容斥原理问题

合集下载

容斥原理和容斥问题

容斥原理和容斥问题

容斥原理和容斥问题
容斥原理是概率论中的一种计算方法,用于求解多个事件的交集和并
集的概率。

容斥原理通过对各种情况进行分类,然后逐步减去重复计
算的部分,从而得到最终的结果。

容斥问题是指给定一组事件,求满足其中至少一个事件发生的概率。

通常情况下,如果直接计算这个概率比较困难,就可以通过容斥原理
来简化计算过程。

容斥问题的一般形式可以描述为:给定一组事件 A1, A2, ..., An,
求至少一个事件发生的概率P(A1 ∪ A2 ∪ ... ∪ An)。

容斥原理告诉我们,这个概率可以通过分别计算每个事件发生的概率,再减去交集事件发生的概率,再加上相交事件发生的概率,以此类推,最终得到结果。

具体而言,容斥原理的公式可以表示为:
P(A1 ∪ A2 ∪ ... ∪ An) = P(A1) + P(A2) + ... + P(An) - P(A1 ∩ A2) - P(A1 ∩ A3) - ... - P(An-1 ∩ An) + ...
通过容斥原理,可以将一个复杂的问题分解为一系列简单的事件,从
而使计算过程更加简单明了。

三者容斥问题3个公式

三者容斥问题3个公式

一、容斥问题的3个公式容斥原理是指一种计数方法。

先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复。

1.两个集合的容斥原理:n(A∪B)=n(A)+n(B) -n(A∩B)2.三个集合的容斥原理:|A∪B∪C|=|A|+|B|+|C|-|A∩B|-|A∩C|-|B∩C|+|A∩B∩C|3.n个集合的容斥原理:要计算几个集合并集的大小,我们要先将所有单个集合的大小计算出来,然后减去所有两个集合相交的部分,再加回所有三个集合相交的部分,再减去所有四个集合相交的部分,依此类推,一直计算到所有集合相交的部分。

二、容斥问题的应用:对于容斥问题,解题关键做到不重不漏,各个集合相加,理清各集合间的关系,扣掉重复补上遗漏的。

用于理解的主要方法是画文氏图,但考试中应尽量避免画图,这样速度偏慢些。

【例1】:某调查公司对甲、乙、丙三部电影的收看情况向135人进行调查,有89人看过甲片,有47人看过乙片,有63人看过丙片,既看过甲、乙片为30人,既看过乙、丙片为31人,既看过甲、丙片为32人,其中有24人三部电影都看过,问多少人一部也没有看过呢?【解析】:既看过甲、乙片为30人是包含只看过甲乙还有甲乙丙三人两个部分,以M、N、W为既看过甲、乙片的人,N既看过乙、丙片的人,既看过甲、丙片的人,X为三部都看过的人数,这里面W、N、X都是有包含三者这个区域,根据把重复数的次数变为1次,或者说把重叠的面积变为一层,做到不重不漏的原则,则公式转化为I=A+B+C-(M+N+W)+X+Y,135=89+47+63-(30+31+32)+ 24+Y,Y=5人。

结论:三者容斥问题,画图之后可知,三个圆相交的地方有1层、2层、3层三种情况,当将三个集合相加的时候,2层和3层区域分别多计算一次和两次,故若想求全集,需要将重叠区域减掉,故三者容斥问题的公式为:A∪B∪C=A+B+C -A∩B-B∩C-C∩A+A∩B ∩C。

容斥原理的应用

容斥原理的应用

容斥原理的应用容斥原理是一种常见的数学方法,可以用于解决一些实际问题。

在本文中,我们将探讨容斥原理在日常生活中的应用。

一、生日问题生日问题是指,在一个房间里有n个人,问他们当中至少有两个人生日相同的概率是多少。

这个问题看似简单,但其实并不好计算。

不妨先考虑只有两个人的情况,假设第一个人的生日为任意一天,那么第二个人与之生日不同的概率为364/365,两个人生日都不同的概率为(364/365)^n,所以他们生日相同的概率为1-(364/365)^n。

接下来考虑3个人的情况,设Pn为至少两人生日相同的概率,则有:P3 = 1-(364/365)(363/365)-(364/365)(364/365) -(363/365)(364/365) ≈ 0.0082可以发现,当n增大时,计算变得非常繁琐。

这时,就可以考虑用容斥原理解决问题。

首先,假设第一个人的生日为1月1日,第二个人的生日为1月2日,第三个人以及之后所有人的生日都不在1月1日和1月2日,这时,至少两个人的生日相同的情况就只有两种:1、第二个人的生日与之后某个人的生日相同;2、第三个人的生日与之后某个人的生日相同,并且这个人的生日不与第二个人的生日相同。

