高效、可靠地纯化目标质粒,并获得高纯度的质粒样品。

具体目标如下:1.分离出目标质粒并去除杂质。

2.提高目标质粒的纯度,使其适用于后续实验和应用。

3.确保实验操作简单、可靠,并能在较短时间内完成。

2. 实施步骤步骤一:亲和层析亲和层析是根据靶蛋白与配体之间的特异结合,利用靶蛋白对配体的亲和性选择性吸附的方法。

材料 - 细胞裂解液(含有目标质粒) - 亲和树脂(选择适合的亲和树脂) - 绑定缓冲液(含有适当浓度的盐类和缓冲剂) - 洗脱缓冲液(含有高浓度盐类和缓冲剂)步骤 1. 将细胞裂解液与亲和树脂混合,在室温下孵育一段时间,使目标质粒与亲和树脂发生特异结合。

2. 将混合物放入柱子中,通过重力或离心力使树脂沉积在柱底。

3. 使用绑定缓冲液洗脱杂质,直到洗脱液中的蛋白质浓度较低。

4. 使用洗脱缓冲液洗脱目标质粒,收集洗脱液中的目标质粒。

步骤二:离子交换层析离子交换层析是根据靶蛋白与离子交换树脂之间的静电相互作用,利用靶蛋白与离子交换树脂之间的不同亲和性选择性吸附的方法。

材料 - 从步骤一中收集到的目标质粒 - 离子交换树脂(选择适合的离子交换树脂) - 绑定缓冲液(含有适当浓度的盐类和缓冲剂) - 洗脱缓冲液(含有高浓度盐类和缓冲剂)步骤 1. 将目标质粒与离子交换树脂混合,在室温下孵育一段时间,使目标质粒与离子交换树脂发生静电相互作用。

2. 将混合物放入柱子中,通过重力或离心力使树脂沉积在柱底。

3. 使用绑定缓冲液洗脱杂质,直到洗脱液中的蛋白质浓度较低。

4. 使用洗脱缓冲液洗脱目标质粒,收集洗脱液中的目标质粒。

3. 预期结果通过质粒两步层析法进行实验后,我们预期可以达到以下结果:1.目标质粒能够被有效地分离出来,并成功去除大部分杂质。

2.目标质粒的纯度将显著提高,使其适用于后续实验和应用。

离子交换层析

离子交换层析

液。平衡缓冲液的离子强度和pH的选择首先要保证各个待分 离物质如蛋白质的稳定。其次是要使各个待分离物质与离子 交换剂有适当的结合,并尽量使待分离样品和杂质与离子交 换剂的结合有较大的差别。
一般是使待分离样品与离子交换剂有较稳定的结合。尽量使
杂质不与离子交换剂结合或结合不稳定。在一些情况下可以 使杂质与离子交换剂牢固地结合,而样品与离子交换剂结合 不稳定,也可以达到分离的目的。
离子交换层析的基本操作
(1) 层析柱
离子交换层析要根据分离的样品量选择合适的层析柱,
离子交换用的层析柱一般粗而短,不宜过长。直径和 柱长比一般为1:10到1:50之间,层析柱安装要垂直。装 柱时要均匀平整,不能有气泡。
装柱用于平衡离子交换柱的缓冲
■ 胶体的组成与外型:
Pharmacia (1991) Ion Exchange Chromatography – Principles and Methods p.24
Cellulose Sephcel Monobead
Pharmacia (1980) Separation News: 5
离子交换剂的选择、处理和保存
Buffer: 0.01 M Tris-HCl, pH 8.0
mg / mL gel
Adapted from Pharmacia (1991) Ion Exchange Chromatography – Principles and Methods p.64
影响交换容量的因素很多,主要可分为两个方面。
换剂上的样品组份洗脱下来。
柱效
通过柱子分离得到窄而对称的洗脱峰的能力(分辨率)
装柱的质量
树脂颗粒的大小
正确的洗脱条件

