纳米碳酸钙的制备及表面改性技术
纳米碳酸钙的生产工艺及改性技术进展
钙在 高剪 切 力 作 用 下粉 碎 , 多级 旋 液 分 离 除 去颗 粒及 杂质 , 到一 定浓 度 的精制 氢 氧化钙 悬 浮液 ; 得
然 后 通 入 C 2气 体 , 入适 当 的 晶 型控 制 剂 , O 加 碳 化 至 终点 , 到要求 晶型 的碳 酸钙 浆 液 ; 得 最后 再 经 过脱水、 干燥 、 面处理 得 到纳米 碳酸钙 产 品 。在 表 碳 化法 中 , 化 过 程决 定 了轻 质 碳 酸钙 的粒 度 和 碳 晶型 。该方 法 具有 产 品质量 好 、 本低 廉等 优点 , 成 是 目前 国 内外 生产 纳米 级碳 酸钙 的主要 方 法 。它 主要包 括 间歇 式 碳 化 法 、 续 喷雾 碳 化 法 及 超 重 连 力 碳 化法等 几 种生 产方 法 。
故称 间 歇 ( 冻 ) 碳 化 法 。按 c 冷 式 o2和 C ( a OH) 2
接触 方式 的不 同 , 又 可 分 为 间歇 鼓 泡 式碳 化 法 它
和 间歇搅 拌 式碳 化法 两种 l 。 l J 间歇 鼓 泡式 碳 化 法 是将 5 ~8波 美 度石 灰乳 用冷 冻 机 降 温 到 2 ℃ 以下 , 入 碳 化 塔 , 持 一 5 泵 保 定液 位 , 由塔 底通 人 窑气鼓 泡进 行碳 化反 应 , 通过 控 制反 应温 度 、 浓度 、 气液 比 、 添加 剂等 . 艺 条件 , 1 [
复分 解法 是采 用水 溶性 钙盐 ( 【 女 氯化 钙 等 ) j 与 水 溶性 碳酸 盐 ( 碳 酸铵 或 碳 酸 钠 等 ) 在 适 当 的 如 , 工 艺 条 件 下进 行 反 应 , 过 液 一固相 反应 过 程 制 通 得 纳 米级 碳酸 钙产 品 。这种 方 法可通 过 控制 反 应 物 的浓 度 、 温度 及生 成碳 酸钙 的过饱 和度 , 加 入 并
纳米碳酸钙的制备及用途
一、纳米碳酸钙的制备
纳米碳酸钙的制备方法主要有碳化法、复分解法和化学气相沉积法等。其中, 碳化法是最常用的制备方法,其主要原理是在高温高压条件下,将二氧化碳气体 与氢氧化钙溶液反应生成碳酸钙沉淀。具体制备过程包括配料、搅拌、碳化、过 滤、干燥和表面处理等步骤。
为了获得高质量的纳米碳酸钙,需要注意以下几点:
纳米碳酸钙的制备及用途
目录
01 一、纳米碳酸钙的制 备
02
二、纳米碳酸钙的用 途
03
三、纳米碳酸钙的市 场现状和前景
04 四、结论
05 参考内容
随着科技的不断发展,纳米技术在各个领域的应用越来越广泛。其中,纳米 碳酸钙作为一种重要的纳米材料,具有广阔的应用前景和市场价值。本次演示将 详细介绍纳米碳酸钙的制备方法、用途及市场发展情况,以期让更多人了解这一 纳米材料的优势和应用价值。
功能性纳米碳酸钙在许多领域都有广泛的应用,例如橡胶、塑料、涂料、化 妆品和生物医学等。由于其良好的分散性和高透明度,它可以作为塑料的增强填 料和透明剂。此外,纳米碳酸钙还可以用于药物输送,如抗癌药物和疫苗的载体。
五、结论
功能性纳米碳酸钙的制备及性质研究具有重要的实际意义。其制备方法的改 进和性质的优化将进一步拓宽其应用领域,提高其使用性能。对其磁学性质和生 物相容性的进一步研究也将为纳米碳酸钙在生物医学领域的应用带来新的可能。
摘要纳米碳酸钙是一种具有重要应用价值的无机纳米材料,在橡胶、塑料、 涂料、油墨等领域得到广泛应用。本次演示总结了纳米碳酸钙的制备及改性应用 研究进展,并分析了其未来的发展趋势和应用前景。
引言纳米碳酸钙是一种由钙离子和碳酸根离子组成的无机纳米粒子,具有轻 质、高比表面积、吸油性等特性。制备纳米碳酸钙的方法主要有化学沉淀法、气 相水解法、界面沉淀法等。纳米碳酸钙经过改性处理后,可进一步提高其应用性 能,如表面改性技术、插层改性技术等。
纳米碳酸钙改性技术研究进展及代表性应用综述
纳米碳酸钙改性技术研究进展及代表性应用综述吕津辉/文【摘要】碳酸钙是一种重要的无机粉体填充材料,由于其原料来源丰富且成本低,生产方法简单,性能比较稳定,被广泛的应用于橡胶、涂料、胶黏剂、造纸、塑料、食品等行业。
按照生产方法的不同,碳酸钙可分为重质碳酸钙和轻质碳酸钙。
而活性碳酸钙,又称改性碳酸钙,是通过加入表面处理剂对重钙或轻钙进行表面改性制得[1]。
【关键词】纳米碳酸钙;改性剂;改性技术;纳米碳酸钙应用;填加纳米碳酸钙是20世纪80年代发展起来的一种新型超细固体粉末材料,其粒度介于0.001~0.1um(即1~100nm)之间等。
由于纳米碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的表面效应、小尺寸效应、量子尺寸效应和宏观量子效应[1]。
