2.2等差数列第一课时教案
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教材分析本课时的教材为《等差数列》第一节,主要内容是介绍等差数列的概念、性质以及求和公式。
其中,等差数列是初中数学中的重点难点内容之一,有着广泛的应用和重要的意义。
因此,本节课的重点是通过生动形象的案例和实际问题,引导学生直观理解什么是等差数列、等差数列的通项公式、首项、公差以及等差数列的求和公式等重要概念和技巧,进而提高学生对等差数列的掌握能力和理解水平。
二、教学目标1.知识目标:(1) 掌握等差数列的概念、性质,以及求和公式;(2) 了解等差数列的通项公式、首项、公差等关键概念。
2.能力目标:(1) 发现、分析等差数列中的规律,并描述规律;(2) 理解和掌握解决等差数列问题的思路和方法。
3.情感目标:(1) 培养学生的求知欲和探究精神,积极主动地参与课堂活动;(2) 通过生动的案例和实际问题,激发学生学习等差数列的兴趣与好奇心。
三、教学过程设计1.导入环节通过呈现一道有趣的问题,引发学生对等差数列的探究和思考,并带领学生逐步认识和感受等差数列的规律性和内在联系。
问题:解决一道数学谜题,有三个数字,第一个数字是0,第三个数字是8,这三个数字构成了一个等差数列,那么这个等差数列的首项、公差以及通项公式分别是多少?2.讲授环节讲解等差数列的定义和判定方法,并呈现一些具体的案例,帮助学生更好地把握等差数列的概念和特点。
解释等差数列的通项公式的含义和作用,通过具体的案例帮助学生理解和掌握等差数列的通项公式的推导和应用方法。
(3) 等差数列的性质介绍等差数列的两个重要性质:公差不变和任意三项构成等差数列,分别从概念、证明和应用三个方面进行讲解。
3.练习环节通过设计具有启发式和探究性的案例和练习题,让学生在思考和实践中加深对等差数列的理解和掌握。
例:已知等差数列的首项为3,公差为4,求这个等差数列的前10项,以及前10项之和。
4.总结与拓展总结本节课所学的内容,帮助学生梳理自己的学习收获和掌握情况,同时拓展孕育学生对等差数列更深层次的理解和思考。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计【摘要】本文主要介绍了《等差数列》第一课时的教学设计。
在阐述了课时主题和目标。
在正文中,包括了教学内容、教学重点、教学方法、教学步骤和教学资源等内容。
具体来说,教学内容包括等差数列的定义和性质,教学重点在于引导学生理解等差数列的概念和解题方法,教学方法主要以示例引导学生学习,教学步骤分为引入、讲解、练习和总结等环节,教学资源则是指教材、教具等教学辅助工具。
在进行了课时总结和教学反思,帮助教师总结教学经验和改进教学策略。
通过本文的介绍,有助于教师更好地设计和完成《等差数列》第一课时的教学任务。
【关键词】等差数列、第一课时、教学设计、目标、教学内容、教学重点、教学方法、教学步骤、教学资源、课时总结、教学反思1. 引言1.1 课时主题:《等差数列》第一课时教学设计《等差数列》是高中数学中非常重要的一个概念,它在数学和其他学科中都有广泛的应用。
第一课时的教学设计是为了帮助学生建立对等差数列的基本概念和认识,为后续学习打下坚实的基础。
本课时的主题是《等差数列》第一课时教学设计,旨在引导学生了解等差数列的定义、性质和相关计算方法,培养学生的数学思维和分析能力。
通过本课时的学习,学生将能够掌握等差数列的基本概念,理解等差数列的规律,掌握等差数列的通项公式和前n项和公式,培养学生的数学建模能力和解决问题的能力。
希望通过本课时的设计,能够激发学生对数学的兴趣,提高他们的学习成绩,为他们的未来学习和生活打下坚实的数学基础。
1.2 课时目标1. 理解等差数列的定义和性质,能够判断一个数列是否为等差数列;2. 能够求解等差数列的通项公式和前n项和公式;3. 能够应用等差数列的性质和公式解决实际问题;4. 培养学生的逻辑思维能力和数学推理能力;5. 激发学生对数学的兴趣,提高数学学习的积极性。
2. 正文2.1 1. 教学内容本课时的教学内容主要包括等差数列的定义、求公差、求首项、求项数以及等差数列的性质和应用。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计课程目标:
1. 了解等差数列的定义和特点。
2. 掌握等差数列的通项公式和前n项和公式。
3. 能够应用等差数列的知识解决简单的实际问题。
教学重点:
教学过程:
第一步:引入
1. 引导学生回顾初一学过的数列知识,思考数列的特点。
2. 引出本课主题——等差数列。
3. 通过图示,让学生感知等差数列的特点。
第二步:探究
1. 让学生自己找规律,确定等差数列的通项公式。
第三步:总结
第四步:练习
1. 在白板上提供一些等差数列的题目,让学生在课堂上解决。
第五步:归纳
1. 让学生总结本节课所学的知识点,填写知识点总结表格。
2. 引导学生思考等差数列在生活中的应用。
第六步:拓展
3. 提供一些等比数列和等差数列混合的题目进行练习。
板书设计:
通项公式
前n项和公式
实际应用
练习题:
1. 求下列等差数列的通项公式:
(1)2,4,6,8,…;(2)5,1,-3,-7,…。
3. 甲、乙两人在一起锻炼身体,甲从1kg开始,每天增加1kg,乙从3kg开始,每天增加0.5kg。
问第几天两人的重量相等?该天各重多少?