离子交换层析实验报告

离子交换层析实验报告

离子交换层析实验报告
实验目的:
通过离子交换层析技术,分离和纯化溶液中的离子。

实验原理:
离子交换层析技术是一种基于化学亲和力原理的分离技术,常
用于分离带电离子物种。

实验中,采用了阴离子交换树脂进行离
子交换层析。

树脂中固定有一定数量的正离子,来吸附溶液中的
负离子。

随着流动相的进出,树脂的正离子与溶液的负离子不断
交换,从而实现分离和纯化。

实验步骤:
1. 将阴离子交换树脂装入离子交换层析柱中,平衡至稳定状态;
2. 将样品溶液均匀注入离子交换层析柱,并以一定的流速进行
洗脱;
3. 通过读取峰值吸收率、紫外吸收率或放射性测量结果,确定分离物种的含量和纯度;
4. 再次平衡和清洗层析柱。

实验结果:
通过经过层析柱后的溶液,我们成功地分离出了目标离子,并得到了较高的纯度。

最终结果如下:
目标离子浓度:0.45mol/L
分离纯度:99.6%
实验结论:
离子交换层析技术是一种基于化学亲和力原理的有效分离和纯化方法。

在实验中,通过使用阴离子交换树脂,我们成功地分离出目标离子,并获得了高纯度的样品。

实验结果表明,离子交换层析技术在化学、生物等领域有着广泛的应用前景。

生物化学实验 层析法实验

生物化学实验 层析法实验

实验二(1)凝胶层析分离血红蛋白与鱼精蛋白【实验目的】掌握凝胶层析分离蛋白质的基本原理,掌握柱层析的基本操作方法【实验原理】交联葡聚糖凝胶具有多糖网状结构,血红蛋白较鱼精蛋白大:血红蛋白分子量为64500,鱼精蛋白分子量为2000-12000,因此在交联葡聚糖凝胶中鱼精蛋白从胶体分子内部网状结构孔隙中通过,血红蛋白从胶体分子间隙中通过。

血红蛋白走过的路径短且速度快,鱼精蛋白走过的路径长且速度慢。

因此可以在层析柱中观察到红色的血红蛋白先被洗脱出来,而经二硝基氯苯预染呈黄色的鱼精蛋白则在其后被洗脱出来【实验步骤】检查层析装置是否完好→装填层析柱(蒸馏水面应高凝胶面1cm左右)→滴加0.2ml的血红蛋白和鱼精蛋白混合样品→放出一些蒸馏水使样品沉降到凝胶表面→滴加蒸馏水至液面高凝胶2cm→开始洗脱,过程中应不断滴加蒸馏水使液面高度尽量保持不变【实验结果】如图所示:【讨论与分析】1.凝胶层析柱装填时应避免出现气泡,因为气泡会导致血红蛋白的洗脱路径变窄,以至于血红蛋白洗脱速率减慢,从而导致血红蛋白和鱼精蛋白分离不充分;2.为避免凝胶柱装填时出现分层现象,可在再次加入凝胶前轻轻吹打沉淀好的凝胶表面,然后再慢慢补加凝胶。

实验二(2)离子交换层析分离混合氨基酸【实验目的】掌握离子交换层析的基本原理,了解分离混合氨基酸的基本方法【实验原理】天冬氨酸的等电点是2.97,赖氨酸等电点为9.74。

所以先用pH4.2的柠檬酸洗脱时天冬氨酸带负电被洗脱出来,而赖氨酸带正电吸附在阳离子交换树脂上;然后用pH13的NaOH洗脱时赖氨酸带负电,此时之前被吸附在阳离子交换树脂上的赖氨酸就会脱落而被洗脱出来了。