为了使具有良好性能的纳米碳酸钙发挥优良性能,使用者对纳米碳酸钙进行表面改性,使其成为了一种具有多功能性的补强填充改性材料。
改性后的碳酸钙表面吸油值明显降低,凝聚粒子的粒径减小,粒子分散性增强,作为填料用于生产后的制品塑化时间缩短,塑化温度下降,溶体流动指数上升,流动性得到显著改善[2]。
1.表面改性的理论1.1 化学键理论偶联剂一方面可以与纳米碳酸钙表面质子形成化学键,另一方面要与高聚物有较强的结合界面,进而提高纳米粒子的力学性能[1]。
1.2 表面浸润理论因为复合材料的性能受高分子物质对纳米填料浸润能力的影响,若填料能完全被浸润,那么树脂对高能表面的物理吸附将提供高于有机树脂内聚强度的粘结强度[1]。
1.3 可变形层理论吸附树脂会优先选择偶联剂改性填料的表面作配合剂,一个范围的固化不均会生成变形层,变形层是一个比偶联剂在聚合物和填料之间的单分子层厚得多的柔树脂层,它能防止界面裂缝的扩图1流化床造粒工艺流程展,松弛界面应力,加强界面的结合强度[1]。
1.4 约束层理论模量在高模量粉体和低模量粉体之间时,传递应该是最均匀的[1]。
纳米碳酸钙的制备技术与表面改性方法
摘 要 : 述 了 我 国 纳米 碳 酸 钙 技 术 发 展 现 状 。介 绍 了纳 米 碳 酸 钙 的生 产 技 术 路 线 , 讨 了其 中 的碳 简 探 化 工 艺 和 表 面 改 性 方 法 。 目前 我 国 有鼓 泡碳 化 、 雾 碳 化 和 超 重 力 碳 化 等 的碳 化 工 艺 , 采 用 钛 酸 酯 、 喷 可 铝酸酯等偶联剂和脂肪酸 、 酸酯等表面活性剂对纳米碳酸钙进行表面改性 。 磷 关键词 : 纳米 碳 酸 钙 ; 备 技 术 ; 化 法 ; 面改 性 制 碳 表 中图 分 类 号 :T 4 文献 标 识 码 : B4 A 文 章 编 号 :0 6 96 2 0 ) 2 0 2一 5 10 —7 0 ( 0 70 —0 4 O
Ac d my o n me a lc M i n n s r v l pme ,Ch z ou 2 71 a e fNo — t li ni g I du t y De e o nt i h 4 00,Ch na . Co l g fCh r ia i ;3 le e o e h c l
Ch nDa o g1 ,,Y n a h n e y n ,3 a g Xi o o g ~,W a g Qu n 2 n a
( .De a t n fCh mi ty,Ch z o a h r le e 1 p r me to e s r ih u Te c e s Co lg ,Ch z o 4 1 0 ih u 2 7 0 ,Ch n ;2 Ch z o s a c ia . ih u Re e r h
( u h a a t c d a d p o p o i c d e t r . s c s f t y a i n h s h rc a i s e )
混凝土中纳米碳酸钙应用技术规程
混凝土中纳米碳酸钙应用技术规程一、前言混凝土是一种广泛应用的建筑材料,具有优异的力学性能和耐久性。
而纳米碳酸钙作为一种新型的混合材料,可以显著提高混凝土的力学性能和耐久性。
本文将介绍纳米碳酸钙在混凝土中的应用技术规程。
二、纳米碳酸钙的制备纳米碳酸钙的制备一般采用化学合成法或机械法。
其中化学合成法包括溶胶-凝胶法、水热合成法、共沉淀法等,机械法包括球磨法、高能超声法等。
选择合适的制备方法可以获得具有一定形态和尺寸的纳米碳酸钙。
三、混凝土中纳米碳酸钙的应用1.掺量掺入适量的纳米碳酸钙可以显著提高混凝土的力学性能和耐久性。
一般情况下,掺量应控制在混凝土总质量的1%-5%。
2.分散纳米碳酸钙的分散是影响其应用效果的重要因素。
为了获得良好的分散效果,可以采用表面改性技术,如硅烷偶联剂、聚酰胺酸等,也可以在混凝土搅拌过程中加入分散剂。
3.混凝土性能测试混凝土中纳米碳酸钙的应用效果需要通过实验测试来验证。
应测试混凝土的抗压强度、抗拉强度、抗渗性、耐久性等性能指标,并与未掺纳米碳酸钙的混凝土进行对比。
四、应用案例纳米碳酸钙在混凝土中的应用已得到广泛关注。
以下是一些应用案例:1. 某大型商业楼盘的混凝土结构中,掺入5%纳米碳酸钙,经过测试,混凝土抗压强度提高了20%,抗渗性显著改善。
2. 某高速公路桥梁的混凝土结构中,掺入2%纳米碳酸钙,经过测试,混凝土耐久性得到了明显提高,使用寿命延长了10年以上。
3. 某地铁工程的混凝土结构中,掺入1%纳米碳酸钙,经过测试,混凝土抗裂性能得到了显著提高,减少了混凝土裂缝的产生。
