复变函数论第四版第四五章练习

合集下载

复变函数第四章复函数项级数第四节洛朗级数

复变函数第四章复函数项级数第四节洛朗级数
解 由定理知: f ( z ) = 由定理知
n = −∞ ∞
cn z n , ∑
eζ 1 1 f (ζ ) 其中 cn = ∫C (ζ − z0 )n+1dζ = 2πi ∫C ζ n+3dζ 2πi
C : z = ρ (0 < ρ < ∞ ) , ( n = 0 , ± 1, ± 2L)
17
当 n ≤ −3 时,
常见的特殊圆环域: 常见的特殊圆环域:
R2
. z0
R1 . z0
. z0
0 < z − z0 < R2 R1 < z − z0 < ∞
0 < z − z0 < ∞
4
2. 问题:在圆环域内解析的函数是否一定能展开 问题: 成级数? 成级数? 1 在z = 0及z = 1 都不解析 都不解析, 例如, 例如, f ( z ) = z (1 − z ) 但在圆环域 0 < z < 1及 0 < z − 1 < 1内都是解析的 内都是解析的.
由 z >2 此时
2 <1 z
o
2
x
1 1 1 =− ⋅ 2− z z 1− 2 z
23
1 2 4 = − 1 + + 2 + L z z z
1 2 此时 < < 1, z z
1 1 1 1 1 1 = − 1 + + 2 + L =− ⋅ 仍有 z z z 1− z z 1− 1 z 1 2 4 − 1 1 + 1 + 1 + L 故 f ( z ) = 1 + + 2 + L 2 z z z z z z

(2021年整理)复变函数第四章答案

(2021年整理)复变函数第四章答案

复变函数第四章答案编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(复变函数第四章答案)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为复变函数第四章答案的全部内容。

复变函数作业12 复数项级数 幂级数1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限:(1)1i 1i n n a n +=- (2)i 12nn a -⎛⎫=+ ⎪⎝⎭;(3)i (1)1n n a n =-++ (4)i /2e n n a π-=; (5)i /21e n n a nπ-=. 解 (1)1i0i 110i in n n a n→∞++=−−−→=---,lim 1n n a →∞=-,即{}n a 收敛于1-。

(2)i|0|102nnn n a --→∞-=+=−−−→⎝⎭,1i lim 02nn -→+∞+⎛⎫= ⎪⎝⎭,即{}n a 收敛于0。

(3)因n a 的实部(1)n -不收敛,虚部11n +收敛于零,所以{}n a 不收敛。

(4)cos isin22n n n a ππ=-,lim cos 2n n π→∞与lim sin 2n n π→∞均不存在(分n 为奇数与偶数便知),所以{}n a 不收敛.(5)i /2i /2111|0|||e 0,lim e 0n n n n n a a n nn ππ--→∞-===→=,即{}n a 收敛于零.2. 下列级数是否收敛? 是否是绝对收敛?(1)2111i n n n +∞=+∑;(2)1(1i)2nn n n ∞=+∑;(3)1(35i)!n n n ∞=+∑;(4)/21(1i)2cosi n n n n ∞=+∑.解 (1)原式=1111i (1)n n n n n ∞∞==+-⋅∑∑,显然11n n ∞=∑发散,而11(1)n n n ∞=-∑收敛.故原级数发散。

(完整)《复变函数》练习题

(完整)《复变函数》练习题

(完整)《复变函数》练习题编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)《复变函数》练习题)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)《复变函数》练习题的全部内容。

福师12秋《复变函数》练习题注:1、本课程练习题所提供的答案仅供学员在学习过程中参考之用,有问题请到课程论坛提问。

一、单项选择题1.2sin i =( )A . B. C . D .答案:D2.函数在复平面上( ) A .处处不连续B.处处连续,处处不可导C 。

处处连续,仅在点z =0可导 D.处处连续,仅在点z =0解析 答案:C3.设C 是绕点的正向简单闭曲线,则 ( )A .B .C .D .0答案:C 4.,分别是正向圆周与,则( )A .B .cos2C .0D .sin2答案:D二、填空题1()e ei--1()e ei-+1()e e i --1e e-+2()f z z =00z ≠530()C z dz z z =-⎰2iπ3020z iπ502z i π1C 2C 1z =21z -==-+-⎰⎰dz z zi dz z e i c c z212sin 21221ππ2i π1. 设,则________。

考核知识点:复数代值。

2.设是解析函数.若,则______. 考核知识点:解析函数的导数.3. 设C 为正向圆周,则 。

考核知识点:柯西积分公式.4.幂级数的收敛半径为_________.考核知识点:幂级数的收敛半径。

5. = .考核知识点:复数的乘幂。

提示:6.设为的极点,则____________________.考核的知识点:函数的极点。

复变函数(第四版)课后习题答案

复变函数(第四版)课后习题答案

(3 + 4i )(2 − 5i ) = 5
2i
29 , 2
26 ⎡ (3 + 4 i )(2 − 5 i ) ⎤ ⎡ (3 + 4 i )(2 − 5 i ) ⎤ = arg ⎢ Arg ⎢ + 2kπ = 2 arctan − π + 2kπ ⎥ ⎥ 2i 2i 7 ⎣ ⎦ ⎣ ⎦ = arctan 26 + (2k − 1)π , 7 k = 0,±1,±2, " .
{
}
{
}
Arg i8 − 4i 21 + i = arg i8 − 4i 21 + i + 2kπ = arg(1 − 3i ) + 2kπ
(
)
(
)
= −arctan3 + 2kπ 2.如果等式 解:由于
k = 0,±1,±2, ".
x + 1 + i(y − 3) = 1 + i 成立,试求实数 x, y 为何值。 5 + 3i x + 1 + i(y − 3) [x + 1 + i(y − 3)](5 − 3i ) = 5 + 3i (5 + 3i )(5 − 3i ) =
2 2
= ( z1 + z2 )( z1 + z2 ) + ( z1 − z2 )( z1 − z2 ) = 2( z1 z1 + z2 z2 )几何意义平行四边形的对角线长度平方的和等于四个边的平方的和。 12.证明下列各题: 1)任何有理分式函数 R ( z ) =
2 2
1 ; 3 + 2i
1 3i (2) − ; i 1− i