【实验步骤】检查层析装置是否完好→装填层析柱并用柠檬酸洗涤几次阳离子交换凝胶(流动相面始终应高出凝胶面1cm左右)→滴加0.2ml的混合氨基酸样品→放出一些液体使样品沉降到凝胶表面(使流动相液面高出凝胶面0.5cm即可)→滴加柠檬酸至液面高凝胶2cm→开始洗脱并用标记好的试管依次采集7管洗脱液各2ml(过程中不断滴加柠檬酸使液面高度尽量保持不变)→换用NaOH洗脱,同样也采集7管洗脱液各2ml→往洗脱液收集管中分别加入pH为5的乙酸缓冲液和茚三酮溶液各0.5ml→沸水浴10min→570nm测吸光值→绘制层析图并计算分离度【实验结果】时间(试管编号) 1 2 3 4 5 6 7 吸光度A 0.000 0.004 0.695 0.295 0.044 0.014 0.030 时间(试管编号)8 9 10 11 12 13 14 吸光度A -0.003 0.008 0.037 3.010 0.222 0.020 0.039【讨论与分析】由层析图可得Rs=98.4%【讨论与分析】天冬氨酸与赖氨酸洗脱液的吸光度差距较大的原因可能有哪些?答:1.样品取自上清液,氨基酸没有混合均匀,导致洗脱液中氨基酸含量差异较大;2.茚三酮与氨基酸的呈色反应的结果与氨基酸的种类及pH值有关,洗脱液pH值不同,导致茚三酮呈色反应出现了不同的染色结果因而导致了吸光度的差异。

生物化学实验-离子交换层析

生物化学实验-离子交换层析

1、仪器连接
AB
开关
A、 50ml 20mmol/L Tris-HCl,pH7.3缓
冲液
B、 50ml 20mmol/L Tris-HCl,(0.5
mol/L NaCl) pH7.3缓冲液 1.接通各仪器电源,将A,B泵头分别放置
A,B两个溶液瓶中。注意B为含NaCl溶
液。1:缓冲液阀(Buffer valve) 2. 点2:击混电和脑器桌(面M上ixUenri)corn软件图标,打 开软3:件样。品选阀择(SySsatemmplCeovnatrlovel ,)点击OK ,进4:入泵操(作P界u面m。p)点击Connect 3. 在5:操压作力界传面感的器工(具P栏re,ss点u击reMannual Rusne。n出so现r)FlowRate 窗口,调节flowrate 为 61:ml清/m洗in,阀确(定Wa。sh valve)
Wash valve Collector
(1)连接混和器及样品阀,流速调整为1.0ml/min (2)切换至BufferB,直至Conductivity到达40mS/cm (3)连通BufferA,直至Conductivity接近2并平稳 ,准备装柱
3、装柱和平衡: (1)检查层析柱的两端接头,底端有膜的置于下方。 (2)程序暂停。将层析柱放入卡槽,上端接头与混合器(mixer) 相连,下端接头与样品阀(sample valve)相连。
实验器材与仪器
1、高速冷冻离心机 2、层析柱(φ1.0×20㎝ )(1支/组) 3、ÄKTATM start(1套/组) 4、部分收集器及收集试管(4ml/管)(1台/组) 5、-20℃冰箱(保存样品用) 6、微量移液枪 200ul、1000ul 7、1.5ml离心管(留样品Ⅲ和样品Ⅳ用) 8、7ml离心管(留样品Ⅳ用) 9、恒温水浴(50℃、100℃) 10、试管、移液管、试管架等

离子交换层析的原理

离子交换层析的原理

离子交换层析的原理
离子交换层析主要是一种有机材料,是一种含有离子交换官能团和其他固体基础的混
合物,其中的离子交换官能团能够与入射的气体发生反应,产生出具有一定离子性的气体,通过离子交换官能团的交换离子的作用,实现气体的分离、富集以及活化,是火花放电等
产生气体的检测和分离的重要方法。

离子交换层析的原理主要包括:离子传递和离子换位。

离子传递:由于离子交换材料具有离子交换官能团,当掺入气体阵列中时,由于离子
官能团和气体阵列中的离子二者之间的力学和化学交换,气体阵列中的离子可以在离子交
换官能团的特定位置进行换位,发生迁移,换位,由此形成气体分离和富集的效果。

从理论上讲,离子交换层析作用于不同种类的离子,而结合离子传递和离子换位的相
互作用,实现了浓度不断增加的效果,达到增强浓度的效果,从而实现气体的分离、富集
和活化的效果。

