第8章 信号的运算与处理电路解析
第8章 信号的运算与处理
第8章 信号的运算与处理
图8.2.9 积分电路
第8章 信号的运算与处理
8.2.5 微分电路
将图8.2.9所示的积分电路中的电阻和电容元件对换位置, 并选取比较小 的时间常数RC, 便得到图8.2.11 所示的微分电路。在这个电路中, 同样存在虚 地和虚断, 即i1=i2=i。
设t=0时,uC=0, 当信号电压us接入后, 便有
反相放大电路的低频等效电路如图8.2.14所示闭环电压放大倍数为
式(8.2.15)表明,̇Auo、ri越大, ̇Auf越接近理想情况下的 Rf/R1; 反之, ̇Auo、ri越 小,Auf越小, 误差越大。
第8章 信号的运算与处理 图8.2.14 反相运算放大电路的低频等效电路
第8章 信号的运算与处理
第8章 信号的运算与处理 图8.2.7 用加法电路构成的减法电路
第8章 信号的运算与处理
2. 利用差动式电路以实现减法运算 图8.2.8是用来实现两个电压us1,us2相减的电路, 从电路结构上来看, 它是反
相输入和同相输入相结合的放大电路。 在理想运放的情况下, 由两虚的概念可得:
在上式中, 如果选取电阻值满足Rf/R1=R3/R2的关系, 输出电压可简化为
第8章 信号的运算与处理
图8.2.6 加法电路
第8章 信号的运算与处理
8.2.3 减法电路 1. 利用反相信号求和以实现减法运算 电路如图8.2.7所示, 第一级为反相比例运算电路, 若Rf1=R1, 则uO1=-us1; 第 二级为反相加法电路, 若R'2=R2, 可导出
若R2=Rf2, 则式(8.2.6a)变为
模拟电子技术基础
第8章 信号的运算与处理
8.1 集成运算放大器的应用基础 8.1.1 集成运算放大器的符号 8.1.2 理想集成运算放大器 8.1.3 集成运算放大器的电压传输特性
第八章 信号的运算和处理电路 ppt课件
–voVsBiblioteka 当t=RC时,vo = –Vs
vo的值受最大输出电压的限制
t
t 图8-9
六、微分电路
if
i1 = if
vs i1
R –
Cdvs vo
C
dt R
vo
+ 图8-10
vo
RCdvs dt
vs Vs
t
–vo Vs
t
图8-11
当vs为阶跃电压,由于信号 源总有内阻,t=0时,电容上 压降vo= 0。充电电流很大, –vo亦很大,
第八章 信号的运算和处理电路
§8.1 基本运算电路
一、反相放大器(反相比例放大器)
if
iI = 0 v+ = 0
i1 vs
R1
Rf – iI
vo
v+ =v– v– = 0 又 iI = 0 i1 = if
R2
+ 图8-2
vs vo R1 Rf
vo
Rf R1
R2:平衡电阻。 R2 = R1 // Rf 若R1 = Rf vo = –vs 此为反相器。
A0
1
R2 R1
为同相放大器的电压增益。
(2) vo4Rv3oC 3 t 5V 12t 5 t2.5ms
§8-3 对数和反对数运算放大器
一、对数运算放大器
iC T
i = iC
vRS ISeVVBTE
vO
ISe VT
vO
vT
ln vS RIS
R
vS
–
iN
P
+
IS:三极管发射结反向饱和电流 缺点: 幅值不能超过0.7V;
温漂严重。
vo 图8-12
电子线路第8章
Rb2 -
Re
判断是否是满足 相位条件——相 相位条件 相 位平衡法: 位平衡法:
C Uf 断开反馈到放大 R b1 L1 L2 器的输入端点, 器的输入端点,假设 (-) 在输入端加入一正极 C b (+) Uo 性的信号, 性的信号,用瞬时极 性法判定反馈信号的 极性。若反馈信号与 极性。 R b2 Re 输入信号同相, 输入信号同相,则满 足相位条件; 足相位条件;否则不 满足。 满足。
8.2 LC正弦波振荡电路 正弦波振荡电路
1. LC并联谐振回路的选频特性 并联谐振回路的选频特性 并联谐振回路的
