复变函数答案 钟玉泉 第一章习题全解

合集下载

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉

复变函数论第四版答案钟玉泉(1)提到复变函数,首先需要了解复数的基本性质和四则运算规则。

怎么样计算复数的平方根,极坐标与xy 坐标的转换,复数的模之类的。

这些在高中的时候基本上都会学过。

(2)复变函数自然是在复平面上来研究问题,此时数学分析里面的求导数之类的运算就会很自然的引入到复平面里面,从而引出解析函数的定义。

那么研究解析函数的性质就是关键所在。

最关键的地方就是所谓的Cauchy—Riemann 公式,这个是判断一个函数是否是解析函数的关键所在。

(3)明白解析函数的定义以及性质之后,就会把数学分析里面的曲线积分的概念引入复分析中,定义几乎是一致的。

在引入了闭曲线和曲线积分之后,就会有出现复分析中的重要的定理:Cauchy 积分公式。

这个是复分析的第一个重要定理。

(4)既然是解析函数,那么函数的定义域就是一个关键的问题。

可以从整个定义域去考虑这个函数,也可以从局部来研究这个函数。

这个时候研究解析函数的奇点就是关键所在,奇点根据性质分成可去奇点,极点,本性奇点三类,围绕这三类奇点,会有各自奇妙的定理。

(5)复变函数中,留数定理是一个重要的定理,反映了曲线积分和零点极点的性质。

与之类似的幅角定理也展示了类似的关系。

(6)除了积分,导数也是解析函数的一个研究方向。

导数加上收敛的概念就可以引出Taylor 级数和Laurent 级数的概念。

除此之外,正规族里面有一个非常重要的定理,那就是Arzela 定理。

(7)以上都是从分析的角度来研究复分析,如果从几何的角度来说,最重要的定理莫过于Riemann 映照定理。

这个时候一般会介绍线性变换,就是Mobius 变换,把各种各样的区域映射成单位圆。

研究Mobius 变换的保角和交比之类的性质。

(8)椭圆函数,经典的双周期函数。

这里有Weierstrass 理论,是研究Weierstrass 函数的,有经典的微分方程,以及该函数的性质。

以上就是复分析或者复变函数的一些课程介绍,如果有遗漏或者疏忽的地方请大家指教。

第1章 复变函数习题及解答cxf

第1章 复变函数习题及解答cxf

第一章 复变函数习题及解答1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中α,R ,θ为实常数)(1)1--; (2)2(cossin )33i ππ-; (3)1cos sin i αα-+;(4)1i e +;答案 :(1)实部-1;虚部 模为2;辐角为42,0,1, 2...3k k ππ+=±±;主辐角为43π;原题即为代数形式;三角形式为442(cos sin )33i ππ+;指数形式为432i e π. (2)略,三角形为:552(cos sin )33i ππ+,指数形式为:532i e π (3)略,三角形为:2sin (cos sin )222i απαπα--+,指数形式为:22sin2i e παα- (4)略,三角形为:(cos1sin1)e i +,指数形式为:i ee1.2 计算下列复数1)()103i 1+-;2)()31i 1+-;答案:1)21032i e π;2)3(2)14632,(0,1,2)k i ek ππ+=; 1.7 证明:2222121212||||2(||||)z z z z z z ++-=+,并说明其几何意义.答案:证明略。

几何意义:平行四边形对角线平方和等于四边长的平方和。

1.9将下列复数表为sin ,cos θθ的幂的形式(1) cos5θ; (2)sin5θ答案 (1)5324cos5cos 10cos sin 5cos sin θθθθθθ=-+(2)5324sin5sin 10sin cos 5sin cos θθθθθθ=-+1.13 下列不等式在复数平面上表示怎样的点集?1)()1Re 0<<z ;2)320<-<z z ;3)10arg ϕϕ<<z ;4)()0Im πz <<; 5)211<+-z z答案: 1)平面上由0=x 与1=x 所构成的宽度为1的铅直带形域;2)以0z 为心,内半径为2,外半径为3的圆环域;3)顶点在原点,开度为()01ϕϕ-的角形区域;4)宽度为π的带形域,边界为0=y ,π=y ;5)以053z =-为心,43R =为半径的圆之外部区域。