由于其具有特殊的工作温度,非常适合于工业应用,特别是用于工业中排
放气体的检测和分离。

离子交换层析操作方法

离子交换层析操作方法

离子交换层析操作方法离子交换层析(Ion Exchange Chromatography)是一种常用的分离和纯化生物大分子的方法,例如蛋白质、核酸等。

其原理是利用固定在固相上的离子交换剂与样品中的离子之间发生物理吸附和解离平衡,通过调节其溶剂系统、pH值、盐浓度等条件,使样品中的不同离子以不同的速率从固相上解离下来,从而实现分离目标分子的目的。

离子交换层析操作可以分为以下几个步骤:1. 样品处理:样品的处理对于离子交换层析的成功与否至关重要。

通常情况下,样品需要经过蛋白质提取等步骤,获得纯净的样品溶液。

如果样品中含有较高浓度的盐类等杂质,可以通过浓缩、洗涤等方法去除。

2. 选择合适的离子交换剂:离子交换剂的选择是根据样品中所含离子的性质来决定的。

对于阴离子,通常选择带有正电荷的阳离子交换剂(如硫酸树脂、乙二胺树脂等);对于阳离子,通常选择带有负电荷的阴离子交换剂(如盐酸树脂、硝酸树脂等)。

3. 准备离子交换柱:选择合适的柱子尺寸和填充物,通常为高分子量亲水性凝胶。

将填充物装入离子交换柱中,并保持均匀填充。

4. 培养条件:根据样品特性和目的,设置适当的培养条件。

其中包括pH值、溶剂系统和盐浓度。

这些条件的选择需要根据样品的性质(酸碱性,亲水性等)和需要分离的目标纯化物的性质来确定。

5. 样品加载:将经过处理的样品加入离子交换柱,采用适当的流速保持平衡。

溶剂的选择和流速的控制主要是为了交换离子的速率与静电吸附的速率之间达到适当的平衡。

6. 洗脱:通过改变培养条件或溶剂梯度洗脱目标分离物和杂质。

通常使用梯度洗脱的方式,即梯度调整溶剂中的离子浓度,以促进目标物质逐步从离子交换剂上脱附。

7. 浓缩和储存:将洗脱得到的目标分离物浓缩并储存。

离子交换层析操作常见的问题及解决方案:1. 样品中存在杂质:可以通过前处理步骤(如超滤、浓缩等)进行预处理,去除杂质,以保证在交换剂上发生特异性吸附。

2. 分离效果不佳:可以通过改变溶剂系统、pH值或盐浓度等因素来优化分离条件,选取合适的条件以提高分离效果。

离子交换层析的原理

离子交换层析的原理

离子交换层析的原理离子交换层析(Ion-Exchange Chromatography,简称IEC)是一种常用的分离和纯化生物大分子的方法。

该方法基于弱酸性或弱碱性的高分子吸附物质与带电离子之间的相互作用,利用其选择性地吸附、分离和纯化带电离子。

在吸附步骤中,样品溶液通过含有离子交换基团的固相介质(通常是高分子树脂)时,带电离子与固相介质表面的离子交换基团发生相互作用。

对于阳离子交换树脂,固相表面上的阴离子交换基团可以与带正电荷的离子结合,而对于阴离子交换树脂,固相表面上的阳离子交换基团可以与带负电荷的离子结合。

吸附度取决于样品中离子的电荷性质、离子交换基团的性质和浓度,以及环境条件(如pH、温度等)。

洗脱步骤是将在固相上吸附的离子从固相上解离出来,通过改变洗脱溶剂的性质或浓度来实现。

这种方法基于洗脱溶剂中的离子与固相上吸附的离子进行竞争吸附,使被吸附的离子被替换出来。

常用的洗脱溶剂包括反离子和酸碱溶液。

阳离子交换层析主要适用于分离和纯化带正电荷的生物大分子,如蛋白质和多肽。

这种层析材料通常含有阴离子交换基团,如羧基(-COO-)或磺酸基(-SO3-)。

在吸附步骤中,带正电荷的生物大分子与固相上的阴离子交换基团结合。

洗脱步骤中,通过增加洗脱溶剂中的盐浓度或改变pH值来解离吸附的离子。

阴离子交换层析适用于分离和纯化带负电荷的生物大分子,如核酸和糖类。

这种层析材料通常含有阳离子交换基团,如胺基(-NH2)或季铵盐基(-N+(CH3)3)。