i
+ u
当 ω = ω0 ≈
1 LC
时,
iC
C
iL
L R
并联谐振。 并联谐振。 谐振时,电路呈阻性: 谐振时,电路呈阻性:
-
R为电感和回路中的损耗电阻 为电感和回路中的损耗电阻
L (阻性 阻性) Z0 = 阻性 RC
石英晶体振荡电路
8.3.2 石英晶体的基本特性与等效电路 1. 石英晶体的压电效应
V
极板间加电场 晶体机械变形 极板间加机械力 晶体产生电场
V
晶片 敷银层
V
符号
V
压电效应: 压电效应:
交变电压
机械振动
交变电压 压电谐振
固有频率时, 当交变电压频率 = 固有频率时,振幅最大
机械振动的固有频率与晶片尺寸有关,稳定性高。 机械振动的固有频率与晶片尺寸有关,稳定性高。
| AF | =1
ϕ A + ϕ F = 2 nπ
n是整数 是整数
起振条件和稳幅原理
起振条件: 起振条件: & & 略大于1 | A F |>1 (略大于1)
信号的运算与处理电路
ui1
ui2
R12
_
uo
+
+
RP
R PR 1/1/R 12 //R F
实际应用时可适当增加或减少输入端的个数, 以适应不同的需要。
反相求和运算(2)
ui1
R11
iF
R2
i11
ui2
R12
_
uo
i12
+ +
u u0 i11i12iF
RP
uo (RR121ui1RR122ui2)
反相比例放大器计算举例(1)
例:求Au =?
虚短
i2 R2 M R4 i4
u u 0
i3 R3
i1= i2
虚断
ui
i1 R1 RP
_
+ +
uo
uo
vM
1
R4 1
1
R2 R3 R4
i2
vM R2
i1
ui R1
反相比例放大器计算举例(2)
uo
vM
1
R4 1
1
R2 R3 R4
2. 关于输入电阻:反相输入的输入电阻小,同 相输入的输入电阻高。
3. 同相输入的共模电压高,反相输入的共模电 压小。
试一试
P50 2.4.6
微分运算电路(1)
R
R
ui
–
+
uo
+
R2
R
C
ui
– uo
+
+
R2
微分运算电路(2)
iF R
i1 C ui
R2
–
+ +
信号的运算和处理电路
04 模拟-数字转换技术
采样定理与抗混叠滤波器
采样定理
采样定理是模拟信号数字化的基础, 它规定了采样频率应至少是被采样信 号最高频率的两倍,以避免混叠现象 的发生。
抗混叠滤波器
在模拟信号数字化之前,需要使用抗 混叠滤波器来滤除高于采样频率一半 的频率成分,以确保采样后的信号能 够准确地还原原始信号。
续时间信号在任意时刻都有定义,而离散时间信号只在特定时刻有定义。
02
周期信号与非周期信号
周期信号具有重复出现的特性,而非周期信号则不具有这种特性。周期
信号的频率和周期是描述其特性的重要参数。
03
能量信号与功率信号
根据信号的能量和功率特性,信号可分为能量信号和功率信号。能量信
号在有限时间内具有有限的能量,而功率信号在无限时间内具有有限的
平均功率。
线性时不变系统
线性系统
线性时不变系统的性质
线性系统满足叠加原理,即系统对输 入信号的响应是各输入信号单独作用 时响应的线性组合。
线性时不变系统具有稳定性、因果性、 可逆性、可预测性等重要性质。
时不变系统
时不变系统的特性不随时间变化,即 系统对输入信号的响应与输入信号的 时间起点无关。
卷积与相关运算
Z变换与DFT的关系
Z变换可以看作是DFT的推广,通过引入复变量z,可以将离散时间信号转换为复平面上的函数,从 而方便地进行频域分析和设计。
数字滤波器设计
01
数字滤波器的类型和特性
数字滤波器可分为低通、高通、带通、带阻等类型,具有 不同的频率响应特性。
02 03
IIR滤波器和FIR滤波器的设计
IIR滤波器具有无限冲激响应,设计时需要考虑稳定性和相 位特性;FIR滤波器具有有限冲激响应,设计时主要考虑 频率响应和滤波器长度。
电工电子技术第八章集成运算放大电路