复变函数习题及答案解释

复变函数习题及答案解释

第一篇 复变函数第一章 复数与复变函数1. 求下列复数的实部、虚部、共轭复数、模与幅角.(1) 72)52)(43(ii i −+;(2) .4218i i i +−2. 当x ,y 等于什么实数时,等式i iiy x +=+−++135)3(1 成立?3.证明:(1);2z z z = (2)1122,z z z z = .02≠z4.求下列各式的值: (1)();35i −(2)().131i +−5.求方程083=+z 的所有根.6.设1z ,2z ,3z 三点适合条件0321=++z z z ,证明1z ,2z ,3z 是内接于单位圆1=z 的一个正三角形的顶点.7.指出下列各题中点z 的轨迹或所在的范围:(1);65=−z(2);12≥+i z(3).i z i z −=+8.描述下列不等式所确定的区域,并指出它是有界的还是无界的: (1);32≤≤z(2).141+<−z z9.将方程tt z 1+=(t 为实参数)给出的曲线用一个实直角坐标方程表出.第一章 复习题1.单项选择题(1)设iy x z +=,y x ≠||,4z 为实数,则( ).A .0=xy B.0=+y x C .0=−y x D.022=−y x(2)关于复数幅角的运算,下列等式中正确的是( ). A .Argz Argz 22= B.z z arg 2arg 2=C .2121arg arg )arg(z z z z += D.2121)(Argz Argz z z Arg += (3)=+31i ( ).A .ie 62πB.ie 62π−C .ie 62π± D.i e62π±(4)2210<++<i z 表示( ). A .开集、非区域 B.单连通区域 C .多连通区域 D.闭区域(5)z i z f =−1,则()=+i f 1( ).A .1 B.21i+ C .21i− D.i −1 (6)若方程1−=z e ,则此方程的解集为( ).A .空集 B.π)12(−=k z ,(k 为整数) C .i k z π)12(−= D. πi z =2.对任何复数22,z z z =是否一定成立?3. 解方程.0)1(22=−++i z z4. 求)(i Ln −,)43(i Ln +−和它们的主值.5. 求i e 21π−,i i e41π+,i 3和ii )1(+值.第二章 导数1.下列函数何处可导?何处解析? (1) ();2iy x z f −=(2) ().22y ix xy z f +=2.指出下列函数()z f 的解析性区域,并指出其导数.(1) ();22iz z z f +=(2) ();112−=z z f(3)(),dcz baz z f ++=(d c ,中至少有一个不为0).3.设()2323lxy x i y nx my +++为解析函数,试确定l 、m 、n 的值.4.证明:如果()z f 在区域D 内解析,并满足下列条件之一,那么是常数. (1)()z f 恒取实值. (2))(z f 在区域D 内解析. (3)()z f 在区域D 内是一个常数.5.应用导数的定义讨论下列函数的是否存在?(1)())Re(z z f =;(2)())Im(z z f =.6.证明;,sin z e z 在复平面上任一点都不解析.第二章 复习题1.单项选择题(1)函数()z f w =在点0z 可导是可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(2)函数()z f w =在点0z 可导是连续的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(3)函数()),(),(y x iv y x u z f +=,则在()00,y x 点,v u ,均可微是函数()z f 在点0z 可微的( ).A .必要但非充分条件 B. 充分但非必要条件 C .充分必要条件D. 既非充分也非必要条件(4)函数()22ix xy z f −=,那么( ). A .()z f 处处可微 B. ()z f 处处不可导 C .()z f 仅在原点可导 D. ()z f 仅在x 轴上可导(5)若,0,,00,),(222222=+≠++=y x y x y x xy y x u ,,),(xy y x v =()iv u z f +=,则()z f ( ).A .()z f 仅在原点可导 B. ()z f 处处不可导C .()z f 除原点外处处可导 D. ()z f 处处可微(6)若()()y x y i xy x z f 233333+−+−=, 那么()z f ( ).A .()z f 仅在原点可导且()00=′f B. ()z f 处处解析且()xy i y x z f 63322+−=′ C .()z f 处处解析且()xy i y x z f 63322−−=′ D. ()z f 处处解析且()xy i x y z f 63322+−=′ (7)函数()z z z f = ,则( ). A .()z f 在全平面解析 B. ()z f 仅在原点解析C .()z f 仅在原点可导但不解析 D. ()z f 处处不可导(8)设()34−=′z z f ,且()i i f 31−=+,则()=z f ( ).A . i z z −−322 B. i z z 3322+− C .i z z 43322+−+ D. i z z 43322−+− 2.指出函数112+z 的解析性区域,并求导数.3.如果0z 是()z f 的奇点,而()z g 在0z 解析,那么0z 是否是())(z g z f +和())(z g z f 的奇点.4.若()iv u z f +=是区域D 内的解析函数,那么在D 内v +iu 是否也是解析函数.第三章 积分1.沿下列路径计算积分∫Czdz Re .(1)自原点至1+i 的直线段;(2)自原点沿实轴至1,再由1铅直向上至1+i ;(3)自原点沿虚轴至i ,再由i 沿水平向右至1+i .2.分别沿y =x 与2x y =计算积分()∫++i dz iy x102的值.3计算积分dz zzC∫,其中C 为正向圆周,2=z .4.计算下列积分 ,其中C 为正向圆周,1=z . (1);21dz z C ∫− (2);4212dz z z C ∫++(3);cos 1dz zC ∫ (4);211dz z C∫−(5);dz ze Cz ∫(6)().)2(21dz i z z C∫−+5.沿指定曲线正向计算下列积分:(1)dz z C ∫−21,C :12=−z ;(2)dz a z C ∫−221,C: a a z =−;(3),3dz z zC ∫− C :2=z ;(4)()()dz z z C∫++41122,C :23=z ;(5)dz zzC ∫sin ,C :1=z ; (6)dz z zC∫−22sin π,C :2=z .6.