在吸附步骤中,带负电荷的生物大分子与固相上的阳离子交换基团结合。

洗脱步骤中,通过增加洗脱溶剂中的阴离子浓度或改变pH值来解离吸附的离子。

离子交换层析广泛应用于生物制药、生物化学和生物学研究中,可以用于纯化重组蛋白、肽段、核酸和多糖等生物大分子。

这种技术具有选择性高、适应性强、纯化效果好的优点,为生物大分子的研究和应用提供了重要的工具。

离子交换层析实验报告

离子交换层析实验报告

一、实验目的1. 掌握离子交换层析的实验原理及操作步骤。

2. 学习离子交换层析在蛋白质分离纯化中的应用。

3. 提高实验操作技能,培养严谨的科学态度。

二、实验原理离子交换层析(Ion Exchange Chromatography,IEC)是一种利用离子交换剂为固定相,根据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的层析方法。

该方法广泛应用于蛋白质、核酸等生物大分子的分离纯化。

实验中,待分离的蛋白质溶液通过填充有离子交换剂的层析柱,蛋白质分子与离子交换剂上的离子发生可逆交换。

根据蛋白质分子所带电荷和离子交换剂选择性的不同,蛋白质在层析柱中的滞留时间不同,从而实现分离。

通过改变洗脱液的条件(如离子强度、pH值等),可以使蛋白质从层析柱中洗脱出来,收集各个洗脱峰,从而得到纯净的蛋白质。

三、实验材料与仪器1. 材料:蛋白质样品、离子交换树脂、洗脱液、缓冲液等。

2. 仪器:层析柱、恒流泵、紫外检测仪、记录仪、烧杯、移液管、滤纸等。

四、实验步骤1. 准备层析柱:将离子交换树脂用蒸馏水充分浸泡,去除杂质,然后用缓冲液平衡。

2. 样品处理:将蛋白质样品用缓冲液稀释,调节pH值至适宜范围。

3. 上样:将平衡好的层析柱垂直放置,用缓冲液冲洗层析柱,待柱床稳定后,将稀释后的蛋白质样品上柱。

4. 洗脱:改变洗脱液的条件(如离子强度、pH值等),使蛋白质从层析柱中洗脱出来。

5. 收集洗脱液:收集各个洗脱峰,分别检测蛋白质含量。

6. 蛋白质鉴定:对各个洗脱峰进行鉴定,确定目标蛋白质。

五、实验结果与分析1. 实验结果:通过实验,成功分离出目标蛋白质,并得到其纯化曲线。

2. 结果分析:(1)实验过程中,层析柱的平衡、样品的处理、洗脱液的配制等环节对实验结果影响较大,应严格控制。

(2)离子交换层析分离蛋白质的效果取决于离子交换剂的选择性、样品的预处理和洗脱条件等。

(3)实验中,通过改变洗脱液的离子强度和pH值,可以实现蛋白质的逐步洗脱,提高分离效果。

离子交换柱层析法分离纯化蛋白质

离子交换柱层析法分离纯化蛋白质

离⼦交换柱层析法分离纯化蛋⽩质离⼦交换柱层析法分离纯化蛋⽩质⼀、实验⽬的学习层析技术,掌握离⼦交换柱层析法分离纯化蛋⽩质的操作⽅法。

⼆、基本原理离⼦交换层析是依据各种离⼦或离⼦化合物与离⼦交换剂的结合⼒不同⽽进⾏分离纯化的。

离⼦交换层析的固定相是离⼦交换剂,以液体为流动相。

离⼦交换剂由⼀类不溶于⽔的惰性⾼分⼦聚合物基质,通过⼀定的化学反应共价结合上某种电荷基团形成。

离⼦交换剂可以分为三部分:⾼分⼦聚合物基质、电荷基团和平衡离⼦。

电荷基团与⾼分⼦聚合物共价结合,形成⼀个带电的可进⾏离⼦交换的基团。

平衡离⼦是结合于电荷基团上的相反离⼦,它能与溶液中其它的离⼦基团发⽣可逆的交换反应。

平衡离⼦带正电的离⼦交换剂能与带正电的离⼦基团发⽣交换作⽤,称为阳离⼦交换剂;平衡离⼦带负电的离⼦交换剂与带负电的离⼦基团发⽣交换作⽤,称为阴离⼦交换剂。

假设以RA+代表阳离⼦交换剂,其中A+代表平衡离⼦,A+可以与溶液中的阳离⼦B+发⽣可逆的交换反应,其反应式为RA+ + B+↔ RB+ + A+上述反应能迅速达到平衡,平衡的移动遵循质量作⽤定律。