《复变函数与积分变换》习题册

《复变函数与积分变换》习题册

《复变函数与积分变换》习题册合肥工业大学《复变函数与积分变换》校定平台课程建设项目资助2018年9月《复变函数与积分变换》第一章习题1.求下列各复数的实部、虚部、模、辐角和辐角主值:(1)122345i i i i +---; (2)312⎛⎫+ ⎪ ⎪⎝⎭.2. 将下列复数写成三角表达式和指数形式:(1)1; (2)21i i+.3. 利用复数的三角表示计算下列各式:(1; (2)103⎛⎫4. 解方程310z +=.5. 设12cos z zθ-+=(0,z θ≠是z 的辐角),求证:2cos n n z z n θ-+=.6.指出满足下列各式的点z 的轨迹或所在范围.(1)arg()4z i π-=;(2)0zz az az b +++=,其中a 为复数,b 为实常数. (选做)7.用复参数方程表示曲线:连接1i +与i 41--的直线段.8.画出下列不等式所确定的图形,指出它们是否为区域、闭区域,并指明它是有界的还是无界的?是单连通区域还是多连通区域?并标出区域边界的方向.(1) 11,Re 2z z <≤;(2) 0Re 1z <<;9.函数z w 1=把下列z 平面上的曲线映射成w 平面上怎么样的曲线? (1)224x y +=; (2)x y =; (3)1=x .10.试证:0Re limz z z→不存在.《复变函数与积分变换》第二章习题1.用导数定义求z z f Re )(=的导数.2.下列函数在何处可导,何处不可导?何处解析,何处不解析?(1)z z f 1)(=; (2))32233(3)(y y x i xy x z f -+-=;3.试讨论y ix xy z f 22)(+=的解析性,并由此回答:若复变函数),(),()(y x iv y x u z f +=中的),(y x u 和),(y x v 均可微,那么iv u z f +=)(一定可导吗?4.设3232()(f z my nx y i x lxy =+++)为解析函数,试确定,,l m n 的值.5.设()f z 在区域D 内解析,试证明在D 内下列条件是彼此等价的:(1)()f z =常数; (2)Re ()f z =常数; (3)()f z 解析.6.试解下列方程:(1)1ze =+; (2)0cos =z ; (3)0cos sin =+z z .7.求下列各式的值:(1)Ln(34)i -+; (2)i -33; (3)i e +2.8.等式33Ln 3Ln z z =是否正确?请给出理由.《复变函数与积分变换》第三章习题3.1复积分的概念与基本计算公式1. 计算积分dz ix y x C )(2⎰+-,其中C 为从原点到点1+i 的直线段.2.计算积分dz z zC ⎰的值,其中C 为2=z3.当积分路径是自i -沿虚轴到i ,利用积分性质证明:2)(22≤+⎰-dz iy x i i3.2柯西古萨基本定理1.计算积分dz z C ⎰1,其中C 为2=z2. 计算积分dz z e z C z)sin (⎰⋅-,其中C 为a z =.3.3基本定理的推广1. 计算积分dz z e Cz⎰,其中C 为正向圆周2=z 与负向圆周1=z 所组成。