计算下列各题: (1)∫−ii z dz e ππ32;(2)∫−iizdz ππ2sin ;(3).)(0∫−−iz dz e i z7.计算下列积分:(1)dz i z z C ∫+++2314,C :4=z ,正向; (2)dz z iC ∫+122,C :61=−z ,正向; (3),cos 213dz z zC C C ∫+= 1C :2=z ,正向,2C :3=z ,负向;(4)dz i z C ∫−1,C 为以i 56,21±±为顶点的正向菱形; (5)()dz a z eC z∫−3;其中a 为1≠a 的任何复数,C :1=z ,正向.9. 设C 为不经过a 与a −的简单正向闭曲线,a 为不等于0的任何复数,试就a 与a −跟C 的各种不同位置,计算积分dz a z zC ∫−22的值.第三章 复习题1.单项选择题.(1)设C 为θi e z =,θ从2π−到2π的一段,则=∫Cdz z ( ).A .i B.2i C .-2i D.- i(2)设C 是从0=z 到i z +=1的直线段,则=∫Cdz z ( ).A .1+i B.21i+ C .i e4π− D. ie 4π(3)设C 为θi e z =,θ从0到π的一段,则=∫Czdz arg ( ).A .i 2−−π B. π− C .i 2+π D. i 2−π(4)设C 为t i z )1(−=,t 从1到0的一段,则=∫Cdz z ( ).A .1 B.-1 C .i D.- i(5)设C 为1=z 的上半部分逆时针方向,则=−∫Cdz z )1(( ).A .2i B.2 C .-2i D.- 2(6)设C 为θi e z 21=,正向,则=−∫C z dz e e zsin ( ).A .sin1 B.e i 1sin 2π C .e i 1sin 2π− D.0(7)=++∫=dz z z z 12221( ).A .i π2 B.i π2− C .0 D.π2 (8)设C 为沿抛物线12−=x y 从()0,1−到()0,1的弧度,则=+∫C dz z )1sin(( ).A .0 B.2cos − C .12cos − D. 12cos − (9)=++∫=+dz z z e z z 232)1(232( ). A .0 B.i π32C .i π2 D. i π2−(10)=++∫=dz z z zz 121682cos π( )A .0 B.i π C .i π− D. i π2.(11)=+∫=dz z zz 221( ).A .0 B.i π2 C .i π2− D. i π(12)=∫=dz z e z z12( ).A .i π2 B. i π C .0 D. π (13)1322z z z e dz ==∫( ).A .i π2 B. i π16 C .i π8 D. i π4 2.计算()∫Γ−=dz z z e I z12,其中Γ是圆环域:221≤≤z 的边界.3.(1)证明:当C 为任何不经过原点的闭曲线时,则;012=∫dz zC(2)沿怎样的简单闭曲线有;012=∫dz z C(3)沿怎样的简单闭曲线有.0112=++∫dz z z C4.设(),4ζζζπd ze zf C ∫−=其中C :2=z ,试求()i f ,()i f −及()i f 43−的值.5.计算()22,2z Ce z I dz z =+∫其中C :.1=z6.()()∫=−=12,ζζζdz z e z f z()1≠z ,求().z f ′第四章 级数1.判别下列级数的绝对收敛性与收敛性:();11∑∞=n nni()∑∞=2;ln 2n nni();8)56(30∑∞=+n n ni().2cos 40∑∞=n n in2.求下列幂级数的收敛半径:()为正整数);p nz n p n(,11∑∞=()∑∞=12;)!(2n nn z nn()∑∞=+0;)1(3n nnz i().41∑∞=n n n iz e π3.把下列各函数展开成z 的幂级数,并指出它们的收敛半径: ();1113z +();)1(1223z +();cos 32z();4shz();5chz().sin 622z e z4.求下列各函数在指定点0z 处的泰勒展开式,并指出它们的收敛半径: ();1,1110=+−z z z()();110,10,1122<−<<<−z z z z()()(),2113−−z z;21,110+∞<−<<−<z z()()为中心的圆环域内;在以i z i z z =−,142第四章 复习题1.单项选择题:()().112的收敛半径为幂级数∑∞=n nin z e0.A 1.B 2.C ∞.D()()∑∞=1.1sin 2n nnz n 的收敛半径为幂级数0.A 1.B e C . ∞.D()()()∑∞=−1.13n n n z i 的收敛半径为幂级数1.A 21.B 2.C 21.D()()()∑∞=+12.434n n n z i 的收敛半径为幂级数5.A 51.B 5.C 51.D ()()∑∞=1.!5n nn z n 的收敛半径为幂级数1.A ∞.B 0.C e D .()()∑∞−∞=−=>=n nne a z za z z.,0,6721则设!71.A !71.−B !91.C !91.−D()∑∞==−10,2.2n nn z z a 收敛,能否在幂级数 .3发散而在=z().1.32的和函数求n n z n n ∑∞=−.0cos 1.40处的泰勒展开式在求=−∫z d zζζζ上的罗朗展开在求函数11sin .512>−∫=ζζζζz d z .式第五章 留数1.判断下列函数奇点的类型,如果是极点,指出它的阶数:()();11122+z z();sin 23z z();11323+−−z z z()();1ln 4zz +();511−z e()().1162−z e z()..2在有限奇点处的留数求下列各函数z f();2112zz z −+();1242z e z −()();113224++zz();cos 4zz();11cos5z−().1sin 62zz3.计算下列各积分(利用留数,圆周均取正向).();sin 123∫=z dz z z()();12222dz z e z z∫=−()();,cos 1323为整数m dz z zz m∫=−();tan 43∫=z zdz π().521111∫=−−z z dz ze点?并是下列各函数的什么奇判断∞=z .4.的留数求出在∞();121z e();sin cos 2z z −().3232zz+()[]的值,如果:求∞,Re 5.z f s()();112−=z ez f z()()()().41124−+=z z z z f6.