8.1 集成运算放大器的简单介绍
• 运算放大器开环放大倍数大,并且具有深 度反馈,是一种高级的直接耦合放大电路。 它通常是作为独立单元存在电路中的。最 初是应用在模拟电子计算机上,可以独立 地完成加减、积分和微分等数学运算。早 期的运算放大器由电子管组成,自从20世 纪60年代初第一个集成运算放大器问世以 来,运算放大器才应用在模拟计算机的范 畴外,如在偏导运算、信号处理、信号测 量及波形产生等方面都获得了广泛的应用。
• 4.在集成电路中,比较合适的电阻阻值范 围大约为100 ~300 Ω。制作高阻值的电阻 成本高、占用面积大并且阻值偏差也较大 (10~20%)。因此,在集成运算放大器中 往往用晶体管恒流源代替高电阻,必须用 直流高阻值时,也常采用外接的方式。
8.1.2 集成运算放大器的简单说明
• 集成运算放大器的的电路常可分为输入级、 中间级、输出级和偏置电路四个基本组成 部分,如图8-1所示。
• 2.信号的输入 • 当有信号输入时,差动放大电路(见图8-5)的工作情况可以分为以下几种情
况。
• (1)共模输入。 • 若两管的基极加上一对大小相等、极性相同的共模信号(即vi1 = vi2),这种
输入方式称为共模输入。这将引起两管的基极电流沿着相同的方向发生变化, 集电极电流也沿相同方向变化,所以集电极电压变化的方向与大小也相同, 因此,输出电压vo = ΔvC1-ΔvC2 = 0,可见差动放大电路能够抑制共模信号。 而上述差动放大电路抑制零点漂移则是该电路抑制共模信号的一个特例。因 为输出的零点漂移电压折合到输入端,就相当于一对共模信号。
u
u
u0 Au 0
0
u+≈u-
(8-2)
• 当反向输入端有信号,而同向端接地时,u+=0,由上式 可见,u-≈u+=0。此时反向输入端的电位近似等于地电位, 因此,它是一个不接地的“地”电位端,通常称为虚地端。
《模拟电子技术基础》详细习题答案童诗白,华成英版,高教版)章 信号的运算和处理题解
精品行业资料,仅供参考,需要可下载并修改后使用!第七章信号的运算和处理自测题一、判断下列说法是否正确,用“√”或“×”表示判断结果。
(1)运算电路中一般均引入负反馈。
()(2)在运算电路中,集成运放的反相输入端均为虚地。
()(3)凡是运算电路都可利用“虚短”和“虚断”的概念求解运算关系。
()(4)各种滤波电路的通带放大倍数的数值均大于1。
()解:(1)√(2)×(3)√(4)×二、现有电路:A. 反相比例运算电路B. 同相比例运算电路C. 积分运算电路D. 微分运算电路E. 加法运算电路F. 乘方运算电路选择一个合适的答案填入空内。
(1)欲将正弦波电压移相+90O,应选用。
(2)欲将正弦波电压转换成二倍频电压,应选用。
(3)欲将正弦波电压叠加上一个直流量,应选用。
(4)欲实现A u=-100的放大电路,应选用。
(5)欲将方波电压转换成三角波电压,应选用。
(6)欲将方波电压转换成尖顶波波电压,应选用。
解:(1)C (2)F (3)E (4)A (5)C (6)D三、填空:(1)为了避免50Hz电网电压的干扰进入放大器,应选用滤波电路。
(2)已知输入信号的频率为10kHz~12kHz,为了防止干扰信号的混入,应选用滤波电路。
(3)为了获得输入电压中的低频信号,应选用滤波电路。
(4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用滤波电路。
解:(1)带阻(2)带通(3)低通(4)有源四、已知图T7.4所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k 大于零。
试分别求解各电路的运算关系。
图T7.4解:图(a )所示电路为求和运算电路,图(b )所示电路为开方运算电路。