复变函数1到5章测试题及答案

复变函数1到5章测试题及答案

复变函数1到5章测试题及答案(总20页)--本页仅作预览文档封面,使用时请删除本页--- 2 -第一章 复数与复变函数(答案)一、 选择题1.当iiz -+=11时,5075100z z z ++的值等于(B ) (A )i (B )i - (C )1 (D )1-2.设复数z 满足arg(2)3z π+=,5arg(2)6z π-=,那么=z (A )(A )i 31+- (B )i +-3 (C )i 2321+-(D )i 2123+-3.复数)2(tan πθπθ<<-=i z 的三角表示式是(D )(A ))]2sin()2[cos(sec θπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i(C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i4.若z 为非零复数,则22z z -与z z 2的关系是(C ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是(B )(A )圆 (B )椭圆 (C )双曲线 (D )抛物线- 3 -6.一个向量顺时针旋转3π,对应的复数为i 31-,则原向量对应的复数是(A )(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是(D )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数8.设z 为复数,则方程i z z +=+2的解是(B ) (A )i +-43 (B )i +43 (C )i -43 (D )i --439.满足不等式2≤+-iz iz 的所有点z 构成的集合是(D ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域10.方程232=-+i z 所代表的曲线是(C )(A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周(C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周11.下列方程所表示的曲线中,不是圆周的为(B ) (A )221=+-z z (B )433=--+z z- 4 -(C ))1(11<=--a azaz (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则12()f z z -=(C ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.000Im()Im()limz z z z z z →--(D )(A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是(C ) (A )),(y x u 在),(00y x 处连续 (B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续15.设C z ∈且1=z ,则函数zz z z f 1)(2+-=的最小值为(A )(A )3- (B )2- (C )1- (D )1二、填空题1.设)2)(3()3)(2)(1(i i i i i z ++--+=,则=z2.设)2)(32(i i z +--=,则=z arg 8arctan -π 3.设43)arg(,5π=-=i z z ,则=z i 21+- 4.复数22)3sin 3(cos )5sin 5(cos θθθθi i -+的指数表示式为 ie θ16- 5 -5.以方程i z 1576-=的根的对应点为顶点的多边形的面积为6.不等式522<++-z z522=++-z (或1)23()25(2222=+y x ) 的内部 7.方程1)1(212=----zi iz 所表示曲线的直角坐标方程为 122=+y x8.方程i z i z +-=-+221所表示的曲线是连接点 12i -+ 和 2i - 的线段的垂直平分线9.对于映射zi =ω,圆周1)1(22=-+y x 的像曲线为()2211u v -+= 10.=+++→)21(lim 421z z iz 12i -+三、若复数z 满足03)21()21(=+++-+z i z i z z ,试求2+z 的取值范围. (]25,25[+-(或25225+≤+≤-z )) 四、设0≥a ,在复数集C 中解方程a z z =+22. (当10≤≤a 时解为i a )11(-±±或)11(-+±a 当+∞≤≤a 1时解为)11(-+±a ) 五、设复数i z ±≠,试证21zz+是实数的充要条件为1=z 或Im()0z =. 六、对于映射)1(21zz +=ω,求出圆周4=z 的像.- 6 -(像的参数方程为π≤θ≤⎪⎩⎪⎨⎧θ=θ=20sin 215cos 217v u .表示w 平面上的椭圆1)215()217(2222=+v u ) 七、设iy x z +=,试讨论下列函数的连续性:1.⎪⎩⎪⎨⎧=≠+=0,00,2)(22z z y x xyz f2.⎪⎩⎪⎨⎧=≠+=0,00,)(223z z y x y x z f .(1.)(z f 在复平面除去原点外连续,在原点处不连续; 2.)(z f 在复平面处处连续)第二章 解析函数(答案)一、选择题:1.函数23)(z z f =在点0=z 处是( B )(A )解析的 (B )可导的(C )不可导的 (D )既不解析也不可导 2.函数)(z f 在点z 可导是)(z f 在点z 解析的( B )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既非充分条件也非必要条件 3.下列命题中,正确的是( D )(A )设y x ,为实数,则1)cos(≤+iy x- 7 -(B )若0z 是函数)(z f 的奇点,则)(z f 在点0z 不可导(C )若v u ,在区域D 内满足柯西-黎曼方程,则iv u z f +=)(在D 内解析 (D )若)(z f 在区域D 内解析,则)(z if 在D 内也解析 4.下列函数中,为解析函数的是( C )(A )xyi y x 222-- (B )xyi x +2 (C ))2()1(222x x y i y x +-+- (D )33iy x + 5.函数)Im()(2z z z f =在0z =处的导数( A )(A )等于0 (B )等于1 (C )等于1- (D )不存在 6.若函数)(2)(2222x axy y i y xy x z f -++-+=在复平面内处处解析,那么实常 数=a ( C )(A )0 (B )1 (C )2 (D )2- 7.如果)(z f '在单位圆1<z 内处处为零,且1)0(-=f ,那么在1<z 内≡)(z f ( C )(A )0 (B )1 (C )1- (D )任意常数8.设函数)(z f 在区域D 内有定义,则下列命题中,正确的是( C )(A )若)(z f 在D 内是一常数,则)(z f 在D 内是一常数 (B )若))(Re(z f 在D 内是一常数,则)(z f 在D 内是一常数 (C )若)(z f 与)(z f 在D 内解析,则)(z f 在D 内是一常数- 8 -(D )若)(arg z f 在D 内是一常数,则)(z f 在D 内是一常数 9.设22)(iy x z f +=,则=+')1(i f ( A )(A )2 (B )i 2 (C )i +1 (D )i 22+ 10.i i 的主值为( D )(A )0 (B )1 (C )2πe (D )2e π-11.z e 在复平面上( A )(A )无可导点 (B )有可导点,但不解析 (C )有可导点,且在可导点集上解析 (D )处处解析 12.设z z f sin )(=,则下列命题中,不正确的是( C )(A ))(z f 在复平面上处处解析 (B ))(z f 以π2为周期(C )2)(iziz e e z f --= (D ))(z f 是无界的13.设α为任意实数,则α1( D )(A )无定义 (B )等于1(C )是复数,其实部等于1 (D )是复数,其模等于114.下列数中,为实数的是( B )(A )3)1(i - (B )i cos (C )i ln (D )i e 23π-15.设α是复数,则( C )(A )αz 在复平面上处处解析 (B )αz 的模为αz- 9 -(C )αz 一般是多值函数 (D )αz 的辐角为z 的辐角的α倍 二、填空题1.设i f f +='=1)0(,1)0(,则=-→zz f z 1)(limi +1 2.设iv u z f +=)(在区域D 内是解析的,如果v u +是实常数,那么)(z f 在D 内是 常数 3.导函数x v i x u z f ∂∂+∂∂=')(在区域D 内解析的充要条件为 xv x u ∂∂∂∂,可微且满足222222,xvy x u y x v x u ∂∂-=∂∂∂∂∂∂=∂∂ 4.设2233)(y ix y x z f ++=,则=+-')2323(i f i 827427- 5.若解析函数iv u z f +=)(的实部22y x u -=,那么=)(z f ic xyi y x ++-222或ic z +2c 为实常数6.函数)Re()Im()(z z z z f -=仅在点=z i 处可导 7.设z i z z f )1(51)(5+-=,则方程0)(='z f 的所有根为 3,2,1,0),424sin 424(cos 28=π+π+π+πk k i k8.复数i i 的模为),2,1,0(2 ±±=π-k e k9.=-)}43Im{ln(i 34arctan -- 10 -10.方程01=--z e 的全部解为),2,1,0(2 ±±=πk i k三、试证下列函数在z 平面上解析,并分别求出其导数 1.;sinh sin cosh cos )(y x i y x z f -= (;sin )(z z f -=')2.);sin cos ()sin cos ()(y ix y y ie y y y x e z f x x ++-=(.)1()(z e z z f +=') 四、已知22y x v u -=-,试确定解析函数iv u z f +=)(. (c i z i z f )1(21)(2++-=.c 为任意实常数)第三章 复变函数的积分(答案)一、选择题:1.设c 为从原点沿x y =2至i +1的弧段,则=+⎰cdz iy x )(2( D )(A )i 6561- (B )i 6561+- (C )i 6561-- (D )i 6561+2.设c 为不经过点1与1-的正向简单闭曲线,则dz z z zc⎰+-2)1)(1(为( D)(A )2i π (B )2iπ- (C )0 (D )(A)(B)(C)都有可能 3.设1:1=z c 为负向,3:2=z c 正向,则=⎰+=dz z zc c c 212sin ( B ) (A ) i π2- (B )0 (C )i π2 (D )i π44.设c 为正向圆周2=z ,则=-⎰dz z zc2)1(cos ( C)(A )1sin - (B )1sin (C )1sin 2i π- (D )1sin 2i π5.设c 为正向圆周21=z ,则=--⎰dz z z z c23)1(21cos( B) (A ))1sin 1cos 3(2-i π (B )0 (C )1cos 6i π (D )1sin 2i π-6.设ξξξξd ze zf ⎰=-=4)(,其中4≠z ,则=')i f π(( A ) (A )i π2- (B )1- (C )i π2 (D )1 7.设)(z f 在单连通域B 内处处解析且不为零,c 为B 内任何一条简单闭曲线,则积分dz z f z f z f z f c ⎰+'+'')()()(2)( ( C )(A )于i π2 (B )等于i π2- (C )等于0 (D )不能确定 8.设c 是从0到i 21π+的直线段,则积分=⎰cz dz ze ( A )(A )21eπ-(B) 21eπ-- (C)i e21π+(D) i e21π-9.设c 为正向圆周0222=-+x y x ,则=-⎰dz z z c1)4sin(2π( A )(A )i π22(B )i π2 (C )0 (D )i π22-10.设c 为正向圆周i a i z ≠=-,1,则=-⎰cdz i a zz 2)(cos ( C) (A )ie π2 (B )eiπ2 (C )0 (D )i i cos 11.设)(z f 在区域D 内解析,c 为D 内任一条正向简单闭曲线,它的内部全属于D .如果)(z f 在c 上的值为2,那么对c 内任一点0z ,)(0z f ( C )(A )等于0 (B )等于1 (C )等于2 (D )不能确定12.下列命题中,不正确的是( D ) (A )积分⎰=--ra z dz a z 1的值与半径)0(>r r 的大小无关 (B )2)(22≤+⎰cdz iy x ,其中c 为连接i -到i 的线段(C )若在区域D 内有)()(z g z f =',则在D 内)(z g '存在且解析 (D )若)(z f 在10<<z 内解析,且沿任何圆周)10(:<<=r r z c 的积分等于零,则)(z f 在0=z 处解析13.设c 为任意实常数,那么由调和函数22y x u -=确定的解析函数iv u z f +=)(是 ( D)(A)c iz +2 (B ) ic iz +2 (C )c z +2 (D )ic z +2 14.