计算下列各积分,C 为正向圆周:()()()∫=++Cz C dz zzz ;3:,211342215().2:,1213=+∫z C dz e z z zC7.计算下列积分:();sin 351120θθπd ∫+()();0,cos sin 2202>>+∫b a d b a θθθπ()()∫+∞∞−+;11322dx x()∫+∞∞−++.54cos 42dx x x x第五章 复习题1.单项选择题:()().1sin101的是函数zz = 本性奇点.A 可去奇点.B 一级奇点.C 非孤立奇点.D()().0,1cos Re 2=z z s0.A 1.B 21.C 21.−D()()()().,11Re 32=+−i z i z s 4.i A 4.i B − 41.C 41.−D()().0,1Re 44=−−z e s z !31.A !31.−B !41.C !41.−D()()()∫=−=+21.,15z n n n dz z z 为正整数0.A i B π2. i n C π2. niD π2.()()∫=−=11.6z zz dz zei e A 1.−π i B π2. i e C 12.−π i D π2.−()()∫==−25.117z dz z 0.A i B π2. i C π25. i D π52.2.判断zz e 1+的孤立奇点的类型,并求其留数.3.计算n dz z z z n,1cos 1∫=是正整数.4.计算积分∫=−+114.1z z dz5.计算积分∫+πθθ20.cos 2d6.计算∫+∞+04.11dx x7.计算∫+∞+02.42cos dx x x复变函数总复习题一、单项选择题:(1) 函数z w ln =在i e z =处的值为(). (k 为整数)A. ()i k 12+πB. ()i k π12+C. i k π2D. i k π+212(2) 设积分路径C 为从原点到i +2的直线段, 则积分()=∫Cydz .A. 21i− B. 21i +C. i +1D. i −1(3) 1=z 是函数1ln 2−z z的( ).A. 可去奇点B. 极点C. 本性奇点D. 非孤立奇点 (4) 设()33iy x z f −=, 则()z f 在复平面上( ).A. 处处可导 B. 仅在0=z 处解析 C. 处处不可导 D. 仅在0=z 处可导(5) ()()=−∫=−dz z e z iz211221. A.21i+ B. i +1 C. ()i e i +−12π D. 2π−(6) 函数21z e z+以∞=z 为( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(7) 0=z 是ze z 111−−的( ).A. 可去奇点 B. 极点 C. 本性奇点 D. 解析点(8) 由2121>−z 与2123>−i z 所确定的点集是( ).A. 开集、非区域 B. 单连通区域 C. 多连通区域 D. 闭区域(9) ()=+−∫=dz z z z z z 122sin cos 1. A. 0 B. i π2 C. i π D. i π3二、填空题:1. =i e π9 .2.=+∫=dz z z 12121. 3. 设()()z z z f Im =, 则()=′0f .4. 级数()()()∑∞=+−+−0124121n n nz n 的收敛范围为 .5. 函数z 211−在+∞<<z 21内的罗朗展式为 . 6.()=−∫=dz z z 12 .7. 级数()∑∑∞=∞=+−12121n n n n n nn z z 的收敛范围是 .8. ()2236z z z z z f ++−=, ()()=∞,Re z f s .9. =−1,1sin Re z z s ;=−1,11sin Re z z s .三、解答下列各题:1. 已知()(),21i i z −+= 求()Re z .2. 求2122lim 1z zz z z z →+−−−.3. 讨论()2z z f =在0=z 处的可导性及解析性.4. 讨论()()yx i x y x z f 322322−++−−=的解析性, 并求出在解析点处的导数.5. 计算()12CIi z dz =+−∫, 其中C 为连接01=z , 12=z 和i z +=13, 从1z 至2z 至3z 的折线段.6. 将z 2sin 展开为z 的幂级数.7. 求级数()n n nn z n 214302+++∑∞=的收敛圆, 并讨论在47−=z 和49−=z 处的收敛性.8. 求()242−=z z z f 在3<z 内所有留数之和.9. 求函数z cot 在它所有有限孤立奇点处的留数.10. 求()()222aze zf ibz+=在ai −处的留数,(a , b 为实数).11. 计算积分()()dz z e z zI z z∫=−+−=232189.12. 计算积分dz z z I z ∫=++=2365112.13. 计算积分dz z z I z ∫=+−=22211.14. 计算积分dz z z e i I z z∫=++=2241221π.15. 计算积分()dx axx I ∫∞++=02222, ()0>a .四、证明题:1. 证明()=≠+=0,00,22z z yx xyz f 在0=z 处不连续.2. 证明0→z 时, 函数()()22Re zz z f =的极限不存在.第二篇 积分变换1. 设() >≤=1,01,1t t t f , 试算出()ωF , 并推证:>=<=∫∞+1,01,41,2cos sin 0t t t d t ππωωωω. (提示()t f 为偶函数)2. 求矩形脉冲函数()≤≤=其它,00,τt A t f 的傅氏变换.3. 求()><−=1,01,1222t t t t f 的傅氏积分. 4. 求()2sin tt f = 的拉氏变换.5. 求()≥<≤−<≤=4,042,120,3t t t t f 的拉氏变换.6. 求下列函数的拉氏逆变换:(1) ()221as s F +=;(2) ()441a s s F −=答案第一章:,2295,135.3,13Im ,5.3Re )1.(1=+−=−=−=z i z z z ).(,23arctan ,10||,31,3Im ,1Re )2();(,)12()726arctan(arg Z k k Argz z i z z z Z k k z ∈+−==+=−==∈++=ππ.11,1.2==y x().2,1,0,2)2(;16316)1.(43275.06=−−+k ei k iπ5..31,2,31i i −−+7.(1)以z =5为圆心,6为半径的圆;(2)以z =-2i 为圆心,1为半径的圆周及圆周的外部;(3)i 和i 两点的连线的中垂线. 8.(1)圆环形闭区域,有界; (2)中心在,1517−=z 半径为158的圆周的外部区域,无界. 9.xy =1。