根据容斥原理,至少两个人生日相同的概率为:Pn = 1-Cn1*(364/365)^(n-1)+(Cn2*(364/365)^(n-2) -Cn2*(363/365)^(n-2))+...+(-1)^(n-1)*Cn(n-1)*(364/365)^1其中,Cn1表示从n个人中选1个人的组合数,Cn2表示从n个人中选2个人的组合数,以此类推。

这个式子看起来有些复杂,但是用计算器可以很方便地求出来,比如当n=23时,P23≈0.507。

二、区间问题在数学中,一个区间通常表示两个数之间的所有实数。

例如[0, 1]表示0到1之间的所有实数,包括0和1。

现在考虑将[0, 1]划分成n个子区间,每个区间的长度可以不同。

(完整版)容斥原理习题加答案

(完整版)容斥原理习题加答案

1.现有50名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都错的有4人,则两种实验都做对的有( )A、27人B、25人C、19人D、10人【答案】B【解析】直接代入公式为:50=31+40+4-A∩B得A∩B=25,所以答案为B。

2.某服装厂生产出来的一批衬衫大号和小号各占一半。

其中25%是白色的,75%是蓝色的。

如果这批衬衫共有100件,其中大号白色衬衫有10件,小号蓝色衬衫有多少件?()A、15B、25C、35D、40【答案】C【解析】这是一种新题型,该种题型直接从求解出发,将所求答案设为A∩B,本题设小号和蓝色分别为两个事件A和B,小号占50%,蓝色占75%,直接代入公式为:100=50+75+10-A∩B,得:A∩B=35。

3.某高校对一些学生进行问卷调查。

在接受调查的学生中,准备参加注册会计师考试的有63人,准备参加英语六级考试的有89人,准备参加计算机考试的有47人,三种考试都准备参加的有24人,准备只选择两种考试都参加的有46人,不参加其中任何一种考试的都15人。

问接受调查的学生共有多少人?()A.120B.144C.177D.192【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字24,再推其他部分数字:根据每个区域含义应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数=63+89+47-{(x+24)+(z+24)+(y+24)}+24+15=199-{(x+z+y)+24+24+24}+24+15根据上述含义分析得到:x+z+y只属于两集合数之和,也就是该题所讲的只选择两种考试都参加的人数,所以x+z+y的值为46人;得本题答案为120.4.对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有多少人()A.22人B.28人C.30人D.36人【答案】A【解析】本题画图按中路突破原则,先填充三集合公共部分数字12,再推其他部分数字:根据各区域含义及应用公式得到:总数=各集合数之和-两两集合数之和+三集合公共数+三集合之外数100=58+38+52-{18+16+(12+ x)}+12+0,因为该题中,没有三种都不喜欢的人,所以三集合之外数为0,解方程得到:x=14。

容斥原理例题

容斥原理例题

--------------- 名师点拨....................学科:学科:奥数一教学内容:第四讲容斥原理(二)开始学习上一讲我们已经初步研究了简单的容斥原理,今天我们继续研究较复杂的容斥问题。

例1五年级一班有45名同学,每人都积极报名参加暑假体育训练班,其中报足球班的有25人,报篮球班的有20人,报游泳班的有30人,足球、篮球都报者有10人,足球、游泳都报者有10人,足球、篮球都报者有12人。

请问:三项都报的有多少人?分析:由于问题比较复杂,我们把它简化成下图要计算阴影部分的面积,我们记AHB 为圆A与圆B公共部分的面积,BHC为圆B与圆C公共部分的面积,AHC表示圆A与圆C 的公共部分的面积,x为阴影部分的面积则图形盖住的面积为:A+B+C-AHB-BnC-AnC+X。

请同学们注意:阴影部分的面积先加了3次,然后又被减了3次,最后又加了1次。

解答:设三项都报的有x人,由容斥原理有30+25+20-10-10-12+x=45解得x=2。

答:三项都报名的有2人。

说明:在“A+B+C-AnB-BnC-AnC+X” 式中,A, B, C, AnB, Bnc, Anc, x 和总量这8个数中,只要知道了7个数,就可通过列方程求出第8个数。

例2从1至1000这1000个自然数中,不能被3、5、7中任何一个自然数整除的数一共有多少个?分析:第一步先求出:能被3、5、7中任何一个自然数整除的数一共有多少个?第二步再求出:不能被3、5、7中任何一个自然数整除的数一共有多少个?能被3整除的自然数的个数+能被5整除的自然数的个数+能被7整除的自然数的个数一(既能被3整除又能被5 整除的自然数的个数+既能被3整除又能被7整除的自然数的个数+既能被5整除又能被7 整除的自然数的个数)+能同时被3、5、7整除的自然数的个数二能被3、5、7中任何一个自然数整除的数的个数。

