七年级数学《整式的加减》单元测试题及答案

合集下载

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)

七年级数学上册《第二章整式的加减》单元测试卷-含答案(人教版)一、单选题1.单项式32πx yz -的系数和次数分别是( )A .-2,6B . -2π,5C .-2,7D .-2π ,62.多项式233321x y x y --是( )A .二次三项式B .三次二项式C .四次三项式D .五次三项式3.下列语句错误的是( )A .数字0也是单项式B .单项式a -的系数与次数都是1C .12xy 是二次单项式 D .25m n 与22nm -是同类项4.下列化简结果正确的是( )A .-4a-a=-3aB .6x 2-2x 2=4C .6x 2y-6yx 2=0D .3x 2+2x 2=5x 45.下列说法正确的是( )A .25xy 的系数是5-B .单项式a 的系数为1、次数是0C .2325a b 的次数是6D .1xy x +-是二次三项式6.若关于x ,y 的多项式()223x axy bx y +---不含二次项,则a b -的值为( )A .0B .-2C .2D .-17.关于多项式3x 2﹣y ﹣3xy 3+x 5﹣1,下列说法错误的是( )A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣18.下列各组中的两项,属于同类项的是( )A .32x -与2x -B .12ab -与18baC .2x y 与2xy -D .4m 与4mn9.若一个多项式减去223a b -等于222a b +,则这个多项式是( )A .222a b -+B .222a b -C .222a b -D .222a b --二、填空题10.3227x y -的系数是 .11.若2m a b 与323n a b --是同类项,则m n +的值为 . 12.多项式233223xy x x y -+-的次数为 .13.一个多项式与2210x x --+的和是32x -,则这个多项式为 .三、解答题14.已知关于x 的多项式32322325mx x x x x nx -+-+-不含三次项和一次项,求n m 的值. 15.先化简,再求值:223252372x x x x ⎡⎤⎛⎫----⎪⎢⎥⎝⎭⎣⎦,其中2x =-. 四、综合题16.在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,并且a 是多项式﹣2x 2﹣4x+1的一次项系数,b 是数轴上最小的正整数,单项式-12x 2y 4的次数为c. (1)a = ,b = ,c = . (2)请你画出数轴,并把点A ,B ,C 表示在数轴上; (3)请你通过计算说明线段AB 与AC 之间的数量关系.17.已知整式 ()()3123a x x a ---+ .(1)若它是关于 x 的一次式,求 a 的值并写出常数项; (2)若它是关于 x 的三次二项式,求 a 的值并写出最高次项.18.计算:一个整式A 与多项式x2-x-1的和是多项式-2x2-3x+4.(1)请你求出整式A ; (2)当x=2时求整式A 的值19.已知多项式-3x m+1y 3+x 3y-3x 4-1是五次四项式,单项式3x 3n y 2的次数与这个多项式的次数相同.(1)求m ,n 的值.(2)把这个多项式按x 降幂排列.参考答案与解析1.【答案】B【解析】【解答】解:单项式32πx yz -的数字因数是2π-,所有字母的指数的和为3115++=所以该单项式的系数和次数分别是:2π-和5. 故答案为:B .【分析】根据单项式的系数和次数的定义逐项判断即可。

2024-2025学年人教新版七年级上册数学第4章 整式的加减 单元测试卷(含答案)

2024-2025学年人教新版七年级上册数学第4章 整式的加减  单元测试卷(含答案)

2024-2025学年人教新版七年级上册数学《第4章整式的加减》单元测试卷一.选择题(共8小题,满分24分)1.代数式x2+5,﹣1,x2﹣8x+2,π,,中,整式有( )A.3个B.4个C.5个D.6个2.已知﹣2x6y与5x2m y n是同类项,则( )A.m=2,n=1B.m=3,n=1C.m=,n=1D.m=3,n=03.下列计算正确的是( )A.5a﹣2a=3B.2a2+6a2=8a4C.x2y﹣2xy2=﹣xy2D.3mn﹣2mn=mn4.在等式1﹣a2+2ab﹣b2=1﹣( )中,括号里应填( )A.a2﹣2ab+b2B.a2﹣2ab﹣b2C.﹣a2﹣2ab+b2D.﹣a2+2ab﹣b25.若a<0,则|a﹣(﹣a)|等于( )A.﹣a B.0C.2a D.﹣2a6.如图是小明完成的线上作业,他的得分是( )判断题(每小题2分,共10分)①1是单项式.(×)②非负有理数不包括零.(×)③绝对值不相等的两个数的和一定不为零.(√)④单项式﹣a的系数与次数都是1.(√)⑤将34.945精确到十分位为34.95.(×)A.4分B.6分C.8分D.10分7.在下列各整式中,次数为5的是( )A.8x3y B.m+n2+q2C.52c3D.x2y38.若代数式2(mx2+x﹣1)﹣(x2﹣nx+1)的值与x的取值无关,则m2023n2025的值为( )A.﹣4B.4C.D.二.填空题(共8小题,满分24分)9.有一道题:﹣3x(﹣2x2+3x﹣1)=6x3﹣9x2+□,“□”的地方被墨水弄污了,你认为“□”内应填写 .10.已知关于x的整式x3﹣x2+x a﹣2x﹣2bx中不含有x的一次项和二次项,则a+b= .11.若关于x,y,z的单项式﹣mx3y n与单项式的次数相同,系数互为倒数,则该单项式是 .12.多项式x2+x+1的次数是 .13.若2a m+1b2与﹣3a3b n是同类项,则m+n的值为 .14.若一个四位自然数M各个数位上的数字均不为0,且前两位数字之和为5,后两位数字之和为8,则称M为“幸福数”.把四位数M的前两位数字和后两位数字整体交换得到新的四位自然数N.规定.例如:M=2344,∵2+3=5,4+4=8,∴2344是“幸福数”,则.若P是最大的“幸福数”,则F(P)= ;若S是“幸福数”,且F(S)恰好能被8整除,则所有满足题意的S的值共有 个.15.如果a2﹣3a﹣7=0,那么代数式(a﹣1)2+a(a﹣4)﹣2的值为 .16.设x、y互为相反数,且xy≠0.m的绝对值为8,则的值为 .三.解答题(共6小题,满分52分)17.已知单项式﹣3xy2的系数和次数分别是a,b,求ab+a b的值.18.已知A=3x2+xy+y,B=2x2﹣xy+2y.(1)化简2A﹣3B.(2)当x=2,y=﹣3,求2A﹣3B的值.19.【问题呈现】(1)已知代数式mx﹣y﹣3x+4y﹣1的值与x的值无关,求m的值;【类比应用】(2)将7张长为a,宽为b的小长方形纸片(如图①),按如图②的方式不重叠地放在长方形ABCD 内,未被覆盖的两部分的面积分别记为S1,S2,当AB的长度变化时,S1﹣S2的值始终不变,求a与b 的数量关系.20.已知多项式A=(m﹣3)2﹣(2﹣m)(2+m)+6m.(1)化简多项式A;(2)若m2﹣4=5,求多项式A的值.21.类比同类项的概念,我们规定:所含字母相同,并且相同字母的指数之差的绝对值等于0或1的项是“强同类项”,例如:﹣x3y4与2x4y3是“强同类项”.(1)给出下列四个单项式:①5x2y5,②﹣x5y5,③4x4y4,④﹣2x3y6.其中与x4y5是“强同类项”的是 (填写序号);(2)若x3y4z m﹣2与﹣2x2y3z6是“强同类项”,求m的值;(3)若C为关于x、y的多项式,C=(n﹣5)x5y6+3x4y5﹣7x4y n,当C的任意两项都是“强同类项”,求n的值;(4)已知2a2b s、3a t b4均为关于a,b的单项式,其中s=|x﹣1|+k,t=2k,如果2a2b s、3a t b4是“强同类项”,那么x的最大值是 ,最小值是 .22.定义:若非零实数a,b,c满足,则称c是a和b的“协调数”.如4是3和6的“协调数”.(1)问:是不是﹣2和﹣3的“协调数”?(2)若2m是p和q的“协调数”,用m,q的代数式表示q.参考答案与试题解析一.选择题(共8小题,满分24分)1.B2.B3.D4.A5.D6.B7.D8.A二.填空题(共8小题,满分24分)9.3x.10.1.11.﹣3x3y2.12.2.13.4.14.30,3.15.13.16.16或﹣16.三.解答题(共6小题,满分52分)17.﹣36.18.解:(1)2A﹣3B=2(3x2+xy+y)﹣3(2x2﹣xy+2y)=6x2+2xy+2y﹣6x2+3xy﹣6y=5xy﹣4y;(2)当x=2,y=﹣3时,2A﹣3B=5xy﹣4y=5×2×(﹣3)﹣4×(﹣3)=﹣18.19.(1)3;(2)a﹣2b=0.20.(1)2m2+5;(2)23.21.(1)②③④;(2)m=7,8,9;(3)n=5或n=6;(4),.22.(1)是;(2).。

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案

七年级数学-整式的加减单元测试题及答案七年级数学-整式的加减单元测试题一、选择题(每小题2分,共20分)1.在代数式中,x2-5,-1,x2-3x+2,π,5/x,x2+1/x+1,-3π整式有()A。

3个 B。

4个 C。

5个 D。

6个2.单项式-3πxy2z2的系数和次数分别是()A。

-π,5 B。

-1,6 C。

-3π,6 D。

-3,73.下面计算正确的是()A。

3x2-x2=3 B。

3a2+2a3=5a5 C。

3+x=3x D。

-0.25ab+1/4ab=04.多项式-x2-1/2x-1的各项分别是()A。

-x2,1/2x,1 B。

-x2,-1/2x,-1 C。

-x2,1/2x,-1 D。

x2,-1/2x,-15.已知2x3y2和-3x3my2是同类项,则式子4m-24的值是()A。

20 B。

-20 C。

28 D。

-286.下面各题去括号错误的是()A。

x-(6y-1/2)=x-6y+1/2B。

2m+(-n+1/3a-b)=2m-n+1/3a-bC。

-1/2(4x-6y+3)=-2x+3y+3D。

(a+1/2b)-(-1/3c+2/7)=a+1/2b+1/3c-2/77.买一个足球需要m元,买一个篮球需要n元,则买4个足球、7个篮球共需要()元。

A。

4m+7n B。

28mn C。

7m+4n D。

11mn8.减去-4x等于3x2-2x-1的代数式是()A。

3x2-6x-1 B。

5x2-1 C。

3x2+6x-1 D。

3x2+2x-19.已知下列一组数,用代数式表示第n个数:1、3/4、5/9、7/16、9/25……则第n个数为()A。

2n-1/n B。

n2-4/n C。

2n-1/n2 D。

2n+1/n210.如果a-b=1/2,那么-3(b-a)的值时()A。

-3/5 B。

2/3 C。

3/2 D。

1/6二、填空题(每小题3分,共30分)11.在代数式中,xy,-3,-1/4x2+1,x-y,-m2n,1/x,4-x2,ab2,2/x+3单项式有5个,多项式有3个。

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案

人教版七年级数学上册《第四章整式的加减》单元测试卷及答案一、整体代入法求值整体代入法求值,就是将一个复杂的表达式或方程看作一个整体,然后将其代入到另一个表达式或方程中进行求解的方法。

通过“比较各项系数”“拼拆各项构造整体”“比较各项系数”“拼拆各项构造整体”等方法“化繁为简”,将复杂的问题分解成若干个简单的问题,再逐一解决,最终汇聚成整体的答案。

一、 整体代入——比较各项系数1. 若代数式b a -2的值为1 ,则代数式b a 247-+ 的值为( ) .A. 7B. 8C. 9D. 102. 若a 、b 互为相反数,c 、d 互为倒数,则()=-+cd b a 3 .3. 已知代数式y x 2+的值是3 ,则代数式142-+y x 的值是 .4. 若6=+b a ,则=--b a 2218 ( ) .A. 6B. 6-C. 24-D. 125. 已知,0122=++a a 求3422-+a a 的值 . 6. 若72=-b a ,则b a 426+- 的值为 .7. 如果代数式b a -的值为4 ,那么代数式522--b a 的值为 . 8. 已知代数式y x -2的值是2- ,则代数式y x +-21 的值是 .二、 整体代入——拼拆各项构造整体1. 请回答下列各题:( 1 )化简:()().363252222y x xy xy y x --+ ( 2 )化简求值:已知,2,9==+ab b a 求()()⎪⎭⎫ ⎝⎛+--++-b ab a ab ab ab 2141025131532的值.2. 已知,12,5=-=+c b b a 则c b a -+2 的值为( ) . A. 17B. 7C. 17-D.7-3. 已知5=-b a ,2=+d c 则()()d a c b --+的值是( ) .A.3-B. 3C.7-D. 74. 已知3=-b a ,2=+dc 则()()d a c b --+ 的值为 .5. 已知,6,1422-=-=+bc b bc a 则22b a+ 的值是 ,bc b a 3222+-的值是6. 已知,5,14=-=+ab b a 求()()[]a b ab a b ab 65876+--++ 的值 .三、 整体代入——比较各项系数1. 代数式22++x x 的值为0 ,则代数式3222-+x x 的值为( ) . A. 6 B. 7 C. 6- D. 7-2. 解答下列问题:( 1 )若代数式7322++x x 的值为 8 ,那么代数式2025962++x x 的值为( 2 )若5,7==+xy y x .则代数式xy y x +--228的值为 ( 3 )若,5,162244=-=+xy y x y x 则()()()422244253y xy xy y x y x----- 的值是多 少?3. 若代数式y x 32-的值是1 ,那么代数式846+-x y 的值是 .4. 已知a ,b 互为相反数, c ,d 互为倒数, x 的绝对值为2 .求()()20252cd x cd b a x -+++-的值 .5. 已知a 与b 互为相反数,c 与d 互为倒数, m 的值为6-,求m cd mba +-+的值 . 6. 若代数式5322++x x 的值是 8 ,则代数式7642-+x x 的值是( ) . A. 1- B. 1 C. 9- D. 9 7. 若1-=-n m ,则()n m n m 222+-- 的值是 .四、 整体代入——拼拆各项构造整体1. 若32-=+mn m,1832=-mn n 则224n mn m -+ 的值为 .2. 已知2,522-==+ab b a ,求代数式()()222222353242b b ab ab ab a ++---+的值.3. 已知:1,4-==-mn n m .求:()()()mn n m m n mn n m mn ++--+-++-4223322的值 . 4. 已知(),07535172=-++-+y x y x 求=+y x 32 .5. 已知,62,1422-=-=+bc b bc a 则=-+bc b a 54322 ( ) .A. 18B. 18-C. 20D. 86. 已知2-=-+a c b ,则()()=-++⎪⎭⎫ ⎝⎛+-+--a c b c b a c b c b a a 2223132323232 参考答案一、 整体代入——比较各项系数【解答】()b a b a -+=-+227247把12=-b a 代入上式得:927=+=∴原式. 答案:C【解答】b a 、 互为相反数,d c 、互为倒数.,1,0==+∴cd b a(),3303-=-=-+∴cd b a 答案:3-【知识点】倒数的定义1. 【解答】由题意可知:,32=+y x 原式().516122=-=-+=y x【解答】,6=+b a(),612182182218=-=+-=--∴b a b a 答案:A 2. 【解答】,0122=++a a ()550512234222=-=-++=-+∴a a a a3. 【解答】()b a b a 226426--=+-,其中,72=-b a 所以原式8726-=⨯-=4. 【解答】,4=-b a ()35425252=-⨯=--=--b a b a5. 【解答】22-=-y x()()3212121=--=--=+-∴y x y x二、 整体代入——拼拆各项构造整体1.【解答】(1)原式222222913361510xy y x y x xy xy y x +=+-+=(2)原式b ab a ab ab ab 24252210---++-=(),255822524210b a ab ba ab +--=--⎪⎭⎫ ⎝⎛+-+-=其中.2,9==+ab b a.5206511618922558-=--=⨯-⨯-=∴原式 2.【解答】12,5=-=+c b b a()()171252=+=-++=-+∴c b b a c b a .答案:A3.【解答】2,5=+=-d c b a()()325-=+-=++-=+-+=∴d c b a d a c b 原式.答案:A4.【解答】,d a c b +-+=原式()()132-=-=--+=+-+=b a d c ba d c5.【解答】()();86142222=-+=-++=+bc b bc a b a()()();346282322222=--=--+=+-bc bbc abc b a答案:8;346.【解答】()34228=++=++=ab b a a b ab 原式三、整体代入——比较各项系数1. 【解答】2,0222-=+=++x x x x 即()734322-=--=-+=x x 原式.答案:D2. 【解答】(1)87322=++x x,1322=+∴x x则原式(),20282025320253232=+=++=x x(2),5,7==+xy y x()xy y x ++-=∴28原式151485728-=+-=+⨯-=(3)()()()422244253y xy xy y xyx -----()()115165,16,3225322442244422244=-=∴=-=+∴--+=+-+--=原式xy y x y x xy y x y x y xy xy y x y x3. 【解答】,132=-y x()6828322=+-=+--=∴y x 原式【解答】b a , 互为相反数,d c ,互为倒数,x 的绝对值为2,2,1,0±===+∴x cd b a当2=x 时,原式()();11241210220252=--=-+⨯+-=当2-=x 时,原式()()()();51241210220252=-+=-+-⨯+--= 所以()()20252cd x cd b a x -+++-的值为1或5.【解答】b a , 互为相反数0=+∴b ad c , 互为倒数1=∴cd.5610610=+-=-+-=+-+m cd mba 4. 【解答】由题意可知:85322=++x x,3322=+∴x x().1732276422-=-+=-+∴x x x x 答案:A5. 【解答】1-=-n m()()()()()3121222222=-⨯--=---=+-=n m n m nm n m四、整体代入——拼拆各项构造整体1. 【解答】方法一:,183,322=--=+mn n mn m∴将这两个等式的两边相减得:(),183322--=--+mn n mn m,21322-=+-+∴mn n mn m ,21422-=-+∴n mn m方法二:原式(),332222mn n mn m n mn mn m --+=-++= 将183,322=--=+mn n mn m 代入 得原式21183-=--=2.【解答】原式,691524822222b b ab a b ab a +-+--+=(),137,71372222ab b a b ab a ++-=-+-=当2,522-==+ab b a 时 原式612635-=--=.3. 【解答】原式,4223322mn n m m n mn n m mn ---+--++-=(),36336n m mn nm mn -+-=-+-=把1,4-==-mn n m 代入得:原式18126=+=.4. 【解答】 已知条件17-+y x 和()27535-+y x 都是非负数,且(),07535172=-++-+y x y x .3932,5127535170753517=+∴⎩⎨⎧==∴⎩⎨⎧=+=+∴=-+=-+∴y x y x y x y x y x y x5. 【解答】bc b a 54322-+()()182414324322=-⨯=-++=bc b bc a6. 【解答】原式().382323222=⨯=--=c b a。