五、结论纳米碳酸钙作为一种新型的混合材料,在混凝土中的应用效果显著。
应根据具体情况选择合适的制备方法和掺量,并注意纳米碳酸钙的分散效果和混凝土性能测试。
在实际应用中,纳米碳酸钙的应用可以显著提高混凝土的力学性能和耐久性。
纳米碳酸钙表面改性技术研究进展
般 需采 用 惰 性 溶剂 [ 如液 体 石 蜡 ( 白油 ) 石 油 醚 、 、
提 高 , 耐 酸性 和 阻燃 性 的 改善也 有 较好 的效果 . 对 除 了用 作 硬质 聚氯 乙烯 的功 能 填料 外 .还 广泛 用 作胶 黏剂 、 墨 、 油 涂料 等 的填料 和颜 料 。
1 . 硼 酸 酯 4
Re e r h pr g e si ur ac s a c o r s n s f e mod fc to t c o og fna m e e a c um a bo i a i n e hn l y o no i t rc l i c r nat e
Y n i in Y nX n ag e a ,a i T j
的纳米 效 应 纳米 碳 酸钙 改性 的作 用机 理 为表 面物
理 作用 ( 括表 面包 覆 和表 面 吸附 ) 包 和表 面化 学作 用 ( 括 表面 取代 、 合 和接枝 等 )表 面改 性 方法 又可 包 聚 。 分 为 干法 表 面改性 工 艺和湿 法 表 面改性 工艺
的来 源 问题 果碳 酸钙 中水 分含 量较 高 . 如 则偶联 剂
c a a tr t s f t o e u fc a t w r e i w d Va o s e s r c mo i c t n e h oo is i cu i g su f g , h r ce si o h s s ra t n s e e r v e e . r u n w n f e i c i a d f ai tc n lg e , ld n tf n s i o n i c mp st o p i g g n ,e ci e mo o r a t e ma r moe u e , oy r , ls s a d u e ip r a t t. w r o o i c u l a e t r a t n me , c i c o lc ls p l me s p a ma , n s p r d s e s n s ec , e e e n v v
纳米碳酸钙改性技术进展和应用现状
纳米碳酸钙改性技术进展和应用现状目前用于纳米碳酸钙表面改性的方法重要有:局部化学反应改性、表面包覆改性、微乳液改性、机械改性及高能表面改性。
1纳米碳酸钙表面改性技术优缺点对比局部化学反应改性方法重要通过纳米碳酸钙表面官能团与改性剂间发生化学反应来达到改性目的,分为干法和湿法两种工艺。
将碳酸钙粉和表面改性剂同时投放到捏合机中进行高速捏合的方法称为干法改性。
此法操作简单,出料便于运输且可直接包装。
干法改性所得产品表面不均匀,适合低档碳酸钙粉末的生产,但因操作工艺简单而被广泛采纳。
适合干法改性的改性剂重要有钛酸脂、铝酸脂、磷酸脂等偶联剂。
湿法改性是将碳酸钙和改性剂在液相中共混,通过改性剂在碳酸钙表面包覆形成双膜结构来进行改性的,湿法改性虽然效果很好,但是工艺较为多而杂。
水溶性的表面活性剂较适合湿法改性工艺,这类水溶性表面活性剂重要有高级脂肪酸及其盐等。
表面包覆改性方法是指表面改性剂和纳米碳酸钙表面之间仅依靠范德瓦耳斯力或物理方法连接却没有发生化学反应的改性方法。
这种方法可以在制备纳米碳酸钙的同时在溶液中加入表面活性剂,达到制备和改性同步进行的目的,由于表面活性剂的存在使这种方法生产出来的碳酸钙分散性能得到很好的改善。
微乳液改性方法又称胶囊化改性,这种方法是通过在纳米碳酸钙表面包上一层其他物质的膜,更改粒子表面固有特性来进行改性的。
此法虽然和表面包覆改性方法仿佛,但是这种方法改性后包在纳米碳酸钙表面的一层膜相对表面包覆改性的较为均匀。
机械化学改性方法是利用猛烈机械力作用有目的的激活粒子表面,使分子晶格发生位移,来更改其物理化学结构和表面晶体结构,提高粒子与有机物或无机物的反应活性的改性方法。
对于大颗粒的碳酸钙这种改性方法特别有效,就纳米级碳酸钙来说,由于其本身粒径很小,通过机械粉碎、研磨的机械化学改性方法就不再能发挥出优异的改性效果。
值得一提的是,机械化学改性方法虽不能单独见效,但因其能显著加添纳米碳酸钙的活性基团与表面活性点,因此结合其他改性方法协同作用亦不失为一种有效方案。
纳米碳酸钙铝酸酯湿法表面改性技术的研究
★
母 裹