下列命题中,正确的是(C)(A )设21,v v 在区域D 内均为u 的共轭调和函数,则必有21v v =(B )解析函数的实部是虚部的共轭调和函数 (C )若iv u z f +=)(在区域D 内解析,则xu∂∂为D 内的调和函数 (D )以调和函数为实部与虚部的函数是解析函数15.设),(y x v 在区域D 内为),(y x u 的共轭调和函数,则下列函数中为D 内解析函数的是( B )(A )),(),(y x iu y x v + (B )),(),(y x iu y x v - (C )),(),(y x iv y x u - (D )xv i x u ∂∂-∂∂二、填空题1.设c 为沿原点0=z 到点i z +=1的直线段,则=⎰cdz z 2 22.设c 为正向圆周14=-z ,则=-+-⎰c dz z z z 22)4(23 i π103.设⎰=-=2)2sin()(ξξξξπd z z f ,其中2≠z ,则=')3(f 0 4.设c 为正向圆周3=z ,则=+⎰cdz zzz i π6 5.设c 为负向圆周4=z ,则=-⎰c z dz i z e 5)(π 12iπ 6.解析函数在圆心处的值等于它在圆周上的 平均值7.设)(z f 在单连通域B 内连续,且对于B 内任何一条简单闭曲线c 都有0)(=⎰cdz z f ,那么)(z f 在B 内 解析8.调和函数xy y x =),(ϕ的共轭调和函数为 C x y +-)(21229.若函数23),(axy x y x u +=为某一解析函数的虚部,则常数=a -3 10.设),(y x u 的共轭调和函数为),(y x v ,那么),(y x v 的共轭调和函数为),(y x u -三、计算积分 1.⎰=+-R z dz z z z)2)(1(62,其中1,0≠>R R 且2≠R ; (当10<<R 时,0; 当21<<R 时,i π8; 当+∞<<R 2时,0) 2.⎰=++22422z z z dz.(0) 四、求积分⎰=1z zdz z e ,从而证明πθθπθ=⎰0cos )cos(sin d e .(i π2)五、若)(22y x u u +=,试求解析函数iv u z f +=)(. (321ln 2)(ic c z c z f ++=(321,,c c c 为任意实常数))第四章 级 数(答案)一、选择题:1.设),2,1(4)1( =++-=n n nia n n ,则n n a ∞→lim ( C )(A )等于0 (B )等于1 (C )等于i (D )不存在 2.下列级数中,条件收敛的级数为( C )(A )∑∞=+1)231(n n i (B )∑∞=+1!)43(n nn i (C ) ∑∞=1n n n i (D )∑∞=++-11)1(n n n i3.下列级数中,绝对收敛的级数为(D )(B ) ∑∞=+1)1(1n n i n (B )∑∞=+-1]2)1([n n n in(C)∑∞=2ln n n n i (D )∑∞=-12)1(n nnn i 4.若幂级数∑∞=0n n n z c 在i z 21+=处收敛,那么该级数在2=z 处的敛散性为( A )(A )绝对收敛 (B )条件收敛 (C )发散 (D )不能确定 5.设幂级数∑∑∞=-∞=01,n n n n nn znc z c 和∑∞=++011n n n z n c 的收敛半径分别为321,,R R R ,则321,,R R R 之间的关系是( D )(A )321R R R << (B )321R R R >> (C )321R R R <= (D )321R R R == 6.设10<<q ,则幂级数∑∞=02n n n z q 的收敛半径=R ( D )(A )q (B )q1(C )0 (D )∞+ 7.幂级数∑∞=1)2(2sinn n z n n π的收敛半径=R ( B ) (A ) 1 (B )2 (C )2 (D )∞+8.幂级数∑∞=++-011)1(n n n z n 在1<z 内的和函数为( A )(A ))1ln(z + (B ))1ln(z - (D )z +11ln(D) z-11ln 9.设函数z e z cos 的泰勒展开式为∑∞=0n nn z c ,那么幂级数∑∞=0n n n z c 的收敛半径=R ( C )(A )∞+ (B )1 (C )2π(D )π 10.级数+++++22111z z z z的收敛域是( B ) (A )1<z (B )10<<z (C )+∞<<z 1 (D )不存在的 11.函数21z在1-=z 处的泰勒展开式为( D)(A ))11()1()1(11<++-∑∞=-z z n n n n (B ))11()1()1(111<++-∑∞=--z z n n n n(C ))11()1(11<++-∑∞=-z z n n n (D ))11()1(11<++∑∞=-z z n n n12.函数z sin ,在2π=z 处的泰勒展开式为( B )(A ))2()2()!12()1(012+∞<--+-∑∞=+ππz z n n n n(B ))2()2()!2()1(02+∞<---∑∞=ππz z n n nn(C ))2()2()!12()1(0121+∞<--+-∑∞=++ππz z n n n n(D ))2()2()!2()1(021+∞<---∑∞=+ππz z n n nn13.设)(z f 在圆环域201:R z z R H <-<内的洛朗展开式为∑∞-∞=-n n nz z c)(0,c 为H 内绕0z 的任一条正向简单闭曲线,那么=-⎰c dz z z z f 2)()(( B )(A)12-ic π (B )12ic π (C )22ic π (D ))(20z f i 'π14.若⎩⎨⎧--==-+=,2,1,4,2,1,0,)1(3n n c nn n n ,则双边幂级数∑∞-∞=n n n z c 的收敛域为( A ) (A )3141<<z (B )43<<z(C )+∞<<z 41 (D )+∞<<z 3115.设函数)4)(1(1)(++=z z z z f 在以原点为中心的圆环内的洛朗展开式有m 个,那么=m ( C )(A )1 (B )2 (C )3 (D )4 二、填空题1.若幂级数∑∞=+0)(n n n i z c 在i z =处发散,那么该级数在2=z 处的收敛性为 发散2.设幂级数∑∞=0n nn z c 与∑∞=0)][Re(n n n z c 的收敛半径分别为1R 和2R ,那么1R 与2R 之间的关系是 12R R ≥ .3.幂级数∑∞=+012)2(n n n z i 的收敛半径=R22 4.设)(z f 在区域D 内解析,0z 为内的一点,d 为0z 到D 的边界上各点的最短距离,那么当d z z <-0时,∑∞=-=00)()(n n n z z c z f 成立,其中=n c ),2,1,0()(!10)( =n z f n n 或()0,2,1,0()()(21010d r n dz z z z f ir z z n <<=-π⎰=-+ ). 5.函数z arctan 在0=z 处的泰勒展开式为 )1(12)1(012<+-∑∞=+z z n n n n .6.设幂级数∑∞=0n nn z c 的收敛半径为R ,那么幂级数∑∞=-0)12(n n n n z c 的收敛半径为2R. 7.双边幂级数∑∑∞=∞=--+--112)21()1()2(1)1(n n n nnz z 的收敛域为 211<-<z . 8.函数zze e 1+在+∞<<z 0内洛朗展开式为 nn nn z n z n ∑∑∞=∞=+00!11!1 . 9.设函数z cot 在原点的去心邻域R z <<0内的洛朗展开式为∑∞-∞=n n nz c,那么该洛朗级数收敛域的外半径=R π .10.函数)(1i z z -在+∞<-<i z 1内的洛朗展开式为 ∑∞=+--02)()1(n n nn i z i 三、若函数211z z --在0=z 处的泰勒展开式为∑∞=0n nn z a ,则称{}n a 为菲波那契(Fibonacci)数列,试确定n a 满足的递推关系式,并明确给出n a 的表达式. ()2(,12110≥+===--n a a a a a n n n ,),2,1,0(})251()251{(5111 =--+=++n a n n n ) 四、求幂级数∑∞=12n nz n 的和函数,并计算∑∞=122n n n 之值.(3)1()1()(z z z z f -+=,6)五、将函数)1()2ln(--z z z 在110<-<z 内展开成洛朗级数.(n n nk k z k n z z z z z z )1()1)1(()2ln(111)1()2ln(001-+--=-⋅⋅-=--∑∑∞==+)第五章 留 数(答案)一、选择题: 1.函数32cot -πz z在2=-i z 内的奇点个数为 ( D ) (A )1 (B )2 (C )3 (D )4 2.设函数)(z f 与)(z g 分别以a z =为本性奇点与m 级极点,则a z =为函数)()(z g z f的( B )(A )可去奇点 (B )本性奇点 (C )m 级极点 (D )小于m 级的极点 3.设0=z 为函数zz ex sin 142-的m 级极点,那么=m ( C ) (A )5 (B )4 (C)3 (D )2 4.1=z 是函数11sin)1(--z z 的( D ) (A)可去奇点 (B )一级极点 (C ) 一级零点 (D )本性奇点5.∞=z 是函数2323z z z ++的( B ) (A)可去奇点 (B )一级极点(C ) 二级极点 (D )本性奇点6.设∑∞==0)(n n n z a z f 在R z <内解析,k 为正整数,那么=]0,)([Re k zz f s ( C ) (A )k a (B )k a k ! (C )1-k a (D )1)!1(--k a k7.设a z =为解析函数)(z f 的m 级零点,那么='],)()([Re a z f z f s ( A ) (A)m (B )m - (C ) 1-m (D ))1(--m8.在下列函数中,0]0),([Re =z f s 的是( D )(A ) 21)(ze zf z -= (B )z z z z f 1sin )(-= (C )z z z z f cos sin )(+= (D) ze zf z 111)(--= 9.下列命题中,正确的是( C )(A ) 设)()()(0z z z z f m ϕ--=,)(z ϕ在0z 点解析,m 为自然数,则0z 为)(z f 的m 级极点.(B ) 如果无穷远点∞是函数)(z f 的可去奇点,那么0]),([Re =∞z f s(C ) 若0=z 为偶函数)(z f 的一个孤立奇点,则0]0),([Re =z f s(D ) 若0)(=⎰cdz z f ,则)(z f 在c 内无奇点10. =∞],2cos [Re 3zi z s ( A ) (A )32- (B )32 (C )i 32 (D )i 32- 11.=-],[Re 12i ez s i z ( B) (A )i +-61 (B )i +-65 (C )i +61 (D )i +65 12.下列命题中,不正确的是( D)(A )若)(0∞≠z 是)(z f 的可去奇点或解析点,则0]),([Re 0=z z f s(B )若)(z P 与)(z Q 在0z 解析,0z 为)(z Q 的一级零点,则)()(],)()([Re 000z Q z P z z Q z P s '= (C )若0z 为)(z f 的m 级极点,m n ≥为自然数,则)]()[(lim !1]),([Re 1000z f z z dzd n z z f s n n nx x +→-= (D )如果无穷远点∞为)(z f 的一级极点,则0=z 为)1(zf 的一级极点,并且)1(lim ]),([Re 0zzf z f s z →=∞ 13.设1>n 为正整数,则=-⎰=211z ndz z ( A ) (A)0 (B )i π2 (C )n i π2 (D )i n π214.积分=-⎰=231091z dz z z ( B ) (A )0 (B )i π2 (C )10 (D )5i π 15.积分=⎰=121sin z dz z z ( C ) (A )0 (B )61-(C )3i π- (D )i π- 二、填空题 1.设0=z 为函数33sin z z -的m 级零点,那么=m 9 .2.函数z z f 1cos 1)(=在其孤立奇点),2,1,0(21 ±±=+=k k z k ππ处的留数=]),([Re k z z f s 2)2()1(π+π-k k. 3.设函数}1exp{)(22zz z f +=,则=]0),([Re z f s 0 4.设a z =为函数)(z f 的m 级极点,那么='],)()([Re a z f z f s m - . 5.设212)(zz z f +=,则=∞]),([Re z f s -2 . 6.设5cos 1)(z z z f -=,则=]0),([Re z f s 241- . 7.积分=⎰=113z z dz e z 12i π .8.积分=⎰=1sin 1z dz z i π2 . 三、计算积分⎰=--412)1(sin z z dz z e z z .(i π-316) 四、设a 为)(z f 的孤立奇点,m 为正整数,试证a 为)(z f 的m 级极点的充要条件是b z f a z m az =-→)()(lim ,其中0≠b 为有限数. 五、设a 为)(z f 的孤立奇点,试证:若)(z f 是奇函数,则]),([Re ]),([Re a z f s a z f s -=;若)(z f 是偶函数,则]),([Re ]),([Re a z f s a z f s --=.。

