新人教版2018年中考数学模拟考试试卷及答案

合集下载

(完整word版)2018中考数学模拟试题含答案(精选5套)

(完整word版)2018中考数学模拟试题含答案(精选5套)

2018年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. ) 1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形菱形等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x -1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC 中,AB = AC ,∠ABC = 72°. (1)用直尺和圆规作∠ABC 的平分线BD 交AC 于点D (保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC 的平分线BD 后,求∠BDC 的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°. 小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF = 1米,从E处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度. (参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2018年初三适应性检测参考答案与评分意见一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2018年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、 数1,5,0,2-中最大的数是( ) A 、1- B 、5 C 、0 D 、22、9的立方根是( )A 、3±B 、3C 、39±D 、393、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=( )A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。

2018中考数学模拟考试题和答案解析(精选两套)

2018中考数学模拟考试题和答案解析(精选两套)

图1初中2018届九年级数学第一次模拟第Ⅰ卷 选择题(36分)一、选择题(本大题共12个小题,每小题3分,满分36分) 1. 若m-n=-1,则(m-n )2-2m+2n 的值是( )A. 3B. 2C. 1D. -12. 已知点A (a ,2013)与点A′(-2014,b )是关于原点O 的对称点,则b a +的值为A. 1B. 5C. 6D. 43. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )A .12,B .15,C .12或15,D .18 4. 下列图形中,既是轴对称图形又是中心对称图形的有 ①平行四边形;②正方形;③等腰梯形;④菱形;⑤矩形;⑥圆.A. 1个B. 2个C. 3个D. 4个5. 如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A=40°, ∠APD=75°,则∠B=A. 15°B. 40°C. 75°D. 35° 6. 下列关于概率知识的说法中,正确的是 A.“明天要降雨的概率是90%”表示:明天有90%的时间都在下雨. B.“抛掷一枚硬币,正面朝上的概率是21”表示:每抛掷两次,就有一次正面朝上. C.“彩票中奖的概率是1%”表示:每买100张彩票就肯定有一张会中奖.D.“抛掷一枚质地均匀的正方体骰子,朝上的点数是1的概率是61”表示:随着抛掷次数的增加,“抛出朝上点数是1”这一事件的频率是61. 7. 若抛物线12--=x x y 与x 轴的交点坐标为)0,(m ,则代数式20132+-m m 的值为A. 2012B. 2013C. 2014D. 20158. 用配方法解方程0142=++x x ,配方后的方程是A. 3)2(2=-xB. 3)2(2=+xC. 5)2(2=-xD. 5)2(2=+x9. 要使代数式12-a a有意义,则a 的取值范围是 A. 0≥aB. 21≠a C. 0≥a 且21≠a D. 一切实数 10. 如图,已知⊙O 的直径CD 垂直于弦AB ,∠ACD=22.5°,若CD=6 cm ,则AB 的长为A. 4 cmB. 23cmC. 32cmD. 62cm11. 到2013底,我县已建立了比较完善的经济困难学生资助体系. 某校2011年发放给每个经济困难学生450元,2013年发放的金额为625元. 设每年发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是 A .625)1(4502=+x B. 625)1(450=+xC .625)21(450=+xD. 450)1(6252=+x12. 如图,已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列5个结论:①abc <0;②b <a +c ;③4a +2b+c>0;④2c <3b ; ⑤a +b <m (am +b)(m ≠1的实数). 其中正确结论的有 A. ①②③ B. ①③④C. ③④⑤D. ②③⑤第Ⅱ卷 非选择题(84分)二、填空题(本大题共6个小题,每小题3分,满分18分)只要求填写最后结果. 13. 若方程0132=--x x 的两根分别为1x 和2x ,则2111x x +的值是_____________. 14. 已知⊙O 1与⊙O 2的半径分别是方程x 2-4x+3=0的两根,且O 1O 2=t+2,若这两个圆相切,则t=____________. 15. 如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .16. 已知),(11y x A ,),(22y x B 在二次函数462+-=x x y 的图象上,若321<<x x , 则21____y y (填“>”、“=”或“<”).17. 如图,直线AB 与⊙O 相切于点A ,AC 、CD 是⊙O 的两条弦,且CD ∥AB ,若⊙O 的半径为52,CD=4,则弦AC 的长为 . 18. 已知101=-aa ,则a a 1+的值是______________.三、解答题(本大题共2个题,第19题每小题4分,共8分,第20题12分,本大题满分20分)19.(1)计算题:20)1(3112)3(----+--; (2)解方程:1222+=-x x x .20. 在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同.小明从布袋里随机取出一个小球,记下数字为x ,小红在剩下的3个小球中随机取出一个小球,记下数字为y ,这样确定了点Q 的坐标(x ,y ).(1)画树状图或列表,写出点Q 所有可能的坐标; (2)求点Q (x ,y )在函数y =-x +5的图象上的概率;(3)小明和小红约定做一个游戏,其规则为:若x 、y 满足xy >6则小明胜,若x 、y 满足xy <6则小红胜,这个游戏公平吗?说明理由;若不公平,请写出公平的游戏规则.四、解答题(本大题共2个题,第21题10分,第22题10分,本大题满分20分)21. 如图,在边长为1的正方形组成的网格中,△AOB 的顶点均在格点上,点A ,B 的坐标分别是A (3,3)、B (1,2),△AOB 绕点O 逆时针旋转90°后得到△11OB A . (1)画出△11OB A ,直接写出点1A ,1B 的坐标; (2)在旋转过程中,点B 经过的路径的长; (3)求在旋转过程中,线段AB 所扫过的面积.22. 某德阳特产专卖店销售“中江柚”,已知“中江柚”的进价为每个10元,现在的售价是每个16元,每天可卖出120个. 市场调查反映:如调整价格,每涨价1元,每天要少卖出10个;每降价1元,每天可多卖出30个. (1)如果专卖店每天要想获得770元的利润,且要尽可能的让利给顾客,那么售价应涨价多少元? (2)请你帮专卖店老板算一算,如何定价才能使利润最大,并求出此时的最大利润?BE五、几何题(本大题满分12分)23. 如图,AB 是⊙O 的直径,BC 为⊙O 的切线,D 为⊙O 上的一点,CD=CB ,延长CD 交BA 的延长线于点E . (1)求证:CD 为⊙O 的切线; (2)求证:∠C=2∠DBE.(3)若EA=AO=2,求图中阴影部分的面积.(结果保留π)六、综合题(本大题满分14分) 24. 如图,抛物线y=21x 2+bx -2与x 轴交于A 、B 两点,与y 轴交于C 点,且A (一1,0). (1)求抛物线的解析式及顶点D 的坐标; (2)判断△ABC 的形状,证明你的结论;(3)点M 是x 轴上的一个动点,当△DCM 的周长最小时,求点M 的坐标.2018年初三年级学业水平考试数学全真模拟试卷3一、选择题(本大题共15个小题,每小题3分,共45分.1.|-2 014|等于( )A.-2 014B.2 014C.±2 014D.2 0142.下面的计算正确的是( )A.6a-5a=1B.a+2a2=3a3C.-(a-b)=-a+bD.2(a+b)=2a+b3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是A.a-c>b-cB.a+c<b+cC.ac>bcD.a cb b4.在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是25,如果再往盒中放进3颗黑色棋子,取得白色棋子的概率变为14,则原来盒里有白色棋子( )A.1颗B.2颗C.3颗D.4颗5.一组数据:10,5,15,5,20,则这组数据的平均数和中位数分别是( )A.10,10B.10,12.5C.11,12.5D.11,106.一个几何体的三视图如图所示,则这个几何体是( )7.下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解的是( )8.对于非零的两个实数a ,b ,规定a b=11b a -,若2(2x-1)=1,则x 的值为( )5531A. B. C. D.6426- 9.已知2x y 30-++=(),则x+y 的值为( )A.0B.-1C.1D.5 10.如图,已知⊙O 的两条弦AC 、BD 相交于点E ,∠A =70°, ∠C =50°,那么sin ∠AEB 的值为( )A.231D.2211.如图,点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8, 则阴影部分的面积是( )A.48B.60C.76D.8012.如图,点D 为y 轴上任意一点,过点A(-6,4)作AB 垂直于x 轴交x 轴于点B ,交双曲线6y x-=于点C,则△ADC 的面积为( )A.9B.10C.12D.1513.2012-2013NBA 整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是( )A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小 14.一个圆锥的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角等于( ) A.60° B.90° C.120° D.180°15.如图,在正方形ABCD 中,AB=3 cm ,动点M 自A 点出发沿AB 方向以每秒1 cm 的速度向B 点运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3 cm 的速度运动,到达B 点时运动同时停止.设△AMN 的面积为y (cm 2),运动时间为x (s ),则下列图象中能大致反映y 与x 之间的函数关系的是第Ⅱ卷(非选择题 共75分)二、填空题(本大题共6个小题,每小题3分,共18分.把答案填在题中的横线上.)16.a 10a b -+=-,则=___________.17.命题“相等的角是对顶角”是____命题(填“真”或“假”). 18.某班组织20名同学去春游,同时租用两种型号的车辆,一种车每辆有8个座位,另一种车每辆有4个座位.要求租用的车辆不留空座,也不能超载.有______种租车方案.19.如图,从点A(0,2)发出的一束光,经x 轴反射,过点B(5,3),则这束光从点A 到点B 所经过的路径的长为______.20.若圆锥的母线长为5 cm ,底面半径为3 cm ,则它的侧面展开图的面积为________cm 2(结果保留π).21.如图,点B ,C ,E ,F 在一直线上,AB ∥DC ,DE ∥GF , ∠B=∠F=72°,则∠D=______度.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程及演算步骤.) 22.(本小题满分7分)(1)解方程组:x 3y 1,3x 2y 8.+=-⎧⎨-=⎩ (2)解不等式组2x 312x 0+>⎧⎨-≥⎩,并把解集在数轴上表示出来.23.(本小题满分7分)(1)如图,在△ABC中,BE是它的角平分线,∠C=90°,D在AB边上,以DB为直径的半圆O经过点E.求证:AC是⊙O的切线;(2)已知在△ABC中,AB=AC=5,BC=6,AD是BC边上的中线,四边形ADBE是平行四边形.求证:平行四边形ADBE是矩形.24.(本小题满分8分)一项工程,甲、乙两公司合作,12天可以完成,共需付施工费102 000元;如果甲、乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1 500元.(1)甲、乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?27.(本小题满分9分)已知如图,一次函数1y x 12=+的图象与x 轴交于点A ,与y 轴交于点B ,二次函数21y x bx c 2=++的图象与一次函数1y x 12=+的图象交于B 、C 两点,与x 轴交于D 、E 两点,且D 点坐标为(1,0). (1)求二次函数的解析式.(2)在x 轴上有一动点P ,从O 点出发以每秒1个单位的速度沿x 轴向右运动,是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出点P 运动的时间t 的值;若不存在,请说明理由.(3)若动点P 在x 轴上,动点Q 在射线AC 上,同时从A 点出发,点P 沿x 轴正方向以每秒2个单位的速度运动,点Q 以每秒a 个单位的速度沿射线AC 运动,是否存在以A 、P 、Q 为顶点的三角形与△ABD 相似,若存在,求a 的值;若不存在,说明理由.28.(本小题满分9分)如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为2 43(,),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标.(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由.(3)以AB为直径的⊙M与CD相切于点E,CE交x轴于点D,求直线CE的解析式.参考答案1.B2.C3.B4.B5.D6.D7.C8.A9.C 10.A 11.C 12.A 13.A 14.D 15.C16.4 17.假18.2 19.π 21.3622.(1)解:x3y13x2y8+=-⎧⎨-=⎩,①,②①×3-②,得11y=-11,解得:y=-1,把y=-1代入②,得:3x+2=8, 解得x=2.∴方程组的解为x2 y1.=⎧⎨=-⎩,(2)解:2x312x0+>⎧⎨-≥ ⎩,①,②由①得:x>-1;由②得:x≤2.不等式组的解集为:-1<x≤2, 在数轴上表示为:23.(1)证明:连接OE.∵BE是∠CBA的角平分线,∴∠ABE=∠CBE.∵OE=OB,∴∠ABE=∠OEB,∴∠OEB=∠CBE,∴OE∥BC,∴∠OEC=∠C=90°,∴AC是⊙O的切线.(2)证明:∵AB=AC,AD是BC的边上的中线,∴AD⊥BC,∴∠ADB=90°.∵四边形ADBE是平行四边形,∴平行四边形ADBE是矩形.24.解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得:111x1.5x12 +=,解得:x=20,经检验,知x=20是方程的解且符合题意.1.5x=30,故甲、乙两公司单独完成此项工程,各需20天、30天. (2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y-1 500)元.根据题意得:12(y+y-1 500)=102 000,解得:y=5 000,甲公司单独完成此项工程所需的施工费:20×5 000=100 000(元);乙公司单独完成此项工程所需的施工费:30×(5 000-1 500)=105 000(元);故甲公司的施工费较少.25.解:(1)张老师一共调查了:(6+4)÷50%=20(人);(2)C 类女生人数:20×25%-3=2(人);D 类男生人数:20-3-10-5-1=1(人);将条形统计图补充完整如图所示:(3)列表如图,共6种情况,其中一位男同学一位女同学的情况是3种,所选两位同学恰好是一位男同学和一位女同学的概率是12. 26.解:(1)∵∠APB+∠CPE=90°,∠CEP+∠CPE=90°,∴∠APB=∠CEP.又∵∠B=∠C=90°,∴△ABP ∽△PCE ,2AB BP 2x 1m ,,y x x.PC CE m x y 22∴==∴=-+-即 (2)2221m 1m m y x x (x ),22228=-+=--+ ∴当m x 2=时,y 取得最大值,最大值为2m .8 ∵点P 在线段BC 上运动时,点E 总在线段CD 上,2m1,m 8∴≤≤解得∴m 的取值范围为:0m <≤(3)由折叠可知,PG=PC ,EG=EC ,∠GPE=∠CPE.又∵∠GPE+∠APG=90°,∠CPE+∠APB=90°,∴∠APG=∠APB .∵∠BAG=90°,∠B=90°,∴AG ∥BC ,∴∠GAP=∠APB ,∴∠GAP=∠APG ,∴AG=PG=PC .解法一:如图所示,分别延长CE 、AG ,交于点H ,则易知ABCH 为矩形,HE=CH-CE=2-y ,GH=AH-AG=4-(4-x )=x ,在Rt △GHE 中,由勾股定理得:GH 2+HE 2=GE 2,即:x 2+(2-y )2=y 2,化简得:x 2-4y+4=0①.2221m 1y x x m 4221y x 2x,223x 8x 40x x 232BP 2.3=-+=∴=-+-+===∴由()可知,,这里,代入①式整理得:,解得:或,的长为或解法二:如图所示,连接GC .∵AG ∥PC ,AG=PC ,∴四边形APCG 为平行四边形,∴AP=CG .易证△ABP ≌GNC ,∴CN=BP=x .过点G 作GN ⊥PC 于点N ,则GH=2,PN=PC-CN=4-2x .在Rt △GPN 中,由勾股定理得:PN 2+GN 2=PG 2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:x=23或x=2,∴BP的长为23或2.解法三:过点A作AK⊥PG于点K.∵∠APB=∠APG,∴AK=AB.易证△APB≌△APK,∴PK=BP=x,∴GK=PG-PK=4-2x.在Rt△AGK中,由勾股定理得:GK2+AK2=AG2,即:(4-2x)2+22=(4-x)2,整理得:3x2-8x+4=0,解得:2x x23==或,∴BP的长为22. 3或∴点C的坐标为(4,3).设符合条件的点P存在,令P(a,0).当P 为直角顶点时,如图,过C 作CF ⊥x 轴于F.∵∠BPC=90°,∴∠BPO+∠CPF=90°.又∵∠OBP+∠BPO=90°,∴∠OBP=∠CPF,∴Rt △BOP ∽Rt △PFC ,BO OP 1t ,PF FC 4t 3∴==-,即 整理得:t 2-4t+3=0,解得:t=1或t=3,∴所求的点P 的坐标为(1,0)或(3,0),∴运动时间为1秒或3秒.(3)存在符合条件的t 值,使△APQ 与△ABD 相似.设运动时间为t ,则AP=2t ,AQ=at.∵∠BAD=∠PAQ , ∴当AP AQ AP AQ AB AD AD AB==或时,两三角形相似. at 2t AB 5AD 333aa 53====∴==,,或∴存在a 使两三角形相似且a a 53== 28.解:(1)由题意,设抛物线的解析式为:22y a x 4?a 0.3=--≠()() ∵抛物线经过(0,2),22a 042,3∴--=() 解得:a=16, 22212y x 4.6314y x x 2.6314y 0x x 20,63∴=--=-+=-+=()即:当时, 解得:x=2或x=6,∴A (2,0),B (6,0).(2)存在,如图2,由(1)知:抛物线的对称轴l 为x=4,∵A 、B 两点关于l 对称,连接CB 交l 于点P ,则AP=BP ,∴AP+CP=BC 的值最小.∵B (6,0),C (0,2) ,∴OB=6,OC=2,BC AP CP BC ∴=∴+==∴AP+CP的最小值为(3)如图3,连接ME,∵CE 是⊙M 的切线,∴ME ⊥CE ,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE,∵在△COD 与△MED 中,COD DEM ODC MDE OC ME ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△COD ≌△MED (AAS ),∴OD=DE ,DC=DM.设OD=x,则CD=DM=OM-OD=4-x,则Rt △COD 中,OD 2+OC 2=CD 2,∴x 2+22=(4-x )2.33x ,D(,0).22∴=∴ 设直线CE 的解析式为y=kx+b,∵直线CE 过C (0,2),D(3,02)两点, 43k k b 032b 2b 2⎧⎧=-+=⎪⎪⎨⎨⎪⎪==⎩⎩,,则解得:,,∴直线CE 的解析式为4y x 2.3=-+。