湿法 改性是在碳化增浓后的熟浆溶液中对碳酸钙进行表面改性处 理, 这 必须在 纳米碳酸钙生 产企 业 中才能 完成 。利用碳酸钙在液 相 中
的分散 比在气相 中的分散容易得多 , 如果加入分散剂 , 分散效果更好 的 特点, 使碳酸 钙颗粒与表 面改性 剂分子 的作用 更均匀 。碳酸钙颗 粒经 湿法 改性 处理后 , 其表面能降低 , 即使经压滤 、 干燥后形成二次粒子 , 仅 形 成结合力 较弱的软 团聚 , 有效地避免 了干法 改性中 因化学键 氧桥 的 生 成而导致 的硬 团聚现象 。因此 , 研究铝 酸酯 对纳米碳酸钙 的湿法改 性技 术 , 对铝酸酯推广应用到湿法改性领域 , 对降低纳米碳酸钙表面改 性成 本 , 对提高纳米碳酸钙表 面改性质量等都具有重要的意义。 二、 纳米碳酸钙铝酸酯湿 法改性技术研 究的主要 内容 通过前期 的实验探索 , 发现铝酸酯对 纳米 碳酸钙 的湿法 改性技术 基本是可行 的, 通过本课题 的深入研究获得更加准确的工艺流程 、 工艺
配 方改性 的方法来 抑制其水解 。本研究 的创新之处是首次将 比较廉价 的铝酸酯应 用于纳米碳 酸钙湿法改性 领域 , 这对降低 纳米碳 酸钙 的表 面改性成本 , 提高改性纳米碳酸钙的质量都具有重要意义 。 首先是 查阅资料 , 确定 研究实验方案 , 准备仪器药 品 , 然后利用学 生做毕业设计 的机会完成实验研究。 研究方法 : 实 验 法 与 对 比法 。 ①主要 仪器有马弗 炉 , 压缩空气钢 瓶 ; 压缩二 氧化碳 钢瓶 ; 电动搅 拌器; 酸度计 ; 温度计 ; 2 5 0 0 m L 烧杯 ; 真空抽滤 装置 ; 恒温 干燥 箱 ; 磨 粉 机; 标准筛 ; 显微镜 。 ②主要 实验药 品有 铝酸酯 , 生石灰 , 硫酸, 双氧水 , 氢氧化钠 , 硬 酯 酸, 冰水 , 蔗糖 , 三聚磷酸钠 。 ③实验操作过程 : 消化过 程 : 消化反应器 中装 有 5 0 O a r l 热水 , 并开启搅拌装置 和装好 温度计 , 然后快速称取 l O O g 生石灰 , 依次加 入消化反应器 中, 直至温度 计指示 的温 度不再上升为止。再停止搅拌 , 静置 自然冷却至常温 ; 最后 用标准筛过筛 , 过滤 的浆液陈化 2 4 h 之后备用。 碳 化过 程 : 将上述 滤液 转移 入碳化 反应器 中, 加入 5 0 O a r l 冷水 稀 释, 开启搅拌 装置 , 通入 C O : 气体进行 碳化反 应 , 数分钟后 加入少许 晶 形导 向剂溶液后 , 继续碳化反应 , 直 至溶液的 p H值达到 7 , 并使浆 液 自 然冷却至常温 , 并陈化 2 4 h 之后备用 。 湿法 活化 : 碳化反应后的浆液需采用 自然沉降的方法进行增浓 , 至
纳米碳酸钙的生产工艺及用途
纳米碳酸钙的生产工艺及用途碳酸钙是自然界存在的一种很广泛的矿物质,也是一种传统的无机盐化工产品。
近年来,随着碳酸钙的超细化及表面改性技术的发展,纳米碳酸钙制备技术及应用,已成为国内外竞相开发的研究热点。
本文就有关纳米碳酸钙的主要生产技术及其应用领域作一简介。
【阳山县中棋实业有限公司】关键词纳米碳酸钙生产用途碳酸钙(化学式为CaCO3)在自然界广泛存在,它至少有6种矿物形式[1]:无定形碳酸钙(amorphous CaCO3)、球霰石(vaterite)、文石(aragonite)、方解石(calcite)、单水方解石(monohydro calcite)和六水方解石(ikaite,CaCO3·6H2O),是大理石、石灰石、白垩等天然矿物的主要成分,也是贝壳、珊瑚礁、珍珠的构成成分。
在工业上,碳酸钙作为一种重要的无机盐化工产品,物美价廉。
根据生产方法不同,碳酸钙分为两大类、多种型号,以满足不同行业、不同用途的需要[2]。
以方解石、大理石、白垩、贝壳、石灰石等为原料经机械粉碎及超细研磨等用物理方法制取的碳酸钙粉体产品称重质碳酸钙,以GCC表示;以石灰石为原料经煅烧、消化、碳酸化、分离、干燥分级等化学方法制取的产品称轻质碳酸钙,以PCC表示。
普通型的重质碳酸钙和轻质碳酸钙,通常作一般填料和白色颜料使用。
纳米碳酸钙是20世纪80年代运用纳米技术加工发展而成的一种新型轻质碳酸钙产品,粒径通常在20~100 nm之间。
由于碳酸钙粒子的超细化,其晶体结构和表面电子结构发生变化,产生了普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应,且粒径细而均匀、分布窄、比表面积大、表面活性及分散性好、表面能高,使其在实际使用中体现了很多普通碳酸钙材料所不具备的更加优异的性能,用途更为广泛。