下⾯以阴离⼦交换剂为例简单介绍离⼦交换层析的基本分离过程。

阴离⼦交换剂的电荷基团带正电,装柱平衡后,与缓冲溶液中的带负电的平衡离⼦结合。

待分离溶液中可能有正电基团、负电基团和中性基团。

加样后,负电基团可以与平衡离⼦进⾏可逆的置换反应⽽结合到离⼦交换剂上,⽽正电基团和中性基团则不能与离⼦交换剂结合,随流动相流出⽽被去除。

通过选择合适的洗脱⽅式和洗脱液,如增加离⼦强度的梯度洗脱。

随着洗脱液离⼦强度的增加,洗脱液中的离⼦可以逐步与结合在离⼦交换剂上的各种负电基团进⾏交换,⽽将各种负电基团置换出来,随洗脱液流出。

与离⼦交换剂结合⼒⼩的负电基团先被置换出来,⽽与离⼦交换剂结合⼒强的,需要较⾼的离⼦强度才能被置换出来,这样各种负电基团就会按其与离⼦交换剂结合⼒从⼩到⼤的顺序逐步被洗脱下来,从⽽达到分离⽬的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、仪器连接
AB
开关
A、 50ml 20mmol/L Tris-HCl,pH7.3缓
冲液
B、 50ml 20mmol/L Tris-HCl,(0.5
mol/L NaCl) pH7.3缓冲液 1.接通各仪器电源,将A,B泵头分别放置
A,B两个溶液瓶中。注意B为含NaCl溶
液。1:缓冲液阀(Buffer valve) 2. 点2:击混电和脑器桌(面M上ixUenri)corn软件图标,打 开软3:件样。品选阀择(SySsatemmplCeovnatrlovel ,)点击OK ,进4:入泵操(作P界u面m。p)点击Connect 3. 在5:操压作力界传面感的器工(具P栏re,ss点u击reMannual Rusne。n出so现r)FlowRate 窗口,调节flowrate 为 61:ml清/m洗in,阀确(定Wa。sh valve)
盖上柱上方接头。再次启动程序。
样品
ቤተ መጻሕፍቲ ባይዱ
缓冲液
5、洗脱(梯度洗脱法): (1)加样后,先用A缓冲液进行洗脱,洗去未被凝胶吸附的杂蛋白 (20min左右); (2)待层析柱流出液在仪器上绘出的基线稳定,在程序主界面的工具栏 Manual→Execute manual instruction → pumps →Gradient,在两个框 内均填入100,点击insert,最后点击execute.开始梯度洗脱。每2min接 一管,当Conductivity上升至8 mS/cm 时,开始测定各管的蔗糖酶活力; (3)将蔗糖酶活力高的若干管酶液(2-3管)合并,测量总体积V4(样品 Ⅳ),样品用7ml离心管-20℃保存。
Wash valve Collector
(1)连接混和器及样品阀,流速调整为1.0ml/min (2)切换至BufferB,直至Conductivity到达40mS/cm (3)连通BufferA,直至Conductivity接近2并平稳 ,准备装柱
3、装柱和平衡: (1)检查层析柱的两端接头,底端有膜的置于下方。 (2)程序暂停。将层析柱放入卡槽,上端接头与混合器(mixer) 相连,下端接头与样品阀(sample valve)相连。
7:上样阀(Injection valve)
8:UV
9:电导(Conductivity)
10:出口阀(Outlet valve)
Buffer valve
Conductivity
UV Column
Mixer
Injection valve
Outlet valve
Sample valve