2018年中考模拟考试数学试卷(有答案)

2018年中考模拟考试数学试卷(有答案)
11.【答案】
1 12 b c ),则 3a a b c 24 且 2a a b c 24
【解答】设三角形三边长为 a, b, c ( a
8 a 12 ,所以 a 的可能取值为 8,9,10,11 ,满足题意得数组 (a, b, c ) 可能为 (8,8,8) , (9,9,6) ,(9, 8,7) ,(10,10,4) ,(10,9,5) ,(10,8,6) ,(10,7,7) ,(11,11,2) , ,(11,9,4) , (11,10,3) (11,8,5) , (11,7,6) 共 12 组,其中为直角三角形三边长的只有 (10,8,6) ,所以所求概率为
数学试卷 第 2页 (共 4 页)
1 2 x bx c 的顶点为 P ,与 x 轴的正半轴交于 A( x1 ,0) 、 B( x2 ,0) 6 3 ) ,若 ( x1 x2 )两点,与 y 轴交于点 C , PA 是 ABC 的外接圆的切线,设 M (0, 2 AM // BC ,求抛物线的解析式.
2018 年数学试卷
(每小题 6 分, 共 48 分。 从每小题四个选项中选出一项符合题目要求的答案。 ) 一、 选择题 1.若实数 a,b 满足 A . a 2
1 a ab b 2 2 0 ,则 a 的取值范围是( 2
B. a 4 C. a 2 或 a 4
) D. 2 a 4 )
2 2
B.没有实根 D.方程的根有可能取值 a, b, c
4.若 ab 1 ,且有 5a 2018a 9 0 和 9b 2018b 5 0 ,则 A.
9 5
B.
2
5 9
C.
2018 5

