第2章数字图像的基础知识和基本概念

合集下载

数字图像处理(第二版)章 (2)

数字图像处理(第二版)章 (2)
(4) 噪声。数字化设备的噪声水平也是一个重要的性能参 数。例如,数字化一幅灰度值恒定的图像,虽然输入亮度是一 个常量,但是数字化设备中的固有噪声却会使图像的灰度发生 变化。因此,数字化设备所产生的噪声是图像质量下降的根源 之一,应当使噪声小于图像内的反差点(即对比度)。
第2章 数字图像处理基础
2.2 数字图像类型
第2章 数字图像处理基础
为了减小量化误差,引入了非均匀量化的方法。非均匀量 化依据一幅图像具体的灰度值分布的概率密度函数,按总的量 化误差最小的原则来进行量化。具体做法是对图像中像素灰度 值频繁出现的灰度值范围,量化间隔取小一些; 而对那些像 素灰度值的概率分布密度函数因图像不同而异,所 以不可能找到一个适用于各种不同图像的最佳非等间隔量化方 案,因此,实用上一般多采用等间隔量化。
第2章 数字图像处理基础
3. 索引颜色图像 在介绍索引颜色图像之前,首先来了解PC机是如何处理颜 色的。大多数扫描仪都是以24位模式对图像进行采样的,即可 以从图像中采样出1670万种不同的颜色。用这种方式获得的颜 色通常称为RGB颜色。颜色深度为24位每像素的数字图像是目前 所能获取、浏览和保存的颜色信息最丰富的彩色图像,由于它 所表达的颜色远远超出了人眼所能辨别的范围,故将其称为 “真彩色”。在早期,由于技术上和价格上的原因,计算机在 处理时并没有达到24位每像素的真彩色水平,为此人们创造了 索引颜色。索引颜色通常也称为映射颜色。在这种模式下,颜 色都是预先定义的,并且可供选用的一组颜色也很有限。索引 颜色的图像最多只能显示256种颜色。索引颜色通常称为调色板。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成 该图像具体颜色的索引值就被读入程序,然后根据索引值在调 色板中找到对应的颜色。
b=M×N×Q (b)

第2章 数字图像基础2——常用图像格式

第2章  数字图像基础2——常用图像格式

(4) TIFF文件的标记——TAG
• 公共标记(public tag) 在TIFF V5.0的说明中定义了45个标记 Compression 259 SHORT 1 所有TIFF图像必须支持以下标记: NewSubfileType、lmageWidth、 ImageLength、RowsPerStrip、StripOffsets StripByteCounts、Xresolution、Yresolution ResolutionUnit • 私有标记(private tag) 由Aldus和Microsoft来分配 取值范围:32,768 - 65,535
数字图像处理
6. Windows系统的图像显示
• 消息(message) • 设备上下文(device context) • 设备句柄(handle)
数字图像处理
八、 图像颜色与文件格式与转换 —— photoshop示例
1. 图像的色彩模式及转换
• 色彩模式
– – – – – 单色 灰度 RGB色彩模式 CMYK色彩模式 Lab色彩模式
数字图像处理
1. BMP格式
Windows操作系统的标准文件格式。
大部分BMP文件是不压缩的形式,但支持图像压缩, 如RLE格式和LZW压缩格式等。
数字图像处理
(1) BMP文件结构
位图文件头 BITMAPFILEHEADER
图像信息头 BITMAPINFOHEADER 调色板 Palette 位图图像数据 Image Data
数字图像处理
(3) JPEG文件的组织(8个部分)
① 图像开始SOI(Start of Image)标记 ② APP0标记(Marker)
数字图像处理

数字图像处理基础知识

数字图像处理基础知识

国际照明委员会(CIE)规定以 规定以700nm(红)、 国际照明委员会 规定以 红 、 546.1nm (绿)、435.8nm (蓝)三个色光为三基色。 三个色光为三基色。 绿 、 蓝 三个色光为三基色 又称为物理三基色。 又称为物理三基色。自然界的所有颜色都可以通 过选用这三基色按不同比例混合而成。 过选用这三基色按不同比例混合而成。 这三基色按不同比例混合而成 C = R(R) + G(G) + B(B)
反映了将图像信息进行离散化的程度, 反映了将图像信息进行离散化的程度,常用 灰度级来衡量
主观亮度
适应范围 夜视 昼视
-6
夜间阈值
-4
-2
0
2
4
光强的对数
人眼亮度感觉范围
总范围很宽( ① 总范围很宽( C = 108) 人眼适应某一环境亮度后, ② 人眼适应某一环境亮度后,范围限制 适当平均亮度下: 适当平均亮度下:C = 103 很低亮度下: 很低亮度下:C = 10
图象“ 图象“黑”/“白”(“亮”/“暗”)对比参 白 暗 数
眼睛中图像的形成
视网膜将图像反射在中央凹区域上, 视网膜将图像反射在中央凹区域上,由光接 收器的相应刺激作用产生感觉, 收器的相应刺激作用产生感觉,感觉把辐射 能转变为电脉冲, 能转变为电脉冲,最后由大脑进行解码
电信号 光信号 视觉细胞 视神经 视神经中枢 解码 图像
人眼视觉模型
每个图像由若干个像素点组成, 每个图像由若干个像素点组成,每个点均可看作一个 点光源,每个点光源就是一个冲激函数δ 点光源,每个点光源就是一个冲激函数δ(x,y)
任意一幅图像可以表示为: 任意一幅图像可以表示为:
人眼亮度感觉
闪光极限
人的视觉系统感觉到的亮度 (主观亮度 :是进入人眼的 主观亮度): 主观亮度 光强对数函数 人眼亮度感觉范围: 人眼亮度感觉范围:通过光 强对数衡量,一般为3-10 强对数衡量,一般为 人眼的亮度适应级: 人眼的亮度适应级:视觉系 统当前对光强的灵敏度级别