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷(含答案)

人教版七年级上册第2章《整式的加减》单元测试卷满分100分姓名:___________班级:___________学号:___________成绩:___________一.选择题(共10小题,满分30分,每小题3分)1.下列整式中,单项式是()A.3a+1B.C.3a D.x=12.代数式1﹣的意义是()A.1与x的差的倒数B.1与x的倒数的差C.x的倒数与1的差D.1与1除以x的商3.下列说法正确的是()A.整式就是多项式B.π是单项式C.x4+2x3是七次二项次D.是单项式4.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列运算正确的是()A.4m﹣m=3B.a3﹣a2=a C.2xy﹣yx=xy D.a2b﹣ab2=06.去括号1﹣(a﹣b)=()A.1﹣a+b B.1+a﹣b C.1﹣a﹣b D.1+a+b7.以下各组多项式按字母a降幂排列的是()A.3a﹣7a2+2﹣a3B.﹣7a2+3a+2﹣a3C.﹣a3+3a+2﹣7a2D.﹣a3﹣7a2+3a+28.李老师用长为6a的铁丝做了一个长方形教具,其中一边长为b﹣a,则另一边的长为()A.7a﹣b B.2a﹣b C.4a﹣b D.8a﹣2b9.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定10.已知a﹣b=3,c+d=2,则(a﹣d)﹣2(b﹣c)+(b+3d)的值为()A.7B.5C.1D.﹣5二.填空题(共6小题,满分24分,每小题4分)11.单项式的系数是m,多项式a2b+2ab﹣3的次数是n,则m+n=.12.若3x n y3和﹣x2y m是同类项,则n﹣m=.13.去括号7x3﹣[3x2﹣(x+1)]=.14.“直播带货”是今年的热词.某“爱心助农”直播间推出特产甜瓜,定价8元/千克,并规定直播期间一次下单超过5千克时,可享受九折优惠.李叔叔在直播期间购买此种甜瓜m千克(m>5),则他共需支付元.(用含m的代数式表示)15.若x2+3x=2,则代数式2x2+6x﹣4的值为.16.若多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,则m=.三.解答题(共7小题,满分46分)17.(6分)把下列各代数式填在相应的大括号里.(只需填序号)(1)x﹣7,(2),(3)4ab,(4),(5)5﹣,(6)y,(7),(8)x+,(9),(10)x2++1,(11),(12)8a3x,(13)﹣1单项式集合{};多项式集合{};整式集合{}.18.(6分)合并同类项(1)3a+2a﹣7a (2)﹣4x2y+8xy2﹣9x2y﹣21xy2.19.(6分)如果关于x的多项式x4﹣(a﹣1)x3+5x2﹣(b+1)x﹣1不含x3项和x项,求a,b的值.20.(6分)先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.21.(7分)学完了《整式的加减》后,小刚与小强玩起了数字游戏:小刚对小强说:你任意写一个两位数,满足十位数字比个位数字大2;然后交换十位数字与个位数字,得到一个新的两位数;最后用其中较大的两位数减去较小的两位数.我就能知道这个差是多少.你知道这是为什么吗?这个差是多少呢?22.(7分)已知A=a2﹣2b2+2ab﹣3,B=2a2﹣b2﹣ab﹣(1)求2(A+B)﹣3(2A﹣B)的值(结果用化简后的a、b的式子表示);(2)当a=﹣,b=0时,求(1)中式子的值.23.(8分)某国际化学校实行小班制教学,七年级四个班共有学生(6m﹣3n)人,一班有学生m人,二班人数比一班人数的两倍少n人,三班人数比二班人数的一半多12人.(1)求三班的学生人数(用含m,n的式子表示);(2)求四班的学生人数(用含m,n的式子表示);(3)若四个班共有学生120人,求二班比三班多的学生人数?参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、3a+1是多项式,故此选项不合题意;B、是分式,故此选项不合题意;C、3a是单项式,符合题意;D、x=1是方程,故此选项不合题意.故选:C.2.解:由代数式的定义得,代数式1﹣表示1与x的倒数的差,故B答案正确.故选:B.3.解:A、根据整式的概念可知,单项式和多项式统称为整式,故A错误;B、π是单项式,故B正确;C、x4+2x3是4次二项式,故C错误;D、是多项式,故D错误.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:(A)原式=3m,故A错误;(B)原式=a3﹣a2,故B错误;(D)原式=a2b﹣ab2,故D错误;故选:C.6.解:1﹣(a﹣b)=1﹣a+b,故选:A.7.解:多项式按字母a降幂排列的是﹣a3﹣7a2+3a+2.故选:D.8.解:另一边长=3a﹣(b﹣a)=3a﹣b+a=4a﹣b.故选:C.9.解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.10.解:原式=a﹣d﹣2b+2c+b+3d=(a﹣b)+2(c+d),当a﹣b=3,c+d=2时,原式=3+4=7,故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:∵单项式的系数是m,∴m=﹣,∵多项式a2b+2ab﹣3的次数是n,∴n=3,则m+n=3﹣=.故答案为:.12.解:根据题意可得:n=2,m=3,∴n﹣m=2﹣3=﹣1.故答案为:﹣1.13.解:7x3﹣[3x2﹣(x+1)]=7x3﹣(3x2﹣x﹣1)=7x3﹣3x2+x+1.故答案为:7x3﹣3x2+x+1.14.解:由题意得:8×0.9m=7.2m,则他共需支付7.2m元.故答案为:7.2m.15.解:2x2+6x﹣4=2(x2+3x)﹣4把x2+3x=2代入上式,得原式=2×2﹣4=0故答案为016.解:3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值=3mx2﹣x2+4x﹣2+4x2﹣4x+5=(3m+3)x2+3,∵多项式3mx2﹣x2+4x﹣2﹣(﹣4x2+4x﹣5)的值与x无关,∴3m+3=0,∴m=﹣1,故答案为:﹣1.三.解答题(共7小题,满分46分)17.解:单项式有:,4ab,y,8a3x,﹣1;多项式有:x﹣7,x+,,x2++1;整式有:x﹣7,,4ab,y,x+,,x2++1,8a3x,﹣1.故答案为:(2)(3)(6)(12)(13);(1)(8)(9)(10);(1)(2)(3)(6)(8)(9)(10)(12)(13).18.解:(1)原式=(3+2﹣7)a=﹣2a;(2)原式=(﹣4﹣9)x2y+(8﹣21)xy2=﹣13x2y﹣13xy2.19.解:根据题意得﹣(a﹣1)=0,﹣(b+1)=0,解得a=1,b=﹣1.20.解:原式=4xy﹣[x2+5xy﹣y2﹣2x2﹣6xy+y2]=4xy﹣[﹣x2﹣xy]=x2+5xy,当x=﹣1,y=2时,原式=x2+5xy=(﹣1)2+5×(﹣1)×2=﹣9.21.解:设原来的十位数,十位数字为x,则个位数字为:(x﹣2),故两位数是:10x+x﹣2=11x﹣2,交换十位数字与个位数字,得到的十位数是:10(x﹣2)+x=11x﹣20,故11x﹣2﹣(11x﹣20)=18,即较大的两位数减去较小的两位数的差为18.22.解:(1)2(A+B)﹣3(2A﹣B)=2A+2B﹣6A+3B=﹣4A+5B=﹣4(a2﹣2b2+2ab﹣3)+5(2a2﹣b2﹣ab﹣)=﹣4a2+8b2﹣8ab+12+10a2﹣5b2﹣2ab﹣1=6a2+3b2﹣10ab+11;(2)∵a=﹣,b=0,∴6a2+3b2﹣10ab+11=6×+11=12.23.解:(1)一班人数为:m人.二班人数为:(2m﹣n)人.三班人数为:人;(2)四班人数为:==;(3)由题意可得:6m﹣3n=120,则2m﹣n=40,故二班比三班多的学生数为:===20﹣12=8(人)答:二班比三班多8人.。

人教版数学七年级上册:第2章 整式的加减 单元测试卷(含答案)

人教版数学七年级上册:第2章 整式的加减  单元测试卷(含答案)

第二章《整式的加减》单元测试(满分:150分时间:120分钟) 一、选择题(每小题4分,共40分)1.下列各式中不是单项式的是( )A.a3B.-15C.0 D.3a2.小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费( )A.(3a+4b)元 B.(4a+3b)元C.4(a+b)元 D.3(a+b)元3.-[a-(b-c)]去括号正确的是( )A.-a-b+c B.-a+b-cC.-a-b-c D.-a+b+c4.多项式xy2+xy+1是( )A.二次二项式 B.二次三项式C.三次二项式 D.三次三项式5.下列运算中,正确的是( )A.3a+2b=5ab B.2a3+3a2=5a5C.3a2b-3ba2=0 D.5a2-4a2=16.若-x3y a与x b y是同类项,则a+b的值为( )A.2 B.3 C.4 D.57.若A=3x2-4y2,B=-y2-2x2+1,则A-B等于( )A.x2-5y2+1 B.x2-3y2+1C.5x2-3y2-1 D.5x2-3y2+18.已知x-3y=-3,则5-x+3y的值为( )A.0 B.2 C.5 D.89.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记复习老师课上讲的内容,他突然发现一道题:(x2+3xy)-(2x2+4xy)=-x2【】.此空格的地方被钢笔水弄污了,那么空格中的一项是( )A.-xy B.xy C.-7xy D.7xy10.如图,从边长为(a +1)cm 的正方形纸片中剪去一个边长为(a -1)cm 的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形,(不重复无缝隙),则长方形的长为( )A .2 cmB .2a cmC .4a cmD .(2a -2)cm二、填空题(每小题3分,共30分) 11.计算:2x +x =____________.12.单项式-2xy25的系数是____________,次数是____________.13.任写一个与-12a 2b 是同类项的单项式:____________.14.将多项式1-ab 2+a 3b -13a 2按字母a 降幂排列是________________.15.一个长方形的长为2a +3b ,宽为a +b ,则此长方形的周长为____________. 16.若式子mx 2+y 2-5x 2+5的值与字母x 的取值无关,则m 的值为____________. 17.某种商品原价是m 元,第一次降价打八折,第二次降价每件又减15元,第二次降价后每件的售价是____________元.18.一个多项式与2x 2-xy +3y 2的和是-2xy +x 2-y 2,则这个多项式是________________. 19.有理数a ,b ,c 在数轴上的对应点如图所示,化简:|b|-|c +b|+|b -a|=________________.20.观察图形,则第n 个图形中三角形的个数为____________(用含n 的式子表示).三、(本大题12分) 21.(1)计算:①(3a 2+1)-(4a 3-3a 2); ②6a 2-[(5ab +a 2)+2ab];(2)先化简,再求值:2(x +x 2y)-23(6x 2y +3x)-y ,其中x =1,y =3.四、(本大题12分)22.已知小明的年龄是m 岁,小红的年龄比小明的年龄的2倍少4岁,小华的年龄比小红的年龄的12还多1岁,求这三名同学的年龄的和.五、(本大题14分)23.小明在计算一种多项式减去2a 2+a -5的差时,因忘了对两个多项式用括号括起来,因此减式后面的两项没有变号,结果得到的差是a 2+3a -1.据此你能求出这个多项A 式吗?这两个多项式的差应该是多少?六、(本大题14分)24.如图所示,将面积为a 2的小正方形和面积为b 2的大正方形放在同一水平面上(b >a >0).(1)用a ,b 表示阴影部分的面积;(2)计算当a =3,b =5时,阴影部分的面积.七、(本大题12分)25.阅读材料:我们知道,4x+2x-x=(4+2-1)x=5x,类似地,我们把(a+b)看成一个整体,则4(a +b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.尝试应用:(1)把(a-b)看成一个整体,合并3(a-b)2-7(a-b)2+2(a-b)2的结果是____________;A.-6(a-b)2 B.6(a-b)2C.-2(a-b)2 D.2(a-b)2(2)已知x2+2y=5,求3x2+6y-21的值;拓广探索:(3)已知a-2b=3,2b-c=-5,c-d=10,求(a-c)+(2b-d)-(2b-c)的值.八、(本大题16分)26.某校团委组织了有奖征文活动,并设立了一、二、三等奖,根据设奖情况买了50件奖品,其二等奖奖品的件数比一等奖奖品的件数的2倍少10,各种奖品的单价如下表所示:如果计划一等奖奖品买x件,买50件奖品的费用是y元.(1)先填表,再用含x的式子表示y,并化简;(2)若一等奖奖品买10件,则共花费多少?参考答案:11.3x 12. 52-3 13. a 2b(答案不唯一) 14.1ab -a 31-b a 223+ 15.6a+8b 16.517. (0.8m-15) 18. -x 2-xy-4y 219.-b+c+a 20.4n21.①原式=3a 2+1-4a 3+3a 2=-4a+6a 2+1.②原式=6a 2-5ab-2ab=5a 2-7ab (2)原式=2x+2x 2y-4x 2y-2x-y=-2x 2y-y当x=1,y=3时,原式=-2×12×3-3=922. 因为小红的年龄比小明的年龄的2倍少4岁,所以小红的年龄为(2m-4)岁, 又因为小华的年龄比小红的年龄的21还多1岁, 所以小华的年龄为[21(2m-4)+1]岁, 则这三名同学的年龄的和为:m+(2m-4)+[21(2m-4)+1]=m+2m-4+(m-2+1)=4m-5(岁), 答:这三名同学的年龄的和是(4m-5)岁23.根据题意,得A=a 2+3a-1+2a 2-a+5=3a 2+2a+4.这两个多项式的差应该是(3a 2+2a+4)-(2a 2+a-5)=3a 2+2a+4-2a 2-a+5=a 2+a+9.24.(1)阴影部分的面积为21b 2+21a(a+b). (2)当a=3,b=5时,21b 2+21a(a+b)=21×25+21×3×(3+5)=249,即阴影部分的面积为249.25.(1)C(2)因为x2+2y=5,所以原式=3(x2+2y)-21=15-21=-6(3)因为a-2b=3,2b-c=-5,c-d=10,所以原式=a-c+2b-d-2b+c=a-d=a-2b+2b-c+c-d=(a-2b)+(2b-c)+(c-d)=3-5+10=826.(1)2x-10 60-3x依题意,得y=12x+10(2x-10)+5(60-3x)=12x+20x-100+300-15x=17x+200(2)当x=10时,17x+200=17×10+200=370.答:若一等奖奖品买10件,共花费370元。

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章 整式的加减》单元测试卷-含参考答案

人教版七年级数学上册《第二章整式的加减》单元测试卷-含参考答案一、选择题1.下列多项式中,是二次三项式的是()A.-x2-y3B.x3-y3C.x2+2xy+y2D.x+y+72.下列各式:−15a2b2,12x−1,−25,1x,x−y2,a2−2ab,其中单项式的个数有()A.1个B.2个C.3个D.4个3.下列各组式子中,是同类项的为()A.2a与2b B.a2b与2ab2C.2ab与−3ba D.3a2b与a2bc 4.下列说法正确的是()A.4a3b的次数是3 B.多项式x2−1是二次三项式C.2a+b−1的各项分别为2a,b,1 D.−3ab2的系数是−35.下列各组中的两个项不属于...同类项的是()A.3x2y和−2x2y B.−xy和2yx C.-1和114D.a2和326.多项式x2−3kxy−3y2+13xy−8合并同类项后不含xy项,则k的值是()A.13B.16C.19D.07.下列计算正确的是()A.3a+2b=5ab B.5y2−2y=3yC.a+6a=6a2D.m2n−2nm2=−nm28.若2x2−3xy−1−(−x2−7xy+2)=Ax2−Bxy+C,则A,B,C的值分别为()A.3,4,3 B.1,10,1 C.3,4,-3 D.3,-4二、填空题9.若单项式−3ab的次数是.10.多项式3x2+x−22中的常数项是.11.计算-x2+ 2x2的结果是.12.若2x3y2和−x m y2是同类项,则m的值是.13.多项式2x3−5x2+x−1与多项式3x3+(2m−1)x2−5x+3的和不含x2项,则m=.三、解答题14.计算:(1)(x2﹣x+4)+(2x﹣4+3x2);(2)6ab﹣2a2b2+4+3ab2﹣(2+6ab﹣2a2b2).15.若关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是2,求m2+n3的值.16.先化简,再求值.2(x3−2y2)−(x−2y)−(x−4y2+2x3),其中x=−2,y=3.17.先化简,再求值:已知和(1)化简.(2)当,时,求的值.18.小丽放学回家后准备完成下面的题目:化简,发现系数“□”印刷不清楚.(1)她把“□”猜成3,请你化简;(2)她妈妈说:你猜错了,我看到该题的标准答案是6.请通过计算说明题中“□”是几.参考答案1.C2.B3.C4.D5.D6.C7.D8.D9.210.-111.x212.313.314.解:(1)原式=x2﹣x+4+2x﹣4+3x2=4x2+x.(2)原式=6ab﹣2a2b2+4+3ab2﹣2﹣6ab+2a2b2=6ab﹣6ab﹣2a2b2+2a2b2+3ab2﹣2+4=3ab2+2.15.解:∵关于x,y的多项式3x2﹣nx m+1y﹣x是一个三次三项式,且最高次项的系数是3,∴m+1=2,﹣n=2,解得:m=1,n=﹣2,∴m2+n3=1﹣8=﹣7.16.解:原式=2x3−4y2−x+2y−x+4y2−2x3=−2x+2y当x=−2,y=3时,原式=−2×(−2)+2×3=4+6=10.17.(1)解:(2)解:把,代入得:18.(1)解:;(2)解:设“□”是a∵标准答案是6∴.解得.∴题中“□”是5。