如可广泛大量应用于注塑、挤出、PVC型材、管材、汽车涂料、密封胶、粘结剂涂料、油墨、橡胶等行业,碳酸钙产品的附加值得到很大提高,很快引起了世界各国的普遍关注,现已成为无机非金属材料研究和企业竞争投资的热点[3]。
纳米碳酸钙的化学制备方法及应用分析
纳米碳酸钙的化学制备方法及应用分析作者:刘中河李甘来源:《速读·中旬》2016年第10期摘要:碳酸钙作为一种生物矿物,其具有良好的生物相容性和稳定的化学性质,属于很有前途的无机材料,被广泛应用于医药、油墨、涂料、塑料和橡胶等领域。
而纳米碳酸钙则是指粒径保持在1~100nm范围内的碳酸钙产品,其涉及超微细碳酸钙和超细碳酸钙这两种产品,具有宏观量子隧道效应、小尺寸效应和量子尺寸效应,在杀菌消毒、增强透明性与补强性等方面的应用性能较为特殊。
本文就对纳米碳酸钙的化学制备方法及应用进行分析和探讨。
关键词:纳米碳酸钙;化学制备方法;应用纳米碳酸钙是上世纪八十年代发展起来的新型固体材料,选料为非金属矿石灰石,采用沉淀法合成纳米粉末体的技术来制备纳米材料。
随着纳米技术的快速发展,碳酸钙逐步实现了表面改性、结构复杂化以及超细化的发展,应用价值越来越高,在熔点、催化剂、光热组和磁性等方面的优越性日益增强。
可以说,纳米碳酸钙产品的应用空间与发展潜力将会越来越大。
一、纳米碳酸钙的化学制备方法(一)凝胶法凝胶法主要是以凝胶的一端或两端为依据,让Ca2+和CO32-加以扩散,这样凝胶内部可以生成结晶核,在其位置不变的前提下,能够对晶核的生长与生成进行连续观察,适应于晶体过程的研究。
当然对不同的条件加以控制,如添加剂的浓度与种类、pH值、Ca2+和CO32-的浓度、凝胶浓度等,可以得到球霞石型或文石型的碳酸钙。
(二)乳液法乳液法可以划分为乳状液膜法与微乳液法,其中利用前者来制备纳米CaCO3时,膜溶剂需选用煤油,让司本-80(Span-80)座位流动载体与表面活性剂,这样可以配成水相与油相不相溶的液体混合物,利用电动搅拌器加以搅拌后,这时油相中会分散有微液滴形式Na2CO3水溶液,形成乳液后与Ca(OH)2溶液进行混合搅拌,Ca2+会进入微液滴加以反应,从而生成CaCO3超细颗粒。
后者则是在两份完全相同的微乳液中溶入可溶性钙盐与可溶性碳酸盐,在特定情况下混合反应之后,需要对小区域内的晶粒生长与成核进行控制,然后将溶剂与晶粒进行分离,从而得到纳米碳酸钙的颗粒。
橡胶补强填料剂纳米碳酸钙生产技术进展
复分解法是采用水溶性钙盐 ( 如氯化钙等) 与 水溶性碳酸盐( 如碳酸铵或碳酸钠等) ,在适当的
工艺条件下进行反应,通过液一固相反应过程制 得 纳 米级碳酸 钙产 品 。这种方 法可通 过控 制反 应
物的浓度 、 温度及 生成碳 酸钙 的过饱和 度 , 并加入 适 当 的添加 剂等方法 , 得到 球形 、 径极小 、 粒 比表 面 积很大 、 溶解性 很 好的无 定形碳 酸钙 。 所得产 品
纯度高、 白度好, 但由于吸附在碳酸钙中的大量氯
ห้องสมุดไป่ตู้
低含胶率或部分取代 白炭黑 、钛 白粉等价格昂贵 白色填料的目的;纳米碳酸钙大量填充在橡胶制
【l _ 【 } 町以增 加产 品的 体积 , 而节约 昂贵 的天然 IJ I J 从 橡胶 及俞 成橡 胶, 降低 橡胶 制品 的成 本 : 用硬 脂酸 技』 类对纳 水碳 酸 钙进行 表 面改性 处理, 可 以
后通人C , O气体, 加人适当的晶型控制剂, 碳化至 终点, 得到要求晶型的碳酸钙浆液 最后再经过脱 水、 干燥、 表面处理得到纳米碳酸钙产品。 在碳化
法中, 碳化过程决定了轻质碳酸钙的粒度和晶型。
该方法具 有产 品质量 好 、 经济 等优点 , 目前 国 内 是
外生产纳 米级碳 酸钙 的主 要方法 。它 主要包括 间
离子很难除尽,生产 中使用的倾析法往往需要大 量的时间和消耗大量的洗涤用水,故 目 前国内外
很 少采用 。
12 . 碳化法 碳 化法是将 精选 的石 灰石煅 烧 ,得 到氧化钙
改善其在橡胶 的分散性,增加橡胶和钙粒子表 + J
嘶的湿 润度, 进而 大幅度 提高 其对 橡胶 的补强性 能。 这类经 表面 改性处 理 的纳米碳 酸 钙, 其补强性
纳米碳酸钙的制备及在造纸中的应用
化 碳 ,调节 了卷烟 燃烧 速度 .使其 逐渐燃 烧而 不熄
多 .研究集 中在合成新 的改性剂 和纳 米碳酸 钙的 改
性后 性能 的研究 。如王 训道罔 合成 改性剂 . 并对 其改 性 机理 进行 了探讨 改性 后 的纳米碳 酸钙 粒径分 布 均匀. 与改性 剂间产 生 了化 学吸 附和物 理 吸附 , 到 达
浓 度 及 生 成 碳 酸 钙 的 过 饱 和 度 .并 加 入 适 当 的 添 加