2018年中考数学模拟试题及答案共五套

2018年中考数学模拟试题及答案共五套

中考模拟试卷数学试题卷考生须知:1. 本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟。

2. 所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。

注意可以用多种不同的方法来选取正确答案。

1.-的倒数是( )A. 12007-B.C. -D.12007 2. 下列运算正确的是( ) A .23a a ⋅=6aB .33()y y x x=C .55a a a ÷=D .326()a a =3. 下图中几何体的俯视图是 ( )4.在昆明“世博会”期间,为方便游客参观,铁道部门临时加开了南宁至昆明的直达列车.已知南宁至昆明的路程为828km ,普快列车与直快列车由昆明到南宁时,直快列车平均速度是普快的1.5倍,若直快列车比普快列车晚出发2 h 而先到4h ,求两列车的平均速度分别是多少?设普快列车的速度为x km/h ,则直快列车的速度为1.5xkm /h .依题意,所列方程正确的是( )828828.24 1.5A x x ++= 828828.24 1.5B x x +-=; 828828.24 1.5C x x --=; 828828.24 1.5D x x-+=5. 若⊙O 1和⊙O 2相切,且两圆的圆心距为9,则两圆的半径不可能...是( ) A .4和5 B .7和9 C .10和1 D .9和186.菱形的两条对角线长分别为6㎝、8㎝,则它的面积为( )2cm . (A)6 (B)12 (C)24 (D)487、从两副拿掉大、小王的扑克牌中,各抽取一张,两张牌都是红桃的概率是( )A .12B . 14C .18D .1168.如图为了测量某建筑物AB 的高度,在平地上C 处测得建筑物顶端A 仰角为30°,沿CB 方向前进12m 到达D 处,在D 处测得建筑物顶端A 的仰角为45°,则建筑物AB 的高度等于( )A .6(3+1)mB . 6 (3—1) mC . 12 (3+1) mD .12(3-1)m9.若二次函数2y ax c =+(0a ≠),当x 分别取x 1、x 2(x 1≠x 2)时,函数值相等;则当x 取x 1+x 2时,函数值为( ). (A)a +c (B)a -c (C)-c (D)c 10. 如图,已知△ABC 中,BC =8,BC 边上的高h=4,D 为BC 边上一个动点,EF ∥BC ,交AB 于点E ,交AC 于点F ,设E 到BC 的距离为x ,△DEF 的面积为y ,则y 关于x 的函数图象大致为( )二. 认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案。

2018年中考数学模拟试卷(解析版)

2018年中考数学模拟试卷(解析版)