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)

第八章 整式的加减单元测试一、选择题(每小题3分,共30分) 1.在下列代数式mn bc a a b a xy a a 43,21,2009,,3,4,212-++中,单项式的个数是( ) A.3 B.4 C.5 D.62、在下列代数式3,23,1,2,21232-+++++x x yx b ab b a ab 中,多项式有( ) A.2个 B.3个 C.4个 D.5个3、单项式3432c b a 的系数和次数分别是( )A.1 , 9B.0 , 9C.31 , 9D.31, 244、下列各组单项式中,不是同类项的是( )A.321233ya y a 与 B.bm a mb a 226-与 C.3223与 D.3321-21xy y x 与5、多项式2232n m --是( ) A.二次二项式B.三次二项式C.四次二项式D.五次二项式6、若A 和B 都是4次多项式,则A+B 一定是( ) A.8次多项式 B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7、一个多项式A 与多项式B=2x 2-3xy-y 2的和是多项式C=x 2+xy+y 2,则A 等于( ) A.2224y xy x -- B.2224y xy x ++- C.22223y xy x -- D.xy x 232- 8、在多项式5232+-xy x 中,最高次项是( ) A.x 3 B.x 3,xy 2 C.x 3 ,-xy 2 D.25 9、下列各项中,去括号正确的是( ) A.x 2-2(2x-y+2)=x 2-4x-2y+4 B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y 2)=-5x+3y+8xy-4y 2D.ab-5(-a+3)=ab+5a-310.系数为21-且只含有x 、y 的四次单项式,可以写出( )A.1个B.2个C.3个D.4个 二、填空题(每小题3分,共30分)11、多项式-x 4+3x 3y-6x 2y 2-2y 4的次数是 .12、某厂今年的产值a 万元,若年平均增长率为x,则两年后的产值是 万元。

整式的加减 单元测试(含答案)

整式的加减 单元测试(含答案)

整式的加减 单元测试一、选择题(每小题3分,共15分):1.原产量n 吨,增产30%之后的产量应为( )(A )(1-30%)n 吨. (B )(1+30%)n 吨.(C )n+30%吨. (D )30%n 吨.2.下列说法正确的是( )(A )31a 2x 的系数为31. (B )221xy 的系数为x 21. (C )25x -的系数为5. (D )23x 的系数为3.3.下列计算正确的是( )(A )4x-9x+6x=-x. (B )02121=-a a . (C )x x x =-23. (D )xy xy xy 32=-.4.买一个足球需要m 元,买一个篮球需要n 元,则买4个足球、7个篮球共需要( )元.(A )4m+7n. (B )28mn. (C )7m+4n. (D )11mn.5.计算:3562+-a a 与1252-+a a 的差,结果正确的是( )(A )432+-a a (B )232+-a a (C )272+-a a (D )472+-a a .二、填空题(每小题4分,共24分):6.列示表示:p 的3倍的41是 . 7.34.0xy 的次数为 .8.多项式154122--+ab ab b 的次数为 . 9.写出235y x -的一个同类项 .10.三个连续奇数,中间一个是n ,则这三个数的和为 .11.观察下列算式:;1010122=+=- 3121222=+=-; 5232322=+=-;7343422=+=-; 9454522=+=-; ……若字母n 表示自然数,请把你观察到的规律用含n 的式子表示出来: .三、计算题(每小题5分,共30分):12.计算(每小题5分,共15分)(1)6321+-st st ; (2)67482323---++-a a a a a a ;(3)355264733---+++xy xy x xy xy ; 13. 计算(每小题6分,共12分)(1)2(2a-3b )+3(2b-3a );(2))]2([2)32(3)(222222y xy x x xy x xy x +------.14.先化间,再求值(每小题8分,共16分)(1))23(31423223x x x x x x -+--+,其中x=-3; (2))43()3(5212222c a ac b a c a ac b a -+---,其中a=-1,b=2,c=-2. 15.(9分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆形的花坛,若圆形的半径r 米,广场长为a 米,宽为b 米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为500米,宽为200米,圆形花坛的半径为20米,求广场空地的面积(计算结果保留π)。

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷

七年级数学上册整式的加减单元测试卷(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.“m 与n 差的3倍”用代数式可以表示成( )A .3m n -B .3m n -C .()3n m -D .()3m n -2.在棋盘上的米粒故事中,皇帝往棋盘的第1格中放1粒米,第2格中放2粒米,在第3格中加倍至4粒米……,以此类推,每一格均是前一格的双倍,那么他在 第12格中所放的米粒数是( )A .22B .24C .211D .2123.若2335a x y --与425b xy +相加后,结果仍是个单项式,则相加后的结果为( ) A .24x y B .315x y C .315y x D .315xy - 4.若2360x y -+=,则213922x y -+-的值为( ) A .0 B .6 C .﹣6 D .15.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,6.小李今年a 岁,小王今年(a -15)岁,过n +1年后,他们相差( )岁A .15B .n +1C .n +16D .16 7.整式532x y -,0,12x + ,2312ab a b -,-46中是单项式的个数有( ) A .2个 B .3个 C .4个 D .58.下列变形正确的是( )A .452x x -=+与425x x -=-+B .215332x x -=+得4533x x -=+C .4(1)2(3)x x -=+得4126x x -=+D .32x =得23x = 9.下列说法中,错误的是( )A .单项式2a bc -的系数是1-,次数是4B .整式可分为单独一个数字、单独一个字母、单项式、多项式C .多项式243a b -是二次二项式D .()243x -与()223x --可以看作是同类项 10.《九章算术》中记载一问题:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱.问人数、物价各多少?设有x 人,则表示物价的代数式可以是( )A .83-xB .83x +C .74x -D .()74x +二、填空题11.请你写出一个系数为3,次数为4,只含字母a 、b 的单项式:________.12.如图,在△ABC 中,点D 在BC 的延长线上,△A =m °,△ABC 和△ACD 的平分线交于点A 1,得△A 1;△A 1BC 和△A 1CD 的平分线交于点A 2,得△A 2;…;△A 2019BC 和△A 2019CD 的平分线交于点A 2020,则△A 2020=________°.13.若|a |=2,|b |=5,且a <b ,则a ﹣b 的值为______.14.单项式2335a bc 的系数是m ,次数是n ,则m n +=____. 15._____________________,叫做合并同类项.16.如图,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是_____.17.已知:2321A B a a -=--,223B C a -=-,则C A -的值是__________三、解答题18.已知:23231A x xy y =++-,2B x xy =-.(1)计算:A -3B ;(2)若()2120x y ++-=,求A -3B 的值;(3)若A -3B 的值与y 的取值无关,求x 的值.19.如图,将长和宽分别是a 、b 的矩形纸片折成一个无盖的长方体纸盒,方案是在矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用含a 、b 、x 的代数式表示纸片剩余部分的面积;(2)当10,8a b ==,且剪去部分的正方形的边长为最小的正整数时,求无盖长方体纸盒的底面积;(3)当10,8a b ==,若x 取整数,以x 作为高,将纸片剩余部分折成无盖长方体,求长方体的体积最大值. 20.将边长相等的黑、白两色小正方形按如图所示的方式拼接起来,第1个图由5个白色小小正方形和1个黑色小正方形拼接起来,第2个图由8个白色小正方形和2个黑色小正方形拼接起来,第3个图由11个白色小正方形和3个黑色小正方形拼接起来,依此规律拼接.(1)第4个图白色小正方形的个数为__;(2)第10个图白色小正方形的个数为___;(3)第n 个图白色小正方形的个数为(用含n 的代数式表示,结果应化简);(4)是否存在某个图形,其白色小正方形的个数为2021个,若存在,求出是第几个图形;若不存在,请说明理由.21.在整式的加减练习课中,已知2232A a b ab =-,嘉淇错将“A B -”看成“A B +”,所算的错误..结果是2243a b ab -.请你解决下列问题.(1)求出整式B ;(2)若1a =-,2b =.求B 的值;(3)求该题的正确计算结果.22.有理数a ,b 在数轴上的位置如图所示.(1)在数轴上表示出-a ,-b ,122-;(2)把a ,b ,-a ,-b ,122-,用“<”连接起来.23.如图,在数轴上,点A 所表示的数为a ,点B 所表示的数为b ,满足211(4)08a b ++-=,点D 从点A 出发以2个单位长度/秒的速度沿数轴向右运动,点E 从点B 出发以1个单位长度/秒的速度沿数轴向左运动,当D 、E 两点相遇时停止运动.(1)点A 表示的数为 ,点B 表示的数为 ;(2)点P 为线段DE 的中点,D 、E 两点同时开始运动,设运动时间为t 秒,试用含t 的代数式表示BP 的长度.(3)在(2)的条件下,探索3BP -DP 的值是否与t 有关,请说明理由.参考答案:1.D【分析】先求x 与y 的差,最后写出它们的3倍来求解.【详解】解:m 与n 差的即m n -,m 与n 差的3倍为()3m n -.故选:D .【点睛】本题考查了列代数式的知识,解答本题的关键是熟练读题,找出题目所给的等量关系. 2.C【分析】根据题意找出规律:每一格均是前一格的双倍,所以a n =2n -1.【详解】解:设第n 格中放的米粒数是a n ,则a 1=1,a 2=a 1×2,a 3=a 2×2=a 1×22,…a n =a 1×2n -1,△a 12=a 1×211=211.故选:C .【点睛】本题考查探索与表达规律,解答本题的关键是从题意中找出规律:每一格均是前一格的双倍,即a n =2n -1.3.D 【分析】根据单项相加后,结果仍是个单项式可知,2335a x y --与425b xy +为同类项 【详解】△2335a x y --与425b xy +相加后,结果仍是个单项式, △2335a x y --与425b xy +是同类项, △2143a b -=⎧⎨+=⎩,解得31a b =⎧⎨=-⎩△2335a x y --+425b xy +=335xy -+325xy =315xy -, 故选D.【点睛】本题考查了利用同类项的定义求字母的值以及合并同类项,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.4.C 【分析】先将213922x y -+-化为21(3)92x y ---,然后整体代入即可得出答案. 【详解】213922x y -+-=21(3)92x y ---,236x y -=-, ∴21319(6)96222x y -+-=-⨯--=-. 故选:C .【点睛】本题考查代数式求值,解题的关键是熟练掌握整体代入法在代数式求值中的应用.5.D【分析】逐项代入,寻找正确答案即可.【详解】解:A 选项满足m≤n ,则y=2m+1=3;B 选项不满足m≤n ,则y=2n -1=-1;C 选项满足m≤n ,则y=2m+1=3;D 选项不满足m≤n ,则y=2n -1=1;故答案为D ;【点睛】本题考查了根据条件代数式求值问题,解答的关键在于根据条件正确地代入代数式及代入的值. 6.A【分析】用大李今年的年龄减去小王今年的年龄,即可求出两人的年龄差,再根据年龄差不会随着时间的变化而改变,由此即可确定再过n +1年后,大李和小王的年龄差仍然不变.【详解】解:a ﹣(a ﹣15)=15(岁)答:他们相差15岁.故选:A .【点睛】此题考查了列代数式及年龄问题,要注意:两个人的年龄差是一个永远也不变的数值. 7.B【分析】根据单项式的定义判断即可.【详解】解:整式532x y -,0,12x +,2312ab a b -,-46中, 是单项式的为:-2x 5y 3,0,-46,共有3个;故选:B .【点睛】本题考查了单项式,熟练掌握单项式的定义是解题的关键.8.D【分析】根据等式基本性质和去括号法则进行判断即可.【详解】解:A 、452x x -=+变形为425x x -=+,故A 错误,不符合题意;B 、215332x x -=+变形得:430318x x -=+,故B 错误,不符合题意; C 、4(1)2(3)x x -=+得:4426x x -=+,故C 错误,不符合题意;D 、32x =得23x =,故D 正确,符合题意. 故选:D .【点睛】本题主要考查了等式的基本性质和去括号法则,熟练掌握等式的基本性质和去括号法则,是解题的关键.9.B【分析】根据单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念进行判断即可.【详解】解:A .单项式2a bc -的系数是1-,次数是4,不符合题意;B .整式分为单项式和多项式,符合题意;C .多项式243a b -是二次二项式,不符合题意;D .()243x -与()223x --是同类项,不符合题意; 故选:B .【点睛】本题考查了单项式的系数和次数,整式的定义,多项式的次数和项数以及同类项的概念,熟练地掌握以上知识是解决问题的关键.10.A【分析】根据题意可直接进行求解.【详解】设有x 人,由题意可表示物价的代数式是83-x 或74x +,故选A .【点睛】本题主要考查代数式的实际意义,熟练掌握代数式的书写是解题的关键.11.3a 2b 2(答案不唯一)【分析】根据单项式的系数和次数的意义判断即可.【详解】解:一个系数为3,次数为4,只含字母a 、b 的单项式:3a 2b 2,故答案为:3a 2b 2(答案不唯一).【点睛】本题考查了单项式,熟练掌握单项式的次数的意义,所有字母的指数和是解题的关键.12.20202m【分析】根据角平分线的性质可得△A 1CD =12△ACD ,△A 1BD =12△ABC ,再根据外角的性质可得△A 1=12△A ,找出规律即可求出△A 2020.【详解】解:△BA 1平分△ABC ,A 1C 平分△ACD ,△△A 1CD =12△ACD ,△A 1BD =12△ABC ,△△A 1=△A 1CD -△A 1BD =12△ACD △-12△ABC =12△A ,同理可得△A 2=12△A 1=(12)2△A ,△△A 2020=(12)2020△A ,△△A =m °,△△A 2020=2020°2m , 故答案为:2020°2m . 【点睛】本题考查了角平分线的性质与图形规律的综合,涉及三角形外角性质,找出△A 1和△A 之间的规律是解题的关键.13.3-或7-【分析】根据绝对值的定义求出a ,b 的值,再根据a <b ,分两种情况分别计算即可.【详解】解:△|a |=2,|b |=5,△a =±2,b =±5,△a <b ,△a =2时,b =5,a ﹣b =2﹣5=﹣3,a =﹣2时,b =5,a ﹣b =﹣2﹣5=﹣7,综上所述,a ﹣b 的值为﹣3或﹣7.故答案为:﹣3或﹣7.【点睛】本题主要考查了绝对值和代数式求值,解题的关键在于能够根据题意确定a 、b 的值. 14.335【分析】根据单项式的定义求出m 和n ,代入求值即可.【详解】解:△单项式2335a bc 的系数是m ,次数是n ,△35m =,2136n =++=, △33303365555m n +=+=+=, 故答案为:335. 【点睛】本题考查代数式求值,熟练掌握单项式定义,得到m 和n 的值是解决问题的关键.15.把同类项合并成一项【解析】略16.1【分析】根据数据运算程序,从第1次开始往后逐个计算输出结果,直到找出规律即可求解.【详解】解:由数据运算程序得,如果开始输入的x 的值为10,那么:第1次输出的结果是5,第2次输出的结果是16,第3次输出的结果是8,第4次输出的结果是4,第5次输出的结果是2,第6次输出的结果是1,第7次输出的结果是4,……综上可得,从第4次开始,每三个一循环,由()2043367-÷= 可得第204次输出的结果与第6次输出的结果相等.故答案为:1.【点睛】本题主要考查了代数式求值问题,解题的关键是通过计算特殊结果发现一般规律.17.21a -【分析】根据两个等式的左端式子的特征,将两个等式相加先求出21A C a -=-+,进而求出21C A a -=-.【详解】解: 2321①A B a a -=--,223②B C a -=-,∴①+②得()()()()2232123A B B C a a a -+-=--+-,()()2232123A B B C a a a -+-=--+-,2232123A C a a a -=--+-,21A C a -=-+,∴()()2121C A A C a a -=--=--+=-,故答案为:21a -.【点睛】本题主要考查了整式的加减,熟练运用合并同类项法则是解题的关键.18.(1)5xy +3y -1(2)-5 (3)35x =-【分析】(1)把A 和B 代入计算即可;(2)利用非负数的性质求出x ,y 的值,代入计算即可;(3)A -3B 变形后,其值与y 的取值无关,确定出x 的值即可.(1)解:A -3B=23231x xy y ++--3(2x xy -)=23231x xy y ++--3x 2+3xy=5xy +3y -1(2)解:因为()2120x y ++-=,()21x +≥0,2y -≥0,所以x +1=0,y -2=0,解得x =-1,y =2,把x =-1,y =2代入得,原式=5×(-1)×2+3×2-1=-5.(3)解:A -3B=5xy +3y -1=(5x +3)y -1,要使A -3B 的值与y 的取值无关,则5x +3=0,所以35x =-. 【点睛】本题考查整式的加减,整式的化简求值,非负数的性质,熟练掌握运算法则是解题的关键. 19.(1)24ab x -(2)48(3)48【分析】(1)根据图形可知剩余部分的面积=长方形的面积﹣4个小正方形的面积,从而可以用代数式表示出来;(2)根据题意可以求得正方形边长x 的值,从而求出长方体纸盒的底面积.(3)根据题意可以求得x 的取值范围,然后由x 取整数,从而可以分别求各种情况下长方体的体积,进而求出长方体体积的最大值.(1)由题意得,纸片剩余部分的面积是ab ﹣4x 2;(2)设:正方形边长为x由已知得,当a=10,b=8时,S=(a﹣2x)(b﹣2x)=(10﹣2x)×(8﹣2x)△边长为最小的正整数时△x=1,当x=1时,S=(10﹣2×1)(8﹣2×1)=48,即底面积是48.(3)由已知得,当a=10,b=8时,V=(a﹣2x)(b﹣2x)x=(10﹣2x)×(8﹣2x)×x△10﹣2x>0且8﹣2x>0,解得,x<4,△x取整数,△x=1或x=2或x=3,当x=1时,V=(10﹣2×1)(8﹣2×1)×1=48,当x=2时,V=(10﹣2×2)(8﹣2×2)×2=48,当x=3时,V=(10﹣2×3)(8﹣2×3)×3=24,即长方体的体积最大值是48.【点睛】本题考查列代数式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.20.(1)14(2)32(3)32n(4)存在,第673个【分析】(1)由图可知,第一个图形由5个白色小正方形,第二个图形由8个,第三个图形由11个,往后每个图形依次增加3个,第四个图形在第三个图形的基础上增加3个即可;(2)根据(1)中观察得到的结论“往后每个图形依次增加3个白色小正方形”,则第十个应该在第一个的基础上增加9×3个;(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则第n 个应该在2的基础上增加3n 个; (4)设第n 个图白色小正方形的个数为2021,将2021代入(3)中的代数式,求出n ,若n 为整数,则存在,否则,不存在.(1)11+3=14(个),故答案为:14(2)5+3×9=32(个),则答案为:32(3)第一个:5=2+3,第二个:8=2+3×2,第三个:11=2+3×3,则地n 个:2+3n ,故答案为:2+3n(4)设第n 个图白色小正方形的个数为2021则322021n +=解得673n =所以第673个图白色小正方形的个数为2021【点睛】本题主要考查了图形的变化规律,根据题目给出的图形找出其中的变化规律是解题的关键. 21.(1)a 2b -ab 2(2)6(3)2a 2b -ab 2【分析】(1)根据A B +=2243a b ab -即可得B =4a 2b -3ab 2-A ,从而可求出整式B ;(2)把1a =-,2b =代入(1)中的整式B 即可求解;(3)直接将整式A 、B 代入A -B ,利用整式的加减法则即可求解.(1)解:△A B +=2243a b ab -,2232A a b ab =-,△B =4a 2b -3ab 2-A =4a 2b -3ab 2-(3a 2b -2ab 2)=a 2b -ab 2;(2)解:当1a =-,2b =时,B =()()22-12-12=2+4=6⨯-⨯;(3)解△△2232A a b ab =-, B =a 2b -ab 2,△A -B =3a 2b -2ab 2-(a 2b -ab 2)=2a 2b -ab 2.【点睛】本题考查了整式的加减以及求代数式的值,熟练掌握合并同类项法则是解题的关键. 22.(1)数轴表示见解析;(2)122b a a b <-<-<<- 【分析】(1)先画出数轴,然后把根据题意表示出对应的有理数即可;(2)根据数轴上点表示的有理数左边的数小于右边的数进行求解即可.【详解】解:(1)数轴表示如下所示:(2)根据数轴上点的位置可得:122b a a b <-<-<<-. 【点睛】本题主要考查了用数轴表示有理数,利用数轴比较有理数的大小,解题的关键在于能够熟练掌握有理数与数轴的关系.23.(1)-8,4 (2)162BP t =- (3)3BP -DP 为定值12,与t 无关,理由见解析【分析】(1)根据若干个非负数的和为0,则这些非负数均为0,建立方程求解即可;(2)用含t 的代数式表示点D 、E 对应数,再利用中点性质即可求得点P 对应的数,最后利用B 对应数与P 对应数的差,表示数轴上两点之间的距离即可;(3)由(2)得:162BP t =-,1(123)2DP t =-,代入3BP -DP 即可得出答案. (1)解:△211(4)08a b ++-=,△110,408a b +=-=,解得:8,4a b =-=,△点A 表示的数为-8,点B 表示的数为4;故答案为:-8,4(2)解:如图,根据题意得:得:AD =2t ,BE =t ,△点D 、E 对应数分别为:-8+2t ,4-t ,且点E 在点D 的右侧,△DE =4-t -(-8+2t )=12-3t ,△点P 为线段DE 的中点,△11(123)22DP DE t ==-,△点P 对应的数为1182(123)222t t t -++-=-,△114(2)622BP t t =--=-; (3)解:3BP -DP 为定值12,与t 无关,理由如下:由(2)得:162BP t =-,1(123)2DP t =-,△113333(6)(123)186122222BP DP t t t t ⎡⎤-=---=--+=⎢⎥⎣⎦,△3BP -DP 为定值12,与t 无关. 【点睛】本题考查了数轴、绝对值、代数式、数轴上两点之间的距离、整式加减的应用等,找准等量关系,正确列出代数式是解题的关键.。