Pump Pressure sensor
2、酶活力检测 蔗糖酶是一种水解酶,它能蔗糖水解为等量的葡萄糖和果糖(还原
糖)。(50℃水解) 3.5-二硝基水杨酸与还原糖共热被还原成棕红色的氨基化合物,在一
定范围内还原糖的量和反应液的颜色深度成正比。(100℃显色)
实验材料与试剂
1、实验材料 蔗糖酶粗分离纯化(溶解即为样品Ⅲ)
2、实验试剂 ⑴ DEAE-Sepharose Fast Flow ⑵ 20mmol/L Tris-HCl pH7.3 缓冲液 ⑶ 20mmol/L Tris-HCl(1mol/L NaCl)pH7.3缓冲液 ⑷ 0.2mol/L乙酸缓冲液,pH4.5 ⑸ 5%蔗糖溶液 ⑹ 3,5-二硝基水杨酸试剂
实验二
离子交换柱层析分 离纯化蔗糖酶
实验目的和要求
1、学习离子交换层析的基本原理 2、学习离子交换层析分离蛋白质的基本方法和技术 3、学习蔗糖酶活性检测的基本原理和方法
实验基本原理
1、离子交换层析
由于蔗糖酶的pI偏酸性,所以在pH7.3 缓冲液的环境中,粗 分离纯化样品蔗糖酶带负电荷,因此我们用阴离子交换剂可以 先与蔗糖酶样品可逆交换吸附,然后通过用盐离子强度逐渐提 高的洗脱液,使蔗糖酶和其他杂蛋白质的电荷被中和,与离子 交换剂的亲和力降低,把不同的蛋白质按所带电荷的强弱逐一 被洗脱下来,从而达到分离蔗糖酶的目的。
4、加样:
凝胶柱床平衡约30分钟后,待缓冲液液面与胶体表面相切时,
程序暂停pause。旋开柱上方接头,用胶头滴管缓慢将蔗糖酶蛋
白样品溶液(样品Ⅲ)加入层析柱中,注意顺着柱壁滴加,尽可
能保持胶面平整。启动程序,使样品溶液进入胶体,待样品溶液
完全进入胶体后,暂停程序,用少量洗脱缓冲液将残余在层析柱
壁上端的样品洗下,并完全进入胶体后,再加缓冲液至一定高度,
100℃水浴2min
蒸馏水
5.0ml
5.0ml
观察颜色
• 测量:V3 V4 • 留样:样品III 样品IV
洗脱曲线要体现在实验报告里面。
少量缓冲液
凝胶搅匀后灌入,待其自 然沉降。若凝胶高度未达 要求,需多次灌入。
4cm
DEAE-Sepharose Fast Flow
达到所需柱床高 度后,将柱上端 接头与柱连接, 开始平衡。
装柱(10min后开泵,1 ml/min)
平衡(流速在1.0 ml/min)
样品处理: (1)上次沉淀样品充分溶解于10ml(2*5ml) (20mmol/L Tris-HCl pH7.3 缓冲液,合并为一管,两组平衡。 (2) 4℃ 12000r/min, 离心10分钟,收集上清,测量体积 V3,留取1ml(样品Ⅲ)用于后续分析 (3)将其余样品作离子交换柱层析进一步分离纯化蔗糖酶
实验器材与仪器
1、高速冷冻离心机 2、层析柱(φ1.0×20㎝ )(1支/组) 3、ÄKTATM start(1套/组) 4、部分收集器及收集试管(4ml/管)(1台/组) 5、-20℃冰箱(保存样品用) 6、微量移液枪 200ul、1000ul 7、1.5ml离心管(留样品Ⅲ和样品Ⅳ用) 8、7ml离心管(留样品Ⅳ用) 9、恒温水浴(50℃、100℃) 10、试管、移液管、试管架等
酶活反应是在试管里操作,并非收集管!!
6、蔗糖酶活力检测
空白对照(1) 样品管(n)
0.2mol/L乙酸缓冲液,pH4.5
0.5ml
0.5ml
5%蔗糖溶液
0.5ml
0.5ml
蒸馏水
1.0ml
0.95ml
部分收集的酶液
/
0.05ml
50℃水浴5min
3.5-二硝基水杨酸试剂(DNS)
1.0ml
1.0ml
相关文档
最新文档