复变函数参考答案(1-8章)

复变函数参考答案(1-8章)

复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。

(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。

提示:本题注意到2(1)2i i −=−,2(1)2i i +=。

则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。

(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。

提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。

(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。

(5)2122lim1z zz z z z →+−−=−32。

提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。

(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。

提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。

连接0,2z +,2z −的三角形为Rt Δ。

因此推出向量2z =,2arg 3z π=,即1z =−+。

本题也可以利用代数法来做。

2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。

复变函数课后习题答案(全)

复变函数课后习题答案(全)

创作编号:BG7531400019813488897SX创作者:别如克*习题一答案1.求下列复数的实部、虚部、模、幅角主值及共轭复数:(1)132i+(2)(1)(2)ii i--(3)131ii i--(4)8214i i i-+-解:(1)1323213i zi-==+,因此:32 Re, Im1313 z z==-,232arg arctan,31313z z z i==-=+(2)3(1)(2)1310i i izi i i-+===---,因此,31Re, Im1010z z=-=,131arg arctan,31010 z z z iπ==-=--(3)133335122i i iz ii i--=-=-+=-,因此,35Re, Im32z z==-,535,arg arctan,232iz z z+ ==-=(4)82141413z i i i i i i=-+-=-+-=-+因此,Re1,Im3z z=-=,arg arctan3,13z z z iπ==-=--2. 将下列复数化为三角表达式和指数表达式: (1)i (2)1-+ (3)(sin cos )r i θθ+(4)(cos sin )r i θθ-(5)1cos sin (02)i θθθπ-+≤≤解:(1)2cossin22iii e πππ=+=(2)1-+23222(cos sin )233i i e πππ=+=(3)(sin cos )r i θθ+()2[cos()sin()]22ir i reπθππθθ-=-+-=(4)(cos sin )r i θθ-[cos()sin()]i r i re θθθ-=-+-=(5)21cos sin 2sin 2sin cos 222i i θθθθθ-+=+ 22sin [cossin]2sin 2222ii eπθθπθπθθ---=+=3. 求下列各式的值:(1)5)i - (2)100100(1)(1)i i ++-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+-- (4)23(cos5sin 5)(cos3sin 3)i i ϕϕϕϕ+-(5(6解:(1)5)i -5[2(cos()sin())]66i ππ=-+-5552(cos()sin()))66i i ππ=-+-=-+(2)100100(1)(1)i i ++-50505051(2)(2)2(2)2i i =+-=-=-(3)(1)(cos sin )(1)(cos sin )i i i θθθθ-+--2[cos()sin()](cos sin)33)sin()][cos()sin()]44i ii iππθθππθθ-+-+=-+--+-)sin()](cos2sin2)1212i iππθθ=-+-+(2)12)sin(2)]1212iiπθππθθ-=-+-=(4)23(cos5sin5)(cos3sin3)iiϕϕϕϕ+-cos10sin10cos19sin19cos(9)sin(9)iiiϕϕϕϕϕϕ+==+-+-(5=11cos(2)sin(2)3232k i kππππ=+++1,0221,122,2i ki ki k+=⎪⎪⎪=-+=⎨⎪-=⎪⎪⎩(6=11(2)sin(2)]2424k i kππππ=+++88,0,1iie ke kππ==⎪=⎩4.设12,z z i==-试用三角形式表示12z z与12zz解:12cos sin, 2[cos()sin()]4466 z i z iππππ=+=-+-,所以12z z 2[cos()sin()]2(cos sin )46461212i i ππππππ=-+-=+,12z z 1155[cos()sin()](cos sin )2464621212i i ππππππ=+++=+ 5. 解下列方程: (1)5()1z i += (2)440 (0)z a a +=>解:(1)z i += 由此25k i z i ei π=-=-, (0,1,2,3,4)k =(2)z==11[cos (2)sin (2)]44a k i k ππππ=+++,当0,1,2,3k =时,对应的4个根分别为:(1), 1), 1), )i i i i +-+--- 6. 证明下列各题:(1)设,zx iy =+z x y≤≤+证明:首先,显然有z x y =≤+;创作编号:BG7531400019813488897SX创作者: 别如克*其次,因222,x y x y +≥ 固此有2222()(),x y x y +≥+从而z =≥。

复变函数习题第一章答案

复变函数习题第一章答案
点 z 的轨迹表示以 z = −2 + 3i 为圆心,以 5 为半径的圆周. (2) 设 z = x + iy , 则由 z + 2i ≥ 1得 x + i( y + 2) ≥ 1,
即 x 2 + ( y + 2)2 ≥ 1. 点 z 的轨迹表示以 z = −2i 为圆心,以1为半径的圆的外面. (3) 设 z = x + iy , 由 Re(z + 2) = −1得, x + 2 = −1 , 即 x = −3 . 点 z 的轨迹表示 x = −3 这条直线. (4) 设 z = x + iy , 则 iz = i(x − iy) = y + ix ,
(4) Re(i z) = 3 ; (6) z + 3 + z + 1 = 4 ; (8) 0 < arg z < π .
解 (1) 设 z = x + iy ,则由 z + 2 − 3i = 5 得 (x + 2) + i( y − 3) = 5 , 即 (x + 2)2 + ( y − 3)2 = 25 .
3
3
所以 (−1 + i 3)10 = 210 (cos 20π + i sin 20π )
3
3
= 1024(cos 2π + i sin 2π )
3
3
= −27(cos(−π ) + i sin(−π )) ,
所以
3 − 27 = 3 27 (cos( − π + 2kπ ) + i cos( − π + 2kπ )) (k = 0,1,2) ,

复变函数第1章测验题参考解答

复变函数第1章测验题参考解答

3 1 , 0, ) 2 2
(B) (
3 1 , , 0) 2 2
(C) (
3 1 , 0, ) 2 2 zz i ( z 1)
2
(D) (
3 1 , , 0) 2 2
【答案】A 【 解 析 】 由 球 极 射 影 的 解 析 表 示 x
zz z 1
2
, y
, u