解答:能被3整除的自然数有多少个?1000^3=333……1有 333 个。

容斥原理问题经典例题

容斥原理问题经典例题

容斥原理问题经典例题在数学的世界里,容斥原理是一个非常实用且有趣的概念。

它帮助我们解决那些涉及多个集合相互交叉、重叠的计数问题。

下面,我们就通过几个经典例题来深入理解容斥原理。

例 1:在一个班级中,有 30 人喜欢数学,25 人喜欢语文,20 人喜欢英语,其中 10 人既喜欢数学又喜欢语文,8 人既喜欢数学又喜欢英语,6 人既喜欢语文又喜欢英语,还有 3 人这三门学科都喜欢。

请问这个班级中至少喜欢一门学科的有多少人?首先,我们分别计算喜欢数学、语文、英语的人数之和:30 + 25 + 20 = 75 人。

但是,在这个计算过程中,我们把同时喜欢两门学科的人数多算了一次。

所以要减去重复计算的部分:既喜欢数学又喜欢语文的 10 人被多算了一次,既喜欢数学又喜欢英语的 8 人被多算了一次,既喜欢语文又喜欢英语的 6 人被多算了一次。

所以要减去:10 + 8 + 6 = 24 人。

然而,这里又把同时喜欢三门学科的 3 人多减了两次。

所以要再加上 3 人。

综上,至少喜欢一门学科的人数为:75 24 + 3 = 54 人。

例 2:某学校组织学生参加课外活动,参加体育活动的有 120 人,参加文艺活动的有 90 人,参加科技活动的有 70 人。

其中,既参加体育活动又参加文艺活动的有 40 人,既参加体育活动又参加科技活动的有 30 人,既参加文艺活动又参加科技活动的有 20 人,三种活动都参加的有 10 人。

请问该校参加课外活动的学生共有多少人?我们先计算参加体育、文艺、科技活动的人数总和:120 + 90 +70 = 280 人。

然后减去重复计算的部分:既参加体育和文艺的 40 人多算了一次,既参加体育和科技的 30 人多算了一次,既参加文艺和科技的 20 人多算了一次,所以要减去:40 + 30 + 20 = 90 人。

但这样又把三种活动都参加的 10 人多减了两次,所以要加上 10 人。

因此,参加课外活动的学生总数为:280 90 + 10 = 200 人。

容斥原理

容斥原理

牛吃草问题
例题:牧场上有一片青草,每天匀速生长,已知15头牛10天可以吃完这片青草,25头牛5天可以吃完这片青草,如果有30头牛,那么几天可以吃完这片青草?
1、牧场上有一片每天匀速生长的牧草,这片牧草可以供10头牛吃20天,可以供15头牛
吃10天,问:可以供25头牛吃几天?
2、牧场上有一片牧草,供23头牛5周吃完,供17头牛10周吃完,假定草的生长速度不
变,则该牧场可供16头牛吃几周?
3、某水库原来有一定存水量,每天河水均匀流入水库,7台抽水机20天可以将该水库抽干,
9台同样的抽水机15天可以抽干,若要求6天抽干该水库,则需要多少台抽水机?
4、有一个蓄水池塘,每天都有水均匀地流入,如果用5台抽水机15天可以将水抽干,6
台同样的抽水机10天可以将水抽干。

问:蓄水池塘的水需几台抽水机一天就可以将水抽干?
5、秋天到了,牧场上的草每天以均匀的速度减少。

牧场上的草可以供20头牛吃6天,或
可以供16头牛吃7天,问:该牧场可以供13头牛吃几天?
6、某演唱会在入场前有600人排队,加入开门后每分钟来的人数是固定的,则一个入口每
分钟可以进15人;如果开放4个入口,则20分钟后就没有人排队;如果开放6个入口,那么开门后多少分钟就没有人排队了?
7、一个游泳池装了许多相同的出水管,同时游泳池每分钟由进水管进相等的水量,如果开
29个出水管则6分钟将水排完;如果开25个出水管则要9分钟将水排完,那么需要开多少个出水管?
8、有一牧场长满青草,并均匀生长,15头牛30天可以将草吃完,18头牛24天可以将草吃完,现有若干头牛吃了6天后,卖掉了8头牛,余下的牛再吃2天草就吃完了,问:牧场原来有多少头牛?。

第二章容斥原理习题及解答

第二章容斥原理习题及解答
所以
A3 A5 A7 A3 A5 A3 A5 A7
500 35
3
500 5
7
33
4
29
第二章容斥原理习题
3、A、B、C三种材料用作产品I、II、 III的原料,但要求I禁止用B、C作原料, II不能用B作原料, III不允许用A作原料, 问有多少种安排方案?(假定每种材料 只做一种产品的原料)
|
A1
A2
A3
|
10
3 10
1
(10+3)=66-13=53
即为所求
第二章容斥原理习题
7、n个单位各派两名代表去出席一会议。 2n位代表围一圆桌坐下。试问: (a)各单位代表并排坐着的方案是多少? (b)各单位的两人互不相邻的方案数又 是多少?
参考答案
[解] (a)方案数为(n-1)!2n (b)设第i单位代表相邻的方案数为Ai
5、求从O(0,0)点到(8,4)点的路径数,已 知(2,1)到(4,1)的线段, (3,1)到(3,2)的线 段被封锁。
参考答案
[解]设S为O(0,0)点到(8,4)点的所有路径
的集合。则
|
S
|
8
4
4
495
(8,4)
(0,0)
参考答案
[解(续)] 令
A1 表示S中经过线段(2,1)-(3,1)的路径
参考答案
[解(续)]
s4
10
3
2
3! 3!
30 3! 2!
420
s5 12 3!1! 72
s6 1 3! 0! 6
s7 0
s8 0

