河南省商丘市高考数学二模试卷(文科)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省商丘市高考数学二模试卷(文科)
姓名:________ 班级:________ 成绩:________
一、选择题 (共12题;共24分)
1. (2分)(2020·漳州模拟) 复数满足,则()
A .
B .
C .
D .
2. (2分)设全集U={x|x<4,x∈N},A={0,1,2},B={2,3},则B∪∁UA等于()
A . {3}
B . {2,3}
C . ∅
D . {0,1,2,3}
3. (2分)设6件产品中有4件合格品2件不合格品,从中任意取2件,则其中至少一件是不合格品的概率为()
A . 0.4
B . 0.5
C . 0.6
D . 0.7
4. (2分) (2016高二上·和平期中) 设Sn是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=()
A . 5
B . 7
C . 9
D . 11
5. (2分) (2016高二下·东莞期末) 已知函数f(x)= 在点(1,2)处的切线与f (x)的图象有三个公共点,则b的取值范围是()
A . [﹣8,﹣4+2 )
B . (﹣4﹣2 ,﹣4+2 )
C . (﹣4+2 ,8]
D . (﹣4﹣2 ,﹣8]
6. (2分) (2018高二下·温州期中) 椭圆与双曲线有相同的焦点坐标,则
()
A . 3
B .
C . 5
D .
7. (2分)(2020·江西模拟) 已知是球O的内接三棱锥,球O的半径为2,且,,
,则点A到平面的距离为()
A .
B .
C .
D .
8. (2分)(2017·上高模拟) 公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近于圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的(四舍五入精确到小数点后两位)的值为()(参考数据:sin15°=0.2588,sin75°=0.1305)
A . 3.10
B . 3.11
C . 3.12
D . 3.13
9. (2分)设,若函数在上单调递增,则的取值范围是()
A .
B .
C .
D .
10. (2分) (2019高二上·惠州期末) 函数的极大值为()
A .
B . 6
C .
D . 7
11. (2分)(2017·揭阳模拟) 某工件的三视图如图所示,现将该工件通过切割,加工成一个体积尽可能大的正方体新工件,并使新工件的一个面落在原工件的一个面内,则新工件的体积为()
A .
B . 1
C . 2
D .
12. (2分) (2019高一上·东至期中) 若函数单调递增,则实数的取值范围是()
A .
B .
C .
D .
二、填空题 (共4题;共4分)
13. (1分)已知向量,若,则 ________.
14. (1分) (2016高一下·雅安期末) 若变量x、y满足约束条件:,则y﹣2x的最大值为________.
15. (1分)(2012·辽宁理) 已知等比数列{an}为递增数列,且a52=a10 , 2(an+an+2)=5an+1 ,则数列{an}的通项公式an=________.
16. (1分)已知双曲线的方程为,点是其左右焦点,是圆上的一点,点在双曲线的右支上,则的最小值是________.
三、解答题 (共7题;共65分)
17. (10分) (2019高三上·郑州期中) 在中,点在边上,,,
.
(1)若的面积为3,求;
(2)若,求 .
18. (10分)如图所示的空间几何体中,四边形是边长为2的正方形,平面
,,,, .
(1)求证:平面平面;
(2)求平面与平面所成的锐二面角的余弦值.
19. (5分) (2017高二下·肇庆期末) 某数学教师对所任教的两个班级各抽取20名学生进行测试,分数分布如表,若成绩120分以上(含120分)为优秀.
分数区间甲班频率乙班频率
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.3
[90,120)0.20.2
[120,150]0.20.1
优秀不优秀总计
甲班
乙班
总计
k0 2.072 2.706 3.841 5.024 6.6357.87910.828
P(K2≥k0)0.150.100.050.0250.0100.0050.001(Ⅰ)求从乙班参加测试的90分以上(含90分)的同学中,随机任取2名同学,恰有1人为优秀的概率;
(Ⅱ)根据以上数据完成上面的2×2列联表:在犯错概率小于0.1的前提下,你是否有足够的把握认为学生的数学成绩是否优秀与班级有关?
20. (10分)(2017·鄂尔多斯模拟) 设抛物线C:x2=2py(p>0)的焦点为F,准线为l,A∈C,已知以F 为圆心,FA为半径的圆F交l于B,D两点;
(1)若∠BFD=90°,△ABD的面积为,求p的值及圆F的方程;
(2)若A,B,F三点在同一直线m上,直线n与m平行,且n与C只有一个公共点,求坐标原点到m,n距离的比值.
21. (10分)已知函数在处的切线方程为 .
(1)求,的值;
(2)求的单调区间与极值.
22. (10分)(2017·郴州模拟) 在平面直角坐标系xoy中,曲线C的参数方程为(θ为参
数),直线l的参数方程为(t为参数)以坐标原点O为极点,x轴的正半轴为极轴的极坐标系.(1)写出直线l的普通方程以及曲线C的极坐标方程;
(2)若直线l与曲线C的两个交点分别为M,N,直线l与x轴的交点为P,求|PM|•|PN|的值.
23. (10分) (2020高二上·安徽月考)
(1)已知 , , ,试比较与的大小;
(2)求证:.
参考答案一、选择题 (共12题;共24分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
二、填空题 (共4题;共4分)
13-1、
14-1、
15-1、
16-1、
三、解答题 (共7题;共65分) 17-1、
17-2、
18-1、18-2、
19-1、
20-1、
20-2、
21-1、21-2、22-1、
22-2、23-1、23-2、。