它们的运算表达式分别为I3142O 2O43'O 43I 12O2O1O I343421f 2I21I1f O1 )b (d 1)1()( )a (u R kR R R u ku R R u R R u R R u t u RCu u R R R R R R R u R u R u ⋅=⋅-=-=-=-=⋅+⋅+++-=⎰∥习题本章习题中的集成运放均为理想运放。
第8章反馈控制电路
式中,τ1=(R1+R2)C, τ2=R2C,R1>> R2。与RC积分滤波器不 同的是,当频率很高时,F(jΩ)|Ω→∞=R2/(R1+R2)是电阻的分压 比,这就是滤波器的比例作用。
第8章 反馈控制电路
无源比例积分滤波器 的频率特性
从相频特性上看,当频率很高时有相位超前校正的作用, 可以 改善环路的稳定性。
提取检测信号,通过检波和直流放大,控制高频(或中频)放大 器的增益。
后置AGC: AGC处于解调以后,是从解调后提取检测信 号来控制高频(或中频)放大器的增益。
基带AGC: 整个AGC电路均在解调后的基带进行处理。基 带AGC可以用数字处理的方法完成。
第8章 反馈控制电路
三 AGC的性能指标
1. KV(可控放大器的增益):
y r时,应该减小振荡频率
因为此时uc 0,所以KC为负值
第8章 反馈控制电路
2.鉴频特性
斜率为Kd
第8章 反馈控制电路
3.无偏差的AFC特性 假设低通滤波器的传 输系数为1,即误差电 压等于控制电压
y0 r时
第8章 反馈控制电路
4.有偏差的AFC特性
y0 r时
稳定频差:
1 Kd Kc
ωy=ωy0+Kcuc 其中ωy0是控制信号uc=0时的振荡角频率,称为VCO的固有振 荡角频率,Kc是压控灵敏度。
注意:环路锁定时,ωy固定不变,但是不等于ωr,还有 剩余频差Δω=|ωy-ωr|,否则无控制信息。
第8章 反馈控制电路
二 AFC电路特性分析
1.VCO的压控特性 y y0 KCuc
说明:1。由于PD的存在,锁相环只对相位进行比较。 2。锁相环是靠剩余相差进行工作(无剩余频差) 3。系统为相位负反馈环路。
第8章 相量法
T
0
i (t ) Rdt I RT
2 2
1 T 2 I 0 i (t )dt T
(1)式中代入
(1)式
i(t ) I m cos( t i ) 得
Im I 2
i(t ) I m cos( t i )
2.角频率(周期T、频率f):表示变化快慢 Angular frequency(period, frequency) 定义:相角(t+i)随时间变化的速度(rad/s)
The Phasor
相量法即用复数为工具来表示正弦量。 正弦量 相量(复数)
变换的思想
相量是一个包含正弦量“幅值”和“相 位”信息的复数。
一、复习复数:
1.复数的表示形式 (1)代数形式 b 0
+j
F
r
θ
a +1
F a jb
(2)三角形式 (3)指数形式 (4)极坐标形式
F r
a b
u(t ) 2U cos( t u )
X Y 53.1
xy 3 X Y
4
2.复数的代数运算 相加(减):使用代数形式
(a jb) (a1 a2 ) j (b1 b2 )
相乘(除):使用指数形式
F F1F2 r1r2e
j (1 2 )
F1 r1 j (12 ) F e F2 r2
二.正弦信号的相量表示
根据欧拉公式:
e
jx
cos x j sin x
j (t )
对于同频 正弦量而 言相同
u 2U cos ( t ) Re[ 2Ue
时域 一 一 对 应
] Re[ 2Ue j e jt ]
模拟电子技术随堂练习2019春华工答案