2018年中考数学模拟试卷(解析版)一.选择题1.﹣5的相反数是()A. B. C. ﹣5 D. 52.计算(﹣a3)2的结果是()A. a5B. ﹣a5C. a6D. ﹣a63.若函数y=kx的图象经过点(﹣1,2),则k的值是()A. ﹣2B. 2C. ﹣D.4.如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A. 150°B. 130°C. 100°D. 50°5.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.6.如图,点A为反比例函数y=﹣图象上一点,过点A作AB⊥x轴于点B,连结OA,则△ABO的面积为()A. 16B. 8C. 4D. 27.如图,⊙O与AB相切于点A,BO与⊙O交于点C,∠BAC=30°,则∠B等于()A. 20°B. 30°C. 50°D. 60°8.一个不透明布袋中有红球10个,白球2个,黑球x个,每个球除颜色外都相同,从中任取一个球,取得的球是红球的概率是,则x的值为()A. 5B. 4C. 3D. 29.如图,在△ABC中,AC=4,BC=2,点D是边AB上一点,CD将△ABC分成△ACD和△BCD,若△ACD是以AC为底的等腰三角形,且△BCD与△BAC相似,则CD的长为()A. B. 2 C. 4 ﹣4 D.10.如图1,在Rt△ABC中,∠A=90°,BC=10cm,点P、点Q同时从点B出发,点P以2cm/s的速度沿B→A→C 运动,终点为C,点Q以1cm/s的速度沿B→C运动,当点P到达终点时两个点同时停止运动,设点P,Q 出发t秒时,△BPQ的面积为ycm2,已知y与t的函数关系的图象如图2(曲线OM和MN均为抛物线的一部分),给出以下结论:①AC=6cm;②曲线MN的解析式为y=﹣t2+ t(4≤t≤7);③线段PQ的长度的最大值为;④若△PQC与△ABC相似,则t= 秒.其中正确的是()A. ①②④B. ②③④C. ①③④D. ①②③二.填空题11.分解因式:x2﹣16=________12.不等式组的解集是________.13.一个小球由地面沿着坡度1:2的坡面向上前进了10米,此时小球距离地面的高度为________米.14.已知一组数据a1,a2,a3,a4的平均数是2017,则另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数是________.15.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最小值为5,则h的值为________.16.如图,在矩形ABCD中,AB=3,BC=2,点F是BC的中点,点E是边AB上一点,且BE=2,连结DE,EF,并以DE,EF为边作▱EFGD,连结BG,分别交EF和DC于点M,N,则=________.三.解答题17.计算:24÷(﹣2)3﹣3.18.解方程:= .19.如图,已知在△ABC中,点D,E,F分别在BC,AB,AC边上.(1)当点D,E,F分别为BC,AB,AC边的中点时,求证:△BED≌△DFC;(2)若DE∥AC,DF∥AB,且AE=2,BE=3,求的值.20.3月5日是学雷锋日,某校组织了以“向雷锋同志学习”为主题的小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对其份数及成绩进行整理,制成如下两幅不完整的统计图.根据以下信息,解答下列问题:(1)求本次抽取了多少份作品,并补全两幅统计图;(2)已知该校收到参赛作品共1200份,请估计该校学生比赛成绩达到90分以上(含90分)的作品有多少份?21.如图,AB是⊙O的直径,AE平分∠BAF,交⊙O于点E,过点E作直线ED⊥AF,交AF的延长线于点D,交AB的延长线于点C.(1)求证:CD是⊙O的切线;(2)若tanC= ,⊙O的半径为2,求DE的长.22.为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.23.综合题(1)【问题提出】如图1.△ABC是等边三角形,点D在线段AB上.点E在直线BC上.且∠DEC=∠DCE.求证:BE=AD;(2)【类比学习】如图2.将条件“点D在线段AB上”改为“点D在线段AB的延长线上”,其他条件不变.判断线段AB,BE,BD之间的数量关系,并说明理由.(3)【扩展探究】如图3.△ABC是等腰三角形,AB=AC,∠BAC=120°,点D在线段AB的反向延长线上,点E在直线BC上,且∠DEC=∠DCE,【类比学习】中的线段AB、BE、BD之间的数量关系是否还成立?若成立,请说明理由;若不成立,请直接写出线段AB,BE,BD之间的数量.24.如图,抛物线y=ax2+ x+1(a≠0)与x轴交于A,B两点,其中点B坐标为(2,0).(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=﹣x上的动点,当直线OP平分∠APB时,求点P的坐标;(3)如图2,在(2)的条件下,点C是直线BP上方的抛物线上的一个动点,过点C作y轴的平行线,交直线BP于点D,点E在直线BP上,连结CE,以CD为腰的等腰△CDE的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.答案解析部分一.<b >选择题</b>1.【答案】D【考点】相反数【解析】【解答】﹣5的相反数是5,故答案为:D.【分析】只有符号不同的两个数互为相反数.2.【答案】C【考点】幂的乘方与积的乘方【解析】【解答】(﹣a3)2=a6.故答案为:C.【分析】先判断结果的符号,然后再依据幂的乘方法则进行计算即可.3.【答案】A【考点】正比例函数的图象和性质【解析】【解答】把点(﹣1,2)代入正比例函数y=kx,得:2=﹣k,解得:k=﹣2.故答案为:A.【分析】将点(-1,2)代入函数的解析式可得到关于k的方程,从而可求得k的值.4.【答案】B【考点】平行线的性质【解析】【解答】如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故答案为:B.【分析】先依据平行线的性质求得∠1的同位角的度数,然后依据邻补角的定义求解即可.5.【答案】B【考点】中心对称及中心对称图形【解析】【解答】A、不是中心对称图形,A不符合题意;B、是中心对称图形,B符合题意;C、不是中心对称图形,C不符合题意;D、不是中心对称图形,D不符合题意;故答案为:B.【分析】将一个图形绕着某个点旋转180°,旋转后能够完全重合,则给图形为中心对称图形.6.【答案】D【考点】反比例函数系数k的几何意义【解析】【解答】设点A的坐标为(a,),∵AB⊥x轴于点B,∴△ABO是直角三角形,∴△ABO的面积是:=2,故答案为:D.【分析】依据反比例函数k的几何意义可得到△AOB的面积=|k|求解即可.7.【答案】B【考点】切线的性质【解析】【解答】∵AB为圆O的切线,∴OA⊥AB,∴∠OAB=90°,又∠BAC=30°,∴∠OAC=90°﹣30°=60°又∵OA=OC,∴△OAC为等边三角形,∴∠AOB=60°,则∠B=90°﹣60°=30°.故答案为:B.【分析】首先依据切线的性质可得到∠OAB=90°,接下来,可证明△OAC为等边三角形,最后,依据直角三角形两锐角互余求解即可.8.【答案】C【考点】概率公式【解析】【解答】根据题意得:= ,解得:x=3,则x的值为3;故答案为:C.【分析】根据题意可求得球的总数为10+2+x,然后依据概率公式列方程求解即可.9.【答案】D【考点】等腰三角形的性质,相似三角形的性质【解析】【解答】∵△ACD是以AC为底的等腰三角形,∴AD=CD,∵△BCD与△BAC相似,∴= ,设CD=x,BD=y,∴= = ,∴,解得:x=2y,∴y= ,∴x= ,∴CD= ,故答案为:D.【分析】依据等腰三角形的定义可得到AD=CD,然后再依据相似三角形对应边成比例得到,设CD=x,BD=y,然后可得到y与x之间的函数关系式.10.【答案】A【考点】根据实际问题列二次函数关系式【解析】【解答】由图2可得到t=4时,y= 48 5 ,∴AB=2×4=8cm,∵∠A=90°,BC=10cm,∴AC=6cm,故①正确;②当P在AC上时,如图3,过P作PD⊥BC于D,此时:=7,∴4≤t≤7,由题意得:AB+AP=2t,BQ=t,∴PC=14﹣2t,sin∠C= ,∴= ,∴PD= ,∴y=S△BPQ= BQ•PD= t =﹣;故②正确;③当P与A重合时,PQ最大,如图4,此时t=4,∴BQ=4,过Q作GH⊥AB于H,sin∠,∴,∴QH= ,同理:BH= ,∴AH=8﹣= ,∴PQ= = = ;∴线段PQ的长度的最大值为;故③不正确;④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:PC=14﹣2t,QC=10﹣t,i)当△CPQ∽△CBA,如图5,则,∴,解得t=﹣8不合题意.ii)当△PQC∽△BAC时,如图5,∴,∴,t= ;∴若△PQC与△ABC相似,则t= 秒,故④正确;其中正确的有:①②④.故答案为:A.【分析】①由图2可知:t=4时,点P到达点A,故此可得到AB的长,然后依据勾股定理可求得AC的长,从而可对①作出判断;当P在AC上时,过P作PD⊥BC于D,先求得PC的长(用含t的式子表示),然后利用锐角三角函数的定义可求得PD的长,最后,依据三角形的面积公式进行解答即可;③过Q作GH ⊥AB于H,先依据锐角三教函数的定义得到QH的长,同理可得到BH的长,最后,依据勾股定理可求得PQ的长,④若△PQC与△ABC相似,点P只有在线段AC上,分两种情况:当△CPQ∽△CBA,当△PQC∽△BAC时,然后依据相似三角形的对应边成比例的性质求解即可.二.<b >填空题</b>11.【答案】(x+4)(x﹣4)【考点】平方差公式【解析】【解答】解:x2﹣16=(x+4)(x﹣4).【分析】依据平方差公式进行分解即可.12.【答案】﹣2<x≤1【考点】解一元一次不等式组【解析】【解答】解:解不等式x﹣1≤0,得:x≤1,解不等式2x+4>0,得:x>﹣2,则不等式组的解集为﹣2<x≤1,故答案为:﹣2<x≤1.【分析】先分别求得两个不等式的解集,然后再依据同大取大、同小取小,小大大小中间找出,大大小小找不着确定出不等式组的解集即可.13.【答案】2【考点】解直角三角形的应用-坡度坡角问题【解析】【解答】解:如图.Rt△ABC中,tanA= ,AB=10.设BC=x,则AC=2x,∴x2+(2x)2=102,解得x=2 (负值舍去).即此时小球距离地面的高度为2 米.【分析】依据坡度的定义可得到tanA=,设BC=x,则AC=2x,然后依据勾股定理可列出关于x的方程,从而可求得x的值,于是可得到BC的长.14.【答案】2018【考点】算术平均数【解析】【解答】解:由题意(a1+a2+a3+a4)=2017,∴a1+a2+a3+a4=8068,∴另一组数据a1+3,a2﹣2,a3﹣2,a4+5的平均数= = =2018,故答案为2018.【分析】先依据均数的定义求得a1+a2+a3+a4的值,然后再求得a1+3,a2﹣2,a3﹣2,a4+5的值,最后依据平均数公式求解即可.15.