4. 一条铁路上两站的距离为150公里,汽车由前一站以每小时50公里的速度上行,1.5小时后发现比原定时间晚45分钟到达后一站;若改以60公里每小时的速度上行,则比原定时间早36分钟到达后一站。
求原定的车速是多少?。
教学设计4:2.2.1 等差数列 第1课时 等差数列的概念及通项公式
2.2.1 等差数列第1课时 等差数列的概念及通项公式[教材·要点]1.等差数列定义一般地,如果一个数列从第2项起,每一项与它的前一项之差都等于同一个常数,那么这样的数列称为等差数列.这个常数叫作数列的公差,常用字母d 表示.2.等差中项如果b =a +c 2,那么数b 称为a 和c 的等差中项. 3.等差数列的递推公式与通项公式已知等差数列{a n }的首项为a 1,公差为d ,填表: 递推公式通项公式 a n -a n -1=d (n ≥2)a n =a 1+(n -1)d[问题·引入]1.等差数列的公差d 可以为负数、正数、零吗?[提示] 可以,当a n <a n +1时,d >0,当a n =a n +1时,d =0,当a n >a n +1时,d <0.2.b =a +c 2是a ,b ,c 成等差数列的什么条件? [提示] 充要条件3.如何理解等差数列的自然语言与符号语言的关系?[提示] 在数列{a n }中,若已知首项a 1,且满足a n -a n -1=d (n ∈N +,n ≥2,d 为常数)或a n +1-a n =d (n ∈N +,d 为常数),则数列{a n }为等差数列.可见,等差数列的意义用符号语言表示,即a 1=a ,a n =a n -1+d (n ≥2),其本质是等差数列的递推公式.题型一 等差数列定义的应用 例1 (1)已知数列{a n }为等差数列且a 5=11,a 8=5,求a n .(2)求等差数列10,8,6,…的第20项.(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,说明理由. 解 (1)设数列{a n }的公差为d ,由等差数列的通项公式及已知条件可得⎩⎪⎨⎪⎧ a 1+4d =11,a 1+7d =5,解得⎩⎪⎨⎪⎧a 1=19,d =-2, ∴a n =19+(n -1)×(-2)=-2n +21.(2)由于a 1=10,d =-2,∴a n =10+(n -1)×(-2)=-2n +12,∴a 20=-2×20+12=-28.(3)由于a 1=2,d =7,∴a n =2+(n -1)×7=7n -5,由7n -5=100,得n =15.∴100是这个数列的第15项.规律总结先根据两个独立的条件解出两个量a 1和d ,进而再写出a n 的表达式,有几个独立的条件就可以解出几个未知量,这是方程思想的重要应用.变式训练1.已知等差数列{a n }中,a 5=10,a 12=31,求a 10和d .解 由等差数列的定义,可知a 12-a 5=7d =31-10=21,∴d =3.∴a 10=a 12-2d =31-6=25. 题型二 等差中项的应用例2 已知等差数列{a n },满足a 2+a 3+a 4=18,a 2a 3a 4=66.求数列{a n }的通项公式.解 在等差数列{a n }中,∵ a 2+a 3+a 4=18,∴3a 3=18,a 3=6.∴⎩⎪⎨⎪⎧ a 2+a 4=12,a 2·a 4=11,解得⎩⎪⎨⎪⎧ a 2=11,a 4=1或⎩⎪⎨⎪⎧ a 2=1,a 4=11. 当⎩⎪⎨⎪⎧a 2=11,a 4=1时,a 1=16,d =-5. a n =a 1+(n -1)d =16+(n -1)·(-5)=-5n +21.当⎩⎪⎨⎪⎧a 2=1,a 4=11时,a 1=-4,d =5. a n =a 1+(n -1)d =-4+(n -1)·5=5n -9.规律方法等差中项描述了等差数列中相邻三项之间的数量关系:a n -1+a n +1=2a n (n ≥2).因此在等差数列中,从第2项起,每一项(有穷数列的末项除外)都是它前一项与后一项的等差中项;反之,如果一个数列从第二项起,每一项(有穷数列的末项除外)都是它前一项与后一项的等差中项,那么这个数列是等差数列.在具体解题过程中,如果a ,b ,c 成等差数列,常转化为a +c =2b 的形式去运用;反之,如果要证明a ,b ,c 成等差数列,只需证a +c =2b 即可. 变式训练2.已知数列{a n }满足a n -1+a n +1=2a n (n ≥2),且a 2=5,a 5=13,则a 8=________.【解析】由a n -1+a n +1 =2a n (n ≥2)知,数列{a n }是等差数列,∴a 2,a 5,a 8成等差数列. ∴a 2+a 8=2a 5,∴a 8=2a 5-a 2=2×13-5=21.【答案】213.已知1a ,1b ,1c 成等差数列,求证:b +c a ,a +c b ,a +b c也构成等差数列. 证明 ∵1a ,1b ,1c为等差数列, ∴2b =1a +1c,即2ac =b (a +c ). ∵b +c a +a +b c =c (b +c )+a (a +b )ac=c 2+a 2+b (a +c )ac =a 2+c 2+2ac ac=2(a +c )2b (a +c )=2(a +c )b . ∴b +c a ,a +c b ,a +b c为等差数列. 题型三 等差数列的判定例3 已知数列{a n }的通项公式a n =pn 2+qn (p ,q ∈R ,且p ,q 为常数).(1)当p 和q 满足什么条件时,数列{a n }是等差数列?(2)求证:对任意实数p 和q ,数列{a n +1-a n }是等差数列.(1)解 欲使{a n }是等差数列,则a n +1-a n =[p (n +1)2+q (n +1)]-(pn 2+qn )=2pn +p +q 应是一个与n 无关的常数,所以只有2p =0.即p =0时,数列{a n }是等差数列.(2)证明 因为a n +1-a n =2pn +p +q ,所以a n +2-a n +1=2p (n +1)+p +q .而(a n +2-a n +1)-(a n +1-a n )=2p 为一个常数,所以{a n +1-a n }是等差数列.规律总结判断一个数列是否为等差数列的常用方法 方法符号语言 定义法a n -a n -1=d (常数)(n ≥2且n ∈N +) 等差中项法2a n =a n -1+a n +1(n ≥2且n ∈N +) 通项公式法a n =kn +b (k ,b 为常数,n ∈N +)变式训练4.已知数列{a n },满足a 1=2,a n +1=2a n a n +2,数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由.解 数列⎩⎨⎧⎭⎬⎫1a n 是等差数列, 理由如下:∵a 1=2,a n +1=2a n a n +2, ∴1a n +1=a n +22a n =12+1a n , ∴1a n +1-1a n =12, 即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12, 公差为d =12的等差数列. 题型四 等差数列通项公式及其应用例4 已知等差数列{a n }中,a 3+a 5=-14,2a 2+a 6=-15,求a 8.解 a 3+a 5=-14⇒a 1+2d +a 1+4d =2a 1+6d =-14⇒a 1+3d =-7.①又2a 2+a 6=-15⇒2(a 1+d )+a 1+5d =-15⇒3a 1+7d =-15.