复变函数第四版余家荣答案

复变函数第四版余家荣答案

复变函数第四版余家荣答案【篇一:1第一章复数与复变函数】京1第一章复数与复变函数1 复数及其代数运算1.复数的概念①在解方程时,有时会遇到负数开方的问题,但在实数范围内负数是不能开平方的。

为此,需要扩大数系。

我们给出如下的代数形式的复数定义:复数的代数定义:把有序实数对(x,y)作代数组合所确定的形如x?iy的数称为(代数形式的)复数,记为z?x?iy,2其中,i满足i??1。

我们称i为虚单位;实数x和y分别称为复数z 的实部和虚部,并记为x?rez,y?imz。

特别地,当imz?0时,z?x?i0?rez?x是实数;当rez?0时且imz?0时,z?iimz?iy称为纯虚数;虚部不为零的复数称为虚数(即不为实数的复数称为虚数);z?0当且仅当rez?0且imz?0,即复数0?0?i?0。

z1?z2当且仅当rez1?rez2且imz1?imz2。

2.复数的代数运算2.1 四则运算设z1?x1?iy1,z2?x2?iy2为任意两个复数,它们的四则运算定义为: 加法:z1?z2?(x1?x2)?i(y1?y2) 减法:z1?z2?(x1?x2)?i(y1?y2) 乘法:z1z2?(x1x2?y1y2)?i(x1y2?x2y1) 除法:z1x1x2?y1y2y1x2?x1y2(z2?0) ??i2222z2x2?y2x2?y22【注】:(1).可见,复数的四则运算,可以按照多项式的四则运算进行,只要注意将i换成?1。

(2).关于除法的具体操作可以按两种方法来进行:①.先看成分式的形式,然后分子分母同乘以一个与分母的实部相等而虚部只相差一个正负号的复数(在后面将会看到,这被定义为共轭复数),再进行简化;②.用复数z1?x1?iy1除以非零复数z2?x2?iy2,就是要求出这样一个复数z?x?iy,使得z1?z2?z。

按乘法的定义,为求出z需要解方程组?x2x?y2y?x1??x2y?xy2?y12.2 共轭复数复数x?iy和x?iy互称为对方的共轭复数,如果记z?x?iy,则用记其共轭复数,即?x?iy?x?iy。