【答案】﹣1或5【考点】二次函数的最值,二次函数图象上点的坐标特征【解析】【解答】解:∵当x>h时,y随x的增大而增大,当x<h时,y随x的增大而减小,∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故答案为﹣1或5.【分析】依据二次函数的性质可知若h<1≤x≤3,x=1时,y取得最小值5;若1≤x≤3<h,当x=3时,y取得最小值5,然后依据题意列方程求解即可.16.【答案】【考点】平行四边形的性质,矩形的性质,正方形的判定,相似三角形的判定与性质【解析】【解答】解:∵矩形ABCD中,AB=3,BC=2,点F是BC的中点,∴BF=1,AD=2,又∵BE=2,∴AE=BF=1,DE= =FG,又∵∠A=∠EBF=90°,∴△ADE≌△BEF,∴∠ADE=∠BEF,DE=EF,又∵∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=90°,∴四边形DEFG是正方形,∴∠EFG=90°,DG=DE= ,如图,过B作BH⊥EF于H,∵Rt△ABF中,EF= = ,∴BH= = ,∴Rt△BFH中,HF= = ,∵BH∥FG,∴△BHM∽△GFM,∴= = = ,∴FM= ×FH= ,∴EM=EF﹣FM= ﹣= ,∵EB∥DN,EM∥DG,∴∠EBM=∠DNG,∠EMB=∠DGN,∴△EBM∽△DNG,∴= = = .故答案为:.【分析】首先证明△ADE≌△BEF,依据全等三角形的性质可得到DE=EF,然后再证明四边形DEFG是正方形,则DG=DE= ,过B作BH⊥EF于H,依据勾股定理可得到EF的长,然后利用面积法可求得BH的长,接下来,再证明△BHM∽△GFM,依据相似三角形对应边成比例可求得FM的长,最后,再证明△EBM∽△DNG,从而可得到问题的答案.三.<b >解答题</b>17.【答案】解:原式=24÷(﹣8)﹣3=﹣3﹣3=﹣6.【考点】有理数的混合运算【解析】【分析】先算乘方,然后再计算除法,最后,再计算减法即可.18.【答案】解:去分母得:3x=x﹣2,解得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】方程两边同时乘以x(x-2),将分式方程转化为整式方程,接下来,求得整式方程的解,最后,再进行检验即可.19.【答案】(1)证明:∵点D,E,F分别为BC,AB,AC边的中点,∴DE和DF为△ABC的中位线,∴DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,∴△BED≌△DFC(2)解:DE∥AC,DF∥AB,∴∠BDE=∠C,∠B=∠CDF,四边形AEDF为平行四边形,∴△BED∽△DFC,DF=AE=2,DE=AF,∴= = ,∴= ,∴= .【考点】全等三角形的判定与性质,平行线分线段成比例【解析】【分析】(1)依据三角形的中位线定理可得到DE∥AC,DF∥AB,然后依据平行线的性质可证明∠BDE=∠C,∠B=∠CDF,最后,再依据SAS证明△BED≌△DFC即可;(2)首先证明△BED∽△DFC,然后依据相似三角形的性质求解即可.20.【答案】(1)解:12÷10%=120(份),即本次抽取了120份作品.80分的份数=120﹣6﹣24﹣36﹣12=42(份),它所占的百分比=42÷120=35%.60分的作品所占的百分比=6÷120=5%;(2)解:1200×(30%+10%)=1200×40%=480(份)答:该校学生比赛成绩达到90分以上(含90分)的作品有480份.【考点】用样本估计总体,扇形统计图,条形统计图【解析】【分析】(1)先依据条形统计图和扇形统计图可得到成绩为100分的频数以及所占的百分比,然后依据总数=频数÷百分比可求得总件数,然后再依据条形统计图可得到80分的频数,最后,再依据各部分所占的百分比即可;(2)先求得得分达到90分的百分比,最后,依据频数=总数×百分比求解即可.21.【答案】(1)证明:连接OE.∵OA=OE,∴∠OAE=∠OEA,又∵∠DAE=∠OAE,∴∠OEA=∠DAE,∴OE∥AD,∴∠ADC=∠OEC,∵AD⊥CD,∴∠ADC=90°,故∠OEC=90°.∴OE⊥CD,∴CD是⊙O的切线(2)解:∵tanC= ,∴∠C=30°,又∵OE=2,∴OC=4,AC=6,在Rt△OCE中,tanC= ,∴CE=2 ,在Rt△ACD中,cosC= ,CD=3∴DE=CD﹣CE=3 ﹣2 = .【考点】角平分线的性质,切线的判定与性质,解直角三角形【解析】【分析】(1)连接OE.依据等腰三角形的性质和角平分线的定义可得到∠OEA=∠DAE,从而可证明OE∥AD,然后依据平行线的性质可证∠OEC=90°;(2)先依据特殊锐角三角函数值可求得∠C=30°,然后可求得AC=6,依据特殊锐角三教函数值可求得CE 和CD的长,最后依据DE=CD﹣CE求解即可.22.【答案】(1)解:设y与x的函数关系式为:y=kx+b,当0≤x≤20时,把(0,0),(20,160)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=8x;当20≤x时,把(20,160),(40,288)代入y=kx+b中,得:,解得:,此时y与x的函数关系式为y=6.4x+32.综上可知:y与x的函数关系式为y=(2)解:∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴,∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=326(元)【考点】一元一次不等式组的应用,一次函数的应用【解析】【分析】(1)0≤x≤20时,y是x的正比例函数,设y=kx,将点(20,160)代入计算即可,当20≤x 时,y是x的一次函数将把(20,160),(40,288)代入y=kx+b求解即可;(2)依据B种苗的数量不超过35棵,但不少于A种苗的数量列出关于x的不等式组可求得x的取值范围,然后依据总费用W与x之间函数关系式,最后依据一次函数的性质求解即可.23.【答案】(1)证明:作DF∥BC交AC于F,如图1所示:则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC=∠DCE,∵△ABC是等腰三角形,∠A=60°,∴△ABC是等边三角形,∴∠ABC=∠ACB=60°,∴∠DBE=120°,∠ADF=∠AFD=60°=∠A,∴△ADF是等边三角形,∠DFC=120°,∴AD=DF,∵∠DEC=∠DCE,∴∠FDC=∠DEC,ED=CD,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD(2)解:EB=AB+BD;理由如下:作DF∥BC交AC的延长线于F,如图2所示:同(1)得:AD=DF,∠FDC=∠ECD,∠FDC=∠DEC,ED=CD,又∵∠DBE=∠DFC=60°,∴在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,∴EB=AD,∴EB=AB+BD(3)解:BE=3DB﹣3AB.理由:作DF∥BC交CA的延长线于F,如图3所示,则∠ADF=∠ABC,∠AFD=∠ACB,∠FDC+∠DCE=180°,∵△ABC是等腰三角形,∴∠ABC=∠ACB,∴∠ADF=∠AFD=∠ABC,∵∠DEC=∠DCE,∴DE=DC,∠FDC+∠DEC=180°,∵∠DEC+∠DEB=180°,∴∠FDC=∠DEB,在△DBE和△CFD中,,∴△DBE≌△CFD(AAS),∴EB=DF,DB=CF,∵CF=AC+AF=AB+AF,∴DB=AB+AF,过点A作AG⊥DF于G,∵AF=AD,∴DF=2FG,在Rt△AFG中,∠AFG=90°﹣∠FAG=90°﹣∠BAC=30°,∴FG= AF,∴EB=DF=2FG= AF,∴AF= EB∴DB=AB+ BE,即:BE=3DB﹣3AB.【考点】全等三角形的判定与性质【解析】【分析】(1)作DF∥BC交AC于F,首先证明△ABC是等边三角形,然后再由AAS证明△DBE ≌△CFD,得出EB=DF,即可得出结论;(2)作DF∥BC交AC的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,即可得出结论;(3)作DF∥BC交CA的延长线于F,首先证明△DBE≌△CFD,从而可得到EB=DF,再利用含30°的直角三角形的性质即可得出结论.24.【答案】(1)解:把B(2,0)代入y=ax2+ x+1,可得4a+1+1=0,解得a=﹣,∴抛物线解析式为y=﹣x2+ x+1,令y=0,可得﹣x2+ x+1=0,解得x=﹣1或x=2,∴A点坐标为(﹣1,0)(2)解:若y=﹣x平分∠APB,则∠APO=∠BPO,如图1,若P点在x轴上方,PB与y轴交于点A′,由于点P在直线y=﹣x上,可知∠POA=∠POA′=45°,在△APO和△A′PO中,∴△APO≌△A′PO(ASA),∴AO=A′O=1,∴A′(0,1),设直线BP解析式为y=kx+b,把B(2,0)、A′(0,1)两点坐标代入可得,解得,∴直线BP解析式为y=﹣x+1,联立,解得,∴P点坐标为(﹣2,2);若P点在x轴下方时,如图2,∠BPO≠∠APO,即此时没有满足条件的P点,综上可知P点坐标为(﹣2,2)(3)解:存在,如图3,作CH⊥PB于点H,∵直线PB的解析式为y=﹣x+1,∴F(0,1),tan∠BFO= = =2,∵CD∥y轴,∴∠BFO=∠CDF,tan∠CDF=tan∠BFO= =2,∴CH=2DH,设DH=t,则CH=2t,CD= t,∵△CDE是以CD为腰的等腰三角形,∴分两种情况:①若CD=DE时,则S△CDE= DE•CH= t•2t= ,②若CD=CE时,则ED=2DH=2t,∴S△CDE= DE•CH= •2t•2t=2t2,∵2t2<t2,∴当CD=DE时△CDE的面积比CD=CE时大,设C(x,﹣x2+ x+1),则D(x,﹣x+1),∵C在直线PB的上方,∴CD= =(﹣x2+ x+1)﹣(﹣x+1)=﹣=﹣,当x=1时,CD有最大值为,即t= ,t= ,∴S△CDE= = × = ,存在以CD为腰的等腰△CDE的面积有最大值,这个最大值是.【考点】二次函数的应用【解析】【分析】(1)将点B坐标代入到抛物线的解析式可求得a的值,令y=0,得到关于x的方程,然后解关于x的一元二次方程即可;(2)当点P在x轴上方时,连接BP交y轴于点A′,然后证明△APO≌△A′PO,依据全等三角形的性质可得到AO=A′O=1,从而可求得A′坐标,然后利用待定系数法可求得直线BP的解析式,联立直线y=-x,可求得P点坐标;当点P在x轴下方时,画图可知:∠BPO≠∠APO,即此时没有满足条件的P点;(3)过C作CH⊥DE于点H,由直线BP的解析式可求得点F的坐标,结合条件可求得tan∠BFO和tan∠CDF,可分别用DH表示出CH和CD的长,分CD=DE和CD=CE两种情况,分别用t表示出△CDE的面积,再设出点C的坐标,利用二次函数的性质可求得△CDE的面积的最大值.。