有 机械 加 工 、 械 粉碎 、 机 干法 超 细粉 碎 和湿 法超 细 粉 碎 该 法 所得 颗粒 形状 不规 则 . 粒径 分 布较 宽 . 一般
剂 , 到球 形 的 、 径极 小 、 得 粒 比表 面积 很大 、 溶解 性 很 好 的无 定形 碳 酸钙 但 吸 附在碳 酸钙 中的大 量氯 离
纳米 碳 酸钙 具有 粒度 小 表面 能高 、 易 团聚 、 极 表
面 亲水疏 油 和强 极性 的特 点 .在 有机 介 质 中分 散 不 均匀 。与普 通碳 酸钙 相 比 , 米碳 酸 钙具 有粒 子 细 。 纳 比表 面积 大 , 白度 高 的特 点 , 为 一 种 性 能好 、 格 作 价 低 的补 强 填 充 剂 , 泛 应 用 于 造 纸 、 胶 、 料 、 广 橡 塑 油 墨、 医药 等行 业[ 2 1 本 文 主要 介绍 了纳 米 碳酸 钙制 备 方 法和 表 面改性 .综 述 了纳 米碳 酸钙 在 造纸 中应 用 的研 究 进展 和应 用 .并 探讨 了纳 米碳 酸 钙 的发 展趋
一 津 造 纸
I m m ul e r
≤ ■ ■i ●
纳 米 碳 酸 钙 的 制 备 及 在 造 纸 中 的 应 用
第五讲:纳米碳酸钙的制备及其应用
三、纳米碳酸钙的制备方法(5)
2、连续喷雾碳化法
河北科技大学研究的多级喷雾碳化技术,采用三 段喷雾碳化塔,氢氧化钙乳液通过压力喷嘴喷成雾状 与二氧化碳混合气体逆流接触,使氢氧化钙乳液为分 散相,窑气为连续相,大大增加了气液接触表面,通 过控制氢氧化钙乳液的浓度、流量、液滴直径、气液 比等工艺条件,可制得40~80nm 的碳酸钙。
纳米碳酸钙的制备及其应用
东北大学矿物材料与粉体技术研究 中心
一、概述
碳酸钙是一种重要的, 用途广泛的非金属矿物, 是国内外产量及用量最大 的填料。 目前,世界碳酸钙粉体的 总生产能力为4600万吨/年, 其中重质碳酸钙3000万吨/ 年,轻质碳酸钙1600万吨/年。 中国是世界上碳酸钙生产 大国,也是消费大国。中 国重质碳酸钙的生产能力 为500万吨/年,轻质碳酸 钙生产能力400万吨/年。
20
50 0 100 200 300 400 500 600
20
CO2流量 /(m /h· kgCa(OH)2)
3
搅拌速度 /(r/min)
图3 CO2流量对产品粒度 和反应时间影响
图4 搅拌速度对产品粒度 和反应时间影响
反应时间 /min
200
产品粒度 反应时间
50
200
产品粒度 反应时间
50
三、纳米碳酸钙的制备方法(2)
颗粒形状的控制比 粒度的控制困难, 药剂的种类,加入 时机、加入量均需 要控制,同时要与碳 化反应的各种工艺 条件合理搭配才能 获得各种需要的颗 粒形状的产品,以便 满足不同行业对各 种颗粒形状纳米碳 酸钙产品的需要。
片状
针状
链状
立方型
3、不能忽视的产品白度
3、粉体白度控制
纳米碳酸钙的生产技术和应用
防石 击涂 料 。不 同 的晶型 、 径 可适用 于 塑料 、 粒 油 墨 、 料、 涂 橡胶 、 纸 、 品 、 造 食 医药 等各个 工业 领域 , 对 改 善材 料 制 品 的 电性 能 、 阻燃 性 能 、 热性 能 、 耐 加工性 能 和光 泽度 、 明度 以及 补 强 性 能 等 都 有 透 明显 的作 用 。另外 , 同其他类 似功 能型 产 品相 比 , 它 具有 原 料易得 、 廉 、 价 白度 高 、 色力强 , 生物 着 对 体无害、 表面处 理 剂选 择范 围广等 优点 ” 。 】
i10元 / 。该 厂 生 产 的 油 墨 用 纳 米 碳 酸 钙 在 国 0 t
有关 纳米碳 酸钙 超 细微 粉的制 备 已有许 多报
道 , 法很 多 , 方 但有些 与 工业 化生产 还有 相 当大 的
距 离 。 纳 米 级 超 细 碳 酸 钙 的 粒 径 很 小 , 物 理 方 是
法 不 可能 达到 的高 活性 晶体 。纳米 碳酸 钙超 细微 粉 的生 产一 般采 用碳 化 法 。将 精选 的石 灰石 矿石 煅 烧 , 到 氧化 钙 和窑气 ; 氧化 钙 消化 , 得 使 并将 生 成 的悬 浮氢 氧 化钙 在高 剪 切 力 作用 下 粉 碎 , 级 多 旋液 分离 除 去颗 粒 及 杂 质 , 到 一 定浓 度 的精 制 得 的氢氧 化钙 悬浮 液 ; 通人 二氧化 碳气 体 , 入适 当 加 的晶形 控 制剂 , 碳化至 终 点 , 到要求 晶形 的碳酸 得 钙浆液; 进行 脱 水 、 燥 、 干 表面处 理 , 到所要 求的 得
碳酸钙 产 品及 改 性 产 品 5 O余 种 。 美 国 着 重 于 纳