②解①②联立的方程组得⎩⎪⎨⎪⎧a 1=2,d =-3, ∴a n =2+(n -1)×(-3)=-3n +5,∴a 8=-3×8+5=-19.规律总结等差数列的通项公式是本节的重点,在应用时要注意方程思想的应用.有两种情况:(1)已知a n ,a 1,n ,d 中任意三个量可求第四个量,即“知三求一”.(2)已知等差数列中的任意两项,就可以确定等差数列中的任一项.变式训练 5.数列{a n }各项的倒数组成一个等差数列,若a 3=2-1,a 5=2+1,求a 11.解 设b n =1a n(n ∈N +),则{b n }为等差数列,公差为d . 由已知得b 3=1a 3=12-1=2+1, b 5=1a 5=12+1=2-1. ∴⎩⎨⎧ b 1+2d =2+1,b 1+4d =2-1,解得⎩⎨⎧b 1=3+2,d =-1. ∴b 11=b 1+10d =2-7,∴a 11=1b 11=12-7=-7-247. [随堂体验落实]1.△ABC 中,三内角A ,B ,C 成等差数列,则B 等于( )A .30°B .60°C .90°D .120°【解析】∵A +B +C =180°且B =A +C 2, ∴3B =180°,B =60°.【答案】B2.一个等差数列的前4项是a ,x ,b,2x ,则a b等于( ) A.14B .12 C.13D.23 【解析】⎩⎪⎨⎪⎧2x =a +b ,2b =x +2x ,∴a =x 2,b =32x . ∴a b =13. 【答案】C3.{a n }为等差数列,且a 7-2a 4=-1,a 3=0,则公差d =( ) A .-2B .-12C .12D .2【解析】由题意知a 1+6d -2(a 1+3d )=-1,①a 1+2d =0,②由①②可得d =-12,a 1=1. 【答案】B4.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=________.【解析】设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+2d =7,a 1+4d =a 1+d +6. 解得⎩⎪⎨⎪⎧a 1=3,d =2. ∴a n =a 1+(n -1)d =3+(n -1)×2=2n +1.∴a 6=2×6+1=13.【答案】135.设{a n }是等差数列,若a m =n ,a n =m (m ≠n ),求a m +n .解:法一:由⎩⎪⎨⎪⎧ a 1+(m -1)d =n ,a 1+(n -1)d =m , 得⎩⎪⎨⎪⎧a 1=m +n -1,d =-1, ∴a m +n =a 1+(m +n -1)d=(m +n -1)-(m +n -1)=0.法二:∵a m =a n +(m -n )d ,∴n =m +(m -n )d ,∵m ≠n ,∴d =-1,∴a m +n =a m +[(m +n )-m ]d =n +n ×(-1)=0.[感悟高手解题]已知数列{a n },a 1=a 2=1,a n =a n -1+2(n ≥3).(1)判断数列{a n }是否为等差数列?说明理由;(2)求{a n }的通项公式.解 (1)当n ≥3时,a n =a n -1+2,即a n -a n -1=2,而a 2-a 1=0不满足a n -a n -1=2(n ≥3),∴{a n }不是等差数列.(2)当n ≥2时,令a 2=b 1=1,a 3=b 2=3,a 4=b 3=5,…a n =b n -1=1+2[(n -1)-1]=2n -3.又a 1=1,∴a n =⎩⎪⎨⎪⎧1 (n =1),2n -3 (n ≥2) [点评] 在(1)问中由a n -a n -1=2(常数),直接得出{a n }为等差数列,这是易出错的地方,事实上,数列{a n }从第2项起,以后各项组成等差数列,而{a n }不是等差数列,a n =f (n )应该表示为“分段函数”型.因此我们在判断等差数列时,要严格按其定义判断.。
等差数列 第一课时(教案)
等差数列第一课时一、教学目标1.知识与技能①理解并掌握等差数列的概念;②了解等差数列的通项公式的推导过程及思想;2.过程与方法①培养学生观察、分析、归纳、推理的能力;②在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;③通过阶梯性练习,提高学生分析问题和解决问题的能力。
3.情感、态度与价值观①通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;②养成细心观察、认真分析、善于总结的良好思维习惯。
③让学生了解数学来源于生活又服务于生活的哲理,培养学生观察问题、分析问题的能力,培养学生严谨的思维和科学正确的计算能力。
二、教学重点难点教学重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
教学难点:①等差数列的通项公式的推导过程②用数学思想解决实际问题三、教法与学法针对高中生思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学过程(一)复习引入:1.从函数观点看,数列可看作是定义域为_正整数_对应的一列函数值,从而数列的通项公式也就是相应函数的_解析式_。
2. 一个剧场设置了20排座位,这个剧场从第1排起各排的座位组成数列:38,40,42,44,46,……3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为: 15,25,35,45,55_(二) 新课探究1、等差数列的概念:如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。
注意:① “从第二项起”满足条件;②公差d 一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数练习:判断是否为等差数列,是等差数列的找出公差。
等差数列教学设计(一课时)
2.2.1《等差数列》教案设计难点理解等差数列“等差”的特点及通项公式的含义环节1 创设情境,提出问题在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:(1)1682,1758,1834,1910,1986,()你能预测出下一次的大致时间吗?主持人问: 最近的时间什么时候可以看到哈雷慧星?天文学家陈丹说: 2062年左右。
学生活动通过情景引出数列,观察发现其规律,通过规律填写内容。
通常情况下,从地面到10公里的高空,气温随高度的变化而变化符合一定的规律,请你根据下表估计一下珠穆朗玛峰峰顶的温度。
(2) 28, 21.5, 15, 8.5, 2, …, -24. 教师活动:提出问题,组织学生解决问题1、你能根据规律在()内填上合适的数吗?(1)、1682,1758,1834,1910,1986,(2062).(2)、28,21.5,15,8.5,2, …,(-24).(3)、1,4,7,10,( 13 ),16.(4)、2, 0, -2, -4, -6,( 8 ).问题2、它们有何共同的规律?(1)d=76 (2)d=-6.5 (3)d=3 (4)d=-2 学生活动通过多个数列观察发现其共同规律,环节二环节三环节等差数列的定义:的前一项的差等于同一个常数,这个数列就叫做等差数列。
这个常数叫做等差数列的公差,公差通常用字母教师活动:回归问题,组织学生解决问题(1)1, 3, 5, 7, 9,2, 4, 6, 8, 10(2)5(3)环节教师活动:问题驱动问题(((问题a在尝试最终得项公式这一性质。