【解析】由球极射影的解析表示 x
, y
i ( z 1)
x
zz zz x, y y, u 0 ,所以 z 没有发生改变. 2 2i

)




, u
z 1 z 1
2

2
,当 z 1 时,
1.2 复平面的拓扑 1.2.1 初步概念 1.2.2 区域 曲线 (12 道题目) 一、 选择题 1. 满足条件
“复

z 2 zz 2 1 1 2 Re Re Re(1 i ) 1 . i 1 z 1
.
4

i sin )]3 8(cos i sin ) 8 3 3

.
【答案】1 【解析】

z 2 zz 2 1. 当 z i 时, Re 的值为 z 1

故 ( 3 i ) 的幅角主值为 2
3
(A) Re f ( x) 0 (C) Im f ( z ) 0 【答案】A 【解析】 由 f ( z)

2 1 z 3. 设 f ( z ) ,则当 z 1 时有 ( 1 z

3

f ( z) 1 f ( z) 1 1 z 可得 z ,又 z 1 ,则 1 ,即 f ( z ) 1 f ( z ) 1 , f ( z) 1 f ( z) 1 1 z

第1章复变函数习题答案习题详解

第1章复变函数习题答案习题详解

第一章习题详解1.求下列复数的实部与虚部,共轭复数、模与辐角:z 1)i231+解:()()()132349232323231231ii i i i i -=+-=-+-=+实部:133231=⎪⎭⎫⎝⎛+i Re 虚部:132231-=⎪⎭⎫⎝⎛+i Im 共轭复数:1323231ii +=⎪⎭⎫⎝⎛+模:1311323231222=+=+i 辐角:πππk arctg k arctg k i i Arg 23221331322231231+⎪⎭⎫ ⎝⎛-=+-=+⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+arg 2)ii i --131解:()()()2532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=--实部:23131=⎪⎭⎫⎝⎛--i i i Re 虚部:25131-=⎪⎭⎫⎝⎛--i i i Im 共轭复数:253131i i i i +=⎪⎭⎫⎝⎛--模:234434253131222==+=--ii i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+⎪⎭⎫ ⎝⎛-=+⎪⎪⎪⎭⎫ ⎝⎛-=+⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--arg3)()()ii i 25243-+解:()()()22672267272625243ii ii ii i --=-+=--=-+实部:()()2725243-=⎪⎭⎫⎝⎛-+i i i Re 虚部:()()1322625243-=-=⎪⎭⎫⎝⎛-+i i i Im 共轭复数:()()226725243ii i i +-=⎪⎭⎫⎝⎛-+模:()()2925226272524322=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=-+ii i 辐角:()()ππk arctg k arctg i i i Arg 272622722625243+⎪⎭⎫ ⎝⎛=+⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-+4)ii i +-2184解:ii i i i i 31414218-=+-=+-实部:()14218=+-i i i Re 虚部:()34218-=+-i ii Im 共轭复数:()ii i i 314218+=+-模:1031422218=+=+-i ii 辐角:()()πππk arctg k arctg k i i i i ii Arg 23213244218218+-=+⎪⎭⎫⎝⎛-=++-=+-arg 2.当、等于什么实数时,等式成立?x y ()i iy i x +=+-++13531解:根据复数相等,即两个复数的实部和虚部分别相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 复变与复变函数(一)1.解:1)23()21(22=-+=zArgz=argz+πk 2=πππk k 232)3arctan(+-=+- ),2,1,0( ±±=k2.解:因为i ei z e i z 6423,2121ππ-=-==+=所以iie z z e z z 1251221,22121ππ==⋅ 3.解:由044=+a z 得44a z -= 则二项方程的根为a w k k ⋅-=)1(4 )3,2,1,0(=k a e e i i k ⋅⋅=442ππ )3,2,1,0(=k因此 )1(20i a w +=,)1(21i a w +-=)1(22i a w --=,)1(23i a w -=4.证明:因为)Re(2212221221z z z z z z ++=+)R e (2212221221z z z z z z -+=-两式相加得)(22221221221z z z z z z +=-++几何意义:平行四边形两队角线的平方和等于各边平方和. 5.证明:由第4题知)(22221221221z z z z z z +=-++由题目条件 0321=++z z z 知321z z z -=+可有 321z z z =+ 于是 3)(2)(22322212212221221=-+=--+=-z z z z z z z z z同理 3213232=-=-z z z z所以 3133221=-=-=-z z z z z z 因此321,,z z z 是内接宇单位圆的等边三角形的顶点. 6.解:(1)表示z 点的轨迹是1z 与2z 两点连线的中垂线;不是区域. (2)令yi x z +=,由4-≤z z 得yi x yi x +-≤+)4(,即2222)4(y x y x +-≤+,得2≤x因此, z 点的轨迹是以直线2=x 为右界的右半平面(包括直线);不是区域.(3)同(2)yi x z +=,得0>x ,故z 点的轨迹是以虚轴为左界的右半平面(包括虚轴;是区域.(4)由⎪⎩⎪⎨⎧≤≤<-<3Re 24)1arg(0z z π 得⎪⎩⎪⎨⎧≤≤<-<3241arctan 0x x y π 即⎩⎨⎧≤≤-<<3210x x y 可知z 点的轨迹是一梯形(不包括上,下边界);不是区域.(5)z 点的轨迹是以原点为圆心,2为半径以及(3,0)为圆心,1为半径得两闭圆的外部.是区域.