2018年初三数学中考模拟数学试题卷附答案

2018年初三数学中考模拟数学试题卷附答案

2018年初三数学中考模拟数学试题卷考生须知:1. 全卷共三大题,24小题,满分为120分. 考试时间为120分钟.2. 全卷分试卷Ⅰ(选择题)和试卷Ⅱ(非选择题)两部分. 卷Ⅰ的答案必须用2B 铅笔填 涂;卷Ⅱ的答案必须用黑色字迹钢笔或签字笔答在答题纸的相应位置上.3. 请用黑色字迹钢笔或签字笔在答题纸上填写姓名和准考证号等信息.4. 作图时,可先使用2B 铅笔,确定后必须使用黑色字迹的钢笔或签字笔涂黑.卷 Ⅰ说明:本卷共有1大题,10小题,共30分. 请用2B 铅笔在答题纸上将你认为正确的选项对应的小方框涂黑、涂满.一、选择题(本题有10小题,每小题3分,共30分)1.如图,数轴上一点A 向左移动2个单位长度到达点B ,再向右移动5个单位长度到达点C .若点C 表示的数为1,则点A 表示的数……( ▲ ) A .7B .3C .﹣3D .﹣22.已知空气的单位体积质量为1.24⨯10-3克/cm 3.1.24⨯10-3用小数表示为 ……( ▲ )A .0.000124B .0.0124C .-0.00124D .0.001243.在平面直角坐标系中,把点P (﹣3,2)绕原点O 顺时针旋转180°,所得到的对应点P ′的坐标为………………………………………………………………………………( ▲ ) A .(3,2) B .(2,﹣3) C .(﹣3,﹣2) D .(3,﹣2)4.一个多边形的内角和是900°,则这个多边形的边数是……………………………( ▲ )A .4B .5C .6D .75.把不等式组123x x >-⎧⎨+≤⎩的解集表示在数轴上,下列选项正确的是 ………………( ▲ )A .B .C .D .6.如图,P A 、PB 是⊙O 的切线,切点分别为A 、B ,若OA =2, ∠P =60°,则AB 的长为……………………………( ▲ ) A .23π B .πC .43π D .53π 7.若一元二次方程x 2﹣2x ﹣m =0无实数根,则一次函数y =(m +1)x +m ﹣1的图象不经过………………………………………………………………………………………( ▲ ) A .第一象限B .第二象限C .第三象限D .第四象限(第6题图)8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P的坐标为(2a ,b +1),则a 与b 的数量关系为……( ▲ ) A .a =b B .2a ﹣b =1 C .2a +b =﹣1D .2a +b =19.足球射门,不考虑其他因素,仅考虑射点到球门AB 的张角大小时,张角越大,射门越好. 如图的正方形网格中,点A ,B ,C ,D ,E 均在格点上,球员带球沿CD 方向进攻,最好的射点在…………………………………………………( ▲ ) A .点CB .点D 或点EC .线段DE (异于端点) 上一点D .线段CD (异于端点) 上一点 10.如图所示,直线l 和反比例函数y =k x(k >0)的图象的一支交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别是C ,D ,E ,连接OA ,OB ,OP ,设△AOC 面积是S 1,△BOD 面积是S 2,△POE 面积是S 3,则………………………………( ▲ ) A .S 1<S 2<S 3 B .S 1>S 2>S 3 C .S 1= S 2>S 3 D .S 1= S 2<S 3卷 Ⅱ二、填空题 (本题有6小题,每小题4分,共24分) 11.分解因式:2232xy y x x +-= ▲ .12.反比例函数ky x=的图象经过点(1,6)和(m ,-3),则m = ▲ . 13.一只盒子中有红球m 个,白球8个,黑球n 个,每个球除颜色外都相同,从中任取一个球,取得是白球的概率与不是白球的概率相同,那么m 与n 的关系是 ▲ . 14.某工厂2017年1月缴税20万元,3月缴税24万元,设这两月该工厂缴税的月平均增长率为x ,根据题意,可得方程为 ▲ .15.如图,在平面直角坐标系中,已知点(0,1)A 、点(0,1)B t +、(0,1)(0)C t t ->,点P 在以(3,3)D 为圆心,1为半径的圆上运动,且始终满足90BPC ∠=︒,则t 的最小值是 ▲ .(第8题图)(第9题图)(第10题图)16.如图,射线AM上有一点B,AB=6. 点C是射线AM上异于B的一点,过C作CD⊥AM,且CD=43A C. 过D点作DE⊥AD,交射线AM于E. 在射线CD取点F,使得CF=CB,连接AF并延长,交DE于点G.设AC=3x.若△AFD是等腰三角形,则x的值等于▲.三、解答题(本题有8小题,共66分)17.(本题6分) 计算:0201712sin45o+18.(本题6分)某市需要新建一批公交车候车亭,设计师设计了一种产品如图1 所示.产品示意图的侧面如图2,其中支柱DC垂直于地面,镶接柱BC与支柱DC的夹角∠BCD=150°,与顶棚横梁AE的夹角∠ABC=135°,要求使得横梁一端点E在支柱DC 的延长线上,此时经测量得镶接点B与点E 的距离为0.35m.求E、C 两点之间的距离.≈1.41,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,精确到0.1cm.)图1 图2第15题图第16题图19.(本题6分) 《朗读者》是2017 年中央电视台推出的一档文化情感类节目,播出后也受到了广大观众的喜欢. 某电视台在该市对喜欢这一节目的市民做了随机抽样调查统计,将收集的数据按不同的年龄层做了整理后绘制了两幅不完整的统计图. 试根据统计图信息,解答下列问题:被调查市民不同年龄层分部条形统计图 被调查市民不同年龄层分部扇形统计图(1)求这次被调查的总人数;(2)假设全市共有42 000 人,试估计全市喜欢该节目的少年有多少人?20.(本题8分) 如图,一次函数y =kx +b 的图象与反比例函数y =m x的图象相交于点A (﹣2,1),点B (1,n ).(1)求此一次函数和反比例函数的解析式;(2)在平面直角坐标系的第二象限内边长为1的正方形EFDG 的边均垂直于坐标轴,若点E (﹣a ,a ),如图,当曲线y =m x(x <0)与此正方形的边有交点时,求a 的取值范围.x21.(本题8分) 如图,已知直线l 与⊙O 相离,OA ⊥l 于点A ,OA =5.OA 与⊙O 相交于点P ,AB 与⊙O 相切于点B ,BP 的延长线交直线l 于点C . (1)试判断线段AB 与AC 的数量关系,并说明理由; (2)若PCO 的半径;(3)若在⊙O 上存在点Q ,使△QAC 是以AC 为底边的等腰三角形,求⊙O 的半径r 的取值范围.22.(本题10分)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y (千克),增种..果树x (棵),它们之间的函数关系如图所示. (1)求y 与x 之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克? (3)当增种果树多少棵时,果园的总产量w (千克)最大?最大产量是多少?23.(本题10分)定义:在平行四边形中,若有一条对角线是一边的两倍,则称这个平行四边形为优美四边形,其中这条对角线叫做优美对角线,这条边叫做优美边.(1)如图①,四边形ABCD 是矩形,AB =1,AD = m ,BE ∥AC ,延长DC 交BE 于点E ,连接AE 交BC 于点F .l备用图①当m =2时,试说明四边形ABEC 是优美四边形;②是否存值m ,使得四边形ABCD 是优美四边形,若存在,求出m 的值,若不存在,请说明理由;(2)如图②,四边形ABCD 与四边形ABEC 都是优美四边形,其中BD 与AE 为优美对角线,AD 与AC 为优美边.①求证:△ADB ≌△CAE ; ②求AB AD的值;24.(本题12分)已知抛物线l 1:y =﹣x 2+2x +3顶点为F ,且与x 轴交于点A 、B (点A 在点B左边),与y 轴交于点C , 抛物线l 2经过点A ,与x 轴的另一个交点为E (4,0),与y 轴交于点D (0,﹣2). ⑴求抛物线l 2的解析式;⑵若定长为1的线段GH (G 在H 的上方)在线段CD 上滑动,请问当GH 滑到离C 点多远时,四边形BFGH 周长最短?⑶若点P 为线段AB 上一动点(不与A 、B 重合),过点P 作x 轴的垂线交抛物线l 1于点M ,交抛物线l 2于点N .当CM =DN ≠0时,求点P 的坐标.备用图ADFE BHCG(图②)DCEBF(图①)A参考答案及评分标准一、选择题(本题有10小题,每小题3分,共30分)DDDDB CACC D二、填空题 (本题有6小题,每小题4分,共24分)11.()2x x y - 12.-2 13.8m n += 14.220(1)24x +=151 16.4817,4831,12(对一个给2分,对2个给3分,对3个给4分) 三、解答题(本题有8小题,共66分) 17.(本题6分)解:原式=11)-22⨯+1分,共4分)= (答案正确2分) 18.(本题6分)解:连结EC ,可得∠EBC =45°,…………………(1 分)∠ECB =30°,…………………………………(1 分) 过点E 作EP ⊥BC ,如图EP =BE×sin 45°≈0.25m ,……………(2 分) CE =2EP =0.5m ………………(2 分) 19.(本题6分)解:(1)随机调查的总人数是:140÷35%=400(人) ……………(3 分)(2)∵样本中少年的人数是:400-140-120-82=58(人)∴估计全市少年人数有42000×58400=6090(人)……………(3 分) 20.(本题8分)解:(1)∵点A (﹣2,1)在反比例函数y =的图象上,∴m =﹣2×1=﹣2,∴反比例函数解析式为y =﹣; ……………(2 分)∵点B (1,n )在反比例函数y =﹣的图象上, ∴﹣2=n ,即点B 的坐标为(1,﹣2).将点A (﹣2,1)、点B (1,﹣2)代入y =kx +b 中得:,解得:,∴一次函数的解析式为y=﹣x﹣1.……………(2 分)(2)过点O、E作直线OE,如图所示.∵点E的坐标为(﹣a,a),∴直线OE的解析式为y=﹣x.∵四边形EFDG是边长为1的正方形,且各边均平行于坐标轴,∴点D的坐标为(﹣a+1,a﹣1),∵a﹣1=﹣(﹣a+1),∴点D在直线OE上.将y=﹣x代入y=﹣(x<0)得:﹣x=﹣,即x2=2,解得:x=﹣,或x=(舍去).∵曲线y=﹣(x<0)与此正方形的边有交点,∴﹣a≤﹣≤﹣a+1,解得:≤a≤+1.故a的取值范围为≤a≤+1.……………(4 分)21.(本题8分)解:(1)AB=AC,理由如下:连接O B.∵AB切⊙O于B,OA⊥AC,∴∠OBA=∠OAC=90°,∴∠OBP+∠ABP=90°,∠ACP+∠APC=90°,∵OP=OB,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠ACP=∠ABC,∴AB=AC;……………(3 分)(2)延长AP交⊙O于D,连接BD,设圆半径为r,则OP=OB=r,P A=5﹣r,则AB2=OA2﹣OB2=52﹣r2,AC2=PC2﹣P A2=﹣(5﹣r)2,∴52﹣r2=﹣(5﹣r)2,解得:r=3;……………(3 分)(3)作出线段AC的垂直平分线MN,作OE⊥MN,则可以推出OE=AC=AB=又∵圆O与直线MN有交点,∴OE=≤r,∴r≥,又∵圆O与直线相离,∴r<5,即≤r<5.……………(2 分)22.(本题10分)解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,……………(3 分)(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.……………(3 分)(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.……………(4 分)23.(本题10分)解:(1)①∵BE∥AC,AB∥CE,∴四边形ABEC是平行四边形,∵AB=1,BC=m=2,∴BC=2AB,∴四边形ABEC是美的四边形.……………(3 分)②当AC=2CD时,四边形ABCD是美的四边形,此时AD=m当AC=2AD时,四边形ABCD是美的四边形,则有m2+12=(2m)2,解得m∴mABCD是美的四边形.……………(3 分)(2)①∵四边形ABCD是美的四边形,BD为美的对角线,AD为美的边, ∴AD=DG,∴∠DAG=∠AGD,∵四边形ABEC是美的四边形,AE为美的对角线,AC为美的边,∴AC=AF,∴∠ACF=∠AFC,又∵∠DAG=∠ACF,∴∠DAG=∠AGD= ∠ACF=∠AFC.∴∠ADG=∠CAF.又∵12ADBD=,12ACAE=,∴△ADB∽△ACE.又∵AB=CE,∴相似比为1,∴△ADB≌△ACE.……………(2 分)②如图,作DH⊥A C于点H,设AH=x,则有AC=AD=4 x,在Rt△ADH中,可求得DH,在Rt△DHC中,可求得CD=x,所以ABAD=4x=2………(2 分)24.(本题12分)A DFEBHCG(图②)H解:(1)∵令﹣x 2+2x +3=0,解得:x 1=﹣1,x 2=3,∴A (﹣1,0),B (3,0).设抛物线l 2的解析式为y =a (x +1)(x ﹣4).∵将D (0,﹣2)代入得:﹣4a =﹣2, ∴ a =.∴抛物线的解析式为y =x 2﹣x ﹣2; ……………(4 分) (2)① 如图1,∵四边形BFGH 周长中BF 和GH 为定值∴只需FG +HB 最小即可将点B 向上平移1个单位,记为B ',作点F 关于y 轴的对称点F ',连B F ''易得B '的坐标为(3,1),F '的坐标为(-1,4)∴直线B F ''的解析式为31344y x =-+ ∴直线B F ''与y 轴的交点M 的坐标为(0,134) 而C 点坐标为(0,3)∴当CG =131344-=(点G 在C 的上方)时, 四边形BFGH 周长最短. ……………(4 分) (四边形BFGH 周长的最小值为6+)②如图2所示:作CG ⊥MN 于G ,DH ⊥MN 于H ,图1 B ′ F H G F ′ M如果CM与DN不平行.∵DC∥MN,CM=DN,∴四边形CDNM为等腰梯形.∴∠DNH=∠CMG.在△CGM和△DNH中,∴△CGM≌△DNH.∴MG=HN.∴PM﹣PN=1.设P(x,0),则M(x,﹣x2+2x+3),N(x,x2﹣x﹣2).∴(﹣x2+2x+3)+(x2﹣x﹣2)=1,解得:x1=0(舍去),x2=1.∴P(1,0).当CM∥DN时,如图3所示:∵DC∥MN,CM∥DN,∴四边形CDNM为平行四边形.∴DC=MN.=5 ∴﹣x2+2x+3﹣(x2﹣x﹣2)=5,∴x1=0(舍去),x2=,∴P(,0).总上所述P点坐标为(1,0),或(,0).……………(4 分)。