第2章 数字图象处基础(1-27)

第2章 数字图象处基础(1-27)
光号 信 视胞 细 生理电信号 视经 神 视神经中枢 大成 脑像
Digital Image Processing
2.2 人的视觉特性
人的视觉模型
▓ ▓
点光源的表示函数
点源可以用 δ 函数表示,表示平面图像的二维 δ 函数 +∞ +∞ 为: ⎧ 1 y, ) x ∫ ∫−∞ δ (dxdy = −∞ ⎪ ⎪ ⎨ = = ⎧ ∞ y , x 0 0, ⎪δ ( y , ) = ⎨ x , 其他 ⎪ ⎩ 0 ⎩ 则任意一幅图像可表示为:
Digital Image Processing
2.2 人的视觉特性
人眼的构造与机理要点(续)
( 3)视细胞: 视网膜上集中了大量视细胞,分为两类: 锥状细胞 :明视细胞,在强光下检测亮度和颜色; 杆 (柱 )状细胞 :暗视细胞,在弱光下检测亮度,无色彩感觉。 其中,每个锥状视细胞连接着一个视神经末梢,故分辨率高, 分辨细节、颜色;多个杆状视细胞连接着一个视神经末梢,故分辨 率低,仅分辨图的轮廓。 (4 ) 人眼成象过程:
2.4 数字图像表示形式和特点
▓ ▓
数字图像的矩阵表示 数字图像的矩阵 矩阵表示
O n
f (0,1) ⎡ f (0,0) ⎢ f (1,1) ⎢ f (1,0) , f (mn) = ⎢ ⋮ ⋮ ⎢ ⎣ f (M−1,0) f (M−1,1)
⋯ f (0, N−1) ⎤ ⎥ ⋯ f (1, N−1) ⎥ ⎥ ⋮ ⋮ ⎥ ⋯ f (M−1, N−1)⎦
Digital Image Processing
2.1 色度学基础
RGB模型:
在三维直角坐标系中,用相互垂直的三个坐标轴代表R、 G、B三个分量,并将R、G、B分别限定在[0,1],则该单位正 方体就代表颜色空间,其中的一个点就代表一种颜色。如下图 方体就代表颜色空间,其中的一个点就代表一种颜色。 所示。 其中,r、g、b、c、m和y分别代表红色(red)、绿色 (green)、蓝色(blue)、青色(cyan)、品红(magenta) 和黄色(yellow)。

第二章 数字图像处理基础

第二章 数字图像处理基础
主要内容
2.1 数字图像的表示 2.2 数字图像的采样与量化 2.3 人的视觉特性 2.4 光度学与色度学原理
第二章 数字图像处理基础
本章重点、难点
重点: 采样和量化 BMP图像文件格式 RGB颜色模型和HSI颜色模型 难点: 采样和量化的理解 BMP位图
2.1 数字图像
数字图像:f(x,y),函数值对应于图像点的 亮度。称亮度图像。 注意:模拟图像与数字图像的区别 动态图像:f(x,y,t)
人眼成像过程
视细胞分为两类: 锥状细胞:明视细胞,在强光下检测亮度 和颜色。 杆(柱)状细胞:暗视细胞,在弱光下检测亮 度,无色彩感觉。 人眼成像过程
图像的对比度和亮度
人眼的亮度感觉 图像 “黑”“白”(“亮”、“暗”)对比参数 对比度 : c=Bmax/Bmin 相对对比度:cr=(B-B0)/B0 人眼亮度感觉范围 总范围很宽 c = 108 人眼适应某一环境亮度后,范围限制 适当平均亮度下:c=103 很低亮度下:c=10
亮度
也称为灰度,它是颜色的明暗变化,常用 0 %~ 100 % (由黑到白) 表示。以下三幅图是 不同亮度对比。
对比度
对比度(contrast)是亮度的局部变化,定义为物体亮 度的平均值与背景亮度的比值,是画面黑与白的比 值,也就是从黑到白的渐变层次。比值越大,从黑 到白的渐变层次就越多,从而色彩表现越丰富。人 眼对亮度的敏感性成对数关系。
同时对比度
人眼对某个区域感觉到的亮度不是简单 地取决于该区域的强度,背景亮度不同 时,人眼所感觉到的明暗程度也不同。
马赫带效应
马赫带(Mach Band)效应:边界处亮度对比加强
为什么我们要在暗室评片?
马赫带效应的出现,是因为人眼对于图像中不同 空间频率具有不同的灵敏度,而在空间频率突变处 就出现了 “欠调”或“过调”