引导学生推导等差数列的通项公式,并使用方法二再次推导,为学生提供多种推导思路与方法。
dn a a n )1(1-+=叠加的 (累加相消法)等差数列的通项公式:环节5 能力提升例1、(1) 求等差数列8,5,2,…,的第20项。
解:(2)-401是否是等差数列 -5,-9,-13,…,的项?如果是,是第几项 ? 解:因此 解得学生活动教师辅助学生自主完成例题。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标1. 知识与技能:学生能够理解等差数列的定义、性质和通项公式,掌握等差数列的求和公式,掌握等差数列的应用题目解题方法。
2. 过程与方法:培养学生的逻辑思维和数学分析能力,引导学生探究、发现等差数列的规律,培养学生的数学建模能力。
3. 情感态度与价值观:引导学生态度认真,积极主动参与课堂讨论和课后习题练习,培养学生对数学的兴趣和信心。
二、教学内容1. 等差数列的定义和性质2. 等差数列的通项公式3. 等差数列的求和公式4. 等差数列的应用题目解题方法四、教学过程设计1. 导入(5分钟)教师通过举例引入等差数列的概念,让学生了解等差数列是指数列中任意两个相邻的项之差都是一个常数,称为公差。
引导学生思考公差与等差数列的关系。
2. 概念讲解(15分钟)通过实例,教师讲解等差数列的定义和性质,包括首项、公差、通项公式和前n项和公式。
并通过图示和例题,让学生理解等差数列的规律和特点。
4. 错题讲解(10分钟)针对学生在课堂练习中出现的典型错误进行讲解和订正,并强调等差数列的解题方法和答题技巧。
5. 练习与巩固(20分钟)教师让学生进行练习题目,巩固等差数列的求和公式和应用题目解题方法。
鼓励学生积极思考,主动参与课堂讨论。
6. 课堂小结(5分钟)教师对本节课的内容进行小结,强调等差数列的主要知识点和解题方法,提醒学生巩固复习。
五、教学手段1. 板书2. 多媒体教学3. 举例分析4. 练习和讨论通过本节课的设计和实施,能够引导学生深刻理解等差数列的概念和性质,掌握等差数列的通项公式、求和公式和解题方法,培养学生的逻辑推理和数学分析能力,提高学生的数学学习兴趣和自信心。
教学设计1:2.2.1 等差数列(一)
同学甲回答
【解析】(1)由a1=8,d=5-8=-3,n=20,
得a20=8+(20-1)×(-3)=-49;
(2)由a1=-5,d=-9-(-5)=-4,得这个数列的通
项公式为an=-5+(n-1)×(-4)=-4n-1.
通过对等差数列通项公式的推导,培养学生的观察能力及归纳推理能力.
情感、态度
与价值观
通过等差数列概念的归纳概括,培养学生的观察、分析能力及积极思维,追求新知的创新意识.
教
材
分
析
重点
1.理解等差数列的概念;探索并掌握等差数列的通项公式;
2.体会等差数列与一次函数的联系.
难点
概括通项公式推导过程中体现出的数学思想方法.
小组讨论,展示成果.
【解析】方法1)归纳法
根据等差数列的定义, , , ,….
∴ , , ,…,
方法2)累加法
根据等差数列的定义, , , ,…, ,将以上 个等式相加,得
即 ,即 .
方法3)迭代法
根据等差数列的定义,
获取新知:等差数列的通项公式
教学过程设计
教学
环节
教师活动
学生活动
(二)新知探究
例3.(1)求等差数列8,5,2,…的第20项;
课时数
1
教法
教学手段
教学过程设计
教学
环节
教师活动
学生活动
(一)知识链接
什么是递推法和递推公式?
复习总结
答:通过给出数列任意相邻两项之间的数量关系给出数列的方法叫做递推法,其中任意相邻两项之间的数量关系式 递推公式.
等差数列第一课时教案-数学高一必修5第二章数列2.2人教A版
第二章数列2.4等差数列一、学习目标1.知识与技能1.理解等差数列的概念.(重点)2.了解等差数列的项与序号之间的规律.3.掌握等差数列的通项公式和等差中项的概念,深化认识并能运用.(难点)4.理解等差数列的性质.(重点)2.过程与方法培养学生观察、分析、归纳、推理的能力.通过强化练习,培养学生分析问题解决问题的能力3.情感、态度与价值观通过对等差数列的研究,培养学生主动探索的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯.二.重点难点教学重点:等差数列的概念的理解,通项公式的推导及应用.教学难点:对等差数列中“等差”两字的把握,通项公式的推导.三.专家建议通过学习等差数列,应用累加法推导等差数列的通项公式,体会累乘加的意义并结合等差数列的定义给学生渗透一次函数讨论的数学思想,通过学习等差数列分析讨论的方法培养学生观察、归纳、类比、联想等发现规律的一般方法.四.教学方法自学----练习---点拨-巩固训练五.教学过程●新课导入得到数列:6 000,6 500,7 000,7 500,8 000,8 500,9 000.你发现这个数列有什么特点?请进入本节的学习!●新知探究探究点1:等差数列定义 请看下面的一些数列:鞋的尺码,按照国家统一规定,有 22,22.5,23,23.5,24,24.5,…;① 某月星期日的日期为 2,9,16,23,30;②一个梯子共8级,自下而上每一级的宽度(单位:cm)为 89,83,77,71,65,59,53,47. ③ 思考:上面几个数列有什么共同的特点?提示:对于数列①,从第2项起每一项与前一项的差都等于0.5; 对于数列②,从第2项起每一项与前一项的差都等于7; 对于数列③,从第2项起每一项与前一项的差都等于-6.这就是说,这些数列具有这样的共同特点:从第2项起,每一项与前一项的差都等于同一个常数. 一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差通常用字母d 表示. 例1.已知数列{a n }的通项公式为a n =3n-5,这个数列是等差数列吗?解:因为当n ≥2时,a n -a n-1=3n-5-[3(n-1)-5]=3,所以数列{a n }是等差数列,且公差为3. 思考1:当公差d =0时,{a n }是什么数列? 提示:仍是等差数列.思考2:将有穷等差数列{a n }的所有项倒序排列,所成数列仍是等差数列吗?如果是,公差是什么?如果不是,请说明理由.提示:是等差数列,公差与原数列的公差互为相反数.思考3:如果说“一个数列从第2项起,相邻两项的差是同一个常数”,那么这个数列是等差数列吗? 提示:这个数列不一定是等差数列,等差数列中的“差”是有顺序的,必须是“从第2项起,每一项与前一项的差”.而“相邻两项的差”,这里的“相邻”可能是后一项减去前一项,也可能是前一项减去后一项,如数列2,1,2,3,4,5相邻两项的差是同一个常数1,但此数列不是等差数列.探究点2:等差数列通项公式由此归纳出等差数列的通项公式为{}()()12132432132114311,-,-,-,.+,2,23,n a a d a a d a a d a a d a a d a a d a d d a d a a d a d d a d =====+=++=+=+=++=+ 如果等差数列的首项是公差是,那么根据等差数列的定义得到 因此a n=a1+(n-1)d.这个公式还可以用下面的方法得到.由等差数列的定义得a2-a1=d,a3-a2=d,a4-a3=d,……a n-1-a n-2=d,a n-a n-1=d.将这n-1个式子的等号两边分别相加,得a n-a1=(n-1)d,即a n=a1+(n-1)d. 这种用叠加求通项公式的方法叫做叠加法。
等差数列第一课时教学设计.