| A12 A23 L A89 |
为所求 1680 3360 2940 1440 420 72 6 174

三年级容斥原理50经典例题

三年级容斥原理50经典例题

三年级容斥原理50经典例题例题1:有两块木板各长50厘米,把两块木板钉成一块长木板,中间钉在一起的重叠部分长8厘米。

钉成的木板长 _____ 厘米。

解:1、本题考查了学生的运算能力、应用能力。

解决重叠问题时,要注意重叠的部分不能重复计算。

2、两块木板一共长50+50=100(厘米),如果钉在一起,说明原来的两个8厘米变成了一个8厘米,这样钉成的木板比100厘米少了8厘米,所以钉成的木板长100-8=92(厘米)。

例题2:有两张各长20厘米的纸条,粘贴在一起后的总长是36厘米,那么重叠部分长()厘米。

A、2B、4C、8D、16解:1、此题考查孩子的应用能力、运算能力。

孩子没有进行画图理解,只是凭自己的主观想象进行思考,没有找到总长度与重复部分长度之间的关系,在后面计算时出现错误。

2、两张纸条如果没有重叠,那么一共长20+20=40(厘米),而重叠后的长度是36厘米,短了40-36=4(厘米),说明重叠部分的长度是4厘米。

选择B。

例题3:某班在短跑、投掷和跳远三项检测中,有4人三项都未达到优秀,其他人至少有一项是优秀,下表是得优秀的情况,这个班共有多少人?解:根据题意画图2、我们可以先算出19+20+21=60(人),但是这里有被重复算的和漏算的,我们要注意减去重复的部分,加上漏算的部分。

3、由图可知,6、9、10人都是两两重叠的部分,被多算了一次,要减去:60-6-9-10=35(人),但要注意,图中的3人,在计算19、20、21的和的时候被加了三次,在“-6-9-10”的时候又被减了三次,那么相当于漏算了这3人,所以我们应该将漏算的3人加上,35+3=38(人),这38人是至少有一项达到优秀的人数,算全班总人数,还需要加上三项都未达到优秀的4人,所以共有38+4=42(人)。

例题5:☆☆☆一个班有30人,完成作业的情况有三种,只完成语文的,只完成数学的,两种都完成的。

已知完成语文作业的20人,完成数学作业的23人。

集合之四:容斥原理

集合之四:容斥原理

集合之四:容斥原理问题两个集合容斥问题容斥原理一:如果被计数的事物有A、B两类,那么,A类元素个数+B 类元素个数=既是A类又是B类的元素个数+A类或B类元素个数。

写成公式形式即:|A U B|=|A|+|B|一|A∩B|韦恩图:解决简单的两类或三类被计数事物之间的重叠问题时采用韦恩图会更加便捷、直接。

【例】1四年级一班有54人,定阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订阅《小学生优秀作文》的有45人每人至少订阅一种读物,订阅《数学大世界》的有多少人?()A.13 B.22 C.33 D.41【例】2五年级有122名同学参加语文、数学考试,每个至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。

语文、数学都优秀的有多少人?()A.30 B.35 C.57 D.65【例】3学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。

这个文艺组共有多少人?()A.25 B.32 C.33 D.41【例】4某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人,问多少个同学两道题都没有答对?()A.1 B.2 C.3 D.4三个集合容斥问题容斥原理二:如果被计数的事物有A、B、C三类,那么,A类元素个数+B 类元素个数+C类元素个数=A类或B类或C类元素个数+既是A类义是B类的元素个数+既是A类又是B类的元素个数+既是B类又是C类元素个数—既是A 类又是B类而且是C类的元素个数。

写成公式形式即:|A U B U C|=|A|+|B|+|C|—|A∩B|—|B∩C|—|C∩A|+|A∩B∩C|【例】5某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既日语又教法语,有4名教英语、日语和法语三门课,则不教三门课的外语教师有多少名?()A.12 B.14 C.16 D.18【例】6对厦门大学计算机系100名学生进行调查,结果发现他们喜欢看NBA 和足球、赛车。

容斥问题

容斥问题

数学运算之容斥原理专题核心公式:(1)两个集合的容斥关系公式:A+B=A∪B+A∩B(2)三个集合的容斥关系公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩C【例1】对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。