用于橡胶的纳米碳酸钙的研制
第16期 收稿日期:2019-05-06作者简介:刘亚雄(1970—),高级工程师,主要研发轻钙、重钙、纳米碳酸钙的技术与生产。
用于橡胶的纳米碳酸钙的研制刘亚雄(青州宇信钙业股份有限公司,山东青州 262503)摘要:控制碳化反应条件加入晶形控制剂,采用特定的表面处理配方,经过压滤、烘干粉碎,制得纳米碳酸钙,讨论了比表面积、晶形控制剂、表面处理剂的改性等对纳米碳酸钙在橡胶中的影响,并与白炭黑、炭黑及复配的粉体的性能进行了对比,表明本技术制备的纳米碳酸钙比表面积大,同时具有良好的分散性,在加工过程中可以提高炭黑和白炭黑的分散性,有较好的强度和伸长率,可取代部分炭黑和白炭黑,降低成本。
关键词:纳米碳酸钙;橡胶;强度;伸长率中图分类号:TQ330.387 文献标识码:A 文章编号:1008-021X(2019)16-0051-02ThePreparationNanoCalciumCarbonateforRubberliuYaxiong(QingzhouYuxinCalciumIndustryCo.,Ltd.,Qingzhou 262503,China)Abstract:Nano-CaCO3waspreparedbycontrollingthecarbonizationreactionconditionsandaddingcrystallinecontrolagent,usingspecificsurfacetreatmentformula,pressing,dryingandgrinding.Theeffectsofspecificsurfacearea,crystallinecontrolagentandsurfacetreatmentagentmodificationonthepropertiesofnano-CaCO3inrubberwerediscussed.Theperformanceofnano-CaCO3wascomparedwiththatofSilica,carbonblackandcompositepowders.Thenano-calciumcarbonatepreparedbythismethodhaslargespecificsurfaceareaandgooddispersibility.Itcanimprovethedispersibilityofcarbonblackandsilica,andhasbetterstrengthandelongation.Itcanreplacepartofcarbonblackandsilica,andreducethecost.Keywords:nano-calciumcarbonate;rubber;strength;longation1 橡胶用碳酸钙现状碳酸钙是橡胶工业应用最早、用量最大的填料,普通碳酸钙对橡胶无补强作用,甚至会降低硫化胶力学性能,价格低廉,只可作为非补强填充剂;超细重钙碳酸钙有一定的补强作用,能改善硫化胶力学性能,在胶料中易分散,还能改善加工性能,可作为半补强填料;粒径介于20~100nm之间的纳米碳酸钙,对橡胶具有补强作用,通常作为补强功能填料,可以部分代替价格昂贵的碳黑和白碳黑[1-3]。
纳米碳酸钙的合成、表面改性以及应用
纳米碳酸钙的合成、表面改性以及应用一、本文概述纳米碳酸钙作为一种重要的无机纳米材料,因其独特的物理化学性质,在多个领域具有广泛的应用前景。
本文旨在全面介绍纳米碳酸钙的合成方法、表面改性技术以及其在不同领域的应用。
我们将概述纳米碳酸钙的基本性质,包括其结构、形貌和主要性能。
随后,我们将详细介绍纳米碳酸钙的各种合成方法,包括物理法、化学法以及生物法等,并分析各种方法的优缺点。
在此基础上,我们将深入探讨纳米碳酸钙的表面改性技术,包括表面包覆、表面接枝等,以提高其分散性、稳定性和功能性。
我们将概述纳米碳酸钙在橡胶、塑料、涂料、造纸、医药等领域的应用,展望其未来的发展趋势和应用前景。
本文旨在为读者提供关于纳米碳酸钙的综合性知识,为其在科研和工业应用中的进一步研究和开发提供参考。
二、纳米碳酸钙的合成方法干法合成主要是通过气-固相反应,将气态的二氧化碳与固态的氢氧化钙在高温下反应生成碳酸钙。
这种方法设备简单,操作方便,但产品纯度低,颗粒尺寸大,分布不均,且能耗高,环境污染严重。
湿法合成则是将气态的二氧化碳通入到含有钙离子的水溶液中,通过控制反应条件,如温度、压力、搅拌速度等,使二氧化碳与钙离子在水溶液中反应生成碳酸钙。
湿法合成的产品纯度高,颗粒尺寸小,分布均匀,且易于进行表面改性。
常用的湿法合成方法包括碳化法、沉淀法、乳液法等。