七年级数学上册《整式的加减》单元测试卷及答案

七年级数学上册《整式的加减》单元测试卷及答案

人教新版七年级上册《第2章整式的加减》单元测试(1)一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4 3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣44.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.46.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.17.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣109.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1 10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣411.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+112.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为.15.当k=时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=.17.已知a2+a﹣3=0,则2024﹣a2﹣a=.18.x2﹣2x+y=x2﹣().19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?人教新版七年级上册《第2章整式的加减》单元测试卷(1)参考答案与试题解析一.选择题(共13小题)1.下列各式﹣mn,m,8,,x2+2x+6,,,中,整式有()A.3个B.4个C.6个D.7个【考点】整式.【分析】根据整式的定义,结合题意即可得出答案.【解答】解:整式有﹣mn,m,8,x2+2x+6,,,故选:C.2.单项式的系数与次数分别为()A.,7B.π,6C.4π,6D.π,4【考点】单项式.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:单项式的系数与次数分别为,4,故选:D.3.﹣2x﹣2x合并同类项得()A.﹣4x2B.﹣4x C.0D.﹣4【考点】合并同类项.【分析】根据合并同类项的法则判断即可得结论.【解答】解:﹣2x﹣2x=(﹣2﹣2)x=﹣4x.故选:B.4.下列各选项中是同类项的是()A.﹣a2b和ab2B.a2和22C.﹣ab2和2b2a D.2ab和2xy【考点】同类项.【分析】根据同类项的概念逐一判断即可得.【解答】解:A.﹣a2b和ab2相同字母的指数不相同,不是同类项;B.a2和22所含字母不相同,不是同类项;C.﹣ab2和2b2a所含字母相同,且相同字母的指数也相同,是同类项;D.2ab与2xy所含字母不相同,不是同类项;故选:C.5.若﹣3a2b x与﹣3a y b是同类项,则y x的值是()A.1B.2C.3D.4【考点】同类项.【分析】根据同类项的概念求出x、y的值,再代入所求式子计算即可.【解答】解:∵﹣3a2b x与﹣3a y b是同类项,∴x=1,y=2,∴y x=21=2.故选:B.6.若﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,则m﹣n的值是()A.2B.0C.﹣1D.1【考点】合并同类项.【分析】直接利用两式可以合并进而得出m=n+2,即可得出答案.【解答】解:∵﹣2a m b2m+n与5a n+2b2m+n可以合并成一项,∴m=n+2,则m﹣n=2.故选:A.7.如果M=x2+6x+22,N=﹣x2+6x﹣3,那么M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定【考点】整式的加减.【分析】直接利用整式的加减运算法则计算进而得出答案.【解答】解:∵M=x2+6x+22,N=﹣x2+6x﹣3,∴M﹣N=x2+6x+22﹣(﹣x2+6x﹣3)=x2+6x+22+x2﹣6x+3=2x2+25,∵x2≥0,∴2x2+25>0,∴M>N.故选:A.8.已知2a+3b=4,则整式﹣4a﹣6b+1的值是()A.5B.3C.﹣7D.﹣10【考点】代数式求值.【分析】根据相反数的定义得:﹣2a﹣3b=﹣4,首先化简﹣4a﹣6b+1,然后把﹣2a﹣3b =﹣4代入化简后的算式,求出算式的值是多少即可.【解答】解:∵2a+3b=4,∴﹣2a﹣3b=﹣4,∴﹣4a﹣6b+1=2(﹣2a﹣3b)+1=﹣8+1=﹣7,故选:C.9.按如图所示的运算程序,能使输出y值为1的是()A.m=﹣1,n=1B.m=1,n=0C.m=1,n=2D.m=2,n=1【考点】代数式求值;有理数的混合运算.【分析】根据题意一一计算即可判断.【解答】解:当m=﹣1,n=1时,y=2m﹣n+1=2×(﹣1)﹣1+1=﹣2,不合题意;当m=1,n=0时,y=2m+n=2×1+0=2,不合题意;当m=1,n=2时,y=2m﹣n+1=2×1﹣2+1=1,符合题意;当m=2,n=1时,y=2m+n=2×2+1=5,不合题意;故选:C.10.若多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,则m的值()A.2或﹣2B.2C.﹣2D.﹣4【考点】多项式.【分析】根据多项式的定义即可求解.【解答】解:因为多项式3x|m|+(m﹣2)x+1是关于x的二次三项式,所以|m|=2,且m﹣2≠0,解得m=±2,且m≠2,则m的值为﹣2.故选:C.11.把多项式1﹣5ab2﹣7b3+6a2b按字母b的降幂排列正确的是()A.1﹣7b3﹣5ab2+6a2b B.6a2b﹣5ab2﹣7b3+1C.﹣7b3﹣5ab2+1+6a2b D.﹣7b3﹣5ab2+6a2b+1【考点】多项式.【分析】字母b的最高次数为3,然后按照字母b的指数从高到低进行排列即可.【解答】解:1﹣5ab2﹣7b3+6a2b按字母b的降幂排列为﹣7b3﹣5ab2+6a2b+1.故选:D.12.设A=x2﹣3x﹣2,B=2x2﹣3x﹣1,若x取任意有理数.则A与B的大小关系为()A.A<B B.A=B C.A>B D.无法比较【考点】整式的加减.【分析】首先计算两个整式的差,再通过分析差的正负性可得答案.【解答】解:∵A=x2﹣3x﹣2,B=2x2﹣3x﹣1,∴B﹣A=(2x2﹣3x﹣1)﹣(x2﹣3x﹣2)=2x2﹣3x﹣1﹣x2+3x+2=x2+1,∵x2≥0,∴B﹣A>0,则B>A,故选:A.13.关于多项式26﹣3x5+x4+x3+x2+x的说法正确的是()A.是六次六项式B.是五次六项式C.是六次五项式D.是五次五项式【考点】多项式.【分析】根据多项式次数的定义知,该多项式的次数是5次,又因为次多项式有6个单项式组成,所以是五次六项式.【解答】解:多项式26﹣3x5+x4+x3+x2+x次数最高的项的次数是5,且有6个单项式组成,所以是五次六项式.故选:B.二.填空题(共6小题)14.若x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,则正整数n的值为2或1.【考点】多项式.【分析】根据多项式的次数定义和n是正整数得出4+n=6或4+n=5,求出n的值即可.【解答】解:∵x2y3﹣0.1x4y n+xy5是关于x,y的六次多项式,又∵n是正整数,∴4+n=6或4+n=5,∴n=2或n=1;故答案为:2或1.15.当k=2时,关于x、y的多项式x2+kxy﹣2xy﹣6中不含xy项.【考点】合并同类项;多项式.【分析】根据多项式的概念即可求出答案.【解答】解:∵多项式x2+kxy﹣2xy﹣6中不含xy项,∴原式=x2+(k﹣2)xy﹣6令k﹣2=0,∴k=2故答案为:2.16.单项式2x m y3与﹣3xy3n是同类项,则m+n=2.【考点】同类项.【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)求出n,m的值,再代入代数式计算即可.【解答】解:由单项式2x m y3与﹣3xy3n是同类项,得m=1,3n=3,解得m=1,n=1.∴m+n=1+1=2.故答案为:2.17.已知a2+a﹣3=0,则2024﹣a2﹣a=2021.【考点】代数式求值.【分析】由a2+a﹣3=0可得a2+a=3,再将a2+a=3整体代入要求的式子即可.【解答】解:∵a2+a﹣3=0,∴a2+a=3,∴2024﹣a2﹣a=2024﹣(a2+a)=2024﹣3=2021,故答案为:2021.18.x2﹣2x+y=x2﹣(2x﹣y).【考点】去括号与添括号.【分析】本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.【解答】解:根据添括号的法则可知,x2﹣2x+y=x2﹣(2x﹣y),故答案为:2x﹣y.19.已知x+y=3,xy=1,则代数式(5x+2)﹣(3xy﹣5y)的值14.【考点】整式的加减.【分析】先将代数式(5x+2)﹣(3xy﹣5y)化简为:5(x+y)﹣3xy+2,然后把x+y=3,xy=1代入求解即可.【解答】解:∵x+y=3,xy=1,∴(5x+2)﹣(3xy﹣5y)=5x+2﹣3xy+5y=5(x+y)﹣3xy+2=5×3﹣3×1+2=14.故答案为:14.三.解答题(共5小题)20.化简:3x2+2xy﹣4y2﹣3xy+4y2﹣3x2.【考点】合并同类项.【分析】这个式子的运算是合并同类项的问题.根据合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.【解答】解:原式=(3x2﹣3x2)+(2xy﹣3xy)+(4y2﹣4y2)=﹣xy.21.先化简,再求值:3(4a2+2a)﹣(2a2+3a﹣5),其中a=﹣2.【考点】整式的加减—化简求值.【分析】先去括号,再合并同类项,最后代入求值.【解答】解:原式=12a2+6a﹣2a2﹣3a+5=10a2+3a+5.当a=﹣2时,原式=10×(﹣2)2+3×(﹣2)+5=40﹣6+5=39.22.化简与求值:(1)化简(5a+4c+7b)+(5c﹣3b﹣6a);(2)化简(2a2b﹣ab2)﹣2(ab2+3a2b);(3)化简,求值:4xy﹣(2x2+5xy﹣y2)+2(x2+3xy),其中x=1,y=﹣2.(4)化简,求值:已知A=4x2y﹣5xy2,B=3x2y﹣4y2,当x=﹣2,y=1时,求2A﹣B 的值.【考点】整式的加减—化简求值.【分析】(1)先去掉括号,再合并同类项即可得出答案;(2)先去掉括号,再合并同类项即可;(3)先把给出的式子进行化简,再代入x,y的值进行计算即可;(4)根据题意先列出算式,再合并同类项,最后把x,y的值进行计算即可.【解答】解:(1)(5a+4c+7b)+(5c﹣3b﹣6a)=5a+4c+7b+5c﹣3b﹣6a=5a﹣6a+7b﹣3b+4c+5c=﹣a+4b+9c;(2)(2a2b﹣ab2)﹣2(ab2+3a2b)=2a2b﹣ab2﹣2ab2﹣6a2b=2a2b﹣6a2b﹣ab2﹣2ab2=﹣4a2b﹣3ab2;(3)4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=1,y=﹣2时原式=(﹣2)2+5×1×(﹣2)=4﹣10=﹣6;(4)2A﹣B=2(4x2y﹣5xy2)﹣(3x2y﹣4y2)=8x2y﹣10xy2﹣3x2y+4y2=5x2y﹣10xy2+4y2当x=﹣2,y=1时,原式=5×(﹣2)2×1﹣10×(﹣2)×12+4×12=5×4×1﹣(﹣20)×1+4=20+20+4=44.23.请回答下列问题:(1)若多项式mx2+3xy﹣2y2﹣x2+nxy﹣2y+6的值与x的取值无关,求(m+n)3的值.(2)若关于x、y的多项式6mx2+4nxy+2x+2xy﹣x2+y+4不含二次项,m﹣n的值.(3)若2x|k|+1y2+(k﹣1)x2y+1是关于x、y的四次三项式,求k值.【考点】合并同类项;多项式;绝对值;代数式求值.【分析】(1)先把多项式合并同类项,再令含x项的系数等于0,求出m、n的值即可;(2)先把多项式合并同类项,然后根据多项式不含二次项,得到关于m、n的一次方程,求出m、n的值,再代入计算即可.(3)根据四次三项式的概念,得关于k的方程,求解即可.【解答】解:(1)原式=(m﹣1)x2+(3+n)xy﹣2y2﹣2y+6.∵原式的值与x的值无关,∴m﹣1=0,3+n=0,∴m=1,n=﹣3,∴(m+n)3=(1﹣3)3=﹣8,(2)原式=(6m﹣1)x2+(4n+2)xy+2x+y+4,∵多项式不含二次项,∴6m﹣1=0,4n+2=0.∴.∴.(3)由题意得:|k|+1+2=4,∴k=±1.又∵k﹣1≠0,∴k≠1.∴k=﹣1.24.某工厂第一车间有x人,第二车间人数比第一车间人数的少20人,第三车间人数是第二车间人数的多10人.(1)求第三车间有多少人?(用含x的代数式表示)(2)求三个车间共有多少人?(用含x的代数式表示)(3)如果从第二车间调出10人到第一车间,原第三车间人数比调动后的第一车间人数少多少人?【考点】列代数式.【分析】(1)先表示出第二车间的人数,再表示出第三车间的人数即可;(2)把表示三个车间的人数的代数式相加即可得到答案;(3)先表示出调动后第一车间的人数,再用调动后第一车间的人数减去第三车间的人数即可.【解答】解:(1)∵第二车间的人数比第一车间人数的少20人,即人,而第三车间人数是第二车间人数的多10人,∴第三车间的人数为:人;(2)三个车间共有:人;(3)(x+10)﹣(x﹣15)=25(人),答:原第三车间人数比调动后的第一车间人数少25人.。