医学影像实用技术 第2章 数字图像技术基础

医学影像实用技术 第2章 数字图像技术基础
2.1 2.2 2.3 2.4152.5
《医学影像实用技术教程》
1)坐标单序击列结此构处:即由编图辑中线母段版某一标端题头(样非封式闭线)
或任意像素点(封闭线)的坐标开始,连续记录与之连 通的像素点坐标,这种方法实际上仅记录了图像上有黑 色(值为1)的像素点所在的X,Y坐标值,而隐含表示 其它没有被记录的坐标点为白色,其值均为0。
《医学影像实用技术教程》
3. 模拟单图击像转此化处为数编字图辑像母的过版程标题样式
(1)抽样;(2)量化
列(N)
白 255
行(M)
灰 阶
模拟图像
抽样
量化
黑0
2.1 2.2 2.3 2.4 52.5
《医学影像实用技术教程》
单击此处编辑母版标题样式
4. 分辨率与颜色数
像素表达位数与对应的颜色数
分辨率表示图像垂直与水平 方向的像素点的数量。 颜色数是指一幅图像最多能 表达的颜色数目。
位数 1 2 4 8 12 16 24
颜色数 2 4 16 256
4096 65536 16777216
2.1 2.2 2.3 2.4 62.5
《医学影像实用技术教程》
单击2此.1.2处数编字图辑像母的分版类标及表题示样式
1.数字图像的分类 数字图像的分类主要有黑白图像、灰度图像、
彩色图像、三维图像等。 (1)黑白图像
255 255 255
2.1 2.2 2.3 2.4 92.5
《医学影像实用技术教程》
2.数字单图击像在此计算处机编内部辑的母表示版方标法 题样式
(1)单波段数字图像; (2)多波段彩色数字图像; (3)二值图形;
2.1 2.2 2.3 2.4102.5
《医学影像实用技术教程》

第2章 数字图像的基本知识

第2章 数字图像的基本知识
ቤተ መጻሕፍቲ ባይዱ
0.59 0.11 R Y 0.30 U 0.30 0.59 0.89 G V 0.70 0.59 0.11 B
亮度分量代表像素的明暗程度,对于图像的清晰度起决定性作用。 由于U、V分量是三基色分量中扣除色度信号的结果,因此不包括 亮度成分。
U、V分量代表像素的颜色,根据“大面积着色原理”,对图像的
清 晰度影响不大。
(3) 用 YSC 分量描述像素 Y—— 亮度分量 ,S ——色饱和度分量,C—— 色调分量 已知YUV ,可求出YSC:
S U V
2
2
V
V C actg U
色饱和度 S 代表颜色的深浅, 色调 C 代表颜色的种类。 S和C统称为色度。 建立直角坐标系U-V,则: S为色度的大小,C为色度的辐角 0
2.4 灰度直方图
2.4.1 概念
灰度直方图是一种表达图像的灰度分布概率的图示方法,它描述了各种 灰度值在图像中所占的比例。
设图像有总共 n 个像素点,灰度值为 i 的像素点有 ni 个。则灰度值为 i 的像素点在图像中出现的概率(频度)p( i )为: p( i )= ni / n i=0 , 1 , … , L-1 L为灰度级。对于24位位图,L=256。 以灰度 i 为横坐标, p( i )为纵坐标,绘制 p( i ) 曲线,就得到灰度直方图
(3)从位图点阵中提取各像素的RGB分量,存放到C3数组中,进而计算 YSC分量: double u,v,c; for(y=InfoHead.biHeight-1;y>=0;y--){ //逐行转换 memcpy(C3[y],lpImage+(InfoHead.biHeight-1-y)*z*3,z*3); //存储到C3数组 for(x=0;x<InfoHead.biWidth;x++){ YSC[y][x].Y=C3[y][x].R*0.3+C3[y][x].G*0.59+C3[y][x].B*0.11; //计算灰度 u=(C3[y][x].B-YSC[y][x].Y)/(double)YSC[y][x].Y; //计算归一化蓝差分量 v=(C3[y][x].R-YSC[y][x].Y)/(double)YSC[y][x].Y; //计算归一化红差分量 c=atan2(v,u)*180/3.14; //计算色调,弧度转换为度 if(c<0) c=c+360.0; //将角度由-180~180转换为0~360 c=c*255.0/360.0; //将角度由0~36 0转换为0~255,使能用字节变量存储 YSC[y][x].C=(BYTE)c; //存储到YSC数组 YSC[y][x].S=(BYTE)(sqrt(u*u+v *v)*100); //将色饱和度由0~1转换为0~100 } }