等差数列第一课时教学设计.第一篇:等差数列第一课时教学设计.等差数列第一课时教学设计.【教学目标】1.理解等差数列的概念,掌握等差数列的通项公式;2.逐步灵活应用等差数列的概念和通项公式解决问题.3.通过教学,培养学生的观察、分析、归纳、推理的能力,渗透由特殊到一般的思想.【教学重点】等差数列的概念及其通项公式.【教学难点】等差数列通项公式的灵活运用.“等差”的理解【教学方法】本节课主要采用自主探究式教学方法.充分利用现实情景,尽可能地增加教学过程的趣味性、实践性.在教师的启发指导下,强调学生的主动参与,让学生自己去分析、探索,在探索过程中研究和领悟得出的结论,从而达到使学生既获得知识又发展智能的目的.【教学过程】第二篇:1.2_等差数列_第一课时教学设计§1.2.1 等差数列(一)教学设计一、教材分析1.教材的地位和作用:《等差数列》是北师大版新课标教材《数学》必修5第一章第二节的内容,是学生在学习了数列的有关概念和学习了给出数列的两种方法——通项公式和递推公式的基础上,对数列知识的进一步深入和拓展。
同时等差数列也为今后学习等比数列提供了学习对比的依据。
另一方面,等差数列作为一种特殊的函数与函数思想密不可分,有着广泛的实际应用。
2、学情分析对于高二的学生,他们还处于知识发展的阶段,他们的智力发展已经到了形式运演阶段,具备了一定的抽象思维能力和归纳推理能力。
3、教学目标知识与技能:通过实例,理解等差数列的概念;探索并掌握等差数列的通项公式;能在具体的问题情境中,发现数列的等差关系并能用有关知识解决相应的问题;过程与方法:让学生对日常生活中实际问题分析,引导学生通过观察,推导,归纳抽象出等差数列的概念;由学生建立等差数列模型用相关知识解决一些简单的问题。
情态与价值:培养学生观察、归纳的能力,培养学生的应用意识。
4、教学重难点分析教学重点:理解等差数列的概念及其性质,探索并掌握等差数列的通项公式;会用公式解决一些简单的问题。
等差数列第一课时教学设计
等差数列(第一课时)教学设计一、教材分析等差数列,两课时内容,本节是第一课时。
研究等差数列的定义、通项公式的归纳,借助生活中丰富的典型实例,让学生通过分析、归纳等活动过程,从中了解和体验等差数列的定义和通项公式。
通过本节课的学习要求理解等差数列的概念,掌握等差数列的通项公式,并且了解等差数列与一次函数的关系。
二、学情分析学生已经具有一定的理性分析能力和概括能力,且对数列的知识有了初步的接触和认识,已经熟悉由观察到抽象的数学活动过程,对函数、方程思想体会逐渐深刻,应用数学公式的能力逐渐加强。
三、教学目标1.知识目标:理解等差数列概念,掌握等差数列的通项公式,了解等差数列与一次函数的关系。
2.能力目标:培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。
3.情感目标:体验从特殊到一般,又到特殊的认知规律,提高数学猜想、归纳的能力。
四、重点、难点教学重点:等差数列的概念及通项公式的推导。
教学难点:对等差数列概念的理解及学会通项公式的推导及应用。
五、教学策略在实例的基础上,采用从特殊到一般,再从一般到特殊的思想,以探究式教学思想为主导,充分发挥学生的主体作用,让学生自己去讨论、分析、探索、感悟,从而发现等差数列的定义及通项公式,进一步调动学生的主观能动性,使其体验到成功的乐趣,不只看表面,更要看到实质。
四个量之间的一个等量关系,以便于以后运用方程思想灵活解决有关问题。
六、教学过程(一)创设情景,引入概念(设计意图:通过对实际问题的分析对比,建立等差数列模型,体验数学发现和创造的过程)情景:把班上学生学号从小到大排成一列:如:1 , 2, 3, 4,…,63, 64.问题 1 :请学生归纳出上一个数列的通项公式。
问题2:把上面的数列各项依次记为,学生填空:问题3:上面的数列有什么特点,你能用数学语言(符号)描述这些特点吗?(教师引导,学生完成)(),或者写成(). 注:强调,原因在于有意义。
《等差数列》第一课时教学设计
《等差数列》第一课时教学设计一、教学目标1. 知识与能力:(1)掌握等差数列的概念;(2)了解等差数列的性质和特点;(3)能够求解等差数列的通项公式和前n项和公式;(4)能够运用等差数列解决实际问题。
2. 过程与方法:(1)通过讲解、示范和练习的方式教学;(2)引导学生进行思维的碰撞,培养学生的逻辑思维能力;(3)激发学生的学习兴趣,提高学生的学习动力。
3. 情感态度价值观:(1)培养学生的合作精神和团队意识;(2)鼓励学生勇于探索、勇于实践,培养学生的探究精神。
二、教学重难点1. 教学重点:等差数列的概念、性质和公式的求解。
2. 教学难点:等差数列的前n项和公式的推导。
三、教学过程1. 导入(5分钟)呈现一组数字序列:2,4,6,8,10,……,让学生观察并找出规律。
看出这组数列是等差数列,每一项与前一项的差均相等。
2. 概念讲解(10分钟)(1)教师引导学生总结等差数列的概念:在一个数列中,从第二项起,每一项与它的前一项之差等于一个常数d,这个数列称为等差数列,公差d即为等差数列中的两项之差。
(2)举例讲解,让学生理解等差数列的基本概念。
3. 性质讲解(10分钟)(1)等差数列中,任意三项成等差数列;(2)任意等差数列的前n项和公式的关键在于首项和末项的和与次首项和次末项的和相等;(3)讲解等差数列的通项公式和前n项和公式的求法。
4. 公式的求解(15分钟)(1)教师讲解等差数列的通项公式和前n项和公式的求法;(2)通过例题讲解,让学生掌握等差数列的公式求解方法。
5. 练习(15分钟)(1)教师布置练习题,让学生独立完成;(2)对学生进行辅导和指导;(3)检查学生的答题情况,及时给予反馈。
6. 拓展应用(10分钟)讲解等差数列在实际生活中的应用,如日常生活中的数学应用题、物理运动问题等。
7. 总结与归纳(5分钟)教师对本节课的主要内容进行总结,并提出下节课的预习任务,鼓励学生多加练习,巩固所学知识。
等差数列教案第一课时市公开课一等奖教案省赛课金奖教案