其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有:A.22人B.28人C.30人D.36人【解析】设A=喜欢看球赛的人(58),B=喜欢看戏剧的人(38),C=喜欢看电影的人(52)A∩B=既喜欢看球赛的人又喜欢看戏剧的人(18)B∩C=既喜欢看电影又喜欢看戏剧的人(16)A∩B∩C=三种都喜欢看的人(12)A∪B∪C=看球赛和电影、戏剧至少喜欢一种(100)根据公式:A+B+C=A∪B∪C+A∩B+B∩C+C∩A-A∩B∩CC∩A=A+B+C-(A∪B∪C+A∩B+B∩C-A∩B∩C)=148-(100+18+16-12)=26所以,只喜欢看电影的人=C-B∩C-C∩A+A∩B∩C=52-16-26+12=22【例2】某大学某班学生总数为32人,在第一次考试中有26人及格,在第二次考试中有24人及格,若两次考试中,都没有及格的有4人,那么两次考试都及格的人数是( )。

A.22B.18C.28D.26【解析】设A=第一次考试中及格的人(26),B=第二次考试中及格的人(24)显然,A+B=26+24=50;A∪B=32-4=28,则根据公式A∩B=A+B-A∪B=50-28=22所以,答案为A。

【例3】某单位有青年员工85人,其中68人会骑自行车,62人会游泳,既不会骑车又不会游泳的有12人,则既会骑车又会游泳的有( )人A.57B.73C.130D.69【解析】设A=会骑自行车的人(68),B=会游泳的人(62)显然,A+B=68+62=130;A∪B=85-12=73,则根据公式A∩B=A+B-A∪B=130-73=57所以,答案为A。

六年级容斥原理练习题

六年级容斥原理练习题

六年级容斥原理练习题
容斥原理是概率论中的一个重要原理,可以用于解决涉及多个事件的概率计算问题。

在六年级数学中,我们也可以运用容斥原理来解决一些错排、组合问题等。

以下是一些关于容斥原理的练习题,供同学们进行练习。

练习题1:
某班有30位学生,其中15人喜欢音乐,20人喜欢体育,10人既喜欢音乐又喜欢体育。

请问至少有多少位学生既不喜欢音乐也不喜欢体育?
练习题2:
甲、乙、丙三位同学是某班的值日生,每周值日一天。

如果要求甲同学在星期一值日,乙同学在星期三值日,丙同学在星期五值日,那么这样的安排共有多少种?
练习题3:
某班有30位学生,其中15人喜欢英语,18人喜欢数学,12人喜欢音乐。

其中恰好3人即喜欢英语又喜欢数学,4人既喜欢英语又喜欢音乐,5人既喜欢数学又喜欢音乐。

请问这个班级有多少人?
练习题4:
在一个小说比赛中,参赛者需要选择一个主题,主题共有A、B、C 三个选项。

每个参赛者必须选择一个主题进行创作,并且选定主题后
不能更换。

如果有10位参赛者,其中有4位选择了A主题,3位选择
了B主题,2位选择了C主题,1位参赛者选择了两个主题。

那么最终
有多少位参赛者选择了至少一个主题?
练习题5:
小明有5个相同的红球,4个相同的绿球,3个相同的蓝球。

他希
望从中选择4个球放入一个盒子里,要求盒子中至少有一种颜色的球。

那么小明一共有多少种不同的放球方法?
通过以上几道练习题,我们可以较好地掌握容斥原理在解决数学问
题中的运用。

希望同学们能够认真思考并正确解答,提高数学问题解
决能力。

容斥问题讲解方法

容斥问题讲解方法

容斥问题讲解方法一、容斥原理容斥原理是组合数学中的一种重要原理,主要用于解决包含与排斥的问题。

当两个或多个集合存在重叠时,我们不能简单地将这些集合的元素数目相加,因为重叠部分的元素被重复计算了。

容斥原理提供了解决这类问题的方法,通过将各个集合的元素数目两两相减,得到不重叠部分的元素数目。

二、基本形式两个集合的容斥问题:设A和B是两个集合,则A和B 的并集的元素数目可以通过|A∪B| = |A| + |B| - |A∩B| 来计算。

三个集合的容斥问题:设A、B和C是三个集合,则A、B和C的并集的元素数目可以通过|A∪B∪C| = |A| + |B| + |C| - |A∩B| - |B∩C| - |C∩A| + |A∩B∩C| 来计算。