数字图像处理及MATLAB实现[杨杰][电子教案]第二章

数字图像处理及MATLAB实现[杨杰][电子教案]第二章

距离 像素之间的联系常与像素在空间的接近程度有 关。像素在空间的接近程度可以用像素之间的距 离来度量。为测量距离需要定义距离度量函数。 给定 p, q, r 三个像素,其坐标分别为 ( x, y ), ( s, t ), (u , v) 如果 1) D ( p, q ) ≥ 0( D ( p, q ) = 0 当且仅当 p = q ) 2) D ( p, q ) = D ( q, p ) 3) D ( p, r ) ≤ D ( p, q ) = D (q, r ) 则 D是距离函数或度量。
p 和 q 之间的欧式距离定义为:
De ( p, q) = ( x − s)2 + ( y − t )2
p 和 q 之间的 D4距离(也叫城市街区距离)定义为:
D4 ( p , q ) = x-s + y-t
p 和 q 之间的 D8 距离(也叫棋盘距离)定义为:
D8 ( p, q )=max( x-s , ) y-t
图像获取即图像的数字化过程,包括扫描、 图像获取即图像的数字化过程,包括扫描、 采样和量化。 采样和量化。 图像获取设备由5个部分组成 采样孔, 个部分组成: 图像获取设备由 个部分组成:采样孔, 扫描机构,光传感器, 扫描机构,光传感器,量化器和输出存储 体。 关键技术有:采样——成像技术;量化 成像技术; 关键技术有:采样 成像技术 量化— —模数转换技术。 模数转换技术。 模数转换技术
Sampling
图像的采样
图2.15图像的采样示例 图像的采样示例
Quantization 图像的量化
图2.16图像的量化示例 图像的量化示例
量化等级越多,所得图像层次越丰富, 量化等级越多,所得图像层次越丰富,灰度 分辨率高,图像质量好,但数据量大; 分辨率高,,图像层次欠丰富,灰度分辨 量化等级越少,图像层次欠丰富, 率低,会出现假轮廓现象,图像质量变差, 率低,会出现假轮廓现象,图像质量变差, 但数据量小. 但数据量小

数字图像处理知识点总结

数字图像处理知识点总结

数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。

包括:采样和量化。

2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。

(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。

一幅数字图像中不同灰度值的个数称为灰度级。

二值图像是灰度级只有两级的。

(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。

采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。

2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。

量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。

2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。

2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。

(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。

2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。

(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。

(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。

第二章数字图像处理基础

第二章数字图像处理基础
数字图像处理
第二章 数字图像处理基础
视觉感知要素 图像感知和获取 图像取样和量化 象素间的一些基本关系 线性和非线性操作
2.1 视觉感知要素
眼睛的构造: (人眼包含有三层膜)
眼角膜与巩膜外壳 脉络膜 (前面睫状体 虹膜 晶状体) 视网膜 (视网膜表面的分离光
接收器提供图案视觉, 分为锥状体、杆状体)
感觉的亮度区域不是简单的取决于强度,还与周围的背景有关
2.1 视觉感知要素
视觉错觉
光幻觉是人视觉系 统所特有的,迄今 还没有清楚的解释。 由于以上各种特殊 现象,在进行图像 处理时,应该采取 一些特殊的补偿措 施。
图和背景反转的图形
在错觉 中,眼 睛填上 了不存 在的信 息或错 误地感 知物体 的几何 特点。
2.1 视觉感知要素
辨别光强度变化的能力
典型实验
韦伯比
可辨别增I C量/的I 50%IC
图2.5 用于描述亮度辨别特性的基本实验
图2.6 作为强度函数的典型韦伯比
当背景光保持恒定时,改变其他光源亮度,从不能察觉到可以察觉间变化,一 般观察者可以辨别12到24级不同强度的变化.
低照明级别,亮度辨别(杆状体)较差;高照明级别,亮度辨别(锥状体)较好。
几何错觉图形
2.2 光和电磁波谱
电磁波谱可以用波长( )、频率( )或能量来描述
c 光速
E hv
h 普朗克常量
为波长, 为频率, E为电磁波能量
光速c 2.998 108 m/s 普朗克常数 h=6.626068 ×10-34 m2 kg / s
2.2 光和电磁波谱
电磁波是能量的一种,任何有能量的物体,都会释放电磁波。
D8距离:D8(p,q)=max(|x-s|,|y-t|) (距离小于等于r的像素形成中心在(x,y)的方形)

第二章 数字图像处理基础

第二章 数字图像处理基础
………………………………….
BMP图像文件格式
文件说明
属性 bfType bfSize bf1 bf2 bfOffBits biSize biWidth 所占字节数 2 4 2 2 4 4 4 起始字节 1 3 7 9 11 15 19 说明 文件类型(“BM”) 文件大小 保留 保留 第一个位图数数的偏移量 文件信息头的长度 位图的宽度(单位是象素)
位图的有关术语
像素(Pixel)
(可大可小)
采样点 (Sample)
位图的有关术语
图像分辨率: 每英寸图像含有的点或像素个数(dpi)
分辨率越高,图像细节越清晰,但文件尺寸大, 处理的时间长,对设备的要求高。
位图的有关术语
打印机分辨率: 打印图像时每英寸的点数(dpi)
激光打印机的分辨率可达600~1200dpi。
0, , 80 200 B 0, , 0 110 255, , 255 255
2.1 图像数字化
2.1.3 采样与量化参数的选择
采样间隔:影响着图像细节的再现程度,反映数字化 后的图像呈现何种的细微程度。采样间隔越大,图像的像素 数越少,空间分辨率低,质量差。严重出现像素块状的棋盘
2. 图像数字化器的性能
(1)分辨率:单位尺寸能够采样的像素数,由采样 孔的大小和像素间距的大小决定;
(2)灰度级:量化为多少等级;
(3)图像大小:允许输入图像的大小;
(4)扫描速度:采样数据的传输速度;
(5)噪声:数字化器的噪声水平。
(6)线性度:线性度是指对光强进行数字化时,灰 度正比于图像亮度的实际精确程度。
数字图像根据灰度级数的差异,可分为:
二值图像、灰度图像和彩色图像 二值图像:

数字图像处理知识点与考点(经典)