模拟电子技术第1章常用半导体器件1.(单选题)N型半导体的多数载流子是电子,因此它应()oA.带负电B.带正电C.不带电答题:r A.r B.r C.r D.(已提交)参考答案:C问题解析:2.(单选题)将PN结加适当的反向电压,则空间电荷区将()oA.变窄B.变宽C.不变答题:r A.r B.r C.r D.(已提交)参考答案:B问题解析:3.(单选题)二极管的死区电压随环境温度的升高而()oA.增大B.不变C.减小答题:r A.r B.r C.r D.(已提交)参考答案:C问题解析:4.(单选题)电路如图所示,设全部二极管均为理想元件,当输入电压ui=10sinetV时,输出电压最大值为10V的电路是()。
fc) 份答题:r A.r B.r C.r D.(已提交)参考答案:C问题解析:5.(单选题)电路如图所示,DI,D2均为理想二极管,设Ul=10V,ui=40sinωtV,则输出电压uθ应为()oA.最大值为40V,最小值为0VB.最大值为40V,最小值为+10VC.最大值为10V,最小值为一40VD.最大值为10V,最小值为0V答题:r A.r B.r C.r D.(已提交)参考答案:D问题解析:稳压管的动态电阻rZ是指()。
A.稳定电压力与相应电流IZ之比B.稳压管端电压变化量AUZ与相应电流变化量ΔIZ的比值C.稳压管正向压降与相应正向电流的比值答题:r A.r B.r C.r D.(已提交)参考答案:B问题解析:7.(单选题)在放大电路中的晶体管,其电位最高的一个电极是()。
A.PNP管的集电极B.PNP管的发射极C.NPN管的发射极D.NPN管的基极答题:r A.r B.r C.r D.(已提交)参考答案:B问题解析:8.(单选题)已知放大电路中某晶体管三个极的电位分别为VE=T.7V, VB=-1.4V,VC=5V,则该管类型为()oA.NPN型楮管B.PNP型信管C.NPN型硅管D.PNP型硅管答题:r A.r B.r C.r D.(已提交)参考答案:A问题解析:第2章基本放大电路L(单选题)如果改变晶体管基极电压的极性,使发射结由正偏导通改为反偏, 则集电极电流()。
光电检测技术及应用 第8章光电检测常用电路
z2
r22
(wL2
1 )2 wC2
r2
1 2
arctg
(wL2
1 wC 2
r2
)
w0 L2 r2
w w0
1 r2 w0C2
w0 w
Q2
(
w w0ห้องสมุดไป่ตู้
w0 w
)
Q2
2w w0
Q2
w0 L2 r2
为二次侧回路的品质因数,
称为广义失调
量,Z2为二次侧回路的阻抗。
w w w0 为角频率变化量。I2 的相位较U1 滞后 ,它在
电二极管处于接近开路状态,
可以得到与开路电压成正比例
的输出信号即
,A = R2 R1
v
R1
根据(8-1)式代入得
V0 AV Voc
V0
AV
kT q
ln(Se E / I 0 )
四、光电器件与集成运算放大器的连接
(3)阻抗变换型
电路的输出电压
V0 I sc R f R f Se E
当实际的负载电阻 RL 与放大器连接时,RL 远远大于R0 ,则负
常见的鉴频器有斜率鉴频器、相位鉴频器、 比例鉴频器等,对这些电路的要求主要是非线 性失真小,噪声门限低。
1.斜率鉴频器 斜率鉴频器是属于调幅调频变换型。它先通
过线性网络把等幅调频波变换成振幅与调频波 瞬时频率成正比的调幅调频波,然后用振幅检 波器进行振幅检波。
图8-10 斜率鉴频器原理框图及各环节波形图
二、放大器设计中频率及带宽的确定 在实际系统中,从提高信噪比考虑,很少
要求精确保持波形,而按实际需要适当牺牲高 频成分,保持必要的脉冲特性。图8-4说明了 所需保持波形和电路3dB带宽△f之间的关系。
信号运算与处理电路教材教学课件
应用场景
加法运算电路常用于信号 叠加、滤波、音频处理等 场合。
减法运算电路
电路组成
减法运算电路同样由运算放大器、 电阻和反馈网络组成,但与加法 运算电路不同的是,减法运算电 路具有两个输入端。
工作原理
减法运算电路将两个输入信号进行 相减,输出结果为两信号的差值。
应用场景
减法运算电路常用于信号比较、差 分放大、信号调理等场合。
02
它包括信号的放大、滤波、变换 、检测、调制、解调等基本运算 和处理功能。