复变函数(第四版)课后习题答案

复变函数(第四版)课后习题答案

3 = ei10ϕ /e−i9ϕ = ei19ϕ
3
= cos19ϕ + isin19ϕ
9.将下列坐标变换公式写成复数的形式:
1)平移公式:
⎧ ⎨ ⎩
x y
= =
x1 y1
+ +
a1, b1;
2)旋转公式:
⎧ ⎨ ⎩
x y
= =
x1 x1
cosα sin α
− +
y1 y1
sinα , cos α .
⎜⎝⎛i8 − 4i21 + i⎟⎠⎞ = 1 + 3i , | i8 − 4i21 + i |= 10
( ) ( ) Arg i8 − 4i21 + i = arg i8 − 4i21 + i + 2kπ = arg(1 − 3i) + 2kπ
= −arctan3 + 2kπ k = 0,±1,±2,".
4.证明
1) | z |2 = zz #
6) Re(z) = 1 (z + z), Im(z) = 1 (z − z )
2
2i
2
证明:可设 z = x + iy ,然后代入逐项验证。
5.对任何 z , z2 =| z |2 是否成立?如果是,就给出证明。如果不是,对 z 那些
值才成立?
解:设 z = x + iy ,则要使 z2 =| z |2 成立有
34
= 1 [5x + 3y − 4]+ i(− 3x + 5y −18) = 1 + i
34
比较等式两端的实、虚部,得
⎧ 5x + 3y − 4 = 34 ⎩⎨− 3x + 5y −18 = 34

复变函数论习题及答案

复变函数论习题及答案

第一章习题1.设12z -=,求||z 及Arg z .2.设12z z i ==,试用指数形式表 z 1 z 2及12z z .3.解二项方程440(0).z a a +=> 4.证明2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义。

5.设z 1、z 2、z 3三点适合条件: 1231230 |z ||||| 1.z z z z z ++=++=及试证明z 1、z 2、z 3是一个内接于单位圆周||1z =的正三角形的顶点。

6.下列关系表示的点z 的轨迹的图形是什么?它是不是区域? (1)1|212|||,()z z z z z z -=-≠;(2)|||4|z z ≤-;(3)111z z -<+;(4)0arg(1) 2Re 34z z π<-<≤≤且;(5)|| 2 z >且|3|1z ->; (6)Im 1 ||2z z ><且;(7)||2 0arg 4z z π<<<且;(8)131 2222i i z z ->->且.7.证明:z 平面上的直线方程可以写成 .az az c += (a 是非零复常数,c 是实常数)8.证明:z 平面上的圆周可以写成0Azz z z C ββ+++=.其中A 、C 为实数,0,A β≠为复数,且2||.AC β> 9.试证:复平面上的三点1,0,a bi a bi +-+共直线。

10.求下列方程(t 是实参数)给出的曲线: (1)(1)z i t =+; (2)cos sin z a t ib t =+;(3)i z t t =+; (4)22i z t t =+.11.函数1w z =将z 平面上的下列曲线变成w 平面上的什么曲线(,z x iy w u iv =+=+)?(1)224;x y +=(2)y x =;(3)x = 1; (4)( x -1)2+y 2=1. 12.试证:(1)多项式1010()(0)n n n p z a z a z a a -=+++≠在z 平面上连续;(2)有理分式函数101101()n n nm m m a z a z a f z b z b z b --+++=+++(000,0a b ≠≠)在z 平面上除分母为的点外都连续。

复变函数第四版答案详解

复变函数第四版答案详解

复变函数第四版答案详解调和变换的第四版:1. 概念:调和变换的第四版是研究统计学家Stephen M. Stigler提出的一种更加复杂的变换法。

它最大的特点是可以有效地处理大数据集中固定和变动变量之间的关系,而且有助于更好地可视化信息。

2. 原理:这种变换主要是利用了调和技巧,通过舍弃最小和最大值来使变量在定义域上更具对称性。

使用调和变换的第四版,可以根据数据集中的最大值、最小值和其他值的累计概率直方图进行变换,这样就可以更准确地绘制变量间的关系。

3. 公式:基本的形式为T(x) = Log2(x/xmin)。

其中x为变量的原始值,xmin为该变量的最小值,T表示变换后的值。

4. 优势:• 可以对大范围的数据集进行标准化,减轻可视化时数据的拉伸或压缩;• 加强小数据组之间的可视化差别;• 能够有效处理变量之间的关系,更加详细;• 有助于体现更完整的数据,同时保留数据的细节。

5. 应用:• 生物学:调和变换的第四版可以帮助研究人员分析有关基因表达或特定生物标记(如药物效应)的数据;• 地理信息系统:地理信息系统的地图可以更准确地反映由于植被或气候变化而引起的空间变化;• 金融:调和变换的第四版可以用来分析大型财务数据集,并发现有关投资可能波动的信息。

6. 缺点:由于技术复杂,计算成本可能较高,特别是在大数据集合上,同时,由于它的强依赖变量的范围,所以由于变量的范围而出现的误差。

总结:调和变换的第四版是研究统计学家Stephen M. Stigler提出的一种复杂的变换法,它的核心是利用调和技巧,通过舍弃最小和最大值来使变量在定义域上更具对称性,它有助于更准确可视化变量之间的关系,并能够有效处理大数据集中固定和变动变量之间的关系。

但它也有计算成本高、与变量范围相关的误差等缺点。

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

⎝ 12
12 ⎠
6 2ei5π / 4 = 6 2⎜⎛ cos 5π + i sin 5π ⎟⎞ 。
⎝4
4⎠
15.若 (1+ i)n = (1− i)n ,试求 n 的值。
5
解 由题意即 ( 2eiπ / 4 )n = ( 2e−iπ / 4 )n , einπ / 4 = e−inπ / 4 , sin n π = 0 , 4
+
2kπ
= − arctan 5 + 2kπ, 3
k = 0,±1,±2,".
(3)
(3
+
4i)(2
2i

5i)
=
(3
+
4i)(2 − (2i)(−
5i)(− 2i)
2i)
=
(26

7i)(−
4
2i)
所以
= −7 − 26i = − 7 −13i
2
2
Re⎨⎧ (3
+
4i)(2

5i)⎫

=

7

⎩ 2i ⎭ 2
Im⎨⎧ ⎩
(3
+
4i)(2
2i

5i)⎫
⎬ ⎭
=
−13

1
⎡ ⎢ ⎣
(3
+
4i)(2
2i

5i)⎤
⎥ ⎦
=

7 2
+
l3i
(3 + 4i)(2 − 5i) = 5 29 ,
2i
2
Arg⎢⎣⎡ (3
+
4

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

高等教育出版社《复变函数》与《积分变换》第四版课后习题参考答案

+
1 zn
= 2cos nt

(2) zn − 1 = 2 i sin nt zn
解 (1) zn + 1 = eint + e−int = eint + eint = 2sin nt zn
(2) zn

1 zn
= eint
− e−int
= eint
− eint
= 2 i sin nt
14.求下列各式的值
故 n = 4k, k = 0, ±1, ±2,"。
16.(1)求方程 z3 + 8 = 0 的所有根 (2)求微分方程 y'''+8y = 0 的一般解。
( )1
π i
(1+
2k
)
解 (1) z = −8 3 = 2e 3 ,k=0,1,2。
即原方程有如下三个解:
1 + i 3, −2, 1 − i 3 。
+
4 i)(2
2i