数字图像处理知识点与考点(经典)
答: Laplacian 算子进行检测边缘是利用阶跃边缘灰度变化的二阶导数特性,根据边缘点是零交叉点来检测图像边缘位 置。 它对应的模板为 -1 -1 -4 1 -1
Laplacian 增强算子通过扩大边缘两边像素的灰度差(或对比度)来增强图像的边缘,改善视觉效果。它对应的模板为 -1 -1 5 -1 -1
例题:(1) 存储一幅1024×768,256 (8 bit 量化)个灰度级的图像需要多少位? (2) 一幅512×512 的32 bit 真彩图像的容量为多少位? 解: (1)一幅1024×768,256 =28 (8 bit 量化)个灰度级的图像的容量为:b=1024×768×8 = 6291456 bit (2)一幅512×512 的32 位真彩图像的容量为:b=512×512×32 =8388608 bit
5.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。 6.灰度直方图:灰度直方图是灰度级的函数。灰度级为横坐标,纵坐标为灰度级的频率,是频率同灰度级 的关系图。可以反映了图像的对比度、灰度范围(分布)、灰度值对应概率等情况。 7.灰度直方图的性质:(1)只能反映图像的灰度分布情况,而不能反映图像像素的位置,即丢失了像 素的位置信息。(2)一幅图像对应唯一的灰度直方图,反之不成立。不同的图像可对应相同的直方图。 (3)一幅图像分成多个区域,多个区域的直方图之和即为原图像的直方图。 L −1 8.图像信息量H(熵)的计算公式:反映图像信息的丰富程度。 H = − Pi log2 Pi
傅立叶变换
f ( x, y) F ( u , v)
滤波器
H (u , v) G ( u , v)
傅立叶反变换
g ( x , y)
(1) 将图像 f(x,y)从图像空间转换到频域空间,得到 F(u,v); (2) 在频域空间中通过不同的滤波函数 H(u,v)对图像进行不同的增强,得到 G(u,v) (3) 将增强后的图像再从频域空间转换到图像空间,得到图像g(x,y)。 说明: (也可演变为简述频域图像锐化(或平滑)的步骤,需要指明滤波器的类型:高通或低通滤波器) 9.频率域平滑: 由于噪声主要集中在高频部分, 为去除噪声改善图像质量, 滤波器采用低通滤波器H(u,v) 来抑制高频成分,通过低频成分,然后再进行逆傅立叶变换获得滤波图像,就可达到平滑图像的目的。 10.常用的频率域低滤波器H(u,v)有四种: (1)理想低通滤波器: 由于高频成分包含有大量的边缘信息,因此采用该滤波器在去噪声的同时将会 导致边缘信息损失而使图像边模糊。 (2)Butterworth低通滤波器:它的特性是连续性衰减,而不象理想滤波器那样陡峭变化,即明显的不连 续性。因此采用该滤波器滤波在抑制噪声的同时,图像边缘的模糊程度大大减小,没有振铃效应产生。 (说明:振铃效应越不明显效果越好) (3)指数低通滤波器: 采用该滤波器滤波在抑制噪声的同时, 图像边缘的模糊程度较用Butterworth滤波 产生的大些,无明显的振铃效应。 (4)梯形低通滤波器:它的性能介于理想低通滤波器和指数滤波器之间, 滤波的图像有一定的模糊和振铃 效应。 13.频率域锐化:图像的边缘、细节主要位于高频部分,而图像的模糊是由于高频成分比较弱产生的 。 频率域锐化就是为了消除模糊,突出边缘。因此采用高通滤波器让高频成分通过,使低频成分削弱, 再经逆傅立叶变换得到边缘锐化的图像。 14.常用的高通滤波器有四种: (1)理想高通滤波器 (2)巴特沃斯高通滤波器 (3)指数高通滤波器 (4)梯形高通滤波器 说明:(1)四种滤波函数的选用类似于低通。 (2)理想高通有明显振铃现象,即图像的边缘有抖动现象。 (3)巴特沃斯高通滤波效果较好,但计算复杂,其优点是有少量低频通过,H(u,v)是渐变的, 振铃现象不明显。 (4)指数高通效果比Butterworth差些,振铃现象不明显. (5)梯形高通会产生微振铃效果,但计算简单,较常用。 (6)一般来说,不管在图像空间域还是频率域,采用高频滤波不但会使有用的信息增强,同时也 使噪声增强。因此不能随意地使用。 (7)高斯低通滤波器无振铃效应是因为函数没有极大值、极小值,经过傅里叶变换后还是本身 , 故没有振铃效应。 15.同态滤波:在频域中同时将亮度范围进行压缩(减少亮度动态范围)和对比度增强的频域方法。 现象:(1)线性变换无效(2)扩展灰度级能提高反差,但会使动态范围变大(3)压缩灰度级,可以减 小灰度级,但物体的灰度层次会更不清晰 改进措施:加一个常数到变换函数上,如:H(u,v)+A(A取0→1)这种方法称为:高度强调(增强)。 为了解决变暗的趋势,在变换结果图像上再进行一次直方图均衡化,这种方法称为:后滤波处理。