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)

2018年中考数学模拟试卷及答案(共五套)2018年中考数学模拟试卷及答案(一)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A .(x -y)2=x 2-y 2B .x 2·x 4=x 6C.(-3)2=-3 D .(2x 2)3=6x 63.下列二次根式中,与3是同类二次根式的是( ) A.13B.18C.24D.0.3 4.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n ,则n 等于( )A .10B .11C .12D .13图M2-25.如图M2-2,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( ) A.34 B.43 C.35 D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎨⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( )A .(0,0)B .(1,12)C .(65,35)D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a2a-3+93-a)÷a+3a=________.16.如图M2-6,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC=13,则AB=________.图M2-617.在一条笔直的公路上有A,B,C三地,C地位于A,B两地之间,甲,乙两车分别从A,B两地出发,沿这条公路匀速行驶至C地停止.从甲车出发至甲车到达C地的过程,甲、乙两车各自与C地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h时,两车相距350 km.图M2-718.若关于x的分式方程x+mx-2+2m2-x=3的解为正实数,则实数m的取值范围是________.19.如图M2-8,点A在双曲线y=5x上,点B在双曲线y=8x上,且AB∥x轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连接BF 交AC于点M,连接DE、BO,若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE ︰S△BCM=2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D 处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC于点M、N,点P 在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y=32x2+bx+c与x轴交于A(-1,0),B(2,0)两点,与y轴交于点C.(1)求该抛物线的解析式;(2)直线y=-x+n与该抛物线在第四象限内交于点D,与线段BC交于点E,与x轴交于点F,且BE=4EC.①求n的值;②连接AC,CD,线段AC与线段DF交于点G,△AGF与△CGD是否全等?请说明理由;(3)直线y=m(m>0)与该抛物线的交点为M,N(点M在点N的左侧),点M关于y轴的对称点为点M′,点H的坐标为(1,0).若四边形OM′NH的面积为53.求点H到OM′的距离d的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE , ∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a. 16.39217.32[解析] 由题意,得AC =BC =240 km ,甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ).∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为3 2 .20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x甲=7分,x乙=7分,x丙=6.3分,根据题意不难判断.(3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x甲=7分,x乙=7分,x丙=6.3分,∵x甲=x乙>x丙,s丙2>s甲2>s乙2,∴选乙运动员更合适.(3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14.22.解:过点D作DM⊥EC于点M,DN⊥BC于点N,设BC=h,在直角三角形DMA中,∵AD=6,∠DAE=30°,∴DM=3,AM=3 3,则CN=3,BN=h-3.在直角三角形BDN中,∵∠BDN=30°,∴DN=3BN=3(h-3);在直角三角形ABC中,∵∠BAC=48°,∴AC=htan48°,∵AM+AC=DN,∴3 3+htan48°=3(h-3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5. 过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C△ADB C△ACP =ADAC=35=12C△ACP,∴C△ACP=20.25.解:(1)相等平行[解析] ∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(2)成立.证明:∵四边形ABCD是正方形,∴∠ABC=∠BCD=90°,AB=BC=CD. ∵CE=BF,∴△ECD≌△FBC,∴CF=DE,∠DEC=∠BFC.∴∠DEC+∠BCF=90°,∴FC⊥DE. ∵EG⊥DE,EG=DE,∴FC∥GE,GE=CF,∴四边形GECF是平行四边形,∴GF∥CE,GF=CE.(3)仍然成立.[解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y=32x2-32x-3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141. 解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎨⎧32-b +c =0,6+2b +c =0,解得⎩⎨⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE, ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x. ∵点B 坐标为(2,0),∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3).设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3), ∴⎩⎨⎧2k +b 1=0,b 1=-3,解得⎩⎨⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎨⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎨⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m),∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1,∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413.∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.2018年中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22 C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( ) A .x ≠-3 B .x≥2 C .x >2 D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A.11.4×104 B.1.14×104 C.1.14×105 D.0.114×106 4.下列运算正确的是( ) A.a2+a3=a5B.(-2a2)3÷(a2)2=-16a4C.3a-1=13aD.(2 3a2-3a)2÷3a2=4a2-4a+1图M1-15.如图M1-1,已知半径OD与弦AB互相垂直,垂足为点C,若AB=8 cm,CD=3 cm,则圆O的半径为( )A.256cm B.5 cmC.4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m-2)x2-3-mx+14=0有两个实数根,则m的取值范围为( )A.m>52B.m≤52且m≠2C.m≥3 D.m≤3且m≠28.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.3 32C.32D.不能确定9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a=b,则a2=b2;②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个 10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b -a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =ax 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax 的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分)13.计算:8-312+2=________.14.不等式组⎩⎨⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________. 16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB =CA ,∠ACB =90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG⊥CA,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB ∶S四边形CBFG =1∶2;③∠ABC=∠ABF;④AD 2=FQ ·AC ,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x<85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB的高度.如图M1-9,老师测得升旗台前斜坡FC的坡比为iFC=1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35m(即CE=35 m)处的C点,测得旗杆顶端B的仰角为α,已知tanα=37,升旗台高AF=1 m,小明身高CD=1.6 m,请帮小明计算出旗杆AB的高度.23.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH 于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA上.若EF⊥HG 于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图-1126.(12分)如图M1-12,已知抛物线y =ax 2+bx +c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E 使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D7.B [解析] 因为方程有两个实数根,所以⎩⎨⎧m -2≠0,(-3-m )2-4×14(m -2)≥0,解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC是等边三角形,AB=3,点P是△ABC内任意一点,过点P分别向三边AB,BC,CA作垂线,垂足依次为D,E,F,过点A作AH⊥BC于H.则BH=32,AH=AB2-BH2=3 32.连接PA,PB,PC,则S△PAB +S△PBC+S△PCA=S△ABC.∴12AB·PD+12BC·PE+12CA·PF=12BC·AH.∴PD+PE+PF=AH=3 32.故选B.9.A 10.A11.A [解析] b*b-a*a=b(1-b)-a(1-a)=b-b2-a+a2,因为a,b为方程x2-x+14m=0的两根,所以a2-a+14m=0,化简得a2-a=-14m,同理b2-b=-14m,代入上式得原式=-(b2-b)+a2-a=14m+(-14m)=0.12.D13.32214.-3<x≤115.3 [解析] 如图,过P作PD⊥OA于D,∵OP为∠AOB的平分线,PC⊥OB,∴PD=PC,∵PC=3,∴PD=3.故答案为3.16.8317.16π318.1x+119.320.①②③④ [解析] ∵∠G=∠C =∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF ,∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m). 过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得 ⎩⎨⎧x +y =8,2x +3y =22,∴⎩⎨⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得 ⎩⎨⎧m +a +b =20,4m +2a +3b =72,∴⎩⎨⎧a =m -12,b =32-2m. (3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎨⎧m≥1,m -12≥1,32-2m≥1,∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w=10m+216中,w随m的增大而增大,当m=15时,w最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD.∵BC与⊙O相切于点D,∴OD⊥BC.又∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA.∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH.理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x.∵OH⊥AD,∴AD=2DH=2(1+x).∵∠DFG=∠DA F,∠FDG=∠ADF,∴△DFG∽△DAF,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF∥GE,∴∠GEC=∠P,∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2),∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得 ⎩⎨⎧a -b +2=0,16a +4b +2=0, 解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4,∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y), ∴AB BC =|y|455,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b , 由图像,得⎩⎨⎧2=b ,0=4k +b ,∴⎩⎨⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5.∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt△AOC,Rt△BOC中,由勾股定理,得AC=5,BC=2 5,∴AC2=5,BC2=20,AB2=25,∴AB2=AC2+BC2,∴△ACB是直角三角形,∴∠ACB=90°.∵BC∥AD,∴∠CAF+∠ACB=180°,∴∠CAF=90°.∴∠CAF=∠ACB=∠AFB=90°,∴四边形ACBF是矩形,∴AC=BF=5,在Rt△BFD中,由勾股定理,得DF=5,∴DF=BF,∴∠ADB=45°.2018年中考数学模拟试卷及答案(三)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列各实数中最小的是( )A.- 2 B.-12 C.0 D.|-1|2.下列等式一定成立的是( )A.a2·a5=a10 B.a+b=a+ bC.(-a3)4=a12 D.a2=a3.估计7+1的值( )A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间4.3tan30°的值等于( )A. 3 B.3 3 C.33D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a+1的是( ) A.a2-1 B.a2+aC.a2+a-2 D.(a+2)2-2(a+2)+17.正六边形的边心距为3,则该正六边形的边长是( )A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1)9.化简a 2-b 2ab -ab -b 2ab -a 2等于( )A.b aB.ab C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12; ③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题:①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x=-1,给出四个结论:①c>0;②若点B(-32,y1),C(-52,y2)为函数图象上的两点,则y1<y2;③2a-b=0;④4ac-b24a<0.其中,正确结论的个数是( )图M3-2 A.1 B.2C.3 D.4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=________.图M3-316.如图M3-4,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.图M3-518.若关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不等实根x1,x2满足x1+x2=-x1·x2,则k=________.19.如图M3-6,在平面直角坐标系中,矩形ABCD的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为________.图M3-620.如图M3-7,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF =2S△ABE.其中正确结论有________.图M3-7三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E 在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m2),种草所需费用y1(元)与x(m2)的函数关系式为y1=⎩⎨⎧k1x(0≤x<600),k2x+b(600≤x≤1000),其图象如图M3-10所示;栽花所需费用y2(元)与x(m2)的函数关系式为y2=-0.01x2-20x+30000(0≤x≤1000).(1)请直接写出k1,k2和b的值;(2)设这块1000 m2空地的绿化总费用为W(元),请写出W与x的函数关系式,求出绿化总费用W的最大值;(3)若种草部分的面积不少于700 m2,栽花部分的面积不少于100 m2,请求出绿化总费用W的最小值.图M3-1024.(10分)如图M3-11,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当ABBC=43时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.图M3-1125.(12分)如图M3-12,在△ABC中,AB=AC,AD⊥BC于点D,BC=10 cm,AD=8 cm,点P从点B出发,在线段BC上以每秒3 cm的速度向点C匀速运动,与此同时,垂直于AD的直线m从底边BC出发,以每秒2 cm的速度沿DA方向匀速平移,分别交AB,AC,AD于点E,F,H.当点P到达点C时,点P与直线m同时停止运动,设运动时间为t(t>0)秒.(1)当t=2时,连接DE,DF,求证:四边形AEDF为菱形;(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时t的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A:原式=(a+1)(a-1),不符合题意;B:原式=a(a+1),不符合题意;C:原式=(a+2)(a-1),符合题意;228.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1),∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°, ∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DAF, ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7,∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b , 则⎩⎨⎧b =6,4k +b =8,解得:⎩⎨⎧k =12,b =6,联立①②得:⎩⎨⎧x =2,y =7或⎩⎨⎧x =-14,y =-1(舍去),∴点E 的坐标为(2,7).20.①②③⑤21.解:(1)这30天最高气温的平均数=14×8+18×6+22×10+26×2+30×430=20.4 (℃),中位数为22 ℃. (2)1630×90=48(天). 答:估计该地这个季度中最高气温超过(1)中平均数的天数为48天. (3)P =1230=25.22.解:(1)在Rt △DCE 中,DC =4米,∠DCE =30°,∠DEC =90°, ∴DE =12DC =2米.(2)过D 作DF⊥AB,交AB 于点F , ∵∠BFD =90°,∠BDF =45°, ∴∠DBF =45°,即△BFD 为等腰直角三角形, 设BF =DF =x 米,∵四边形DEAF 为矩形,∴AF =DE =2米,即AB =(x +2)米, 在Rt △ABC 中,∠ABC =30°, ∴BC =AB cos30°=x +232=2x +43=3(2x +4)3米,BD =2BF =2x 米,DC =4米,∵∠DCE =30°,∠ACB =60°,∴∠DCB =90°, 在Rt △BCD 中,根据勾股定理得:BD 2=BC 2+CD 2, 即2x 2=(2x +4)23+16,解得:x =4+4 3或x =4-4 3(舍去), 则AB =(6+4 3)米.23.[解析] (1)利用待定系数法求解;(2)分0≤x<600和600≤x≤1000两种情况求出W 关于x 的函数关系式,分别求出两种情况下的最大值并进行比较;(3)先根据不等关系求出x 的取值范围,再结∵-0.01<0,W =-0.01(x -500)2+32500, ∴当x =500时,W 取最大值为32500元.当600≤x≤1000时,W =20x +6000+(-0.01x 2-20x +30000)=-0.01x 2+36000. ∵-0.01<0,∴当600≤x≤1000时,W 随x 的增大而减小. ∴当x =600时,W 取最大值为32400元. ∵32400<32500,∴W 的最大值为32500元. (3)由题意,1000-x≥100,解得x≤900. 又x≥700,∴700≤x ≤900.∵当700≤x≤900时,W 随x 的增大而减小. ∴当x =900时,W 取最小值为27900元. 24.解:(1)证明:∵∠ABC =90°, ∴∠ABD =90°-∠DBC, 由题意知:DE 是直径, ∴∠DBE =90°,∴∠E =90°-∠BDE, ∵BC =CD ,∴∠DBC =∠BDE, ∴∠ABD =∠E, ∵∠A =∠A, ∴△ABD ∽△AEB. (2)∵AB BC =43, ∴设AB =4k ,则BC =3k , ∴AC =AB 2+BC 2=5k , ∵BC =CD =3k ,∴AD =AC -CD =5k -3k =2k , 由(1)可知:△ABD∽△AEB, ∴AB AE =AD AB =BD BE, ∴AB 2=AD·AE, ∴(4k)2=2kAE , ∴AE =8k , 在Rt △DBE 中, tanE =BD BE =AB AE =4k 8k =12.(3)过点F 作FM⊥AE 于点M ,设AB =4x ,BC =3x ,由(2)可知:AE =8x ,AD =2x , ∴DE =AE -AD =6x , ∵AF 平分∠BAC, 可证BF EF =AB AE ,∴BF EF =4x 8x =12, ∵tanE =12,∴cosE =2 55,sinE =55,∴BE DE =2 55,∴BE =2 55DE =12 55x , ∴EF =23BE =8 55x ,∵sinE =MF EF =55,∴MF =85x ,∵tanE =12,∴ME =2MF =165x ,∴AM =AE -ME =245x , ∵AF 2=AM 2+MF 2, ∴4=(245x)2+(85x)2,解得x =108, ∴⊙C 的半径为3x =3 108. 25.解:(1)证明:当t =2时,DH =AH =4 cm , ∵AD ⊥BC ,AD ⊥EF ,∴EF ∥BC , ∴EH =12BD ,FH =12CD.又∵AB=AC ,AD ⊥BC ,∴BD =CD ,∴EH =FH ,∴EF 与AD 互相垂直平分, ∴四边形AEDF 为菱形.(2)依题意得DH =2t ,AH =8-2t ,BC =10 cm ,AD =8 cm , 由EF∥BC 知△AEF∽△ABC,即8-2t 8=EF10, 解得EF =10-52t ,∴S △PEF =12⎝ ⎛⎭⎪⎫10-52t ·2t=-52t 2+10t =-52(t -2)2+10,即当t =2秒时,△PEF 的面积存在最大值10 cm 2,此时BP =3×2=6(cm). (3)过E ,F 分别作EN⊥BC 于N ,FM ⊥BC 于M ,易知EF =MN =10-52t ,EN =FM ,由AB =AC 可知BN =CM =10-⎝⎛⎭⎪⎫10-52t 2=54t.在Rt △ACD 和Rt △FCM 中,由tanC =AD CD =FM CM ,即FM 54t =85, 解得FM =EN =2t ,又由BP =3t 知CP =10-3t , PN =3t -54t =74t ,PM =10-3t -54t =10-174t ,则EP 2=(2t)2+⎝ ⎛⎭⎪⎫74t 2=11316t 2,FP 2=(2t)2+⎝⎛⎭⎪⎫10-174t 2=353t 216-85t +100,EF 2=⎝⎛⎭⎪⎫10-52t 2=254t 2-50t +100.分三种情况讨论:①若∠EPF =90°,则EP 2+PF 2=EF 2,即11316t 2+35316t 2-85t +100=254t 2-50t +100,解得t 1=280183,t 2=0(舍去).②若∠EFP=90°,则EF 2+FP 2=EP 2,即254t 2-50t +100+35316t 2-85t +100=11316t 2,40。