等差数列教案第一课时一、教学目标:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和;3. 能够应用等差数列的概念和公式解决实际问题。
二、教学重点:1. 理解等差数列的概念,能够正确地列出等差数列的通项公式;2. 掌握等差数列的求和公式,能够用求和公式计算等差数列的和。
三、教学难点:能够应用等差数列的概念和公式解决实际问题。
四、教学过程:1. 导入(5分钟)教师可以通过提问的方式导入,例如:“小明种植了一排树木,第一棵树距离大门10米,第二棵树距离第一棵树20米,第三棵树距离第二棵树30米,以此类推,你能发现什么规律?这些数之间有什么特点?”2. 概念解释(15分钟)引导学生讨论并总结出等差数列的概念:“等差数列是指数之间的差值相等的数列。
在等差数列中,我们称这个差值为公差,用d表示。
”教师可以给出示例,如1, 3, 5, 7, ...等,并解释数列中的每个数依次加上公差d就可以得到下一个数。
3. 列出通项公式(15分钟)通过示例引导学生找出等差数列的通项公式。
以示例1, 3, 5, 7, ...为例,学生可以发现每个数都可以表示为a + (n-1)d的形式,其中a为第一个数,n为项数,d为公差。
因此,该等差数列的通项公式为an = a + (n-1)d。
4. 使用通项公式求值(15分钟)教师通过例题演示如何使用通项公式求等差数列中的某一项的值。
例如:“求等差数列1, 3, 5, 7, ...中第10项的值。
”学生可以利用通项公式an = a + (n-1)d,将a设为1,d设为2,n设为10,代入公式计算得到an的值为...5. 求等差数列的和(15分钟)引导学生思考如何求等差数列的和,并给出等差数列求和的公式:Sn = n/2 (2a + (n-1)d),其中Sn表示等差数列的和。
教师通过例题演示如何使用求和公式计算等差数列的和。
2.2等差数列第一课时教案
§2.2等差数列授课类型:新授课(第1课时)一、教学目标知识与技能:了解公差的概念,能根据定义判断一个数列是等差数列;正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项。
过程与方法:了解等差数列的构造过程以及应用等差数列的基本知识解决实际问题的方法。
情感态度与价值观:通过等差数列概念的学习,培养学生的观察能力及总结归纳的意识。
二、教学重点等差数列的概念,等差数列的通项公式。
三、教学难点等差数列的通项公式四、教学过程1、课题导入上两节课我们学习了数列的定义并给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。
下面我们看这样一些例子①0,5,10,15,20,25,…②48,53,58,63③18,15.5,13,10.5,8,5.5④10072,10144,10216,10288,10366观察:请同学们仔细观察一下,看看以上四个数列有什么共同特征?★共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列一个名字——等差数列.2、讲授新课①等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)。
注:公差d 一定是由后项减前项所得,而不能用前项减后项来求;对于数列{}n a ,若1n n a a d --=(与n 无关的数或字母),2,n n +≥∈N ,则此数列是等差数列,d 为公差。
思考:请写出数列①、②、③、④的通项公式。
②等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:d a a =-12即:d a a +=12d a a =-23即:d a d a a 2123+=+=d a a =-34即:d a d a a 3134+=+=……由此归纳等差数列的通项公式可得:d n a a n )1(1-+=∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a 。
§2 2.2 第1课时 等差数列的前n项和
20×(20 −1) S= ×20 = 3 800(m). 2
答 植树工人共走了3 800m路程 路程. 植树工人共走了3 800m路程.
九江抗洪指挥部接到预报,24h后有一洪峰到达 后有一洪峰到达. 例11 九江抗洪指挥部接到预报,24h后有一洪峰到达. 为确保安全, 为确保安全,指挥部决定在洪峰来临前筑一道堤坝作为第 二道防线.经计算,需调用20台同型号翻斗车, 20台同型号翻斗车 二道防线.经计算,需调用20台同型号翻斗车,平均每辆 工作24h后方可筑成第二道防线. 24h后方可筑成第二道防线 工作24h后方可筑成第二道防线.但目前只有一辆车投入施 其余的需从昌九高速公路沿线抽调,每隔20min 20min能有 工,其余的需从昌九高速公路沿线抽调,每隔20min能有 一辆车到达,指挥部最多可调集25辆车,那么在24h 25辆车 24h内能 一辆车到达,指挥部最多可调集25辆车,那么在24h内能 否构筑成第二道防线? 否构筑成第二道防线? 从第一辆车投入工作算起,各车工作时间(单位: 解 从第一辆车投入工作算起,各车工作时间(单位: h)依次设为 依次设为: h)依次设为:
∵a1 =1 a120 =120, n =120 ,
120×(1+120) ∴S120 = = 7 260 支) ( . 2
支铅笔. 答:V形架上共放着7 260支铅笔. 形架上共放着7 260支铅笔
1.回顾从特殊到一般的研究方法; 1.回顾从特殊到一般的研究方法; 回顾从特殊到一般的研究方法 2.倒序相加的算法及数形结合的数学思想; 2.倒序相加的算法及数形结合的数学思想; 倒序相加的算法及数形结合的数学思想 3.掌握等差数列的两个求和公式及简单应用, 3.掌握等差数列的两个求和公式及简单应用,及函数与方 掌握等差数列的两个求和公式及简单应用 程的思想. 程的思想.