遥感数字图像处理基础知识点

遥感数字图像处理基础知识点

遥感数字图像处理基础知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章数字图像处理基础1数字图像处理:将图像转换成一个数字矩阵存放在图像存储器中,然后利用计算机对图像信息进行数字运算和处理,以提高图像质量或者提取所需要的信息2数字图像获取:把客观场景发射或者发射的电磁波信息首先利用光学成像系统生成一副模拟图像,然后通过模数转换将模拟图像转换为计算机可以存储的离散化数字图像。

3采样:即图像空间坐标或位置的离散化,也就是把模拟图像划分为若干图像元素,兵赋予它们唯一的地址。

;离散化的小区域就是数字图像的基本单元,称为像元也称像素。

量化:即电磁辐射能量的离散化,也就是把像元内的连续辐射亮度中离散的数字值来表示,这些离散的数字值也称灰度值,,因为它们代表了图像上不同的亮暗水平。

4遥感数字图像获取特征参数质量特征:⑴空间分辨率:数字图像上能被详细区分的最小单元的尺寸或大小⑵辐射分辨率传感器探测原件在接受光谱信号时,所能分辨的最小辐射度差信息量特征:⑴光谱分辨率:传感器探测元件在接收目标地物辐射能量时所用的波段数目⑵时间分辨率:对同一区域进行重复观测的最小时间间隔。

5模拟图像:在图像处理中通过某种物理量的强弱变化来记录图像亮度信息的图像6数字图像:把连续的模拟图像离散化成规则网格并用计算机以数字的模式记录图像上各网格点亮度信息的图像7数字图像特性:①空间分布特性:1空间位置:数字图像以二维矩阵的结构的数据来描述物体,矩阵按照行列的顺序定位数据,所以物体的位置也是用行列号表示。

2形状:点状线状和面状3大小:线状物体的长度或面状物体的面积,表现为像元的集聚数量4空间关系:包含,相邻,相离三种拓扑关系②数值统计特性:对图像的灰度分布进行统计分析。

图像的灰度直方图:用来描述一幅数字图像的灰度分布,横坐标为灰度级,纵坐标为灰度级在图中出现8直方图的用途:1图像获取质量评价2边界阙值的选择3噪声类型的判断9遥感数字图像的输出特征参数:1输出分辨率:屏幕分辨率和打印的分辨率2灰度分辨率:指输出设备能区分的最小灰度差 3颜色空间模型:RGB模型CMYK模型 HSI颜色模型10数字图像种类:1.黑白图像:二值数字图像,0表示黑色 1表示白色;2.灰度图像:单波段图像每个像元的灰度值的取值范围由灰度量决定;3.伪彩色图像:把单波段图像的各灰度值按照一定规则映射到颜色空间中某一对应颜色;4.彩色图像:由红绿蓝3个颜色通道的数字层组成的图像第二章数字图像存储1比特序:一个字节中8个比特的存储顺序称为比特序。

第2章 数字图像的基础知识和基本概念

第2章  数字图像的基础知识和基本概念

第2章数字图像的基础知识和基本概念一、数字图像数字图像是以二进制数字组形式表示的二维图像。

利用计算机图形图像技术以数字的方式来记录、处理和保存图像信息。

在完成图像信息数字化以后,整个数字图像的输入、处理与输出的过程都可以在计算机中完成,它们具有电子数据文件的所有特性。

通常把计算机图形主要分为两大类:位图(bitmap)图像和矢量(vector)图形(如图2-1所示)。

图2-1 计算机图形的主要分类1.关于位图图像(1)概念位图图像(在技术上称作栅格图像)使用图片元素的矩形网格(像素)表现图像。

每个像素都分配有特定的位置和颜色值。

在处理位图图像时,人们所编辑的是像素。

位图图像是连续色调图像(如照片或数字绘画)最常用的电子媒介,因为它们可以更有效地表现阴影和颜色的细微层次。

(2)分辨率位图图像与分辨率有关,也就是说它们包含固定数量的像素。

因此,如果在屏幕上以高缩放比率对它们进行缩放或以低于创建时的分辨率来打印它们,则将丢失其中的细节,并会呈现出锯齿,如图2-2所示。

图2-2 不同放大级别的位图图像示例(3)特点①位图图像有时需要占用大量的存储空间。

对于高分辨率的彩色图像,由于像素之间独立,所以占用的硬盘空间、内存和显存比矢量图都大。

②位图放大到一定倍数后会产生锯齿。

位图的清晰度与像素点的多少有关。

③位图图像在表现色彩、色调方面的效果比矢量图更加优越,尤其在表现图像的阴影和色彩的细微变化方面效果更佳。

④位图的格式有bmp、jpg、gif、psd、tif、png等。

⑤处理软件:Photoshop、ACDSee、画图等。

2.关于矢量图形(1)概念矢量图形(又称矢量形状或矢量对象)是由称作矢量的数学对象定义的直线和曲线构成的。

矢量根据图像的几何特征对图像进行描述。

(2)分辨率矢量图形是与分辨率无关的,即当调整矢量图形的大小、将矢量图形打印到PostScript 打印机、在PDF文件中保存矢量图形或将矢量图形导入到基于矢量的图形应用程序中时,矢量图形都将保持清晰的边缘(如图2-3所示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2章数字图像的基础知识和基本概念一、数字图像数字图像是以二进制数字组形式表示的二维图像。