信号运算与处理电路的分类
模拟信号运算与处理电路
主要对模拟信号进行放大、滤波、变换等处理,如运算放大器电路、滤波器电 路等。
数字信号运算与处理电路
主要对数字信号进行逻辑运算、算术运算、存储、传输等处理,如数字逻辑电 路、微处理器电路等。
信号运算与处理电路教材教学课件
目 录
• 信号运算与处理电路概述 • 信号运算电路 • 信号处理电路 • 信号转换电路 • 信号运算与处理电路的分析与设计 • 信号运算与处理电路的应用实例
01 信号运算与处理电路概述
信号运算与处理电路的定义
01
信号运算与处理电路是指对模拟 信号或数字信号进行各种运算和 处理的电子电路。
DAC芯片介绍
详细介绍数模转换芯片 (DAC)的工作原理、主 要参数和性能指标。
数模转换电路实例
通过实例分析,展示数模 转换电路的设计方法和实 际应用。
模数转换电路
模数转换原理
阐述模拟信号转换为数字信号的基本原理,包括 采样、保持、量化和编码等步骤。
ADC芯片介绍
详细介绍模数转换芯片(ADC)的工作原理、主 要参数和性能指标。
滤波电路的设计要点
模拟电子技术基础课件第8章集成运算放大电路的线性应用
3.差动输入特点
利用“虚短”、“虚断 ”和叠加原理,并利用静 态 平 衡 条 件 ( R1=R2 , R3=RF ),可以求出Uo 与 Ui2和Ui1的差成比例。
输出电压Uo只与输入的差模部分有关,输入的共 模电压和运放偏置电流引起的误差被消除 。
17
电路静态平衡条件
由于集成运放输入级一般 采用差动电路,要求输入电 路两半的参数对称。 Rn=Rp Rn :运放反相端到地之间 向外看的等效电阻; Rp:运放同相端到地之间 向外看的等效电阻。
Ri 100k
可以看出,该电路的比例系数为-50,输入电 阻得到了提高而反馈电阻不必很大。
30
8.2.3 加减运算电路
1. 加法运算电路 (1)反相端输入
U U 0
1) 节点电流法求解:
I f I i1 I i 2 I i 3 U i1 U i 2 U i 3 R1 R2 R3
2
本章的重点和难点
重点: 掌握基本运算电路(比例、加减、积分、 微分、对数、指数、乘法、除法)运算电路的 工作原理和运算关系,利用“虚短”和“虚断 ”的概念分析这些运算电路输出电压和输入电 压的运算关系。 理解模拟乘法器在运算电路中的应用。
3
本章的重点和难点
难点: 运算电路运算关系的分析和识别;对数、指 数运算电路和有源滤波电路的分析计算。
RF 整理得: O U i U R
输入电阻: Ri R
输出电阻:Ro 0
电压并联负反馈
R R // R f
'
20
2.同相比例运算电路
U U Ui
I I 0
U 0 Uo U R RF
整理得:
第08章信号的运算与处理电路49页
滤波器也可以 由无源的电抗性元 件或晶体构成,称 为无源滤波器或晶 体滤波器。
图13.01 有源滤波器的频响
二、 滤波器的用途
滤波器主要用来滤除信号中无用的频率成 分,例如,有一个较低频率的信号,其中包含 一些较高频率成分的干扰。滤波过程如图13.02 所示。
图13.04 一阶LPF 图13.05一阶LPF的幅频特性曲线
当 f = 0时,各电容器可视为开路,通带内的增
益为
Avp
1
R2 R1
一阶低通滤波器的传递函数如下
As
VVOIss
Avp 1( s
)
,
其中
0
1 RC
0
该传递函数式的样子与一节RC低通环节的频响表达式 差不多,只是后者缺少通带增益Avp这一项。
图13.02 滤波过程
8.5.2 有源低通滤波器(LPF)
一、 低通滤波器的主要技术指标 二、 简单一阶低通有源滤波器 三、 简单二阶低通有源滤波器 四、 二阶压控型低通有源滤波器
一、 低通滤波器的主要技术指标 (1)通带增益Avp
通带增益是指滤波器在通频带内的电压放大 倍数,如图13.03所示。性能良好的LPF通带内 的幅频特性曲线是平坦的,阻带内的电压放大 倍数基本为零。