学案11:§2.2 等差数列(一)
§2.2 等差数列1.等差数列的概念(1)文字语言:如果一个数列从第项起,每一项与它的的差等于,那么这个数列就叫做等差数列,这个叫做等差数列的,公差通常用字母表示.(2)符号语言:a n+1-a n=d(d为常数,n∈N*).2.等差中项(1)条件:如果a,A,b成等差数列.(2)结论:那么A叫做a与b的等差中项.(3)满足的关系式是.思考:观察所给的两个数之间,插入一个什么数后三个数就会成为一个等差数列:(1)2,4;(2)-1,5;(3)a,b;(4)0,0.3.等差数列的通项公式以a1为首项,d为公差的等差数列{a n}的通项公式a n=.思考:教材上推导等差数列的通项公式采用了不完全归纳法,还有其它方法吗?如何操作?4.从函数角度认识等差数列{a n}若数列{a n}是等差数列,首项为a1,公差为d,则a n=f(n)=a1+(n-1)d=nd+(a1-d).(1)点(n,a n)落在直线y=dx+(a1-d)上;(2)这些点的横坐标每增加1,函数值增加d.思考:由等差数列的通项公式可以看出,要求a n,需要哪几个条件?初试身手1.已知等差数列{a n }的首项a 1=4,公差d =-2,则通项公式a n =( )A.4-2nB .2n -4 C.6-2n D .2n -62.等差数列-6,-3,0,3,…的公差d = .3.下列数列:①0,0,0,0;②0,1,2,3,4;③1,3,5,7,9;④0,1,2,3,….其中一定是等差数列的有 个.4.lg (3+2)与lg (3-2)的等差中项是 .合作探究类型1 等差中项例1 在-1与7之间顺次插入三个数a ,b ,c 使这五个数成等差数列,求此数列.规律方法三数a ,b ,c 成等差数列的条件是b =a +c 2(或2b =a +c ),可用来解决等差数列的判定或有关等差中项的计算问题.如若证{a n }为等差数列,可证2a n +1=a n +a n +2(n ∈N *). 跟踪训练1.已知数列{a n }满足a n -1+a n +1=2a n (n ≥2),且a 2=5,a 5=13,则a 8= . 类型2 等差数列的通项公式及其应用例2 (1)在等差数列{a n }中,已知a 4=7,a 10=25,求通项公式a n ;(2)已知数列{a n }是等差数列,a 5=-1,a 8=2,求a 1与d .规律方法1.应用等差数列的通项公式求a 1和d ,运用了方程的思想.一般地,可由a m =a ,a n =b ,得⎩⎪⎨⎪⎧a 1+(m -1)d =a ,a 1+(n -1)d =b ,求出a 1和d ,从而确定通项公式. 2.若已知等差数列中的任意两项a m ,a n ,求通项公式或其它项时,则运用a m =a n +(m -n )d 较为简捷.跟踪训练2.(1)求等差数列8,5,2,…的第20项;(2)判断-401是不是等差数列-5,-9,-13,…的项,如果是,是第几项?类型3 等差数列的判定与证明探究问题1.在数列{a n }中,若a n -a n -1=d (常数)(n ≥2且n ∈N *),则{a n }是等差数列吗?为什么?2.在数列{a n }中,若有2a n =a n -1+a n +1(n ≥2,n ∈N *)成立,则{a n }是等差数列吗?为什么?3.若{a n }是公差为d 的等差数列,那么{a n +a n +2}是等差数列吗?若是,公差是多少?例3 已知数列{a n }满足a 1=2,a n +1=2a n a n +2. (1)数列⎩⎨⎧⎭⎬⎫1a n 是否为等差数列?说明理由; (2)求a n .等差数列的判定方法有以下三种:(1)定义法:a n+1-a n=d(常数)(n∈N*)⇔{a n}为等差数列;(2)等差中项法:2a n+1=a n+a n+2(n∈N*)⇔{a n}为等差数列;(3)通项公式法:a n=an+b(a,b是常数,n∈N*)⇔{a n}为等差数列.但如果要证明一个数列是等差数列,则必须用定义法或等差中项法.课堂小结1.判断一个数列是否为等差数列的常用方法(1)a n+1-a n=d(d为常数,n∈N*)⇔{a n}是等差数列;(2)2a n+1=a n+a n+2(n∈N*)⇔{a n}是等差数列;(3)a n=kn+b(k,b为常数,n∈N*)⇔{a n}是等差数列.但若要说明一个数列不是等差数列,则只需举出一个反例即可.2.由等差数列的通项公式a n=a1+(n-1)d可以看出,只要知道首项a1和公差d,就可以求出通项公式,反过来,在a1,d,n,a n四个量中,只要知道其中任意三个量,就可以求出另一个量.课堂检测1.判断正误(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.()(2)等差数列{a n}的单调性与公差d有关.()(3)若三个数a,b,c满足2b=a+c,则a,b,c一定是等差数列.() 2.在等差数列{a n}中,若a1·a3=8,a2=3,则公差d=()A.1B.-1C.±1 D.±23.已知a=13+2,b=13-2,则a,b的等差中项为.4.已知数列{a n},a1=a2=1,a n=a n-1+2(n≥3),判断数列{a n}是否为等差数列?说明理由.参考答案新知初探1.(1)2 前一项同一个常数常数公差d2.(3)a+b=2A思考:[提示] 插入的数分别为3,2,a +b 2,0. 3.a 1+(n -1)d思考:[提示] 还可以用累加法,过程如下:∵a 2-a 1=d ,a 3-a 2=d ,a 4-a 3=d ,…a n -a n -1=d (n ≥2),将上述(n -1)个式子相加得a n -a 1=(n -1)d (n ≥2),∴a n =a 1+(n -1)d (n ≥2),当n =1时,a 1=a 1+(1-1)d ,符合上式,∴a n =a 1+(n -1)d (n ∈N *).4.(2) d思考:[提示] 只要求出等差数列的首项a 1和公差d ,代入公式a n =a 1+(n -1)d 即可. 初试身手1.【答案】C【解析】a n =a 1+(n -1)d =4+(n -1)×(-2)=4-2n +2=6-2n .2.【答案】3【解析】(-3)-(-6)=3,故d =3.3.【答案】3【解析】①②③是等差数列,④只能说明前4项成等差数列.4.【答案】0【解析】lg (3+2)与lg (3-2)的等差中项为 lg (3+2)+lg (3-2)2= lg [(3+2)(3-2)]2=lg 12=0. 合作探究类型1 等差中项例1 解:∵-1,a ,b ,c ,7成等差数列,∴b 是-1与7的等差中项,∴b =-1+72=3.又a 是-1与3的等差中项,∴a =-1+32=1. 又c 是3与7的等差中项,∴c =3+72=5. ∴该数列为-1,1,3,5,7.跟踪训练1.【答案】21【解析】由a n -1+a n +1 =2a n (n ≥2)知,数列{a n }是等差数列,∴a 2,a 5,a 8成等差数列. ∴a 2+a 8=2a 5,∴a 8=2a 5-a 2=2×13-5=21.类型2 等差数列的通项公式及其应用例2 解:(1)∵a 4=7,a 10=25,则⎩⎪⎨⎪⎧a 1+3d =7,a 1+9d =25,得⎩⎪⎨⎪⎧a 1=-2,d =3, ∴a n =-2+(n -1)×3=3n -5,∴通项公式a n =3n -5(n ∈N *).(2)∵a 5=-1,a 8=2,∴⎩⎪⎨⎪⎧a 1+4d =-1,a 1+7d =2,解得⎩⎪⎨⎪⎧a 1=-5,d =1. 