利用计算机图形图像技术以数字的方式来记录、处理和保存图像信息。

在完成图像信息数字化以后,整个数字图像的输入、处理与输出的过程都可以在计算机中完成,它们具有电子数据文件的所有特性。

通常把计算机图形主要分为两大类:位图(bitmap)图像和矢量(vector)图形(如图2-1所示)。

图2-1 计算机图形的主要分类1.关于位图图像(1)概念位图图像(在技术上称作栅格图像)使用图片元素的矩形网格(像素)表现图像。

每个像素都分配有特定的位置和颜色值。

在处理位图图像时,人们所编辑的是像素。

位图图像是连续色调图像(如照片或数字绘画)最常用的电子媒介,因为它们可以更有效地表现阴影和颜色的细微层次。

(2)分辨率位图图像与分辨率有关,也就是说它们包含固定数量的像素。

因此,如果在屏幕上以高缩放比率对它们进行缩放或以低于创建时的分辨率来打印它们,则将丢失其中的细节,并会呈现出锯齿,如图2-2所示。

图2-2 不同放大级别的位图图像示例(3)特点①位图图像有时需要占用大量的存储空间。

对于高分辨率的彩色图像,由于像素之间独立,所以占用的硬盘空间、内存和显存比矢量图都大。

②位图放大到一定倍数后会产生锯齿。

位图的清晰度与像素点的多少有关。

③位图图像在表现色彩、色调方面的效果比矢量图更加优越,尤其在表现图像的阴影和色彩的细微变化方面效果更佳。

④位图的格式有bmp、jpg、gif、psd、tif、png等。

⑤处理软件:Photoshop、ACDSee、画图等。

2.关于矢量图形(1)概念矢量图形(又称矢量形状或矢量对象)是由称作矢量的数学对象定义的直线和曲线构成的。

矢量根据图像的几何特征对图像进行描述。

(2)分辨率矢量图形是与分辨率无关的,即当调整矢量图形的大小、将矢量图形打印到PostScript 打印机、在PDF文件中保存矢量图形或将矢量图形导入到基于矢量的图形应用程序中时,矢量图形都将保持清晰的边缘(如图2-3所示)。

图2-3 不同放大级别的矢量图形示例(3)特点①矢量图形可以任意放大和缩小,图形不模糊,不会丢失细节或影响清晰度,不会产生锯齿效果。

因此,对于将在各种输出媒体中按照不同大小使用的图稿(如徽标),矢量图形是最佳选择,常用于标志设计、VI设计、字体设计等。

②矢量图形中保存的是线条和图块的信息,所以矢量图形文件与分辨率和图像大小无关,只与图像的复杂程度有关,图像文件所占的存储空间较小。

③可采取高分辨率印刷。

矢量图形文件可以在任何输出设备(如打印机)上以打印或印刷的最高分辨率进行打印输出。

④矢量图可以作为图像元素导入Photoshop里使用,它会很好地适应于导入图像的分辨率。

⑤在Photoshop里的一些矢量工具,比如:钢笔(路径)、文字、形状等在图像处理和创意中都发挥着重要的作用。

3.像素(1)像素定义像素(Pixel)是用来计算数字图像的一种单位。

数字图像连续性的浓淡阶调是由许多色彩相近的小方点组成,这些小方点就是构成数字图像的最小单位“像素”。

越高位的像素,其拥有的色板也就越丰富,越能表达颜色的真实感。

人们也经常用点来表示像素,因此PPI 有时缩写为DPI(dots per inch)。

用来表示一幅图像的像素越多,结果就更接近原始的图像,即图像的精度越高。

(2)关于像素的扩展①像素的表示a.用一个数表示,例如一个“0.3兆像素”数码相机,它有额定30万像素;b.用一对数字表示,例如“640×480显示器”,它有横向640像素和纵向480像素(就像VGA显示器那样),因此其总数为640×480=307200像素。

②彩色采样点数字化图像的彩色采样点(例如网页中常用的JPG文件)也称为像素。

取决于计算机显示器,这些可能不是和屏幕像素一一对应的。

在这种区别很明显的区域,图像文件中的点更接近纹理元素。

③位图在计算机编程中,像素组成的图像叫位图或者光栅图像。

位图化图像可用于编码数字影像和某些类型的计算机生成艺术。

简单说来,像素就是图像的点的数值,点画成线,线画成面。

图片的清晰度不仅仅是由像素决定的(如图2-4所示)。

图2-4 构成影像的最小单位——像素直观图(3)大约数值相机的像素是最大像素的意思,像素是分辨率的单位,这个像素值是相机所支持的有效最大分辨率。

如下所列是一些常见的像素值:30万640×48050万800×60080万1024×7685″(3.5×5英寸)130万1280×9606″(4×6英寸)200万1600×12008″(6×8英寸5″(3.5×5英寸)310万2048×153610″(8×10英寸)7″(5×7英寸)430万2400×180012″(10×12英寸)8″(6×8英寸)500万2560×192012″(10×12英寸)8″(6×8英寸)600万3000×200014″(11×14英寸)10″(8×10英寸)800万3264×248816″(12×16英寸)10″(8×10英寸)1100万4080×272020″(16×20英寸)12″(10×12英寸)1400万4536×302424″(18×24英寸)14″(11×14英寸)(4)单位当图片尺寸以像素为单位时,每一厘米等于28像素,比如15×15厘米大小的图片,等于420×420像素(如图2-5所示)。