三、复杂形式当集合的数量增加时,容斥原理可以扩展到更复杂的形式。

通过递归或归纳的方法,可以将多个集合的并集的元素数目表示为各个集合元素数目的函数。

四、解题技巧明确问题的条件和目标:首先需要明确问题的条件和目标,确定涉及的集合以及它们之间的关系。

画出文氏图:在理解问题时,可以通过画出文氏图来直观地表示各个集合以及它们的重叠部分。

文氏图是一种用封闭曲线表示集合及其关系的图形。

应用容斥原理:根据问题的具体情况,选择适当的容斥原理公式来解决问题。

如果涉及多个集合,需要仔细分析它们的重叠关系。

简化计算:在应用容斥原理时,需要注意简化计算,避免出现大量的重复计算和复杂运算。

可以采取提取公因式、使用对称性等方法来简化计算。

检查答案:在解决问题后,需要检查答案是否符合实际情况和逻辑,确保答案的正确性。

五、注意事项理解问题的背景和要求:在解决容斥问题时,需要注意理解问题的背景和要求,弄清各个集合的含义和关系。

避免重复计数:在应用容斥原理时,需要注意避免重复计数。

特别是当集合之间存在多重重叠时,需要仔细分析重叠部分的关系。

分情况讨论:当问题涉及多种情况时,需要注意分情况讨论。

不同情况下的集合关系可能会有所不同,需要分别进行分析和计算。

容斥原理50经典例题

容斥原理50经典例题

容斥原理50经典例题容斥原理是组合数学中的一种重要方法,用于解决包含重叠部分的计数问题。

它在解决排列组合问题时有着广泛的应用,能够帮助我们更快速、更准确地求解问题。

接下来,我们将通过50个经典例题来深入理解容斥原理的应用。

1. 有一个集合包含了1至100的整数,求这个集合中既不是3的倍数,也不是5的倍数的整数个数。

解析,首先,我们可以分别求出是3的倍数和是5的倍数的整数个数。

然后利用容斥原理求出既不是3的倍数,也不是5的倍数的整数个数。

2. 在1至100的整数中,有多少个整数的个位和十位数字都不是7?解析,我们可以利用容斥原理来求出个位是7的整数个数,十位是7的整数个数,然后再利用容斥原理求出个位和十位都是7的整数个数,最后用总数减去这个数就是答案。

3. 有A、B、C三个班,A班有50个学生,B班有60个学生,C班有70个学生,求至少有一个班有学生参加了篮球比赛的方案数。

解析,我们可以利用容斥原理来求出每个班都没有学生参加篮球比赛的方案数,然后用总数减去这个数就是答案。

4. 在1至100的整数中,有多少个整数的各位数字和为偶数?解析,我们可以利用容斥原理来求出各位数字和为奇数的整数个数,然后用总数减去这个数就是答案。

5. 有一个集合包含了1至100的整数,求这个集合中既不是2的倍数,也不是3的倍数的整数个数。

解析,首先,我们可以分别求出是2的倍数和是3的倍数的整数个数。

然后利用容斥原理求出既不是2的倍数,也不是3的倍数的整数个数。

6. 有A、B、C三个班,A班有50个学生,B班有60个学生,C班有70个学生,求至少有一个班有学生参加了足球比赛但没有参加篮球比赛的方案数。

解析,我们可以利用容斥原理来求出每个班都没有学生参加足球比赛但没有参加篮球比赛的方案数,然后用总数减去这个数就是答案。

7. 在1至100的整数中,有多少个整数的各位数字和为7的倍数?解析,我们可以利用容斥原理来求出各位数字和不是7的倍数的整数个数,然后用总数减去这个数就是答案。

8、容斥原理

8、容斥原理

容斥原理问题(一)练习日期:练习时间:姓名:Happy:容斥问题:包含与排除的问题。

方法:文氏图,也叫“维恩图”,由英国著名数学家Venn发明。

容斥原理公式:①总数量=A+B+C-(AB+AC+BC)+ABC②总数量=A+B-AB(常用)1、江滨小学三(2)班学生采集标本,采集昆虫标本的有27人,采集植物标本的有21人,两种标本都采集的有8人,问全班共有多少学生?2、一个班有学生42人,参加体育队的有30人,参加文艺队的有25人,每人至少参加一个队,问这个班两队都参加的有几人?(北京竞赛题)3、五(2)班有40名同学,其中25人没有参加数学小组,18人参加航模小组,有10人两个小组都没有参加,那么只参加了一个小组的学生有多少人?方法:4、李老师出了两道题,全班40人中,第一题有30人做对,第2题有12人未做对,两题都对的有20人。

问:①第1题不对,第2题做对有几人?②两题都不对的有几人?例1 、在1至1000的自然数中,不能被5或7整除的数有______个。

(竞赛试题)讲析:能被5整除的数共有1000÷5=200(个);能被7整除的数共有1000÷7=142(个)……6(个);同时能被5和7整除的数共有1000÷35=28(个)……20(个)。