跟踪训练2.解:(1)由a 1=8,d =5-8=-3,n =20,得a 20=8+(20-1)×(-3)=-49.(2)由a 1=-5,d =-9-(-5)=-4,得这个数列的通项公式为 a n =-5+(n -1)×(-4)=-4n -1.由题意,令-401=-4n -1,得n =100,即-401是这个数列的第100项.类型3 等差数列的判定与证明探究问题1.[提示] 由等差数列的定义可知满足a n -a n -1=d (常数)(n ≥2)是等差数列.2.[提示] 是,由等差中项的定义可知.3.[提示] ∵(a n +1+a n +3)-(a n +a n +2)=(a n +1-a n )+(a n +3-a n +2)=d +d =2d .∴{a n +a n +2}是公差为2d 的等差数列.例3 解:(1)数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,理由如下:∵a 1=2,a n +1=2a n a n +2,∴1a n +1=a n +22a n =12+1a n ,∴1a n +1-1a n =12, 即⎩⎨⎧⎭⎬⎫1a n 是首项为1a 1=12,公差为d =12的等差数列. (2)由上述可知1a n =1a 1+(n -1)d =n 2,∴a n =2n.1.【答案】 (1)× (2)√ (3)√【解析】 (1)错误.若这些常数都相等,则这个数列是等差数列;若这些常数不全相等,则这个数列就不是等差数列.(2)正确.当d >0时为递增数列;d =0时为常数列;d <0时为递减数列.(3)正确.若a ,b ,c 满足2b =a +c ,即b -a =c -b ,故a ,b ,c 为等差数列.2.【答案】C【解析】由已知得,⎩⎪⎨⎪⎧a 1(a 1+2d )=8,a 1+d =3,解得d =±1. 3.【答案】3【解析】a +b 2=13+2+13-22=3-2+3+22= 3.] 4.解:因为a n =a n -1+2(n ≥3),所以a n-a n-1=2(常数).又n≥3,所以从第3项起,每一项减去前一项的差都等于同一个常数2,而a2-a1=0≠a3-a2,所以数列{a n}不是等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§2.2等差数列
授课类型:新授课
(第1课时)
一、教学目标
知识与技能:了解公差的概念,能根据定义判断一个数列是等差数列;正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项。
过程与方法:了解等差数列的构造过程以及应用等差数列的基本知识解决实际问题的方法。
情感态度与价值观:通过等差数列概念的学习,培养学生的观察能力及总结归纳的意识。
二、教学重点
等差数列的概念,等差数列的通项公式。
三、教学难点
等差数列的通项公式
四、教学过程
1、课题导入
上两节课我们学习了数列的定义并给出数列和表示的数列的几种方法——列举法、通项公式、递推公式、图象法.这些方法从不同的角度反映数列的特点。
下面我们看这样一些例子
①0,5,10,15,20,25,…
②48,53,58,63
③18,15.5,13,10.5,8,5.5
④10072,10144,10216,10288,10366
观察:请同学们仔细观察一下,看看以上四个数列有什么共同特征?
★共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列一个名字——等差数列.
2、讲授新课
①等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d ”表示)。
注:公差d 一定是由后项减前项所得,而不能用前项减后项来求;
对于数列{}n a ,若1n n a a d --=(与n 无关的数或字母),2,n n +≥∈N ,则此数列是等差数列,d 为公差。
思考:请写出数列①、②、③、④的通项公式。
②等差数列的通项公式:d n a a n )1(1-+=【或=n a d m n a m )(-+】
等差数列定义是由一数列相邻两项之间关系而得。
若一等差数列{}n a 的首项是1a ,公差是d ,则据其定义可得:
d a a =-12即:d a a +=12
d a a =-23即:d a d a a 2123+=+=
d a a =-34即:d a d a a 3134+=+=
……
由此归纳等差数列的通项公式可得:d n a a n )1(1-+=
∴已知一数列为等差数列,则只要知其首项1a 和公差d ,便可求得其通项n a 。
由上述关系还可得:d m a a m )1(1-+=
即:d m a a m )1(1--=
则:=n a d n a )1(1-+=d m n a d n d m a m m )()1()1(-+=-+--
即等差数列的第二通项公式 =n a d m n a m )(-+ ∴ d=
n m a a n m -- ③例题讲解
例1 求等差数列8,5,2…的第20项
解:⑴由35285,81-=-=-==d a n=20,得49)3()120(820-=-⨯-+=a
例2 已知数列{n a }的通项公式q pn a n +=,其中p 、q 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?
分析:由等差数列的定义,要判定{}n a 是不是等差数列,只要看1--n n a a (n ≥2)是不是一个与n 无关的常数。
解:当n ≥2时, ])1([)(1q n p q pn a a n n +--+=--p q p pn q pn =+--+=)(为常数
∴{n a }是等差数列,首项q p a +=1,公差为p 。
注:若p=0,则{n a }是公差为0的等差数列,即为常数列q ,q ,q ,…
3、课堂练习
[补充练习]
(1)求等差数列3,7,11,……的第4项与第10项.
分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所求项.
解:根据题意可知:1a =3,d =7-3=4.∴该数列的通项公式为:n a =3+(n -1)×4,即n a =4n -1(n ≥1,n ∈N *)∴4a =4×4-1=15, 10a =4×10-1=39.
(2)求等差数列10,8,6,……的第20项.
解:根据题意可知:1a =10,d =8-10=-2.
∴该数列的通项公式为:n a =10+(n -1)×(-2),即:n a =-2n +12,∴20a =-2×20+12=-28.
(3)-20是不是等差数列0,-32
1,-7,……的项?如果是,是第几项?如果不是,说明理由.
解:由题意可知:1a =0,d =-3
21 ∴此数列的通项公式为:n a =-27n +2
7, 令-27n +27=-20,解得n =7
47 因为-27n +27=-20没有正整数解,所以-20不是这个数列的项. 4、课时小结 通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:n a -1-n a =d ,(n ≥2,n ∈N +).其次,要会推导等差数列的通项公式:d n a a n )1(1-+=,并掌握其基本应用.最后,还要注意一重要关系式:=n a d m n a m )(-+和n a =pn+q (p 、q 是常数)的理解与应用.
5、课后作业
课本P40习题2.2[A 组]的第1题。