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题(含解析)

人教版七年级数学上册第2章《整式的加减》单元测试题一.选择题1.在代数式﹣7,m,x3y2,,2x+3y中,整式有()A.2个B.3个C.4个D.5个2.若5y﹣2x=3,则代数式4﹣10y+4x的值是()A.﹣3 B.﹣2 C.0 D.73.多项式3xy2﹣2y+1的次数及一次项的系数分别是()A.3,2 B.3,﹣2 C.2,﹣2 D.4,﹣24.下列各式中,与x2y3能合并的单项式是()A.x3y2B.﹣x2y3C.3x3D.x2y25.下列说法正确的是()A.单项式3ab的次数是1B.3a﹣2a2b+2ab是三次三项式C.单项式的系数是2D.﹣4a2b,3ab,5是多项式﹣4a2b+3ab﹣5的项6.裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,则下列各式中,能正确表示这个商店第一季度的总利润的是()A.50(1+m)万元B.50(1+m)2万元C.[50+50(1+m)]万元D.[50+50(1+m)+50(1+m)2]万元7.下列计算正确的是()A.3a+4b=7ab B.3a﹣2a=1C.3a2b﹣2ab2=a2b D.2a2+3a2=5a28.若与的和是单项式,则a+b=()A.﹣3 B.0 C.3 D.69.已知A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,则3A﹣B为()A.3x2+y2﹣3xy B.﹣x2+4y2﹣7xyC.x2+10y2﹣17xy D.5x2+8y2﹣13xy10.一个代数式加上﹣5+3x﹣6x2得到4x2﹣5x,则这个代数式是()A.10x2﹣8x+5 B.8x2﹣8x﹣5 C.2x2﹣8x+5 D.10x2﹣8x﹣5 11.下列去括号运算正确的是()A.﹣(x﹣y+z)=﹣x﹣y﹣zB.x﹣(y﹣z)=x﹣y﹣zC.x﹣2(x+y)=x﹣2x+2yD.﹣(a﹣b)﹣(﹣c﹣d)=﹣a+b+c+d12.一个多项式加上12y+7x+z2等于5y+3x﹣15z2,则这个多项式是()A.﹣7y﹣4x﹣16z2B.7y+4x+16z2C.17y+10x﹣14z2D.7y+4x﹣16z2二.填空题13.若a﹣2b=3,则4b﹣2a=.14.长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m张成人票和n张儿童票,则共需花费元.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.a的3倍与b的倒数的差,用代数式表示为.17.若代数式x2+x+3的值的值为7,则代数式的值为.18.已知关于x,y的多项式﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7不含二次项,则m+n=.19.已知三角形的周长为3m﹣n,其中两边的和为2m,则此三角形第三边的长为.20.甲、乙、丙三人有相同数量的小球.如果甲给乙2颗,丙给甲5颗,然后乙再给丙一些球,所给的数量与丙还有的球数量相同,那么乙最后剩下颗球.三.解答题21.在数轴上点A表示数a,点B表示数b,点C表示数c,并且a是多项式﹣2x2﹣4x+1的一次项系数,b是数轴上最小的正整数,单项式的次数为c.(1)a=,b=,c=.(2)请你画出数轴,并把点A,B,C表示在数轴上;(3)请你通过计算说明线段AB与AC之间的数量关系.22.一个花坛的形状如图所示,它的两端是半径相等的半圆,求:(1)花坛的周长l;(2)花坛的面积S;(3)若a=8m,r=5m,求此时花坛的周长及面积(π取3.14).23.已知A=3a2b﹣2ab2+abc,小明错将“C=2A﹣B”看成“C=2A+B”,算得结果C=4a2b﹣3ab2+4abc.(1)求正确的结果的表达式;(2)小芳说(1)中结果的大小与c的取值无关,对吗?若a=2,b=,求(1)中代数式的值.24.先化简,再求值:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)的值,其中x=1,y=﹣2.25.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣(xy﹣3x2)]+2xy,其中x是﹣2的倒数,y 是最大的负整数.参考答案1.解:在代数式﹣7,m,x3y2,,2x+3y中,整式有:﹣7,m,x3y2,2x+3y共4个.故选:C.2.解:∵5y﹣2x=3,∴原式=4﹣2×(5y﹣2x)=4﹣2×3=﹣2,故选:B.3.解:多项式3xy2﹣2y+1的次数是:3,一次项的系数是:﹣2.故选:B.4.解:﹣x2y3与x2y3是同类项,是与x2y3能合并的单项式,故选:B.5.解:A、单项式3ab的次数是2,故此选项错误;B、3a﹣2a2b+2ab是三次三项式,故此选项正确;C、单项式的系数是,故此选项错误;D、﹣4a2b,3ab,﹣5是多项式﹣4a2b+3ab﹣5的项,故此选项错误;故选:B.6.解:∵裕丰商店一月份的利润为50万元,二、三月份的利润平均增长率为m,∴二月份的利润为50(1+m)万元,三月份的利润为50(1+m)2,∴这个商店第一季度的总利润是[50+50(1+m)+50(1+m)2]万元.故选:D.7.解:A、3a和4b不能合并,故本选项不符合题意;B、3a﹣2a=a,故本选项不符合题意;C、3a2b和﹣2ab2不能合并,故本选项不符合题意;D、2a2+3a2=5a2,故本选项符合题意;故选:D.8.解:根据题意可得:,解得:,所以a+b=3+0=3,故选:C.9.解:∵A=x2+3y2﹣5xy与B=2xy+2x2﹣y2,∴3A﹣B=3(x2+3y2﹣5xy)﹣(2xy+2x2﹣y2)=3x2+9y2﹣15xy﹣2xy﹣2x2+y2=x2+10y2﹣17xy.故选:C.10.解:由题意得:这个代数式=(4x2﹣5x)﹣(﹣5+3x﹣6x2)=4x2﹣5x+5﹣3x+6x2=10x2﹣8x+5.故选:A.11.解:A、原式=﹣x+y﹣z,不符合题意;B、原式=x﹣y+z,不符合题意;C、原式=x﹣2x﹣2y=﹣x﹣2y,不符合题意;D、原式=﹣a+b+c+d,符合题意,故选:D.12.解:根据题意得:(5y+3x﹣15z2)﹣(12y+7x+z2)=5y+3x﹣15z2﹣12y﹣7x﹣z2=﹣7y ﹣4x﹣16z2,故选:A.13.解:∵a﹣2b=3.4b﹣2a=2(2b﹣a)=2×(﹣3)=﹣6.故答案为:﹣6.14.解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).15.解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.解:由题意可得:3a﹣.故答案为:3a﹣.17.解:∵x2+x+3=7,∴x2+x=4,∴原式=(x2+x)﹣5=×4﹣5=1﹣5=﹣4,故答案为:﹣418.解:﹣5x2y﹣2nxy+5my2﹣3xy+4x﹣7=﹣5x2y﹣(2n+3)xy+5my2+4x﹣7,∵多项式不含二次项,∴5m=0,2n+3=0,解得m=0,n=﹣1.5,∴m+n=﹣1.5,故答案为:﹣1.5.19.解:由题意可知:3m﹣n﹣2m=m﹣n.故答案为:m﹣n.20.解:设甲、乙、丙原来有a颗小球,乙最后剩下的小球有:a+2﹣(a﹣5)=a+2﹣a+5=7,故答案为:7.21.解:(1)多项式﹣2x2﹣4x+1的一次项系数是﹣4,则a=﹣4,数轴上最小的正整数是1,则b=1,单项式的次数为6,则c=6,故答案为:﹣4,1,6;(2)如图所示,,点A,B,C即为所求.;(3)AB=b﹣a=1﹣(﹣4)=5,AC=c﹣a=6﹣(﹣4)=10.∵10÷5=2,∴AC=2AB.22.解:(1)花坛的周长l=2a+2πr,(2)花坛的面积S=2ra+πr2,(3)l=2a+2πr=16+10π=47.4(米),S=2ra+πr2=2×5×8+3.14×25=158.5(平方米).23.解:(1)∵2A+B=C,∴B=C﹣2A=4a2b﹣3ab2+4abc﹣2(3a2b﹣2ab2+abc)=4a2b﹣3ab2+4abc﹣6a2b+4ab2﹣2abc=﹣2a2b+ab2+2abc;∴2A﹣B=2(3a2b﹣2ab2+abc)﹣(﹣2a2b+ab2+2abc)=6a2b﹣4ab2+2abc+2a2b﹣ab2﹣2abc=8a2b﹣5ab2;(2)小芳说的对,与c无关,将a=2,b=代入,得:8a2b﹣5ab2==6.24.解:3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy当x=1,y=﹣2时,原式=﹣6×1×(﹣2)=12.25.解:原式=2x2+5x2﹣2xy+xy﹣3x2+2xy=4x2+xy,∵x是﹣2的倒数,y是最大的负整数,∴x=﹣,y=﹣1,则原式=1.。

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)

七年级数学整式的加减单元测试题(含答案)份报纸,若他获得了10元的利润,则a与b的关系式为a=。

b=。

16、将多项式3x3-2x2+5x+1与多项式2x3+4x2-3x+2相减,得到的结果多项式的次数是。

17、已知多项式P(x)=x3-3x2+2x-5,求P(2)的值。

18、将多项式4x3-5x2+3x-2分解因式,得到的结果是。

19、将多项式x4-2x3+3x2-4x+5除以x-2,商式为。

余式为。

20、将多项式2x4-5x3+3x2-7x+4乘以3x-2,得到的结果是。

第八章整式的加减单元测试一、选择题(每小题3分,共30分)1.在下列代数式a+1a+b13,4xy,a,2009,a2bc,-mn中,单项式的个数是()A.3B.4C.5D.62、在下列代数式ab,22xy,a2b3c4中,多项式有()A.2个B.3个C.4个D.5个3、单项式的系数和次数分别是()A.1,9B.0,9C.3,9D.3,244、下列各组单项式中,不是同类项的是()A.12ay与2ya3B.6a2mb与-a2bmC.23与32D.x3y与-xy35、多项式-23m2-n2是()A.二次二项式B.三次二项式C.四次二项式D.五次二项式6、若A和B都是4次多项式,则A+B一定是()A.8次多项式B.4次多项式C.次数不高于4次的整式D.次数不低于4次的整式7、一个多项式A与多项式B=2x2-3xy-y2的和是多项式C=x2+xy+y2,则A等于()A.x2-4xy-2y2B.-x2+4xy+2y2C.3x2-2xy-2y2D.3x2-2xy8、在多项式x3-xy2+25中,最高次项是()A.x3B.x3,xy2C.x3,-xy2D.259、下列各项中,去括号正确的是()A.x2-2(2x-y+2)=x2-4x-2y+4B.-3(m+n)-mn=-3m+3n-mnC.-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2D.ab-5(-a+3)=ab+5a-310.系数为-且只含有x、y的四次单项式,可以写出()A.1个B.2个C.3个D.4个二、填空题(每小题3分,共30分)11、多项式-x4+3x3y-6x2y2-2y4的次数是4.12、某厂今年的产值a万元,若年平均增长率为x,则两年后的产值是a(1+2x)万元。

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷-带答案一、单选题1.式子222,,2,59b x y a x -++-中,单项式有( ) A .1个 B .2个 C .3个 D .4个2.单项式2ab -的系数、次数分别是( )A .0、3B .1-、2C .0、2D .1-、33.下列各题中的两个项,不属于同类项的是( )A .22x y 与212yx -B .1与23-C .2a b 与22510ba ⨯D .213m n 与2n m 4.系数为-12且只含有 x 、y 的三次单项式(不需要包含每个字母),可以写出( ) . A .2 个 B .3 个 C .4 个 D .5 个5.下列说法正确的是( )A .1a +不是一个代数式B .单项式223ab π-的系数是23- C .一个多项式的次数为5,那么这个多项式的各项的次数都小于5D .0是一个单项式6.13⎛⎫-- ⎪⎝⎭的倒数是( ) A .13 B .13- C .﹣3 D .3 7.()()1333m m --+⋅-的值是( ) A .1 B .1- C .0 D .()13m +-8.三个有理数a ,b ,c 在数轴上表示的位置如图所示,则化简a b c b a +--+的结果是( )A .22a b +B .22a b c +-C .c -D .2b c --9.若()()2221x mx x -++的结果中x 的二次项系数和一次项系数相等,则m 的值为( )A .3B .-3C .4D .110.如图是2022年12月的日历表,在此日历表中用阴影十字框选中5个数(如2、8、9、10、16).若这样的阴影十字框上下左右移动选中这张日历表中的5个数,则这5个数的和可能为( )A .41B .46C .75D .116二、填空题11.单项式4367x y -的系数与次数的积是 . 12.在23b 32xy + 2- 5ab x + 3xy 1a b +,单项式有 .多项式有 ,整式有 .13.已知25,29a b c d -=-=,那么()()2a c b d ---的值为 .14.已知多项式()()2224331x mx y x y nx +-+--+-的值与字母x 的取值无关,其中m 、n 是常数,那么m n = .15.一个两位数m 的十位上的数字是a ,个位上的数字是b ,记()f m a b =+为这个两位数m 的“衍生数”.如494913f(1)若()11f m =,则满足条件的两位数m 的个数有 个;(2)现有2个两位数x 和y ,且满足100x y +=,则()()f x f y += .三、解答题16.化简 (1)2227a b a b - (2)347x y x y -++(3)()12ab ba ab --+ (4)()()225223x x x x -+--+17.已知关于x 、y 的多项式214310922m x x y x x +--+-是六次五项式.(1)m 的值是______,该多项式的常数项是______;(2)将此多项式按x 的降幂排列.18.已知代数式2232A x xy y =++ 2B x xy x =-+.(1)求2A B -;(2)当1x =-,3y =时,求2A B -的值;(3)若2A B -的值与x 的取值无关,求y 的值. 19.观察下面的三行单项式x 22x 34x 48x 516x …①2x - 24x 38x - 416x 532x -…②2x 23x - 35x 49x - 517x …③根据你发现的规律,完成以下各题:(1)第①行第8个单项式为 ;第②行第2024个单项式为 .(2)第③行第n 个单项式为 .(3)取每行的第9个单项式,令这三个单项式的和为A .计算当12x =时,12564A ⎛⎫ ⎪⎝⎭+的值. 参考答案1.B2.D3.D4.C5.D6.D7.C8.C9.B10.C11.6-12. 23b 2- 32xy + 5ab x + 23b 2- 32xy + 5ab x + 13.4-14.8-15. 8 19或1016.(1)257a b(2)103x y - (3)52ab(4)22x x ++17.(1)4;22-(2)542103922x y x x x --++- 18.(1)522xy y x +-(2)7- (3)25y =19.(1)782x ;202420242x(2)()()11121n n n x ---+ (3)1292。

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷(含答案解析)

人教版七年级上册数学第二章《整式的加减》单元达标测试卷一.选择题(每题3分,共30分)1.下列代数式中,符合书写规则的是( )A .xB .x ÷yC .m ×2D .32.已知一个单项式的系数是2,次数是3,则这个单项式可以是( )A .B .C .D .3关于多项式0.3x 2y ﹣2x 3y 2﹣7xy 3+1,下列说法错误的是( )A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y 降幂排列为﹣7xy 3﹣2x 3y 2+0.3x 2y+14.若x+y=1,则代数式3(4x-1)-2(3-6y )的值为( )A .-8B .8C .-3D .35.下列运算中,正确的是( )A .3a +2b =5abB .2a 3+3a 2=5a 5C .3a 2b -3ba 2=0D .5a 2-4a 2=1A .这个多项式是五次五项式B .常数项是﹣1C .四次项的系数是3D .按x 降幂排列为x 5+3x 2﹣3xy 3﹣y ﹣17.若A =3x 2-4y 2,B =-y 2-2x 2+1,则A -B 等于( )A .x 2-5y 2+1B .x 2-3y 2+1C .5x 2-3y 2-1D .5x 2-3y 2+18.两船从同一港口同时反向而行,甲船顺水航行,乙船逆水航行,两船在静水中的速度都是50km/h ,水流的速度为a km/h ,3h 后,甲船比乙船多航行的路程是( )A .1.5a kmB .3a kmC .6a kmD .(150+3a )km 9.下面是小明做的一道多项式的加减运算题,但他不小心把一滴墨水滴在了上面.(﹣x 2+3xy 12-y 2)﹣(12-x 2+4xy 12-y 2)12=-x 2●,黑点处即为被墨迹弄污的部分,那么被墨汁遮住的一项应是( )A .﹣xyB .+xyC .﹣7xyD .+7xy10.如图,阴影部分的面积为A.B.C.D.二、填空题(共24分)11.减去3m后,等于3m2+m﹣1的多项式是.12.已知3a n b n﹣1与﹣5a2b2m(m是正整数)是同类项,那么(2m﹣1)2=.13.计算:(m+3m+5m+…+2019m)﹣(2m+4m+6m+…+2020m)=.14.小华在计算多项式P加上x2﹣3x+6时,因误认为加上x2+3x+6,得到的答案是2x2﹣4x,则P应是.15.如图,把五个长为b、宽为a的小长方形,按图1和图2两种方式放在一个宽为m的大长方形上(相邻的小长方形既无重叠,又不留空隙).设图1中两块阴影部分的周长和为C1,图2中阴影部分的周长为C2,若大长方形的长比宽大(6﹣a),则C2﹣C1的值为.16.如图,将图①中的四边形剪开得到图②,图中共有4个四边形;将图②中的一个四边形剪开得到图③,图中共有7个四边形;如此剪下去,第5个图中共有________个四边形,第n(n为正整数)个图中共有________个四边形.。