5i)⎤
⎥⎦
+
2kπ
=
2 arctan
26 7

π
+
2kπ
= arctan 26 + (2k −1)π ,
7
k = 0,±1,±2," .
( ) ( ) (4) i8 − 4i21 + i = i2 4 − 4 i2 10i + i = (−1)4 − 4(− )1 10i + i
34
= 1 [5x + 3y − 4]+ i(− 3x + 5y −18) = 1 + i

复变函数(第四版)课后题(附答案)

复变函数(第四版)课后题(附答案)

1 +2
i
⎫ ⎬ ⎭
=
3 13

Im⎨⎧ ⎩3
1 + 2i
⎫ ⎬ ⎭
=

2 13
,
1 = 1 (3 + 2i) , 1 = ⎜⎛ 3 ⎟⎞ 2 + ⎜⎛ − 3 ⎟⎞2 = 13 ,
3 + 2i 13
3 + 2i ⎝ 13 ⎠ ⎝ 13 ⎠ 13
Arg⎜⎛ ⎝
3
1 +2
i
⎟⎞ ⎠
=
arg⎜⎛ ⎝
3
1 +2
Im⎨⎧ ⎩
(3
+
4i)(2
2i

5i)⎫
⎬ ⎭
=
−13

1
⎡ ⎢ ⎣
(3
+
4i)(2
2i

5i)⎤
⎥ ⎦
=

7 2
+
l3i
(3 + 4i)(2 − 5i) = 5 29 ,
2i
2
Arg⎢⎣⎡
(3
+
4
i)(2
2i

5
i)⎤
⎥⎦
=
arg⎢⎣⎡
(3
+
4
i)(2
2i

5
i)⎤
⎥⎦
+
2kπ
=
2
arctan
26 7

π
+
2kπ
= arctan 26 + (2k −1)π ,
7
k = 0,±1,±2," .
( ) ( ) (4) i8 − 4i21 + i = i2 4 − 4 i2 10i + i = (−1)4 − 4(− )1 10i + i

复变函数课后习题答案(全)第四版

复变函数课后习题答案(全)第四版

习题一答案1. 求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+ (2)(1)(2)i i i --(3)131i i i-- (4)8214i i i -+-解:(1)1323213iz i -==+, 因此:32Re , Im 1313z z ==-,1232, arg arctan , 3131313z z z i ==-=+(2)3(1)(2)1310i i iz i i i -+===---, 因此,31Re , Im 1010z z =-=,1131, arg arctan , 3101010z z z i π==-=--(3)133335122i i iz i i i --=-=-+=-, 因此,35Re , Im 32z z ==-,34535, arg arctan , 232i z z z +==-=(4)82141413z i i i i i i =-+-=-+-=-+因此,Re 1, Im 3z z =-=,10, arg arctan3, 13z z z i π==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)13i -+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)13i -+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+22sin [cossin]2sin 2222ii e πθθπθπθθ---=+=3. 求下列各式的值:(1)5(3)i - (2)100100(1)(1)i i ++-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+-- (4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+-(5)3i (6)1i +解:(1)5(3)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin())16(3)66i i ππ=-+-=-+ (2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(13)(cos sin )(1)(cos sin )i i i i θθθθ-+--2[cos()sin()](cos sin )332[cos()sin()][cos()sin()]44i i i i ππθθππθθ-+-+=-+--+-2[cos()sin()](cos2sin 2)1212i i ππθθ=-+-+(2)122[cos(2)sin(2)]21212ii eπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)i i ϕϕϕϕ+- cos10sin10cos19sin19cos(9)sin(9)i i i ϕϕϕϕϕϕ+==+-+- (5)3i 3cossin22i ππ=+11cos (2)sin (2)3232k i k ππππ=+++31, 02231, 122, 2i k i k i k ⎧+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6)1i +2(cossin )44i ππ=+ 4112[cos (2)sin (2)]2424k i k ππππ=+++48482, 02, 1i i e k e k ππ⎧=⎪=⎨⎪-=⎩4. 设121, 3,2iz z i +==-试用三角形式表示12z z 与12z z解:12cossin , 2[cos()sin()]4466z i z i ππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+, 12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=> 解:(1)51,z i+= 由此2551k i z i ei π=-=-, (0,1,2,3,4)k =(2)4444(cos sin )za a i ππ=-=+11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), (1), (1), (1)2222a a a ai i i i +-+--- 6. 证明下列各题:(1)设,z x iy =+则2x y z x y +≤≤+证明:首先,显然有22z x y x y =+≤+;其次,因222,x y x y +≥固此有2222()(),x y x y +≥+ 从而222x y z x y +=+≥。