超重力法是一种新型的合成方法,它利用超重力场强化气液传质过程,使二氧化碳与钙离子在超重力环境下迅速反应生成碳酸钙。
这种方法具有反应速度快,产物纯度高,颗粒尺寸小且分布均匀等优点,是一种具有广阔应用前景的合成方法。
纳米碳酸钙的合成方法各有优缺点,需要根据具体的应用需求选择合适的合成方法。
随着科学技术的不断发展,新的合成方法也在不断涌现,为纳米碳酸钙的制备提供了更多的选择。
三、纳米碳酸钙的表面改性纳米碳酸钙作为一种重要的无机纳米材料,在多个领域具有广泛的应用前景。
然而,由于其高比表面积和强极性,纳米碳酸钙易于团聚,这限制了其性能和应用。
表面疏水纳米碳酸钙制备及表征
2 1 年 4月 00
包
装
学
报
V O . 0. 12N 2
Pa ka i o r a c gngJ u n l
表面疏水纳米碳酸钙制备及表征
谢 引玉
( 国化工橡胶株洲研 究设计 院 ,湖南 株洲 4 2 0 中 10 3)
摘
要 :采用 3 氨 丙基 三 乙氧基硅 烷 ( T S) 一巯丙基 三 乙氧基硅 烷 ( T S) 一甲基 丙烯酰氧基 丙 一 AP E 、3 MP E 、3
u e oc n r e s ra ec e c lc u ln a a ins a d tec n a t n l nsr m e t o d tr i eish d op b ct s d t o f m t u c h mi a o p i g v r to , n o tc ge i tu i h f i h a n ee t m n t y r ho i i y. Afe 5 0mo i c to ,h a p eo n po e h wst eb s y r p o ii fac n a t ngeo 0 trKH 7 d f ai n t es m l f i na o wd rs o e t d o h bct o o tc l f1 7。 . efn i s h h y a Th dng i r fsg f a c oe h n eisd s est n o a eo ini c n et n a c t ip riya d c m p tb l yi r a i da i ai i t no g n cme i. i
Ke r s:s raemo ic t n y rp o ii ywo d u c df ai ;h do h bct a o c l—acu c b n t;sln o piga e t f i o y;n n saec lim a o ae i e u l g n r a c n
纳米碳酸钙的制备及应用
纳米碳酸钙的制备及应用摘要:纳米碳酸钙是一种新型的无机纳米材料,可应用于塑料、橡胶、油墨、造纸、日用化工、胶黏剂和密封材料、医药、食品等许多领域。
本文概述了纳米碳酸钙常用的制备方法,列出了纳米碳酸钙表面改性的途径以及纳米碳酸钙在应用过程中所表现出的与普通轻质碳酸钙所不同的、反常的物理化学特性以及各方面特性的应用领域。
对进一步拓展纳米碳酸钙的应用、不断优化其性能、突出其纳米特性、提升其潜在的价值等提出展望.关键词:纳米碳酸钙;表面改性;应用1.前言纳米碳酸钙是80年代后期开发出的新产品,通常认为l00~.m以下粒径的产品为纳米级,碳酸钙主要用于涂料、橡胶、塑料、油墨、胶粘剂、造纸、化妆品、医药等方面,当前随着不断改良的产品制备工艺,获得的纳米碳酸钙产品质量也不断提高,纳米级和亚纳米级超细碳酸钙用量呈现持续增长趋势,产品市场前景乐观,该产业具有极大的发展潜力和应用空间【1]。
2.合成方法近年来,随着碳酸钙的超细化、结构复杂化及表面改性技术的发展,它的应用价值极大地提高了。
不同形态的超细碳酸钙的制备技术已成为许多先进国家开发的热点。
纳米碳酸钙具有普通碳酸钙所不具有的量子尺寸效应、小尺寸效应、表面效应和宏观量子效应。
这些特殊的纳米材料特性使得纳米碳酸钙在磁性、光热阻、催化性、熔点等方面显示出极大的优越性【2]。
纳米碳酸钙的化学制备方法工业生产中多采用化学方法生产纳米碳酸钙。
化学法分为碳化法、复分解法、乳液法等,其中碳化法是目前最为主要的一种生产方法。
以下我们将对这几种化学制备纳米碳酸钙的方法做一介绍和说明。
2.1碳化法首先用精选石灰石进行煅烧,获得氧化钙和窑气;使氧化钙消化,并将生成的悬浮氢氧化钙在高剪切力作用下粉碎,多级旋液分离除去颗粒及杂质,得到一定浓度的精制氢氧化钙悬浮液;然后通入C0 气体,加入适当的晶型控制剂,碳化至终点,得到要求晶型的碳酸钙浆液;最后再经过脱水、干燥、表面处理得到纳米碳酸钙产品,这种方法称之为碳化法。