人教版七年级数学上册《第四章整式的加减》单元测试卷带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷带答案

人教版七年级数学上册《第四章整式的加减》单元测试卷带答案学校:___________班级:___________姓名:___________考号:___________复习巩固1. 下列整式中哪些是单项式? 哪些是多项式? 是单项式的指出系数和次数,是多项式的指出项和次数:−12a2b,m4n27,x2+y2−1,x,3x2−y+3xy2+x4−1,32t3,2x−y.2. 写出一个单项式,使它与多项式m+2n²的和为单项式.3. 计算:(1)x²y−3x²y;(2)−32a2bc+12a2bc;(3)14mn−13mn+2;(4)5x⁴+3x²y−8−3x²y−x⁴−2;(5)7ab−3a²b²+7+8ab²+2a²b²−3−5ab.4. 计算:(1)(4a³b−10b³)+(−3a²b²+10b³);(2)(4x²y−5xy²)−(3x²y−4xy²);(3)3(2a²+4b)+3(−5a²−2b);(4)3(x²−2xy)−4(2x²−xy+1);(5)5a²−(a²+(5a²−2a)−2(a²−3a)];(6)3x2−[5x−(12x−3)+2x2].5. 先化简,再求值:(1)5x²+4−3x²−5x−2x²−5+6x,其中x=--3;(2)2(a2b+12ab2)−3(a2b−1)−2ab2−1,其中a=-2, b=2.综合运用6. (1) 列式表示比a 的5倍大4的数与比a 的2倍小3的数,并计算这两个数的和;(2) 列式表示比b的7 倍小3的数与比b 的6 倍大5的数,并计算这两个数的差.7. 某轮船先顺水航行3h ,后逆水航行1.5h ,已知轮船在静水中的速度是a km/h ,水流速度是b km/h ,轮船共航行了多少千米?8. 如图,边长相等的小正方形组成一组有规律的图案,其中部分小正方形涂有颜色. 按照这样的规律,第4个图案中有多少个涂色的小正方形? 第n 个图案呢?拓广探索9. 用代数式表示十位上的数字是a 、个位上的数字是b 的两位数,再把这个两位数的十位上的数字与个位上的数字交换位置,计算所得数与原数的和. 这个和能被11整除吗?10. 把(a+b)和(x+y)各看成一个整体,对下列各式进行化简: (1) 4(a+b)+2(a+b)--(a+b);(2)3(x +y )²−7(x +y )+8(x +y )²+6(x +y ).参考答案1.【答案】解: 单项式 -12a²bm4n²7x 32t³ 系数 -1/2 171 32 次数 3613多项式 x²+y²-1 3x²-y+3xy²+x ⁴-1 2x -y 项x²,y²,-13x²,-y,3xy²,x ⁴,-12x,-y次数241 2.-m.(答案不唯一)mn+2;3.解:(1)-2x²y;(2)-a²bc; (3)−112(4)4x⁴-10;(5)8ab²-a²b²+2ab+4.4.【答案】解:( (1)(4a³b−10b³)+(−3a²b²+10b³)=4a³b−10b³−3a²b²+10b³=4a³b−3a²b².(2)(4x²y−5xy²)−(3x²y−4xy²)=4x²y−5xy²−3x²y+4xy²=x²y−xy².(3)3(2a²+4b)+3(−5a²−2b)=6a²+12b−15a²−6b=−9a²+6b,(4)3(x²−2xy)−4(2x²−xy+1)=3x²−6xy−8x²+4xy−4=−5x²−2xy−4.(5)5a²−[a²+(5a²−2a)−2(a²−3a)]=5a²−(a²+5a²−2a−2a²+6a)=5a²−a²−5a²+2a+2a²−6a=a²−4a.x−3)+2x2](6)3x2−[5x−(12x+3+2x2)=3x2−(5x−12x−3−2x2=3x2−5x+12x−3.=x2−925.【答案】解:( (1)5x²+4−3x²−5x−2x²−5+6x=(5−3−2)x²+(−5+6)x−1=x-1.当x=-3时,原式= - 3-1 = - 4.ab2)−3(a2b−1)−2ab2−1(2)2(a2b+12=2a²b+ab²−3a²b+3−2ab²−1=−a²b−ab²+2.当a=-2,b =2时原式:=−(−2)²×2−(−2)×2²+2= - 4×2-(-2)×4+2 = - 8-(-8)+2=--8+8+2 = 2.6.解:(1)比a的5倍大4的数可表示为5a+4,比a的2倍小3的数可表示为2a-3,它们的和为(5a+4)+(2a-3)=5a+4+2a-3 = 7a+1.(2)比b的7倍小3的数可表示为7b-3,比b的6倍大5的数可表示为6b+5,它们的差为(7b-3)-(6b+5)=7b-3-6b-5 = b-8.7.【答案】解:轮船顺水航行3(a+b) km,轮船逆水航行1.5(a-b) km,轮船一共航行3(a+b)+1.5(a-b)=3a+3b+1.5a-1.5b=(4.5a+1.5b)( km)即轮船共航行(4.5a+1.5b) km.8.【答案】解:第4个图案中涂色的小正方形有5+3×4 = 17(个).第n个图案中涂色的小正方形有5+4(n-1)=(4n+1)(个).9.【答案】解:原数是10a+b交换位置后所得两位数是10b+a所以所得数与原数的和为(10b+a)+(10a+b)= 11(a+b).所以这个数能被11整除.10.【答案】解:(1)4(a+b)+2(a+b)-(a+b)=(4+2-1)(a+b)=5(a+b).(2)3(x+y)²−7(x+y)+8(x+y)²+6(x+y)=(3+8)(x+y)²+(-7+6)(x+y)=11(x+y)²−(x+y).。

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

人教版初中数学七年级上册第二章《整式的加减》单元测试题(含答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.已知一个多项式减去-2m结果等于m2+3m+2,这个多项式是()A.m2+5m+2B.m2-m-2C.m2-5m-2D.m2+m+22.下列各组单项式中,不是同类项的是()A. 3x2y与-2yx2B. 2ab2与-ba2C.xy3与5xy D. 23a与32a3.已知3xa-2是关于x的二次单项式,那么a的值为()A. 4B. 5C. 6D. 74.若-2am+4b4与5a2bn+1可以合并成一项,则mn的值是()A.-6B. 8C.-8D. 95.计算6a2-5a+3与5a2+2a-1的差,结果正确的是()A.a2-3a+4B.a2-3a+2C.a2-7a+2D.a2-7a+46.多项式a3-2a2b2+5b2的次数是()A. 2 B. 3 C. 4 D. 97.下列结论正确的是()A. 3x2-x+1的一次项系数是1B.xyz的系数是0C.a2b3c是五次单项式D.x5+3x2y4-2x3y是六次三项式8.有一组单项式:a2,-a32,a43,-a54…,请观察它们的构成规律,用你发现的规律写出第10个单项式为()A.a1010B.-a1010C.a1110D.-a11109.计算-3(x-2y)+4(x-2y)的结果是()A.x-2y B.x+2y C.-x-2y D.-x+2y10.有理数a,b,c在数轴上的位置如图所示,则|a+b|-2|c-b|+3|b+a|等于()A.-2b B. 0 C.-4a-b-3c D.-4a-2b-2c二、填空题11.去括号:3x-(a-b+c)=___________.12.a、b在数轴上的位置如图所示,化简|a+b|-2|a-b|=___________.13.有规律地排列着这样一些单项式:-xy,x2y,-x3y,x4y,-x5y,…,则第n个单项式(n≥1正整数)可表示为___________.14.10a-5减去(-5a+7)的差是___________.三、解答题15.化简:①4a2+3b2+2ab-3a2-4b2;①(2a-4b)-(3a+4b);①2(4a2b-10b3)+(-3a2b-20b3);①(-x2+3xy-4y3)-3(2xy-3y2).16.先化简,再求值:5(a2b+2ab2)-2(3a2b+5ab2-1),其中a=-2,b=2.17.已知多项式y4-x4+3x3y-1xy2-5x2y3.2(1)按字母x的降幂排列;(2)按字母y的升幂排列.18.观察下面有规律的三行单项式:x,2x2,4x3,8x4,16x5,32x6,…①-2x,4x2,-8x3,16x4,-32x5,64x6,…①2x2,-3x3,5x4,-9x5,17x6,-33x7,…①(1)根据你发现的规律,第一行第8个单项式为___________;(2)第二行第n个单项式为___________;(3)第三行第8个单项式为___________;第n个单项式为___________.答案解析1.【答案】D【解析】设这个多项式为M ,则M =(m 2+3m +2)+(-2m )=m 2+3m +2-2m =m 2+m +2 2.【答案】B【解析】A 、字母相同且相同字母的指数也相同,故A 正确; B 、相同字母的指数不同不是同类项,故B 错误; C 、字母相同且相同字母的指数也相同,故C 正确; D 、字母相同且相同字母的指数也相同,故D 正确. 3.【答案】A【解析】因为3xa -2是关于x 的二次单项式, 所以a -2=2, 解得a =4 4.【答案】C【解析】根据题意可得m +4=2,n +1=4, 解得m =-2,n =3, 所以mn =-8. 5.【答案】D【解析】(6a 2-5a +3)-(5a 2+2a -1) =6a 2-5a +3-5a 2-2a +1 =a 2-7a +4. 6.【答案】C【解析】a 3-2a 2b 2+5b 2的次数是4. 7.【答案】D【解析】A 、3x 2-x +1的一次项系数是-1,故错误; B 、xyz 的系数是1,故错误; C 、a 2b 3c 是六次单项式,故错误; D 、正确. 8.【答案】D【解析】注意观察各单项式系数和次数的变化, 系数依次是1(可以看成是11),-12,13,-14…据此推测,第十项的系数为-110;次数依次是2,3,4,5…据此推出,第十项的次数为11.所以第十个单项式为-a11.10 9.【答案】A【解析】-3(x-2y)+4(x-2y)=-3x+6y+4x-8y=x-2y.10.【答案】D【解析】因为由图可知,a<b<0<c,|a|>|b|>c,所以a+b<0,c-b>0,b+a<0,所以原式=-(a+b)-2(c-b)-3(b+a)=-a-b-2c+2b-3b-3a=-4a-2b-2c.11.【答案】3x-a+b-c【解析】3x-(a-b+c)=3x-a+b-c.12.【答案】-3a+b【解析】由数轴可得b+a<0,a-b>0,则|a+b|-2|a-b|=-a-b-2(a-b)=-3a+b13.【答案】(-x)n y【解析】第n个单项可表示为(-x)n y14.【答案】15a-12【解析】(10a-5)-(-5a+7)=10a-5+5a-7=15a-12.15.【答案】解:①原式=(4-3)a2+(3-4)b2+2ab=a2+2ab-b2;①原式=2a-4b-3a-4b=-a-8b;①原式=8a2b-20b3-3a2b-20b3=5a2b-40b3;①原式=-x2+3xy-4y3-6xy+9y2=x2-4y3-3xy+9y2.【解析】①直接合并同类项即可;①①①先去括号,再合并同类项即可.16.【答案】解:原式=5a2b+10ab2-6a2b-10ab2+2=-a2b+2,当a=-2,b=2时,原式=-8+2=-6.【解析】原式去括号合并得到最简结果,把a与b的值代入计算即可求出值.17.【答案】解:(1)按字母x的降幂排列:−x4+3x3y−5x2y3−1xy2+y4;2(2)按字母y的升幂排列:−x4+3x3y−5x2y3−1xy2+y4.2【解析】(1)根据x的指数的从大到小顺序排列即可;(2)根据y的指数的从小到大顺序排列即可.18.【答案】(1)128x8(2)(-2)nxn(3)-129x9(-1)n+1(1+2n-1)xn+1【解析】通过观察很容易得到三组数据数字因数、字母次数之间的关系,根据规律写出相应的式子即可.解:因为第一行的每个单项式,数字因数后面都是前面的2倍,字母次数与这个单项式是第几个有关,根据这个规律可得第一行第8个单项式为 128x8;因为第二行的每个单项式,数字因数后面都是前面的(-2)倍,字母次数与这个单项式是第几个有关,根据这个规律可得第n个单项式为(-2)nxn;通过观察第三行的这组单项式,这组单项式符合(-1)n+1(1+2n-1)xn+1,第8个单项式是-129x9;第n个单项式为(-1)n+1(1+2n-1)xn+1.。

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

人教版七年级上第二章《整式的加减》单元测试题(含参考答案)