所以,能被5或7整除的数一共有(即重复了的共有):200+142—28=314(个);不能被5或7整除的数一共有1000—314=686(个)。

例2 、某个班的全体学生进行短跑、游泳、篮球三个项目的测试,有4名学生在这三个项目上都没有达到优秀,其余每人至少有一个项目达到了优秀。

这部分学生达到优秀的项目、人数如下表:求这个班的学生人数。

(全国第三届“华杯赛”复赛试题)讲析:如下图,图中三个圆圈分别表示短跑、游泳和篮球达到优秀级的学生人数。

只有篮球一项达到优秀的有:15—6—5+2=6(人);只有游泳一项达到优秀的有:18—6—6+2=8(人);只有短跑一项达到优秀的有:17—6—5+2=8(人)。

容斥原理问题

容斥原理问题

容斥原理问题嘿,朋友们!今天咱来聊聊容斥原理问题,这可有意思啦!你想想啊,就好像你有一堆水果,有苹果、香蕉、橘子。

然后呢,有些水果是红色的,有些是黄色的,这是不是就有点像容斥原理啦?比如说,红色水果里有苹果和一部分橘子,黄色水果里有香蕉和另一部分橘子,那你要算总共有多少种水果,可不能简单地把红色的和黄色的加起来,因为里面有重复的橘子呀!这就是容斥原理的精髓所在。

咱再打个比方,班级里喜欢语文的同学有一群,喜欢数学的同学有一群,但是呢,有一部分同学既喜欢语文又喜欢数学呀。

那要是你想知道班级里到底有多少同学对这两门学科至少有一门感兴趣,你就得好好琢磨琢磨这容斥原理啦。

这就像你去整理衣柜,有些衣服是夏天穿的,有些是冬天穿的,还有些春秋都能穿。

你要是算总共有多少类衣服,可不能乱来呀,得把那些重复计算的部分给去掉或者加上,是不是很有趣?再比如去参加聚会,有些人喜欢喝酒,有些人喜欢吃零食,还有些人既喜欢喝酒又喜欢吃零食。

那统计总人数的时候,你就得用容斥原理来好好算算啦,可不能把那些重复的人多算或者少算了。

容斥原理在生活中的应用可多啦,就像你走路得看清楚路一样重要。

要是你不搞清楚,那可就容易闹笑话或者出问题哟。

想想看,如果一个公司要统计员工的技能情况,有些人会编程,有些人会设计,还有些人既会编程又会设计,那怎么能准确地知道公司到底有多少种技能人才呢?这就得靠容斥原理来帮忙啦!在解决这类问题的时候,可一定要细心哦,就像绣花一样,一针一线都不能马虎。

不然的话,算错了可就不好啦。

所以说啊,容斥原理看似简单,实则暗藏玄机呢!它就像一把钥匙,可以帮我们打开很多问题的大门。

我们可不能小瞧它,得好好去研究研究,把它用得恰到好处。

总之,容斥原理是个很实用的东西,我们可得把它玩转了,让它为我们的生活和学习服务呀!大家说是不是呢?。

容斥原理之三者容斥问题

容斥原理之三者容斥问题

容斥原理之三者容斥问题浙江行测答题技巧:容斥原理之三者容斥问题中公教育考试研究院宋丽娜:容斥原理是行测数学运算中常考知识点。

容斥原理是指在计数时,必须注意无一重复,且无遗漏。

这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。

例1:一个班级的学生数学和语文每人至少喜欢其中一种,其中喜欢数学课的有49人,喜欢语文课的有52人,二者都喜欢的有21人,则这个班级有多少人?中公点拨:本题就是一个容斥问题,解决此问题的方法就是先算:49+52=101(把含于某内容中的所有对象的数目先计算出来),然后再把计数时重复计算的数目排斥出去即:101-21=80人,则整个班级的人数就有80人。

三者容斥问题是行测数学运算中常考也相对较复杂的容斥问题。

所谓三者容斥是指在题干中有三种集合(集合就是具有共同属性所以元素的的整体,例如上题中喜欢数学的人构成一个集合)。

三者容斥问题有一个基本公式:A,B,C代表三个集合,则有A∪BUC=A+B+C-A∩B-A∩C-B∩C+ A∩B∩C这个公式表达的含义是,A+B+C再减去两两相交之后,中间E(即A∩B∩C)这部分被减没了。

而容斥原理的基本思想是计数时不重复不漏掉,故要再加回来,所以又加了一个A∩B∩C。

例2. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。

结果显示:他们都至少喜欢三种大球中的一种,其中有58人喜欢篮球,有68人喜欢足球,有62人喜欢排球,而且,篮球和足球都喜欢的有45人,足球和排球都喜欢的有33人,三种球都喜欢的有12人。

篮球和排球都喜欢的多少人?中公教育解析:由题意可画图如下:则有上述公式可知:58+68+62-45-33-篮球和排球都喜欢+12=100人故喜欢篮球和排球的人有22人。

例3. 实验小学的小记者对本校100名同学进行调查,调查他们对三种大球(篮球、足球、排球)的与否。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