(6)z 点的轨迹的图形位于直线1Im =z 的上方(不包括直线1Im =z )且在以原点为圆心,2为半径的圆内部分(不包括圆弧);是区域. (7)z 点的轨迹是4arg π=z ,半径为2的扇形部分;是区域.(8)z 点的轨迹是以)2,0(i 为圆心,21为半径以及)23,0(i 为圆心, 21为半径的两闭圆的外部.是区域.7.证明:已知直线方程一般式为),,(0c b a c by ax =++为实常数,b a ,不全为零. 以 izz y z z x 2,2-=+= 代入化简得0)(21)(21=+++-c z bi a z bi a 令 0)(21≠=+αbi a 得 0=++c z z αα反之(逆推可得).8.证明: 因为Z 平面上的圆周可以写成()0z z -=γγ>0 其中0z 为圆心,γ为半径 所以 ()()200z z z z z z 2γ=-=--0000z z z z z z z z =⋅-⋅-⋅+⋅ 令2001,,A B z C z 2==-=-γ,从而圆周可以写成 0A Z Z B Z B ZC +++=,A C 为实数,且22200B z z AC 2=>-γ=9.证明:可证1213z z z z --为实数. 10.解:(1)令)1(i t yi x z +=+=,得y x =,即曲线为一,三象限的角平分线. (2)令,sin cos t ib t a yi x z +=+=得t b y t a x sin ,cos ==,则有12222=+by a x ,故曲线为一椭圆.(3)令)0(≠+=+=t i t t yi x z ,可得ty t x 1,==,则1=xy ,故曲线为一双曲线.(4)令22tt yi x z +=+=,得221,t y t x ==,即1=xy )0,0(>>y x ,故曲线为双曲线在第一象限内的一支. 11.解:(1)由于4222==+z y x ,又有)(411122yi x y x yi x yi x z w -=+-=+== 所以 ,4,4y v x u -==则41)(1612222=+=+y x v u这表示在w 平面上变成的曲线是以原点为圆心,21为半径的圆周. (2)将x y =代入yi x w +=1,即yix iv u +=+1中得 xi x x i i x iv u 22121)1(1-=--=+=+于是,21,21xv x u -==因此u v -=,故曲线为w 平面上二,四象限的角分线. (3)同上将1=x 代入变换yix iv u +=+1得 21111yyiyi iv u +-=+=+ 于是,1,1122yy v y u +-=+=且u y y y v u =+=++=+22222211)1(1 故解得41)21(22=+-v u ,这表示曲线变成w 平面上的一个以)0,21(为圆心,21为半径的圆周.(4)因1)1(22=+-y x ,即可得0=--z z z z 将wz w z 1,1==代入得01111=--⋅w w w w ,即ww w w w w +=1,因此1=+w w所以这表示曲线变成w 平面上的一条过)0,21(且平行于虚轴的直线.12.证明:(1)首先考虑函数n z z f =)(在z 平面上的连续性. 对复平面上任意一点0z ,来证明nn z z z z 00lim =→不妨在圆10+=≤z M z 内考虑. 因为10102100(-----≤+++-≤-n n n n nn nM z z z z zzz z z z ,故对0>∀ε,只需取1-≤n nM εδ,于是当δ<-0z z 时,就有ε<-nn z z 0.(2)由连续函数运算法则,两连续函数相除,在分母不为零时,仍连续.因此)(z f 在z 平面上除使分母为零点外都连续. 13.证明:令ππ<<-⎩⎨⎧=≠=z z z z z f arg 0,00,arg )(分情况讨论:(1) 若00=z ,由于当z 沿直线)(arg 00πθπθ<<-=z 趋于原点时,)(z f 趋于0θ,这里0θ可以取不同值,因而)(z f 在00=z 处不连续.(2) 若)0(0<=x z 由定义当z 从上半平面趋于0z 时, )(z f 趋于π,当z 从下半平面趋于0z 时, )(z f 趋于π-,所以)(z f 在实轴上不连续.(3) 其他点0z ,作一个以0z 为中心δ为半径的圆,只要δ充分小,这个圆总可以不与负实轴相交.任取0Argz 的一个值0θ,以0z 为中心δ为半径的圆,因0z z n →,故存在自然数N ,当N n >时,n z 落入圆内,从原点引此圆的两条切线,则此两条切线夹角为)(2δϕ,0arcsin)(z δδϕ=,因此总可以选取n Argz 的一个值n z arg .当N n >时,有)(arg 0δϕθ<-n z ,因0→δ时,0)(→δϕ.因而,总可以选取δ,使)(δϕ小于任何给定的0>ε,即总有ε<-0arg arg z z .因此)(z f 在0z 连续.综上讨论得知, )(z f 除原点及负实轴上的点外处处连续.14.证明:由于)(z f 的表达式都是y x ,的有理式,所以除去分母为零的点0=z ,)(z f 是连续的,因而只须讨论)(z f 在0=z 的情况.当点yi x z +=沿直线kx y =趋于0=z 时, 222211)(kkk k y x xy z f +→+=+=这个极限值以k 的变化而不同,所以)(z f 在0=z 不连续.15.证明:由z z f =)(连续即得.16.证明:1z -在1z <内连续且不为0,故11z-在1z <内连续 011,0,2εδδ⎛⎫∃=∀>< ⎪⎝⎭,均存在121,142z z δδ=-=-使得124z z δδ-=<()()1212112111f z f z z z δ-=-=>-- 故()f x 在1z <内非一致连续17.证明:必要性:设i y x z n 000lim +==∞→,由定义0,0>∃>∀N ε,当N n >时,恒有ε<-0z z n ,从而由定义知 ε<-≤-00z z x x n n ε<-≤-00z z y y n n 即)(,00∞→→→n y y x x n n 充分性:由定义得00000)()(y y x x i y y x x z z n n n n n -+-≤-+-=- 因此,当)(,00∞→→→n y y x x n n 时,必有)(0∞→→n z z n . 18.证明:利用第17题,及关于实数列收敛的柯西准则来证明.必要性:设0lim z z n n =∞→.则由定义对0)2(,0>=∃>∀εεN N ,当N n >时,恒有20ε<-z z n .因而对任何自然数p ,也有20ε<-+z z p n .