第二章《整式的加减》单元测试题一、选择题(每小题只有一个正确答案)1.下列运算正确的()A.(b2)3=b5B.x3÷x3=x C.5y3•3y2=15y5D.a+a2=a32.单项式的系数是( )A.B.πC.2D.3.关于多项式0.3x2y﹣2x3y2﹣7xy3+1,下列说法错误的是()A.这个多项式是五次四项式B.四次项的系数是7C.常数项是1D.按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+14.组成多项式2x2-x-3的单项式是下列几组中的()A.2x2,x,3B.2x2,-x,-3C.2x2,x,-3D.2x2,-x,35.下列各式按字母x的降幂排列的是()A.-5x2-x2+2x2B.ax3-2bx+cx2C.-x2y-2xy2+y2D.x2y-3xy2+x3-2y26.在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式共有()A.7个B.6个C.5个D.4个7.多项式x|m|-(m-4)x+7是关于x的四次三项式,则m的值是( )A.4B.-2C.-4D.4或-48.已知有理数a,b,c在数轴上所对应点的位置如图所示,则代数式|a|+|a+b|+|c -a|-|b-c|=( )A.-3a B.2c-a C.2a-2b D.b9.如果|x-4|与(y+3)2互为相反数,则2x-(-2y+x)的值是( )A.-2B.10C.7D.610.已知M=4x2-x+1,N=5x2-x+3,则M与N的大小关系为( )A.M >N B.M<N C.M=N D.无法确定11.某天数学课上老师讲了整式的加减运算,小颖回到家后拿出自己的课堂笔记,认真地复习老师在课堂上所讲的内容,她突然发现一道题目:(2a2+3ab-b2)-(-3a2+ab +5b2)=5a2-6b2,一部分被墨水弄脏了.请问空格中的一项是( )A.+2ab B.+3ab C.+4ab D.-ab12.下列是由一些火柴搭成的图案,图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n○个图案用多少根火柴( )A.4n+3B.5n-1C.4n+1D.5n-4二、填空题13.单项式的系数是__,次数是__.14.请写出一个系数是-2,次数是3的单项式:________________.15.三个连续奇数,中间的一个是n,则这三个数的和是________.16.在代数式3xy2,m,6a2-a+3,,2,4x2yz-xy2,,中,单项式有________个,多项式有________个,整式有________个.17.已知多项式A=ay﹣1,B=3ay﹣5y﹣1,且多项式2A+B中不含字母y,则a的值为_____.三、解答题18.化简:(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)19.化简(1)5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3)3(x2﹣5x+1)﹣2(3x﹣6+x2)20.已知:关于x的多项式2ax3-9+x3-bx2+4x3中,不含x3与x2的项.求代数式3(a2-2b2-2)-2(a2-2b2-3)的值.21..设A=2x2﹣3xy+y2+2x+2y,B=4x2﹣6xy+2y2﹣3x﹣y,(1)求B-2A(2)若|x﹣2a|+(y﹣3)2=0,且B﹣2A=a,求a的值.22.观察下列三行数:0,3, 8,15,24, …2,5,10,17,26, …②0,6,16,30,48, …③(1)第①行数按什么规律排列的,请写出来?(2)第②、③行数与第①行数分别对比有什么关系?)(3)取每行的第个数,求这三个数的和23.有这样一道题:“计算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1.”甲同学把“x=”错抄成“x=-”,但他计算的结果也是正确的,试说明理由,并求出正确结果.参考答案1.C【解析】分析:直接利用幂的乘方运算法则以及同底数幂的除法运算法则、单项式乘以单项式和合并同类项法则.详解:A、(b2)3=b6,故此选项错误;B、x3÷x3=1,故此选项错误;C、5y3•3y2=15y5,正确;D、a+a2,无法计算,故此选项错误.故选:C.点睛:此题主要考查了幂的乘方运算以及同底数幂的除法运算、单项式乘以单项式和合并同类项,正确掌握相关运算法则是解题关键.2.D【解析】试题分析:单项式的系数是:.故选D.考点:单项式.3.B【解析】多项式0.3x2y﹣2x3y2﹣7xy3+1,有四项分别为:0.3x2y,﹣2x3y2,﹣7xy3,+1,最高次为5次,是五次四项式,故A正确;四次项的系数是-7,故B错误;常数项是1,故C正确;按y降幂排列为﹣7xy3﹣2x3y2+0.3x2y+1,故D正确,故符合题意的是B选项,故选B.4.B【解析】多项式是由多个单项式组成的,在多项式2x2﹣x﹣3中,单项式分别是2x2,﹣x,﹣3,故选:B.5.C【解析】【分析】根据题意将各式按字母x的降幂排列,就是要求x的指数从高到低排列.【详解】A. -5x2-x2+2x2,指数相同,不符合条件;B. ax3-2bx+cx2,没有按x降幂排列;C. -x2y-2xy2+y2,有按x降幂排列;D. x2y-3xy2+x3-2y2,没有按x降幂排列.故选:C【点睛】本题考核知识点:字母的降幂排列. 解题关键点:理解幂的意义.6.B【解析】【分析】分母中含有字母的式子一定不是多项式也不是单项式,因此其不是整式.所有单项式和多项式都是整式.【详解】在代数式π,x2+,x+xy,3x2+nx+4,﹣x,3,5xy,中,整式有:π,x+xy,3x2+nx+4,﹣x,3,5xy,共有6个.故选:B【点睛】本题考核知识点:整式. 解题关键点:理解整式的意义.7.C【解析】分析:根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.详解:∵多项式x|m|−(m−4)x+7是关于x的四次三项式,∴|m|=4,-(m-4)≠0,∴m=-4.故选:C.点睛:本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.A【解析】【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【详解】根据数轴上点的位置得:b<a<0<c,∴a+b<0,c﹣a>0,b-c<0,则原式=﹣a﹣a﹣b+c﹣a+b﹣c=﹣3a.故选A.【点睛】本题考查了整式的加减,熟练掌握运算法则是解答本题的关键.9.A【解析】【分析】利用互为相反数两数之和为0列出关系式,根据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【详解】∵|x﹣4|与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2.故选A.【点睛】本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.10.B【解析】分析:用N-M,去括号合并同类项后,根据差的符号情况可判断M与N的大小关系.详解:M=4x2-x+1,N=5x2-x+3,∴N-M=(5x2-x+3)-(4x2-x+1)=5x2-x+3-4x2+x-1=x2+2≥0,∴M<N.故选B.点睛:本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.11.A【解析】【分析】将等式右边的已知项移到左边,再去括号,合并同类项即可.【详解】依题意,空格中的一项是:(2a2+3ab﹣b2)﹣(﹣3a2+ab+5b2)﹣(5a2﹣6b2)=2a2+3ab﹣b2+3a2﹣ab﹣5b2﹣5a2+6b2=2ab.故选A.【点睛】本题考查了整式的加减运算.解决此类题目的关键是运用移项的知识,同时熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.12.C【解析】分析:注意认真观察图形,根据图形很容易发现规律:第n个图形是4n+1,可得答案..详解:第一个图需要5根.第二个图需要9根.比第一个图多4根.依此类推,第n个图中需要5+4(n-1)=4n+1.故选:C.点睛:此题考查了图形的变化类,关键是从图中特殊的例子推理得出一般的规律,本题的规律是每个图案都比上一个图案多一个五边形,但只增加4根火柴.13.4【解析】【分析】单项式就是数与字母的乘积,数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数,据此即可求解.【详解】单项式的系数是:,次数是:1+3=4.故答案为:;4.【点睛】本题主要考查了单项式的系数与次数的定义,在写系数时,注意不要忘记前边的符号是解答此题的关键.14.-2a3(答案不唯一)【解析】【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.依此写出一个系数是-2,次数是3的单项式.【详解】系数是-2,次数是3的单项式有:-2a3.(答案不唯一)故答案是:-2a3(答案不唯一).【点睛】考查了单项式的定义,注意确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.15.3n【解析】【分析】中间数为n,分别表示出其它两个数,求和即可.【详解】由题意得,其它两个数为:n-2,n+2,则三个数的和=n-2+n+n+2=3n.故答案为:3n.【点睛】本题考查了整式的加减,关键是表示出这三个连续奇数,属于基础题.16.336【解析】分析:根据单项式、多项式、整式的概念解答即可.详解:3xy2,m,2是单项式;6a2-a+3,4x2yz-xy2,是多项式;3xy2,m,6a2-a+3,2,4x2yz-xy2,是整式;,的分母中含有字母,不是整式(是分式).故答案为:3,3,6.点睛:本题考查了整式、单项式、多项式的识别,只含有加、减、乘、乘方的代数式叫做整式;其中不含有加减运算的整式叫做单项式,单独的一个数或衣蛾字母也是单项式;含有加减运算的整式叫做多项式.17.1【解析】试题解析:2A+B=2(ay-1)+(3ay-5y-1)=2ay-2+3ay-5y-1=5ay-5y-3=5y(a-1)-3∴a-1=0,∴a=1故答案为:118.x2﹣3xy+2y2.【解析】【分析】根据括号前是正号,去掉括号及正号,各项都不变,括号前是负号,去掉括号及负号,各项都变号,可去括号,再根据系数相加字母部分不变,合并同类项.【详解】原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=3x2﹣2x2﹣xy﹣2xy﹣2y2+4y2= x2﹣3xy+2y2.【点睛】本题考查了去括号与添括号,根据法则去括号添括号是解题的关键.19.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+1520.【解析】【分析】根据已知条件得出2a+1+4=0,﹣b=0,求出a、b的值,再去括号,合并同类项,最后代入求值即可.【详解】∵关于x的多项式2ax3﹣9+x3﹣bx2+4x3中,不含x3与x2的项,∴2a+1+4=0,﹣b=0,∴a=﹣2.5,b=0,∴3(a2﹣2b2﹣2)﹣2(a2﹣2b2﹣3)=3a2﹣6b2﹣6﹣2a2+4b2+6=a2﹣2b2=(﹣2.5)2﹣2×02=.【点睛】本题考查了整式的加减和求值,解答此题的关键是能根据整式的加减法则进行化简,难度不21.(1)﹣7x﹣5y;(2)-1.【解析】分析:(1)、根据多项式的减法计算法则得出答案;(2)、根据非负数的性质得出x 和y的值,然后根据B-2A=a进行代入得出a的值.详解:解:(1)、B﹣2A=4x2﹣6xy+2y2﹣3x﹣y﹣2(2x2﹣3xy+y2+2x+2y)=4x2﹣6xy+2y2﹣3x﹣y﹣4x2+6xy﹣2y2﹣4x﹣4y=﹣7x﹣5y(2)、∵|x﹣2a|+(y﹣3)2=0 ∴x=2a,y=3又B﹣2A=a,∴﹣7×2a﹣5×3=a,∴a=﹣1.点睛:本题主要考查的是多项式的减法计算法则,属于基础题型.在解答这个问题的时候我们一定要注意去括号的法则.22.(1)规律是:,,,,…;(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍;(3)【解析】【分析】通过观察归纳可得:第①行数规律是序数平方减1,即,, ,,….通过观察归纳可得: 第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍.【详解】(1)规律是:,,,,….(2)第②行的数是第①行相应的数+2得到的,第第③行的数是第①行相应数的2倍,(3)=【点睛】本题主要考查数字规律,解决本题的关键是要熟练掌握分析数字规律的方法.23.2【解析】【分析】原式去括号合并得到结果,即可作出判断.解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3=-2y3.因为化简后的结果中不含x,所以原式的值与x的取值无关.当x=,y=-1时,原式=-2×(-1)3=2.【点睛】此题考查了整式的加减-化简求值,熟练掌握运算法则是解本题的关键.。

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题答案解析

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题答案解析

初一数学七年级人教版上册第2章《整式的加减》单元综合测试题一、选择题1.下列单项式中,与-3xy2是同类项的是( )A. -2x2yB. 3y2C. 5xy2D. -6x【答案】C【解析】直接利用同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,所以只要判断所含有的字母是否相同,相同字母的指数是否相同即可.由同类项的定义可知,x的指数是1,y的指数是2.A、x的指数是2,y的指数是1,故此选项错误;B、3不含有x的项, 故此选项错误;C、x的指数是1,y的指数是2, 故此选项正确;D、-6不含有y的项,故此选项错误.所以C选项是正确的.【点评】本题主要考查同类项的定义,熟悉掌握定义是关键.2.下列说法正确的是( )A. 23a4的系数是2,次数是7B. 若-34x m y2的次数是5,则m=5C. 0不是单项式D. 若x2+mx是单项式,则m=0或x=0 【答案】D【解析】根据单项式的系数和次数的定义解答即可.A 、23a 4的系数是8,次数是4,故此选项错误.B 、若m 23x y 4的次数是5,则m=3, 故此选项错误. C 、0是单项式,故此选项错误.D 、若x 2+mx 是单项式,则m=0或x=0, 故此选项正确.所以D 选项是正确的.【点评】本题考查了单项式的定义,单项式的系数和次数,熟记概念是解题的关键.3.下列运算正确的是( )A. 3a+2a=5a 2B. 3a+3b=3abC. 2a 2bc ﹣a 2bc=a 2bcD. a 5﹣a 2=a 3 【答案】C【解析】A.3a+2a=5a ,故错误;B.3a 与3b 不是同类项,不能合并,故错误;C.2a 2bc-a 2bc=a 2bc ,正确;D.a 5与a 2不是同类项,不能合并,故错误;故选C.4.下列各式运算其中去括号不正确的有( )(1)-(-a -b )=a -b ;(2)5x -(2x -1)-x 2=5x -2x -1+x 2;(3)3xy -12(xy -y 2)=3xy -12xy +y 2;(4)(a 3+b 3)-3(2a 3-3b 3)=a 3+b 3-6a 3+9b 3 A. (1)(2)B. (1)(2)(3)C. (2)(3)(4)D. (1)(2)(3)(4) 【答案】B【解析】在去括号时,如果括号前面是负号,则去掉括号后括号里面的每一项都要变号.(1)、原式=a+b ;(2)、原式=5x -2x+1-x²;(3)、原式=3xy -12xy+12y²;(4)、正确. 【考点】去括号法则.5.下面是小林做的4道作业题:(1)2ab+3ab=5ab;(2)2ab-3ab=-ab;(3)2ab-4ab=6ab;(4)2ab+4ab=6ab.做对一题得2分,则他共得到( )A. 2分B. 4分C. 6分D. 8分【答案】C【解析】(1)2ab+3ab=5ab ,正确;(2)2ab ﹣3ab=﹣ab ,正确;(3)∵2ab ﹣3ab=﹣ab ,∴2ab ﹣3ab=6ab 错误;(4)2ab÷3ab=23,正确.3道正确,得到6分, 故选项C 正确.故选:C.6.下列各题去括号错误的是( ) A. 113322x y x y ⎛⎫--=-+ ⎪⎝⎭ B. m+(-n+a-b)=m-n+a-b C. 12-(4x-6y+3)=-2x+3y+3 D. 112112237237a b c a b c ⎛⎫⎛⎫+--+=++- ⎪ ⎪⎝⎭⎝⎭ 【答案】C【解析】根据去括号法则依次计算各项后即可解答.选项A ,132x y ⎛⎫-- ⎪⎝⎭ =132x y -+; 选项B ,()m n a b m n a b +-+-=-+-;选项C ,()134632322x y x y --+=-+-; 选项D ,112112237237a b c a b c ⎛⎫⎛⎫+--+=++- ⎪ ⎪⎝⎭⎝⎭. 综上,只有选项C 错误,故选C.【点评】本题考查了去括号法则:1.括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变;2.括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变.7.若(3x 2-3x+2)-(-x 2+3x-3)=Ax 2-Bx+C,则A 、B 、C 的值分别为( )A. 4、-6、5B. 4、0、-1C. 2、0、5D. 4、6、5【答案】D【解析】 先把等式左边的整式相加减,再分别令等式两边x 的二次项系数、一次项系数及常数项分别相等即可.∵等式的左边=3x 2-3x+2+x 2-3x+3=(3+1)x 2-(3+3)x+2+3=4x 2-6x+5,∴A=4,B=6,C=5,故选D .【点评】本题考查了整式的加减,熟知整式加减的实质就是合并同类项是解答此题的关键. 8.多项式()n 1x n 2x 72-++是关于x 的二次三项式,则n 的值是( ) A. 2B. -2C. 2或-2D. 3 【答案】A【解析】∵多项式()1272n x n x -++是关于x 的二次三项式, ∴220n n =⎧⎨+≠⎩ ,解得n=2. 故选A.9.若代数式(2x 2+ax-y+6)-(2bx 2-3x-5y-1)(a,b 为常数)的值与字母x 的取值无关,则代数式a+3b 的值为( )A. 0B. -1C. 2或-2D. 6【答案】B【解析】先将代数式进行去括号合并,然后令含x 的项系数为0,即可求出a 与b 的值,最后代入所求的式子即可求得答案.原式=2x2+ax-y+6-2bx2+3x+5y+1,=x2(2-2b)+x(a+3)+4y+7,∵代数式的值与x的取值无关,∴(2-2b)=0,(a+3)=0,∴b=1,a=-3 ,当b=1,a=-3时,a+2b=-3+2=-1,所以B选项是正确的.【点评】此题考查了学生对整式的加减和代数式求值的知识掌握情况,熟练掌握运算法则是解本题的关键;做这类习题我们必须认真和细心,搞清题意,这样问题就迎刃而解了.10.已知a,b,c是三个有理数,它们在数轴上的位置如图所示,则化简|a-b|+|c-a|-|b+c|+(c-a)的结果是( )A. 3a-cB. -2a+cC. a+cD. -2b-c【答案】C【解析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简即可得到结果.根据数轴得:c<b<0<a,且|a|<|b|<|c|,∴a-b>0,c-a<0,b+c<0,则原式=a-b+a-c+b+c+c-a=a+c,所以C选项是正确的.【点评】此题考查了数轴和绝对值,灵活运用解本题的关键.二、填空题11.苹果原价是每千克x元,按8折优惠出售,该苹果现价是每千克____元(用含x的代数式表示). 【答案】0.8x【解析】依题意得:该苹果现价是每千克80%x=0.8x.【考点】列代数式.12.在代数式2-12a,-3xy3,0,4ab,3x2-4,7xy,n中,单项式有____个.【答案】5【解析】根据单项式的概念找出单项式的个数.单项式有:-3xy3,0,4ab,xy7,n,共5个.故答案为:5.【点评】本题主要考查单项式的概念,熟悉掌握是关键.13.若-12x m+3y与2x4y n+3是同类项,则(m+n)2 017=____.【答案】-1【解析】根据同类项中相同字母的指数相同的概念可得出关于m、n的方程,解方程求出m、n的值再代入(m+n)2017进行计算即可得.∵-12x m+3y与2x4y n+3是同类项,∴m+3=4,n+3=1,∴m=1,n=-2,∴(m+n)2017=(1-2)2017=-1,故答案为:-1.【点评】本题考查了同类项、乘方等,解答本题的关键是掌握同类项中相同字母指数相同的概念.14.若单项式-23m2n x-1和5a4b2c的次数相同,则代数式x2-2x+3的值为____.【答案】27【解析】根据单项式次数的概念求出关于x的方程,解出x,然后代入即可.∵单项式-23m2n x-1和5a4b2c 的次数相同,∴2+x-a=4+2+1 ,解得: x=6 ,则x2-2x+3=27.故答案为:27.【点评】本题考查了单项式的知识,解答本题的关键是掌握单项式的次数的定义.15.已知2a﹣3b=7,则8+6b﹣4a=_____.【答案】-6【解析】∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.【考点】代数式求值;整体代入.16.下图是某月份的日历,用一个方框圈出任意3×3个数,设最中间一个数是x,则用含x的代数式表示这9个数的和是____.【答案】9x【解析】根据最中间的为x,由日历中数字的规律表示出其他8个数,求出之和即可.设最中间的一个是x,根据题意得:x−8+x−7+x−6+x−1+x+x+1+x+6+x+7+x+8=9x.故答案为:9x.【点评】此题考查了整式的加减,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.17.若(x-1)2 +4|y-6|=0,则(5x+6y)-(4x+8y)的值为__.【答案】-11【解析】原式合并同类项得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.∵(x-1)2+4|y-6|=0,∴x-1=0,y-6=0,即x=1,y=6,则原式=x-2y=1-12=-11.故答案为:-11.【点评】本题考查的知识点是整式的加减—化简求值,非负数的性质:绝对值,解题的关键是熟练的掌握整式的加减—化简求值,非负数的性质:绝对值整式的加减—化简求值,非负数的性质:绝对值.18.小明在求一个多项式减去x2-3x+5的结果时,误认为是加上x2-3x+5,得到的结果是5x2-2x+4,则正确的结果是_______.【答案】3x2+4x-6【解析】根据题目的条件,先求出原式,再按照题目给的正确做法求出正确结果.∵误认为加上x2−3x+5,得到的答案是5x2−2x+4,∴原式=5x2−2x+4−(x2−3x+5)=4x2+x−1.(4x2+x−1)−(x2−3x+5)=4x2+x−1−x2+3x−5=3x2+4x−6.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减整式的加减.19.现规定a bc d=a-b+c-d,则222-3-2--2-3-5xy x xy xx xy的值为____.【答案】-4x2+2xy+2 【解析】首先根据例题可得22 2-3-2--2-3-5xy x xy x x xy+=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy),然后再去括号,合并同类项即可.∵a bc d=a-b+c-d∴22 2-3-2--2-3-5xy x xy x x xy+=(xy-3x2)-(-2xy-x2)+(-2x2-3)-(-5+xy)=xy-3x2+2xy+x2-2x2-3+5-xy=2xy-4x2+2.故答案为:2xy-4x2+2.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减.20.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为______个.【答案】9n+3.【解析】∵第1个图由1个正六边形、6个正方形和6个等边三角形组成,∴正方形和等边三角形的和=6+6=12=9+3;∵第2个图由11个正方形和10个等边三角形组成,∴正方形和等边三角形的和=11+10=21=9×2+3;∵第3个图由16个正方形和14个等边三角形组成,∴正方形和等边三角形的和=16+14=30=9×3+3,…,∴第n个图中正方形和等边三角形的个数之和=9n+3.故答案为:9n+3.【考点】规律型:图形的变化类三、解答题21.化简:(1)2m-3n+[6m-(3m-n)];(2)(2a2-1+3a)-2(a+1-a2).【答案】(1)5m-2n;(2)4a2+a-3【解析】根据整式的解法步骤即可得到答案.(1)原式=2m-3n+(6m-3m+n)=2m-3n+6m-3m+n=5m-2n.(2)原式=2a2-1+3a-2a-2+2a2=4a2+a-3.【点评】本题考查的知识点是整式的加减,解题的关键是熟练的掌握整式的加减.22.已知m,x,y满足:35(x-5)2+|m-2|=0,-3a2·b y+1与a2b3是同类项,求整式(2x2-3xy+6y2)-m(3x2-xy+9y2)的值.【答案】-158.【解析】利用非负数的性质求出x与m的值,再利用同类项定义求出y的值,原式去括号合并得到最简结果,把x 与y的值代入计算即可求出值.因为35(x-5)2+|m-2|=0,所以x=5,m=2.因为-3a2b y+1与a2b3是同类项,所以y+1=3,解得y=2.所以(2x2-3xy+6y2)-m(3x2-xy+9y2)=(2x2-3xy+6y2)-2(3x2-xy+9y2)=2x2-3xy+6y2-6x2+2xy-18y2=-4x2-xy-12y2.因为x=5,y=2,所以原式=-4×52-5×2-12×22=-158.【点评】本题考查的知识点是整式的加减—化简求值,非负数的性质:绝对值,非负数的性质:偶次方,同类项,解题的关键是熟练的掌握整式的加减—化简求值,非负数的性质:绝对值,非负数的性质:偶次方,同类项.23.用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.如:1☆3=1×32+2×1×3+1=16.(1)求12a+☆3;(2)若2☆x=m,1x4⎛⎫⎪⎝⎭☆3=n(其中x为有理数),试比较m,n的大小.【答案】(1)8(a+1).(2)m>n. 【解析】(1)根据☆的含义,可得即可求出(2)根据☆的含义,以及m=2☆x,n=14☆3(其中x为有理数),分别求出m、n的值各是多少;然后比较大小即可.(1)12a+☆3=12a+×32+2×12a+×3+12a+=8(a+1).(2)由题意知m=2x2+2×2x+2=2x2+4x+2,n=14x×32+2×14x×3+14x=4x,所以m-n=2x2+2>0.所以m>n.【点评】本题考查的知识点是有理数的混合运算, 有理数大小比较,解题的关键是熟练的掌握有理数的混合运算, 有理数大小比较.24.合肥百货大楼开展国庆大酬宾活动,某品牌西服每套定价2000元,领带每条定价400元.在开展促销活动期间,向客户提供两种优惠方案:①西装和领带都按定价的90%付款;②买一套西装送一条领带.现某客户要购买x套西装(x≥1),领带条数比西装套数的4倍多5.(1)若该客户分别按方案①、②购买,则各需付款多少元?(用含x的代数式表示)(2)若x=10,通过计算说明按哪种方案购买较为合算.【答案】(1)按方案①购买,需付款(3 240x+1 800)元;按方案②购买,需付款(3 200x+2 000)元.(2)当买10套西装时,按方案②购买合算.【解析】(1)①需付款为:领带价钱的90%+西装价钱的90%.②需付款为:(领带条数-x)条领带价钱+西装价钱.(2)把x=10代入(1)中的两个式子即可.(1)按方案①购买,需付款[2 000x+400(4x+5)]×90%=(3 240x+1 800)元;按方案②购买,需付款2 000x+400(3x+5)=(3 200x+2 000)元.(2)当x=10时,3 240x+1 800=3 240×10+1 800=34 200(元),3 200x+2 000=3 200×10+2 000=34 000(元),而34 000<34 200,所以当买10套西装时,按方案②购买合算.【点评】本题考查的知识点是代数式求值,列代数式,解题的关键是熟练的掌握代数式求值,列代数式.25.图中的数阵是由全体正奇数排成的.(1)图中平行四边形框内的九个数之和与中间的数有什么关系?(2)在图中任意作一个类似(1)中的平行四边形框,这九个数之和还有这种规律吗?请说出理由.这九个数之和能等于2 016吗?2 015,2 025呢?若能,请写出这九个数中最小的一个;若不能,请说出理由.【答案】(1)平行四边形框内的九个数之和是中间的数的9倍.(2)这九个数之和不能为2016;这九个数之和也不能为2015;这九个数之和能为2025,中间数为225,最小的数为207.【解析】(1)、求出各数与中间数的差值,观察发现该值成对出现,此时不难得到这九个数之和与中间数的关系了;(2)、不妨设框中间的数为n,根据(1)中各数与中间数的关系,可用n表示出各数,从而得到9个数之和与中间数的关系;由上面的结果不难得到任意作一个类似(1)的平行四边形框,框中的九个数之和都是中间的数的9倍,从而判断出2015、2016、2025中可能是这九个数之和的数.注意:数阵是由全体奇数排成!最后,根据框中的最小的数比中间的数小18,即可得到九个数中最小的一个.(1)平行四边形框内的九个数之和是中间的数的9倍.(2)任意作一个类似(1)中的平行四边形框,规律仍然成立.不妨设平行四边形框中间的数为n,则这九个数按从小到大的顺序排列依次为(n-18),(n-16),(n-14),(n-2),n,(n+2),(n+14),(n+16),(n+18).显然,其和为9n,是n的9倍.这九个数之和不能为2 016.若和为2 016,则9n=2 016,n=224,是偶数,显然不在数阵中.这九个数之和也不能为2 015.因为2 015不能被9整除.这九个数之和能为2 025,中间数为225,最小的数为225-18=207【点评】本题考查的知识点是找到日历中的数字规律.。