容斥原理问题——基础学习一、解答题
2、两个集合容斥原理例1:四年级一班有54人,定阅《小学生优秀作文》和《数学大世界》两种读物的有13人,订阅《小学生优秀作文》的有45人每人至少订阅一种读物,订阅《数学大世界》的有多少人?()
A.13 B.22 C.33 D.41
【答案】B
【解题关键点】设A={定阅《小学生优秀作文》的人},B={订阅《数学大世界》的人},那么A∩B={同时订阅两本读物的人},A∪B={至少订阅一样的人},由容斥原则,B= A∪B+A∩B-A=54+13-45=22人。

【结束】
3、两个集合容斥原理例2:五年级有122名同学参加语文、数学考试,每个至少有一门功课取得优秀成绩,其中语文成绩优秀的有65人,数学成绩优秀的有87人。

语文、数学都优秀的有多少人?()
A. 30 B.35 C.57 D.65
【答案】A
【解题关键点】此题是典型的两个集合的容斥问题,因此,可以直接有两个集合的容斥原理得到,语文和数学都优秀的学生有65+87-122=30人。

【结束】
4、两个集合容斥原理例3:学校文艺组每人至少会演奏一种乐器,已知会拉手提琴的有24人,会弹电子琴的有17人,其中两样都会的有8人。

这个文艺组共有多少人?()A.25 B.32 C.33 D.41
【答案】C
【解题关键点】设A={会拉手提琴的},B={会弹电子琴的},因此A∪B ={文艺组的人},A∩B={两样都会的},由两个集合的容斥原理可得:A∪B=A+B- A∩B=24+17-8=33。

【结束】
5、两个集合容斥原理例4:某班有36个同学在一项测试中,答对第一题的有25人,答对第二题的人有23人,两题都答对的有15人,问多少个同学两道题都没有答对?()A.1 B.2 C.3 D.4
【答案】C
【解题关键点】有两个集合的容斥原理得到,至少答对一道题的同学有25+23-15=33人,因此两道题都没有答对的同学有36-33=3人。

【结束】
7、三个集合容斥原理例1:某大学有外语教师120名,其中教英语的有50名,教日语的有45名,教法语的有40名,有15名既教英语又教日语,有10名既教英语又教法语,有8名既日语又教法语,有4名教英语、日语和法语三门课,则不交三门课的外语教师有多少名?()
A.12 B.14 C.16 D.18
【答案】B
【解题关键点】此题是三个集合的容斥问题,根据容斥原理可以得到,至少教英、日、法三门课其中一门的外语教师有50+45+40-10-8-4=106,不做这三门课的外语教师人数为120-106=14名。

【结束】
8、三个集合容斥原理例2:对厦门大学计算机系100名学生进行调查,结果发现他们喜欢看NBA和足球、赛车。

其中58人喜欢看NBA;38人喜欢看赛车,52人喜欢看足球,既喜欢看NBA又喜欢看赛车的有18人,既喜欢看足球又喜欢看赛车的有16人,三种都喜欢看的有12人,则只喜欢看足球的有()。

A.22人 B. 28人 C.30人D.36人
【答案】A
【解题关键点】求只喜欢看足球的,只要种人数减去喜欢看NBA和喜欢看赛车的,但多减去了既喜欢看NBA又喜欢看赛车的,再加回去即可,100-58-38+18=22人。

【结束】
9、三个集合容斥原理例3:实验小学举办学术书法展,学校的橱窗里展出了每个年级学生的书法作品,其中有28幅不是五年级的,有24幅不是六年级的,五、六年级参展作品共有20幅。

一、二年级参展的作品总数比三、四年级参展的作品总数少4幅。

一、二年级参展的书法作品共有多少幅?()
A.6 B.10 C.16 D.20
【答案】A
【解题关键点】28幅不是五年级的,也就是六年级+其他年级=28幅;24幅不是六年级的,也就是五年级+其他年级=24幅;上述两个式子相加得,(五年级+六年级)+2×其他年级=28+24,因此其他年级的有(28+24-20)÷2=16幅,又因为一、二年级参展的作品总数比三、四年级参展的作品总数少4幅,因此一、二年级参展的书法作品共有(16-2)÷2=6幅。

【结束】
10、三个集合容斥原理例4:某工作组有12名外国人,其中6人会说英语,5人会说法语,5人会说西班牙语;有3人既会说英语又会说法语,有2人既会说法语又会说西班牙语,有2人既会说西班牙语又会说英语;有1人这三种语言都会说。

则只会说一种语言的人比一种语言都不会说的人多( )。

A.1人
B.2人
C.3人
D.5人
【答案】C。

【解题关键点】如图所示:
上图的含义为只懂英语、法语和西班牙语的人数分别人2、1和2,共5人,而一种语言都不会说的人数为12-(2+2+1+1+1+1+2)=2(人),5-2=3(人)。

【结束】。

相关文档
最新文档