利用三角不等式及上面两不等式, 当N n >时,有 ε<-+-≤-++00z z z z z z n p n n p n充分性:设对0)(,0>∃>∀εεN ,当N p n n >+,时,有ε<-+0z z p n ,由定义得 ε<-≤-++n p n n p n z z x xε<-≤-++n p n n p n z z y y由此根据实数序列的柯西准则,必存在两个实数00,y x ,使)(,00∞→→→n y y x x n n ,有i y x i y x z n n n 00+→+=19.证明:设)),3,2,1(( =≤+=n M z i y x z n n n n ,因为M z y x n n n ≤≤,,所以{}{}n n y x ,都有界.根据实数列的致密性定理,知{}n x 有收敛于某常数a 的子序列{}k n x ,相地在),2,1( =+k i y x k k n n 中,{}k n y 任有界,因而{}k n y 也有以收敛于某一常数b 的子序列{}kj n y ,在),2,1( =+=j i y x z kj kj kj n n n 中, {}k n x 任收敛于a ,因此所设序列有一收敛于bi a +的子序列.20.证明:(1)若00=z ,则由定义对N ∃>∀,0ε,当N n >时有{}2ε<n z而 nz z z n z z z n z z z z nN N N n n +++++++=+++='++ 212121 固定N ,取⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+++=nz z z q N N 2102,max ,则当0N n >时,有221ε<++n z z z N故 ε<+++++≤'++n z z z n z z z z n N N N n 2121(2)若00≠z ,则当0)(lim 0=-∞→z z n n ,000010)()(z n nz z z z z z z n n -+-+-=-'0)()(001→-+-=nz z z z n(二)1.解:ii i e e e i i ϕϕϕϕϕϕϕ193)3(2532)()()3sin 3(cos )5sin 5(cos ==-+- 2.解:由于it e z =,故nt i nt e z nt i nt e z nti n nti n sin cos ,sin cos -==+==-- 因此 nt zz nt z z n nn n sin 21,cos 21=-=+ 3.证明:已知(155122cos sin 2233nnn n n n n n x iy i ⎛⎫⎛⎫+=-=-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭ππ 因此 552cos ,2sin33n n n n n n x y ππ== 11n n n n x y x y ---()()151515522cos sin sin cos 3333n n n n n n ππππ---⎡⎤=-⎢⎥⎣⎦()215152sin 33n n n ππ--⎛⎫=- ⎪⎝⎭4.证明:第一个不等式等价于2222)(21y x z y x +=≤+,即)(222222y x y x y x +≤++,即0)(2>-y x 这是显然的,因此第一个不等式成立. 第二个不等式等价于2222222)(y y x x y x y x z ++=+≤+= ,即02≥y x 这是显然的,因此第二个不等式成立. 5.证明:利用公式 )Re(2212221221z z z z z z -+=-以及z z =Re6.证明: 因为21,az b az b az bz bz a bz a bz a+++==⋅+++所以22221a abz abz b b abz abz a+++==+++故1az bbz a+=+7.解:设0z 为对角线→31z z 的中点,则 i z z z 21)(21310+=+=分别左旋及右旋向量30z z 各2π,写成复数等式后,即可由此解得顶点2z 的坐标为(4,1); 顶点4z 的坐标为(-2,3).8.证明:由于123z z z ∆与123w w w ∆同向相似的充要条件是33,z w ∠=∠且23231313z z w w z z w w --=--,而23313arg ,z z z z z -∠=-2313arg w w w w w -∠=-,于是有23231313z z w w z z w w --=--,即1122331101z w z w z w =.9.证明:123,,z z z 4,z 四点共圆或共直线的充要条件为1233410z z z z z z ∠+∠=或π但3212321argz z z z z z z -∠=-,1434143arg z zz z z z z -∠=- 3232141421432143a r g a r g a r g z z z z z z z z z z z z z z z z ----+=⋅----, 因此1234,,,z z z z 共圆周或共直线的充要条件为34141232:z z z z z z z z ----为实数. 10.证明:由21Oz Oz ⊥知2arg arg 21π±=-z z故i z zz z 2121±=,两边平方即得02121=+z z z z ,反之亦然. 11.证明:因为2221k z z z z =--,从而22121k z z z z zz z z =⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛-- 所以 ()2222221112z z z z k z z z z z z +-=+--即 212222122122)()()1(z z k z k z z z k z z k z -=-----亦即 2222122221122122222221)1()1()(1k z z k k z z z z z z k k z k z z --=---+=---故有 221222111kz z k k z k z z --=---,此为圆的方程,该圆圆心为222101k z k z z --=,半径为2211kz z k--=ρ ),10(21z z k ≠≠<. 12.证明:2222)1()1(11111b a b a z z zz+--<+-⇔+<-⇔<+- 022)1()1(2222>⇔<-⇔+--<+-⇔a a a b a b a几何意义:右半平面上的点到(1,0)的距离a 小于到(-1,0)点的距离b ;到(1,0)的距离a 小于到(-1,0)点的距离b 的点在右半平面上.。

相关文档
最新文档