七年级数学整式的加减测试卷含答案

七年级数学整式的加减测试卷含答案

七年级数学整式的加减测试卷含答案整式的加减单元测试题一、填空题:(每小题3分,共24分)1.代数式-7,x,-m,xy,21x y23, -5abc,中,单项式有______个,其中系数为1的有y2_____.系数为-1的有_____,次数是1的有________.2.把4xy,-3xy,2x,-7y,5这几个单项式按次数由高到低的顺序写出是_________.3.当5-│x+1│取得最大值时,x=_____,这时的最大值是_______.4.不改变2-xy+3xy-4xy的值,把前面两项放在前面带有“+”号的括号里,后面两项放在前面带有“-”号的括号里,得_______.5.五个连续奇数中,中间的一个为2n+1,则这五个数的和是_________.6.某音像社对外出租光盘的收费方法是:每张光盘在租出后的头两天每天收0. 8元,以后每天收0.5元,那么一张光盘在租出的第n天(n是大于2的自然数),应收租金______元.7.如果m-n=50,则n-m=_____,5-m+n=______,70+2m-2n=________.8.设M=3a-10a-5,N=-2a+5-10a,P=7-5a-2a,那么M+2n-3P=_________.M-3N+2P=_______.二、选择题:(每小题3分,共24分)9.下列判断中,正确的个数是( )①在等式x+8=8+x中,x可以是任何数;②在代数式3232221中,x可以是任何数;x8③代数式x+8的值一定大于8;④代数式x+8的相反数是x-8A.0个B.1个C.2个D.3个10.一种商品单价为a元,先按原价提高5%,再按新价降低5%,得到单价b元,则a、b的大小关系为( )A.a>bB.a=bC.a<bD.无法确定11.若x<y<z,则│x-y│+│y-z│+│z-x│的值为( )A.2x-2zB.0C.2x-2yD.2z-2x12.对于单项式-2xyz的系数、次数说法正确的是( )A.系数为-2,次数为8B.系数为-8,次数为5C.系数为-2,次数为4D.系数为-2,次数为713.下列说法正确的有( )①-1999与2000是同类项②4ab与-ba不是同类项③-5x与-6x是同类项④-3(a-b)与(b-a)可以看作同类项A.1个B.2个C.3个D.4个14.x是两数,y是一名数,那末把y放在x的左侧所得的三位数是( )A.yx B.x+y C.10y+x D.100y+x15.如果m是三次多项式,n是三次多项式,则m+n一定是( )A.六次多项式B.次数不高于三的整式C.三次多项式D.次数不低于三的多项式16.若2ax-26522223322b2x+2=-4x-x+2对任何x都建立,则a+b的值为( )3A.-2B.-1C.0D.1三、解答题:(共52分)17.假如单项式2mxy与5nx(1)求(7a22)aa2a3y是关于x、y的单项式,且它们是同类项.2002的值.2a3(2)若2mxy5nxy=0,且xy≠0,求(2m5n)2003的值.(8分)18.先化简再求值(12分)(1)5x-{2y-3x+[5x-2(y-2x)+3y]},其中x=(2)A=x+4x-7,B=-211,XXX.2612x-3x+5,计算3A-2B.22222(3)m+3mn=5,求5m-[+5m-(2m-mn)-7mn-5]的值.232(4)若3x-x=1,求6x+7x-5x+1994的值.219.某同学做一道数学题,误将求“A-B”看成求“A+B”,结果求出的答案是3x-2x+5.已2知A=4x-3x-6,请正确求出A-B.(8分)20.探索规律(8分)88____55____1212____(1)计较并窥察以下每组算式:,,79____46____1113____(2)25×25=625,那末24×26=__________.(3)从以上的进程中,你发觉了甚么纪律,你能用言语叙说这个纪律吗?你能用代数式表示设这个规律吗?21.(8分)有理数a、b、c在数轴上对应点为A、B、C,其位置如图所示,试去掉绝对值符号并合并同类项:│c│-│c+b│+│a-c│+│b+a│.22.某XXX开设了两种通讯业务:“全球通”使用者缴50元月租费,然后每通话1分钟再付话费0.4元;“快捷通”不缴月租费,每通话1分钟,付话费0,6元(本题的通话均指市内通话).若一个月内通话x分钟,两种体式格局的用度划分为y1元和y2元.(8分)(1)用含x的代数式划分透露表现y1和y2,则y1=________,y2=________.(2)或人估量一个月内通话300分钟,应挑选哪类挪动通信合算些?第3章单位测试题谜底一、1.5;x,xy;-m;x,-m 2.-3xy,4xy,-7y,2x,5 3.-1,5224.(2-xy)-(-3xy+4xy) 5.10n+5 6.(0.5n+0.6) 7.-50,-45,170 .-a-4a-5a-16,9a-14a+20a-62、9.B 10.A 11.D 12.B 13.B 14.D 15.B 16.D三、17.(1)先求a=3,(7a-22)=1 (2)a=3时,2mxy-5nxy=0,又xy≠得2m-5n=0则原式=0218.(1)原式=-x-3y值为1 (2)4x+18x-312(3)原式=2(m+3mn)+5,值为15322(4)原式=6x-2x+9x-3x-2x+1994。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《整式的加减》单元测试题
一、填空题:
1.单项式8
53
ab -的系数是 ,次数是 .
2.2a 4+a 3b 2-5a 2b 3+a -1是_____次_____项式,把它按a 的升幂排列是 . 3.写出多项式6322-+-xy xy x 中最高次项的一个同类项 . 4. 如果a -b =12
,那么-3(b -a )的值是 .
5.一个两位数,个位数字是a ,十位数字比个位数字大2,则这个两位数是_____.
6.计算:22224(2)(2)a b ab a b ab --+= ;
7.规定一种新运算:1+--⋅=∆b a b a b a ,如1434343+--⨯=∆,请比较大小:()()34 43-∆∆-(填“>”、“=”或“>”).
8.下面是一组数值转换机,写出(1)的输出结果(写在横线上),找出(2)的转换步骤(填写在框内).
9.某城市按以下规定收取每月的煤气费:用气不超过60立方米,按每立方米元收费;如果超过60立方米,超过部分每立方米按元收费.已知某户用煤气x 立方米(x >60),则该户应交煤气费 元.
10.在密码学中,直接可以看到内容为明码,对明码进行某种处理后得到的内容为密码.有一种密码,将英文26个字母a b c ,,,…,
z (不论大小写)依次对应1,2,3, (26)
26个自然数(见表格).当明码对应的序号x 为
奇数时,密码对应的序号1
2
x y +=
;当明码对应的序号x 为偶数时,密码对应的序号132
x
y =+.
-3 输入x
输出
输入x
输出
按上述规定,将明码“love ”译成密码是 . 二、选择题:
1.下列各式中是多项式的是 ( ) A.21
- B.y x + C.3
ab
D.22b a - 2.下列说法中正确的是( ) A.x 的次数是0 B.
y 1是单项式 C.2
1
是单项式 D.a 5-的系数是5 3.如图1,为做一个试管架,在a cm 长的木条上钻了4个圆孔,每个孔直径2cm ,则x 等于 ( )
58+a 516-a 54-a 58
-a 4.+-=-+-)()(c a d c b a ( )
A. b d -
B.d b --
C.d b -
D. d b + 5.只含有z y x ,,的三次多项式中,不可能含有的项是 ( )
A.32x
B.xyz 5
C.37y -
D.yz x 24
1
6.化简 )]72(53[2b a a b a ----的结果是 ( )
A.b a 107+-
B.b a 45+
C.b a 4--
D.b a 109-
7.一台电视机成本价为a 元,销售价比成本价增加了0025,因库存积压,所以就按销售价的0070出售,那么每台实际售价为 ( )
A.a )701)(251(0000++元
B.a )251(700000+元
C.a )701)(251(0000-+元
D.a )70251(0000++元
8.下面是小芳做的一道多项式的加减运算题,但她不小心把一滴墨水滴在了上面.
⎪⎭⎫ ⎝⎛-+-22213y xy x 2
222 212342
1y x y xy x +-=⎪⎭⎫ ⎝⎛-+--,阴影部分即为被墨迹
弄污的部分.那么被墨汁遮住的一项应是 ( )
A .xy 7- B. xy 7+ C. xy - D .xy +
9.把(x -3)2-2(x -3)-5(x -3)2+(x -3)中的(x -3)看成一个因式合并同类项,结果
应( )
A.-4(x -3)2+(x -3) (x -3)2-x (x -3) (x -3)2-(x -3) D.-4(x -3)2-(x -3)
10.观察图2给出的四个点阵,s 表示每个点阵中的点的个数,按照图形中的点的个数变化规律,猜想第n 个点阵中的点的个数s 为( ).
A .3n -2
B 3n -1
C .4n +1
D .4n -3 三、计算题: 1.化简:
(1)1
44
mn mn -;
(2)22
37(43)2x x x x ⎡⎤----⎣⎦;
(3)(2)()xy y y yx ---+ ; 2.化简求值
(1))522(2)624(22-----a a a a 其中 1-=a .
(2))312
3
()
21(2
2122
b a b a a
-
---- 其中
3
2,2
=-
=
b a . 3.(6分)已知 1232+-=a a A ,2352+-=a a B ,求B A 32-.
4.小明为一个矩形娱乐场所提供了如下设计方案,其中半圆形休息区和矩形游泳区以外的地方都是绿地.
(1)旅游区和休息区的面积各是多少 (2)绿地的面积是多少
5. 我国出租车收费标准因地而异.甲市为:起步价6元,3千米后每千米价为元;乙市为:起步价10元,3千米后每千米价为元.
(1)试问在甲、乙两市乘坐出租车S (S >3)千米的价差是多少元
(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费标准高些高多少 四、解答题:
1. 某校一间阶梯教室中,第1排的座位数为a ,从第2排开始,每一排都比前一排增加两个座位。

(1)请你在下表的空格里填写一个适当的式子:
第1排的
第2排的
第3排的
第4排的

n
a
b
2n
n
(2)写出第n 排座位数的表达式;
(3)求当a =20时,第10排的座位数是多少若这间阶梯教室共有15排,那么最多可
容纳多少学员
2. (9分)某农户2007年承包荒山若干亩,投资7800•元改造后,种果树2000棵.今年水果总产量为18000千克,此水果在市场上每千克售a 元,在果园每千克售b 元(b <
a ).该农户将水果拉到市场出售平均每天出售1000千克,需8•人帮忙,每人每天付工
资25元,农用车运费及其他各项税费平均每天100元. (1)分别用a ,b 表示两种方式出售水果的收入
(2)若a =元,b =元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好.
(3)该农户加强果园管理,力争到明年纯收入达到15000元,那么纯收入增长率是多少(纯收入=总收入-总支出),该农户采用了(2)中较好的出售方式出售) 参考答案
一、 9. D
二、1.8
5-, 4; 2.五,五;23324152a a b a b a -+-++; 3. 如25xy (本题可写出无数个,只要正确即可); 4.32
; 5.11a +20; 6.22310a b ab -; 7.=; 8.23,3,2x -+÷如; 9.1.2 x -24.; 10. shxc . 三、
1.(1)-
154
mn 、(2)5 x 2
-3 x -3、(3)xy . 2. (1)42+a ,2 (2)27
16
8,3442b a +-.
a
3. 4592-+-a a .
4.(1)22n ,24
n π;(2)ab -22n -24
n π
.
5.(1)在甲市乘坐出租车S (S >3)千米的价钱为[6+(S -3)]元,在乙市乘坐出租车S (S >3)千米的价钱为[10+(S -3)]元,故甲、乙两市的价差是:[6+(S -3)] -[10+(S -3)] =(-)元。

(2)当S =10时, -=-(元)。

所以乙市的收费标准高些;高元. 四、
1. (1)a +6;(2)a +2(n -1);(3)38;510.
2.(1)将这批水果拉到市场上出售收入为18000a -
180001000×8×25-18000
1000
×100=18000a -3600-1800=18000a -5400(元).在果园直接出售收入为18000b 元. (2)当a =时,市场收入为18000a -5400=18000×-5400=18000(元).当b =时,果园收入为18000b =18000×=19800(元).因为18000<19800,所以应选择在果园出售.
(3)因为今年的纯收入为19800-7800=12000,所以1500012000
12000
-×100%=25%,所
以增长率为25%.。

相关文档
最新文档