)
vo
p
R3 R3
(R4 //R')vi3 (1 Rf R3 (R4 //R') R1//R2
)R4 R4
(R3//R')vi4 (1 Rf R4 (R3//R') R1//R2
)
Rp R3
vi3(1R1R//fR2
)Rp R4
章 信号的运算和处理题解(第四版模电答案)
第七章信号的运算和处理自测题一、现有电路:A. 反相比例运算电路B. 同相比例运算电路C. 积分运算电路D. 微分运算电路E. 加法运算电路F. 乘方运算电路选择一个合适的答案填入空内。
(1)欲将正弦波电压移相+90O,应选用。
(2)欲将正弦波电压转换成二倍频电压,应选用。
(3)欲将正弦波电压叠加上一个直流量,应选用。
(4)欲实现A u=-100的放大电路,应选用。
(5)欲将方波电压转换成三角波电压,应选用。
(6)欲将方波电压转换成尖顶波波电压,应选用。
解:(1)C (2)F (3)E (4)A (5)C (6)D二、填空:(1)为了避免50Hz电网电压的干扰进入放大器,应选用滤波电路。
(2)已知输入信号的频率为10kHz~12kHz,为了防止干扰信号的混入,应选用滤波电路。
(3)为了获得输入电压中的低频信号,应选用滤波电路。
(4)为了使滤波电路的输出电阻足够小,保证负载电阻变化时滤波特性不变,应选用滤波电路。
解:(1)带阻(2)带通(3)低通(4)有源三、已知图T7.3所示各电路中的集成运放均为理想运放,模拟乘法器的乘积系数k大于零。
试分别求解各电路的运算关系。
图T7.3解:图(a)所示电路为求和运算电路,图(b)所示电路为开方运算电路。
它们的运算表达式分别为习题本章习题中的集成运放均为理想运放。
7.1填空:(1)运算电路可实现A u>1的放大器。
(2)运算电路可实现A u<0的放大器。
(3)运算电路可将三角波电压转换成方波电压。
(4)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均大于零。
(5)运算电路可实现函数Y=aX1+bX2+cX3,a、b和c均小于零。
(6)运算电路可实现函数Y=aX2。
解:(1)同相比例(2)反相比例(3)微分(4)同相求和(5)反相求和(6)乘方7.2 电路如图P7.2所示,集成运放输出电压的最大幅值为±14V,填表。
图P7.2解:u O1=(-R f/R) u I=-10 u I,u O2=(1+R f/R ) u I=11 u I。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息工程学院 电子技术基础课程组
模拟电子技术——电子技术基础精品课程
8 信号的运算与处理电路
8.1 概述
8.2 运算电路 8.3 模拟乘法器 8.4 集成运算放大器在信号检测中的应用
一.仪表放大器 二.电流-电压变换器和电压-电流变换器 三.电表测量电路 四.模拟阻抗变换器 五.二极管限幅电路
vo
R4 R1
vi1
(1
R4 R1
)
R3 R3 R2
vi2
若 R4 R3 R1 R2
则有:vo
R4 R1
(vi2
vi1 )
2020/7/22
求差电路例题
例2.4.1(第五版) 高输入电阻的差分放大电路如图所示,求输出电压vo2的表达式, 并说明该电路的特点.
2020/7/22
反相求和(加法)运算电路
Av
vo vi
1
R2 R1
Ri Ro 0
电压跟随器
2020/7/22
电压跟随器
阻抗变换的作用 缓冲的作用
2020/7/22
差分比例运算电路
深度负反馈条件下: 由“虚短”得:v+=v-; 由“虚断”得:i+=i-=0; 由两输入端的KCL并运用叠加 原理得:
特点:同相和反相输入端分别加上输入信号
千欧以上),所以输入电流非常小
2020/7/22
运放工作在非线性区的条件: 电路开环工作或引入正反馈!