新人教版2018年中考数学模拟试题八及答案

新人教版2018年中考数学模拟试题八及答案


A.直角三角形 B .正五边形 C .正六边形 D .等腰梯形 5、 由 8 个大小相同的正方体组成的几何体的主视图和俯视图如图所示, 视图是 ( )
则这个几何体的左
主视图
俯视图
A、
B

6、 下列说法正确的个数是(

①为了了解一批灯泡的使用寿命,应采用全面调查的方式
②一组数据 5, 6, 7, 6, 8 , 10 的众数和中位数都是 6 ③已知关于 x 的一元二次方程( x+1) 2﹣m=0有两个实数根,则
(b﹣ ) x+c=0 ( a≠0)的两根之和( C )
A .大于 0 B.等于 0 C.小于 0
D .不能确定
1
10. 在平面坐标系中,正方形 ABCD的位置如图所示,点 A 的坐标为( 1, 0),点 D 的坐标
为( 0, 2),延长 CB交 x 轴于点 A1,作正方形 A1B1C1C,延长 C1B1 交 x 轴于点 A2,作正方形
4 分钟后注满水池,此时关闭进水管,池中水量
V(升)随时间 t (分)之间的函数图象如
图所示,则单开进水管经过
分钟可注满水池 .
V( 升) 4
t( 分)
O
45
15.如图, 反比例函数 y= (k≠ 0)的图象经过 A,B 两点, 过点 A 作 AC⊥x轴,垂足为 C,
过点 B 作 BD⊥x轴,垂足为 D,连接 AO,连接 BO交 AC于点 E,若 OC=C,D 四边形 BDCE的面
(参考数据: ≈1.414 , ≈1.732 )
22.( 9 分)如图,在四边形 ABCD中, AB=6, BC=8, CD=24, AD=26,∠ B=90°,以 AD为直 径作圆 O,过点 D 作 DE∥AB 交圆 O于点 E (1)证明点 C 在圆 O上; (2)求 tan ∠CDE的值; (3)求圆心 O到弦 ED的距离.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


16.( 2016·辽宁丹东·3 分)如图,在△ ABC 中, AD和 BE是高,∠ ABE=45°,点 F 是 AB 的中点, AD与 FE、 BE分别交于点 G、 H,∠ CBE=∠BAD.有下列结论:① FD=FE;② AH=2C;D ③BC?AD= AE2;④S△ABC=4S△ADF.其中正确的有 __1,2,3,4________________.
3
C、
D

m的取值范围是 m≥0
a2
④式子
有意义的条件是 a
a3
2且 a - 3
A. 1
B. 2
C. 3
D. 4
7、某种商品的进价为 800 元,出售标价为 1200 元, 后来由于该商品积压,商店准备打折销
售,要保证利润率不低于 5%,该种商品最多可打 ( )
A. 9 折
B. 8 折
C. 7 折
D. 6
2
三、解答题(共 72 分)
17.计算:
(
2013
1)
12
2( )
2 sin 45 (
2
0
3 . 14 )
3 8 ( 5 分)
18.先化简,再求值:
2
x x1
x1
2
4x
4x
1
,其中
x 满足 x 2+x﹣ 2=0.( 5 分)
1x
19.( 6 分)某车间计划加工 360 个零件,由于技术上的改进,提高了工作效率,每天比原 计划多加工 20%,结果提前 10 天完成任务,求原计划每天能加工多少个零件?
请结合图中所给信息ห้องสมุดไป่ตู้答下
列问题:
(1)这次被调查对象共有
人,被调查者“不太喜欢”有
人;
(2)补全扇形统计图和条形统计图;
(3)在“非常喜欢”调查结果里有 5 人为 80 后,分别为 3 男 2 女, 在这 5 人中,该民间组
织打算随机抽取 2 人进行采访,请你用列表法或列举法求出所选
2 人均为男生的概率.

m] A. 3.7 ×10 ﹣5 克
B. 3.7 ×10 ﹣ 6 克
C. 37×10﹣7 克
D. 3.7 ×10 ﹣8 克
3、下列运算正确的是(

A. 3x 2+4x 2=7x 4
B. 2x 3?3x 3=6x 3
C. x 6 +x3=x9
D. ( x 2) 4=x 8
4、下列图形中,既是轴对称又是中心对称的图形是(
2018 年中考数学模拟试题
一、选择题(每小题 3 分,共 30 分)
1、一个数的绝对值是 5,这个数是(

A.5 B 、 -5 C .5 和 -5 D . 0
2、花粉的质量很小,一粒某种植物花粉的质量约为
0.000037 毫克,已知 1 克 =1000 毫克,
那么 0.000037 毫克可用科学记数法表示为(
A .大于 0 B.等于 0 C.小于 0
D .不能确定
1
10. 在平面坐标系中,正方形 ABCD的位置如图所示,点 A 的坐标为( 1, 0),点 D 的坐标
为( 0, 2),延长 CB交 x 轴于点 A1,作正方形 A1B1C1C,延长 C1B1 交 x 轴于点 A2,作正方形
A2B2C2C1, ………按这样的规律进行下去,第 2012 个正方形的面积为(
20. (9 分 ) 中央电视台举办的“ 2016 年春节联欢晚会”受到广泛关注,某民间组织就
2016
年春节联欢晚会节目的喜爱程度, 在丽州广场进行了问卷调查, 并将问卷调查结果分为“非
常喜欢”“比较喜欢”“感觉一般”“不太喜欢”四个等级,分别记作
A,B, C, D,根据
调查结果绘制出如图所示的“扇形统计图”和“条形统计图”,

A.直角三角形 B .正五边形 C .正六边形 D .等腰梯形
5、 由 8 个大小相同的正方体组成的几何体的主视图和俯视图如图所示, 视图是 ( )
则这个几何体的左
主视图
俯视图
A、
B

6、 下列说法正确的个数是(

①为了了解一批灯泡的使用寿命,应采用全面调查的方式
②一组数据 5, 6, 7, 6, 8 , 10 的众数和中位数都是 6 ③已知关于 x 的一元二次方程( x+1) 2﹣m=0有两个实数根,则
图所示,则单开进水管经过
分钟可注满水池 .
V( 升) 4
t( 分)
O
4
5
15.如图, 反比例函数 y= (k≠ 0)的图象经过 A,B 两点, 过点 A 作 AC⊥x轴,垂足为 C,
过点 B 作 BD⊥x轴,垂足为 D,连接 AO,连接 BO交 AC于点 E,若 OC=C,D 四边形 BDCE的面
积为 2,则 k 的值为 ﹣

8、给出下列四个函数:① y x ;② y x ;③ y
其中当 x 0 时, y 随 x 的增大而减小的函数有(
A. 1 个
B .2 个
C .3 个
1
;④ y
x

D .4 个
2
x.
9. 如图,二次函数 y=ax 2+bx+c ( a≠0)和正比例函数 y= x 的图象如图所示,则方程 ax2+
(b﹣ ) x+c=0 ( a≠0)的两根之和( C )
为 2:1 ,把△ EFO缩小,则点 E 的对应点 E′的坐标是
13. 120°的圆心角对的弧长是 6π,则此弧所在圆的半径是 __9____.
14、一个蓄水箱装有一个进水管和一个出水管,当水箱无水时,同时打开进水管和出水管,
4 分钟后注满水池,此时关闭进水管,池中水量
V(升)随时间 t (分)之间的函数图象如

A. 5
3 2010 ()
2
9 2010
B. 5 ( )
4
9 2012
C. 5 ( )
4
3 4022
D. 5 ( )
2
二、填空题 ( 每小题 3 分 , 共 18 分 )
11、已知函数 y
2
(k 3)x
2 x 1 的图象与 x 轴有交点,则
k 的取值范围是
12、在平面直角坐标系中,已知点 E( - 4, 2) , F ( - 2, - 2) ,以原点 O为位似中心,相似比
相关文档
最新文档