复变函数论钟玉泉第四版答案清晰版

复变函数论钟玉泉第四版答案清晰版

复变函数论钟玉泉第四版答案清晰版对于学习复变函数论这门课程的同学来说,钟玉泉老师编写的《复变函数论》第四版是一本非常重要的教材。

然而,在学习过程中,课后习题的解答往往是检验和巩固知识的关键环节。

拥有一份清晰准确的答案,对于理解和掌握这门课程的知识要点至关重要。

复变函数论是数学中的一个重要分支,它在数学、物理学、工程学等领域都有着广泛的应用。

这门课程的特点是概念抽象、定理繁多、计算复杂。

对于初学者来说,往往会感到有些吃力。

而课后习题则是帮助我们深入理解这些概念和定理的有效途径。

钟玉泉第四版教材中的习题涵盖了复变函数的基本概念、解析函数、复变函数的积分、级数、留数等重要内容。

每一道习题都经过精心设计,旨在帮助学生巩固所学知识,培养解决问题的能力。

一份清晰版的答案应该具备以下几个特点。

首先,答案的思路要清晰明了。

对于每一道习题,都应该详细地阐述解题的思路和方法,让学生能够明白为什么要这样做,而不是仅仅给出一个最终的结果。

其次,答案的步骤要完整规范。

无论是计算过程还是推理过程,都应该一步一步地展示出来,避免跳跃性过大,让学生能够跟上解题的节奏。

再者,答案的表述要简洁准确。

使用简洁的语言来表达解题的关键步骤和要点,避免冗长和复杂的表述,让学生能够快速抓住重点。

在解答复变函数的习题时,常常需要运用到一些基本的概念和定理。

比如,柯西黎曼方程是判断函数是否解析的重要依据;柯西积分定理和柯西积分公式在计算复变函数的积分时经常会用到;留数定理则是计算某些类型积分的有力工具。

清晰版的答案应该在运用这些概念和定理时,给予明确的说明和解释,让学生能够更好地理解它们的应用场景和条件。

以一道关于解析函数的习题为例。

题目可能会给出一个复变函数,要求判断它在某个区域内是否解析,并求出其导数。

在解答这道题时,清晰版的答案应该首先回顾解析函数的定义和判定条件,即函数在某点可导且在该点的某个邻域内处处可导。

然后,根据题目给出的函数,计算其偏导数,判断是否满足柯西黎曼方程。

复变函数论习题集

复变函数论习题集

第一章 复习题1、 设32z i =--,则arg z =_________________. A) 2ar 3ctg B) 3ar 2ctg C) 2ar 3ctg π- D) 2ar 3ctg π+ 2、设cos cos z i θ=+,则z =____________.A)1 B) cos θ C) D) θ3、设12,w z z w z z =⋅=+,则1arg w _________ ()2arg Re 0w z ≠A) = B) ≤ C) < D) ≥4、设(),,0,1,2,3,4i k k z re w k θ===则arg k w =____________.A) B) 25k θπ+ C) 25k θπ+ D) 22,0,15k n n θππ++=± 5. 若12z iz =,则1oz 与2oz 的关系是__________A)同向 B)反向 C)垂直 D)以上都不对6.复平面上三点: 134,0,34i i+-+,则__________ A)三点共圆 B)三点共线C)三点是直角∆顶点 D)三点是正∆顶点7.简单曲线(即约当曲线)是__________曲线.A)连续 B)光滑 C)无重点的连续 D)无重点光滑8.设函数w z =,其定义域E 为1z <,则值域M 为____________. A) 1w < B) [)0,1 C) ()1,1- D) {}|01,0x yi x y +≤<=9.函数1w z=将Z 平面上直线1x =变成W 平面上_________ A )直线 B )圆 C )双曲线 D )抛物线10. 4(1)i +=___________A )2B )2-C )4D )4-11.区域12z <<的边界是1z =,2z =,它们的正方向_____________A )1z =,2z =都是“逆时针”B )1z =“顺时针”, 2z =“逆时针”C )1z =,2z =都是“顺时针”D )1z =“逆时针”, 2z =“顺时针”12.极限0lim ()z z f z →与z 趋于0z 的方式__________________A )无关B )有关C )不一定有关D )与方向有关13.函数238()8z f z z +=+的不连续点集为____________A ){2,1--±B ){}2-C ){2,1D ){2,1-± 14. 53(cos sin )(cos3sin3)i i e i ϕθθθθ-=+,则ϕ=_________________ A )2θ B )4θ- C )4θ D )14θ-15.扩充复平面上,无穷远点∞的ε-邻域是指含于条件_________的点集A )z ε<B )z ε>C )1z ε<D )1z ε>二、多项选择题:1.若12z iz =,则12oz z 是______________A )锐角B )钝角C )直角D )等腰E )正 2.表示实轴的方程是_____________(其中t 是实参数) A )Re 0z = B )Im 0z = C )11z t i -=- D )12z t -= E )3z t = 3.函数2w z =将Z 平面的曲线_____________变成W 平面上的直线(,)z x iy w u iv =+=+A )3z = B) 224x y += C )224x y -=D )4xy =E )229y x -=4.函数1()1f z z=-在单位圆1z <内______________ A )连续 B )不连续 C )一致连续 D )非一致连续 E )解析5.对无穷远点∞,规定________________无意义A )运算∞+∞B )运算∞-∞C )∞的实部D )∞的虚部E )∞的幅角三、填充题:1.复数z x iy =+,当0,0x y <≥时,其幅角的主值arg z =___________________________2.复数i z r e θ=的n 将方根k k w ==____________________________________________3.具备下列性质的非空点集D 称为区域:(1)____________________________________________________(2)_________________________________________________________________4.设D 为复平面上的区域,若_____________________________________________________, 则称D 为单连通区域.5.设E 为一复数集,若_______________________________________________则称在E 上确定了一个单值函数()w f z =.6.在关系式00lim ()()z z f z f z →=中,如果__________________________________就称()f z 在点0z 为广义连续的.7.设12z z i ==,指数形式:12z z =______________________________________ 8. Z 平面上的圆周一般方程可以写成: 其中:9.考虑点集E 若 ,则称0z 为点集E 的聚点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

复变函数 第四、五章 练习
一、 掌握复级数收敛,绝对收敛的判别
1. 判断下列级数是否收敛,是否绝对收敛。

(1)2ln n n i n ∞
=∑ (2)01cos 2n n in ∞=∑ (3)0(1)2n n n n i ∞=+∑
2.如果级数1n n c
∞=∑收敛,且存在0,,..,|arg |,2n s t c πααα><≤证明级数1n n c ∞
=∑绝对收敛.
二、充分掌握幂级数,及解析函数的泰勒展开式
3. 证明级数11n
n n z z ∞
=-∑在||1z ≥上发散;在||1z <内绝对收敛且内闭一致收敛 4. 试证:黎曼函数 11(),(ln 0)z n z n n ζ∞
==>∑,在点2z =的邻域内可展开为泰勒级数,并求收敛半径。

5.求下列幂级数的收敛半径:
(1)0()n n n n a z ∞=+∑ (2)0[3(1)](1)n n n
n z ∞=+--∑ (3)(1)0()(1)n n n n i z n ∞
+=-∑ 6.设0n n n a z ∞
=∑的收敛半径为R , 证明:0[Re()]n n
n a z ∞=∑的收敛半径大于等于R 。

7.若幂级数∑∞=0n n n z c
在i z 21+=处收敛,试回答该级数在2=z 处的敛散性。

8.设函数z e z
cos 的泰勒展开式为∑∞=0n n n z c ,求幂级数∑∞=0
n n n z c 的收敛半径。

9. 将函数31()z f z z
-=
在点1z =-展成泰勒级数。

10.证明:若1||,2z ≤则2|ln(1)|||z z z +-≤. (这里ln(1)z +取主值支) 三、充分掌握解析函数零点阶数的求法、具有零点的解析函数的表达
式、零点的孤立性、惟一性定理、最大模原理
11. ∞为3
1sin z 的 阶零点;求函数()sin tan f z z z =-的零点0z =的阶数。

12.设()f z 在一个包含圆周γ及其内部的区域内解析,而()f z 在γ的内部有一个一阶零点0z ,证明01()2()
zf z z dz i f z γπ'=⎰。

13.问在点0z =解析且满足条件3
111()()f f n n n =-=
(1,2,),n =的函数()f z 是否存在? 14.求||z ze 在闭圆{:||1}z z i +≤上的最大值。

15.设()cos f z z =,证明:在任何圆周||z r =上,都有点z ,使得,|cos |1z >。

四、掌握解析函数的洛朗展式,能求一些初等函数的洛朗展式
16.求函数2
1z z e -在01z <-<+∞内洛朗展开式;求函数)
(1i z z -在+∞<-<i z 1内的洛朗展开式。

17. 若()f z 在||R z <<+∞内解析且有界,证明0(),||.n n n c f z z R z ∞
==>∑ 六、掌握孤立奇点(含无穷远点)的各种类型判别以及利用孤立奇点的特征得到解析函数的性态;掌握整函数和亚纯函数
18. 求函数2()sin z
e f z z
=的奇点及其类型(包括无穷远点)(要求说明理由)。

19. 设()f z 在z 平面上解析,且当z →∞时,() 1.f z z
→证明:()f z 必有一个零点。

20.试证:在扩充复平面上只有一个一阶极点的解析函数()f z 必有如下形式:
(),0.az b f z ad bc cz d
+=-≠+ 21. 判别下列函数是(超越)整函数还是(超越)亚纯函数:
2213sin ,tan ,sin ,,1z
e z z z z z z +-.。

相关文档
最新文档