图2-5(A)是图片的原始大小和分辨率;图2-5(B)是降低分辨率而不改变像素数量(不重定图像像素);图2-5(C)是降低分辨率而保持相同的文档大小将减少像素数量(重定图像像素)。

图2-5 像素大小等于文档输出大小乘以分辨率4.分辨率分辨率是度量位图图像数据量多少的一个参数,通常表示为像素/英寸(Pixel Per Inch,PPI)和点/厘米(Pixel Per Centimeter,PPC)。

简单地说,分辨率是指数字图像中单位平方英寸内像素数量的多少。

分辨率越高,像素就多,图像包含的数据就越多,文件的体量(size)就越大,越能表现更丰富的细节。

(1)图像分辨率①概念图像分辨率指图像中存储的信息量(如图2-6所示)。

这种分辨率有多种衡量方法,典型的是以像素/英寸来衡量,也有以像素/厘米来衡量的。

图2-6 两幅相同的图像,分辨率分别为72ppi和300ppi,套印缩放比率为200%②图像分辨率和文件大小图像分辨率以比例关系影响着文件的大小,即文件大小与其图像分辨率的平方成正比。

如果保持图像尺寸不变,将图像分辨率提高一倍,则其文件大小增大为原来的四倍。

(2)显示器分辨率如图2-7所示,显示器分辨率指屏幕图像的精密度,测量单位是像素/英寸。

屏幕上的点、线和面都是由像素组成的,显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多。

图2-7 在不同大小和分辨率的显示器上显示的620×400像素的图像(3)打印机分辨率打印机分辨率又称为输出分辨率,是指在打印输出时横向和纵向两个方向上每英寸最多能够打印的点数,通常也以DPI表示。

打印机分辨率的这个数越大,表明图像输出的色点越小,输出的图像效果就越精细。

打印机色点的大小只同打印机的硬件工艺有关,与要输出图像的分辨率无关。

不同打印机分辨率如图2-8所示。

图2-8(A)是粗糙网屏,通常用于印刷快讯和赠券,65 lpi;图2-8(B)是一般网屏,通常用于印刷报纸,85 lpi;图2-8(C)是高品质网屏,通常用于印刷四色杂志,133 lpi;图2-8(D)是超精细网屏,通常用于印刷年度报表和艺术书籍中的图像,177 lpi。

图2-8 关于不同打印机分辨率的示例(4)网屏频率①概念“网屏频率”是在商业印刷领域出现的专业词汇。

在传统商业印刷制版过程中,制版时要在原始图像前加一个网屏,这一网屏由呈方格状的透明与不透明部分相等的网线构成。

这些网线也就是光栅,其作用是切割光线解剖图像。

光线通过网线后,形成了反映原始图像影像变化的大小不同的点,这些点就是半色调点,一个半色调点最大不会超过一个网格的面积。

②表示网线越多,表现图像的层次越多,图像质量也就越好。

因此在商业印刷行业中,分辨率以每英寸上等距离排列多少条网线即LPI(Lines Per Inch)表示。

(5)扫描分辨率①概念扫描分辨率指在扫描一幅图像之前所设定的分辨率,用DPI来表示。

扫描分辨率影响所生成的图像文件的质量和使用性能,决定了图像将以何种方式显示或打印,DPI值越大,扫描的效果也就越好。

②扫描图像分辨率的确定大多数情况下,扫描图像是为了通过高分辨率的设备输出。

如果图像扫描分辨率过低,会导致输出的效果非常粗糙。

但如果扫描分辨率过高,数字图像中会产生超过打印所需要的信息,不但减慢打印速度,而且会在打印输出时丢失图像色调的细微过渡。

一般情况下,图像分辨率应该是网屏分辨率的2倍,这是目前中国大多数输出中心和印刷厂都采用的标准。

然而实际上,图像分辨率应该是网屏频率的1.5倍。

关于这个问题有一定的争议,具体到不同的图像本身,情况会各不相同。

③扫描仪分辨率的判断判断扫描仪的分辨率要从三个方面来确定:光学部分、硬件部分和软件部分。

即扫描仪的分辨率等于其光学部件的分辨率加上其自身通过硬件及软件进行处理分析所得到的分辨率:a.光学分辨率扫描仪的光学部件在每平方英寸面积内所能捕捉到的实际光点数,是指扫描仪CCD的物理分辨率,也是扫描仪的真实分辨率,它的数值是由CCD的像素点除以扫描仪水平最大可扫尺寸得到的数值分辨率为1200 DPI的扫描仪,其光学部分的分辨率只占400~600 DPI。

b.扩充分辨率扩充部分的分辨率是通过计算机对图像进行分析,对空白部分进行科学填充所产生的(由硬件和软件所生成,这一过程也叫“插值”处理)。

光学扫描与输出是一对一的,扫描到什么,输出的就是什么,但经过计算机软硬件处理之后,输出的图像就会变得更逼真,分辨率会更高。

5.图像的格式图像格式即图像文件存放的格式,通常有JPEG、TIFF、RAW、BMP、GIF、PNG等。

它是文件编码类型、文件的结构。

常用的图像文件格式有以下几种:(1)主流图片格式①JPEG2000格式JPEG2000是JPEG的升级版,也被称为“ISO 15444”,与JPEG相比,它是具备更高压缩率以及更多新功能的新一代静态影像压缩技术。

相关文档
最新文档