运放非线性工作区域
vo
+10V
+Vom
0
vi
-Vom
-10V
2020/7/22
8.2 运算电路(引入负反馈、线性运用)
一.集成运算放大器的三种输入方式
1. 反相输入方式 2. 同相输入方式 3. 差分输入方式
2020/7/22
集成运放和理想运放1
1、特点: 利用集成工艺将相对独立的电子系统制作在一小块单晶 硅芯片上。
2、内部结构 输入级:利用差分电路的对称性提高电路的性能 中间放大级:由一级或多级放大电路构成,提高增益。 输出级:功率放大电路,为负载提供一定功率。
3、代表符号和外部特性:
a. 符号: vN
反馈类型:电压串联负反馈
结论:
vo
(1
R4 R3
)[vi1
R2 R1 R2
vi2
R1 ] R1 R2
2020/7/22
负反馈的基本概念
+- +
瞬时电位变化极性
增大: +
-
减小: -
vi
vP
vN
vo
vP
vo
国际通用
国标
2020/7/22
集成运放和理想运放2
b. 外部特性 • 双电源或单电源供电 • 同、反相输入端,对差分信号进行放大 • 开环电压增益很大 • 等效输入电阻大,等效输出电阻小 • 输出最大值受电源电压限制(有正负饱和极限值)
c. 理想运放的工作特性 • 开环电压放大倍数Aod和共模抑制比KCMR:∞ • 差模输入电阻Rid=∞;输出电阻Ro=0 • BW=∞ • 失调量为零等…
vN vP 0
特点:信号从集成运算放大器的反相输入端输入
反馈类型:电压并联负反馈
结论:
Av
vo vi
R2 R1
Ri R1
R2 R1时为反相器
Ro 0
2020/7/22
同相比例运算电路
深度负反馈条件下有虚短和虚断的概念
特点:信号从集成运算放大器的同相输入端输入
反馈类型:电压串联负反馈
结论:
二.基本运算电路
1. 同、反相比例运算电路 2. 求和电路 3. 求差电路 4. 积分电路 5. 微分电路 6. 运算电路的传递函数
三.对数与指数运算电路
2020/7/22
反相比例运算电路
深度负反馈条件下, 根据虚断( iN iP 0):
iR iF iN vP 0
根据虚短( vN vP ):
反馈类型:电压串联负反馈、电压并联负反馈共存
结论: 若 R4 R3
R1 R2
则有:vo
R4 R1
(v i2
vi1 )
例2.4.1(五版P35)
2020/7/22
叠加原理
仅vi1作用下:
vo
R4 R1
vi1
仅vi2作用下:
vo
(1
R4 R1
)v
(1
R4 ) R1
R3 R3 R2
vi2
综合考虑: vo vo vo
2020/7/22
运放的电压传输特性
设:电源电压±VCC=±10V。运放的Aod=104 vO
++1100VV ++VVoomm
│ vi│=│vP-vN│≤1mV时,运放处于
-1mV 0 +1mV
vi
线性区。
Aod越大,线性区越小, 当Aod→∞时,线性区→0
--VVoomm
-1-01V0V
非线性区 线性区 非线性区
8.5 有源滤波器 8.6 电压比较器 8.7 集成运算放大器应用中应注意的问题
作业
2020/7/22
8.1 概述
一.集成运算放大器的主要应用(线性与非线性应用)
1. 运算:比例、求和、微积分、对数与指数、模拟乘法器等 2. 处理:滤波等 3. 产生:非正弦、正弦信号产生电路
二. 集成运放和理想运放 三. 运放的电压传输特性 四. 线性和非线性工作区域
2020/7/22
运放的线性工作区域
为了扩大运放的线性区,给运放 电路引入深度负反馈:
运放工作在线性区的分析 方法:
虚假短路(v+=v-)
Aod非常大,理想情况下趋于无穷;
运放工作在线性区时,vo是有限的:
Aod
vo vP vN
vP
vN
0
非线性工作区域
虚假断路(ii+=ii-≈0)
因为虚短,同时运放的输入电阻很大(数百
深度负反馈条件下: 由“虚短”得:vP=vN; 由“虚断”得:iP=iN=0; 由反相输入端的KCL得:
特点:多个信号从集成运算放大器的反相输入端输入
反馈类型:电压并联负反馈
结论:
vo
- (R3 R1
vi1
R3 R2
vi2
...)
和例题
例2.4. 2(第五版) 某歌唱小组有一个领唱和两个伴唱,各自的歌声分别输入三个话筒, 各话筒的内阻Rs=500Ω,接入求和电路如图2.4.5所示。 1. 求总输出电压vo的表达式; 2. 当各话筒产生的电信号为vs= vs1= vs2= vs3=10mV时,vo=2V,伴唱
支路增益Av1= Av2,领唱支路增益Av3= 2Av1,求各支路增益; 3. 选择电阻R1、R2、 R3、 R4的阻值(要求阻值小于100kΩ)
2020/7/22
同相求和(加法)运算电路
深度负反馈条件下: 由“虚短”得:vP=vN; 由“虚断”得:iP=iN=0; 由同相输入端的KCL得:
特点:多个信号从集成运算放大器的同相输入端输入